当前位置: 仪器信息网 > 行业主题 > >

光电倍增管放大器

仪器信息网光电倍增管放大器专题为您提供2024年最新光电倍增管放大器价格报价、厂家品牌的相关信息, 包括光电倍增管放大器参数、型号等,不管是国产,还是进口品牌的光电倍增管放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光电倍增管放大器相关的耗材配件、试剂标物,还有光电倍增管放大器相关的最新资讯、资料,以及光电倍增管放大器相关的解决方案。

光电倍增管放大器相关的资讯

  • 关于光电倍增管(PMT)模块的选型与使用
    PMT模块的选型PMT模块中不仅都集成了PMT裸管、分压电路和高压电源,还根据信号输出的不同需求集成了其他的功能组件。按照PMT模块的信号输出类型,滨松的PMT模块产品可以分为电流输出模块、电压输出模块和光子计数探测器。他们的区别是这样的:点击查看大图PS.图中灰色方框内的各种产品/附件滨松也有提供~可以移步至滨松中国官网了解目前滨松有40多个系列,工程师梳理了一张系列型号及基础参数参考表,在选型时可以有所帮助:(点击查看看大图)在同一系列的滨松PMT模块中,会以后缀来区分不同的产品型号。这些后缀往往代表着不同的含义,了解它们,也可以有助于我们的产品选型。这里,我们选出了用途最为广泛的φ8端窗PMT模块,针对其中关键的名词项,来深入一一解读。 滨松φ8 PMT模块命名规则# Settling time是什么?在PMT模块中,加在PMT上的高压会随着控制电压(一般在0.5-1.1V)的变化而变化;但这个过程是有一定延迟的,且根据PMT模块中分压电路的设计有长有短。从调节完控制电压,到施加在PMT的高压到达设定电压——其时间间隔称之为Settling time,也就是稳定时间,简而言之,就是PMT调完控制电压后等多久能用。在滨松PMT模块的彩页中,标注的Settling time数值一般是控制电压从+1.0V到+0.5V所对应的Settlingtime。如果控制电压的变化幅度较小,响应的Settling time也会相应变小。 # 纹波噪声是什么?PMT模块中,除了PMT裸管之外,还至少会集成高压电源和分压电路。其中高压电源中使用的振荡电路(oscillation circuit)会带来额外微小的电压抖动,继而使得加在PMT上的高压、PMT的增益以及最终输出的信号上都会出现相应的抖动,即纹波(ripple,见图)。纹波现象所带来的纹波噪声在滨松PMT模块的彩页中一般被标注为“Ripple noise(peak to peak)”,是在特定控制电压下,采用特定的读出参数所测得的电压曲线中波峰和波谷的差值。 纹波噪声示意为高压电源选择合适的电路设计可以大幅减小纹波噪声。虽然纹波噪声不可能完全消除,但在当前已经商业化的PMT模块中,纹波噪声已经小到基本可以不予考虑。如果特定情况下确实需要降低纹波噪声,可以考虑以下两种方法: (1)在模块信号输出之后加入低通滤波器,过滤掉一部分;(2)提高控制电压——此时光电倍增管的增益与纹波的绝对值都会增加,但是增益的增长要更快,所以能够实际上降低纹波的影响。# PMT模块的电流输出与电压输出的区别?电压输出的PMT模块的Conversion factor是什么? PMT最原始的输出信号为电流。相对于电流输出模块,电压输出的PMT模块中多了一个跨阻放大器(Current-Voltage Conversion Amp)将电流已经转换成了电压(可以翻到上文看看图)。对应的转换系数就是conversion factor(或者称作Current-to-voltage conversion factor)。 此外,由于跨阻放大器本身是有带宽的,如H10722和H10723采用了不同的跨阻放大器,所以其输出信号的带宽也就不一样。 总的说来,电压输出模块和电流输出模块在使用中的优劣如下:# 插针式与导线式有什么区别? 插针式(下图左,如H10720,H11900)与导线式(下图右,如H10721,H11901)的两种光电倍增管模块没有本质区别。前者可以直接插在电路板上;后者在安装上则更加灵活。可以根据实际使用环境和条件选择。 H10720和H10721外观 # 光谱响应参数的解析PMT模块的光谱响应范围主要由光阴极面的材料和窗材决定。 光阴极面的材料决定了PMT光谱响应的波长上限,更长波长的光子由于能量不足就较难转化成光电子从而被探测了。 管壁材料(窗材)决定了PMT光谱响应的波长下限。对于波长更短的光子,理论上只要能够轰击到光阴极面都能够产生光电子。但PMT是一个真空管结构,光子到达光阴极面之前需要先通过管壁。过短波长的光子会被管壁所阻碍,所以管壁材料(窗材)一般决定了PMT光谱响应的波长下限。 光电倍增管工作示意图在滨松样本资料中,一般会给出波长范围(如H10720-110的230-700nm)。其下限代表的是管壁透光率曲线的拐点;其上限,对于多碱材料是灵敏度峰值的0.1%,对于双碱材料是灵敏度峰值的1%。# 关于功耗更多的解析H1072X系列最吸引人的是其低功耗;H10720/H10721系列所要求的电压(input voltage)甚至只有2.8-5.5V,电流也只是mA级别。这意味着,3节普通的5号电池就足以作为PMT模块的电源。加上H10720/H10721本身的小体积,使得其非常适合用于手持式设备。 H10720/H10721,H11900/H11901系列与功耗相关的参数 PMT模块的使用根据实际应用中数据测量的需求,PMT模块的使用可以分为如下3类。 1. 在示波器上读出PMT模块输出的模拟信号 2. 在电脑上读出PMT模块输出的模拟信号 3. 在电脑上读出光子计数结果
  • 下一代光电倍增管(μPMT)问世 PMT技术发展何去何从?
    下一代光电倍增管(μPMT)问世 PMT技术发展何去何从?   ——“2010(第19届)北京 HAMAMATSU技术交流会”在长沙举行   仪器信息网讯 2010年10月31日-11月2日,日本滨松光子学株式会社(以下简称“日本滨松”)与北京滨松光子技术股份有限公司(以下简称“北京滨松”)在长沙和一国际大酒店共同举办“2010(第19届)北京HAMAMATSU技术交流会”。本次技术交流会以“光电倍增管、光源的相关技术与应用”为主题,来自日本滨松电子管事业部和北京滨松的专家做了现场报告并解答用户提问。   120余名来自核电、分析仪器、医疗、环境等领域的滨松用户参加了本次交流会。日本滨松常务取缔役、北京滨松董事长竹内纯一先生,北京滨松总经理席与霖先生,总经理助理兼第一事业部部长段鸿滨先生等滨松集团高层出席。仪器信息网作为特邀媒体也参加了本次交流会。   交流会现场   日本滨松常务取缔役、北京滨松董事长 竹内纯一先生   报告题目:日本滨松光子学株式会社整体公司介绍   北京滨松光子股份有限公司总经理席与霖先生出席技术交流会   竹内纯一先生首先对日本滨松的发展历程、公司宗旨以及公司各个事业部的发展情况做了整体介绍,他在报告中说到:日本滨松成立于1953年,至今已有57年的历史。“Photon is Our Business”,公司长期致力于光子相关技术的探索。目前,公司下设电子管事业部、固体事业部、系统事业部、激光部大部门,分别生产不同产品(详细见表1)。除产品研发部门外,公司另设有中央研究院,专门从事跟光子相关的、具有开拓性的研究,这些研究立足于未来,非常具有前瞻性。   表1 日本滨松四大部门所生产的产品 部门 产品 电子管事业部 光电倍增管(PMT)、各种光源(灯)、微聚焦X线源、像增强器等产品。 固体事业部 光电二极管、光IC、图像传感器(CCD、CMOS、NMOS等)、发光器件等产品。 系统事业部 应用在生物、医疗、半导体芯片领域的各种测量仪器,如超高灵敏度、超高速数码相机,图像处理,条纹相机等产品。 激光部 大功率半导体激光器等产品。   (备注:本表根据竹内纯一先生的介绍内容整理而成。)   日本滨松研发出的微光电倍增管(micro μPMT)   电子管事业部近期研发出了全球首款采用MEMS技术的微光电倍增管(即micro μPMT),该产品只有大拇指大小,长7mm,宽5mm,厚2mm,其制作工艺是通过MEMS技术在硅底板上形成光电面及电子倍增部(倍增电极),用两张玻璃底板将其夹住形成,这种构造的最大特点是可轻松进行批量生产。μPMT的工作原理与原来的PMT相同,性能方面也毫不逊色。预计该产品将从2011年1月开始样品供货,主要面向利用μPMT进行研究开发用途的用户。   日本滨松电子管事业部营业推进部部长 袴田敏一先生   报告题目:光电倍增管新产品的动向、应用及其他常识   袴田敏一先生的报告内容主要分为两部分,即滨松光电倍增管产品的研究动向及其在使用中的注意事项。袴田敏一先生认为,日本滨松的光电倍增管产品正往五个方向发展:(1)其量子化效率提高,感应波长向长波方向延伸;(2)其响应速度提高;(3)其外壳采用金属封装,并实现多通道;(4)其暗电流与本身材料本底降低;(5)倍增极放大倍数提高。针对以上五个方面,日本滨松均推出了相应的产品,供不同需求的用户选择。   北京滨松的光电倍增管模块产品   此外,袴田敏一先生还指出了光电倍增管的技术方向:未来真空管技术将与半导体技术相融合,光电倍增管将向模块化、集成化、通用化发展。日本滨松将向光电倍增管技术的极限挑战——力争使光电倍增管的量子效率增至100%,而噪声降至0。   袴田敏一先生最后提醒广大用户在使用光电倍增管的过程中要注意高压电源、分压器、磁场等光电倍增管周边器件对其性能的影响,同时不能忽视温度、湿度、气压、振动等环境因素的作用。   北京滨松光子技术股份有限公司新产品开发部 李妙堂先生   报告题目:PMT在放射测量(闪烁计数)中的应用   李妙堂先生的报告主要涉及三方面内容:(1)闪烁探测器的组成、工作原理、特点与应用;(2)闪烁探测器的性能与特性;(3)闪烁探测器的设计技术。   李妙堂先生在报告中指出:闪烁探测器是由闪烁体和光电倍增管组合而成,是目前常用的核测量探测器之一。可以从能量分辨率、坪特性、探测效率、本底、计数速率、灵敏度、稳定性等多个方面去衡量闪烁探测器的性能。设计闪烁探测器涉及闪烁体的选择、光电倍增管的选择、光收集系统、分压器的设计、输出回路、前置放大器的设计、闪烁计数的稳定电路等方面,设计者要综合考虑各方面因素。   日本滨松光子学株式会社电子管事业部第4制造部制造部长 松下孝二先生   报告题目:日本滨松光子学株式会社的光源产品   松下孝二先生介绍到:日本滨松的光源产品涵盖氘灯、氙灯、汞氙灯、空心阴极灯等种类,广泛应用于半导体、医疗、分析仪器、环境检测、信息等领域。光源的性能可从波长范围、光能输出量、稳定性、寿命等方面来判断。   他详细介绍了滨松的氘灯系列产品。L2D2系列氘灯是专门为分析仪器开发的产品,具有高稳定性、长使用寿命、高光能输出等特点,可应用于高效液相色谱、紫外可见分光光度计、原子吸收分光光度计等仪器。X2D2系列氘灯在L2D2的基础上,性能又有所提升,其亮度是传统氘灯的两倍,适用于高分辨率、高通量分析仪器。而新近研发的S2D2系列小氘灯性能稳定、形状小巧,非常适用于便携式分析仪器。   日本滨松光子学株式会社电子管事业部第四制造部 上野和夫先生   报告题目:光源产品的使用方法   上野和夫先生针对滨松的汞氙灯、脉冲氙灯、氘灯三大类光源产品介绍了使用过程中所出现问题的原因以及如何应对。光源在使用过程中,可能会遇到诸如灯无法点亮、输出不稳定、输出衰减、灯破损等问题,不同种类的光源产生上述问题的原因是不一样的。用户要仔细分析,有针对性的排除不利因素。   技术交流会现场,日本滨松公司在会场还设立了产品展区。用户们仔细地观看所展出的产品,并在报告提问环节反应热烈,提问踊跃。   用户踊跃提问 用户仔细观看滨松产品   技术交流会举办地:长沙和一国际大酒店   附录1:北京滨松光子技术股份有限公司   http://www.bhphoton.com/   附录2:日本滨松光子学株式会社   http://www.hamamatsu.com/
  • 光电倍增管才是单光子探测的yyds
    随着科技的突飞猛进,我们逐渐揭开了光子的神秘面纱。由于光子的微弱特性,直接观测和探测它是一项巨大的挑战。因此,研发出能够探测单个光子的探测器成为了科学家们追求的重要目标。市面上已经有多种单光子探测器,比如光电倍增管、光子计数探头、MPPC和SPAD等。它们各有千秋,但要说到单光子探测的顶尖高手,那非光电倍增管莫属。那么,这些单光子探测器是如何工作的呢?接下来,让我们一一揭开它们的神秘面纱!01 光电倍增管光电倍增管的工作原理如下图所示:当单个光子到达阴极面的时候,由于光电效应会产生光电子,产生的光电子在聚焦电场的作用下进入倍增级实现连续的倍增,从而实现电信号的连续放大,最后通过阳极输出,这个过程就实现了单光子信号的探测。图1 端窗型光电倍增管结构02 光子计数探头除了光电倍增管裸管,也有光电倍增管模块能做到单光子探测,也被称之为光子计数探头。光子计数探头是在能够做单光子探测的光电倍增管的基础上增加了如下的信号处理电路,可以将单光子的输出信号转换为TTL 信号输出,通过对TTL信号进行计数,就可以得到光子数量,方便实际测试。图2 光子信号处理电路03 多像素光子计数器(MPPC)除了上面的真空电子管类型的光子计数探测器之外,目前半导体器件也能够进行光子计数,常见的就是多像素光子计数器,滨松也称之为MPPC,硅光电倍增管。其中,MPPC是一种由多个工作在盖革模式的APD组成的光子计数型器件,其中APD(雪崩光电二极管)是一种具有高速度、高灵敏度的光电二极管,当加有一定的反向偏压后,它就能够对光电流进行雪崩放大。而当APD的反向偏压高于击穿电压时,内部电场就会变强,光电流则会获得105~106的增益,这种工作模式就叫APD的“盖革模式”。在盖革模式下,光生载流子通过倍增就会产生一个大的光脉冲,而通过对这个脉冲的检测,就可以检测到单光子,实现单光子探测!图3 MPPC输出示意图04 单光子雪崩光电二极管(SPAD)除了MPPC之外,半导体探测器中单光子雪崩光电二极管也能进行单光子探测,我们称之为SPAD。SPAD可以理解为它是由单个MPPC像素形成的探测器,它只有一个像素点,也就是只有一个能工作在盖革模式下的APD,所以它无法反映光强度的变化,只能是对光的有无做出反应。而MPPC由于是多个像素的阵列,我们可以根据输出信号的幅度来判断光信号的强度。但是SPAD也能做到单光子的探测。05 光电倍增管单光子探测优势通过以上介绍我们可以看到,目前单光子探测器主要分为真空电子管和半导体探测器两个类型,他们都能实现单光子的探测,那么光电倍增管的优势在哪呢?光敏面积光敏面积是单光子探测中比较关键的一点。相对来说,面积越大,能够探测到的光子数也就越多,同时前端的光路也会相对比较简单,不需要复杂的聚焦系统。由于光电倍增管是真空电子管,我们是可以通过控制阴极面积的大小来决定探测器的光敏区域。目前滨松最大的光电倍增管阴极面直径能做到20英寸,光子计数探头模块阴极面积最大的直径在25毫米,能够满足不同光斑大小的探测需求。但是对于MPPC来讲,由于面积大小与其性能有直接联系,比如,暗计数率同光敏面积成正比,面积的增加会导致暗计数率的增加。由于半导体的固有热噪声较大,暗计数会随着面积的增加进一步导致波形堆叠,难以对单光子信号进行分析。此外,面积越大,寄生电容越大,影响MPPC的响应速度。暗计数暗计数是指探测器在没有光子进入的时候,探测器本身的信号输出。其中光电倍增管是真空电子管器件,噪声的主要来源是阴极面的热电子发射,暗计数的值大概在百个级别,常见的光子计数探测器H10682-110,典型的暗计数在50 cps,最大值在100 cps。而MPPC和SPAD是半导体探测器,不仅光子可以产生载流子,热电子也会产生载流子,热电子生成的载流子也具有单光子水平的信号电平,并且暗计数的水平明显高于光电倍增管的暗计数,暗计数的值大概上千,常见的MPPC光子计数模块C13366-1350GD,典型的暗计数在2.5 kcps,最大值在7 kcps。弱光信噪比不管是真空电子管还是半导体探测器,他们都能实现单光子探测,但是由于噪声的存在,相同信号的输入,会导致不同的信噪比。相对来说,信噪比越大,说明其中的噪声比较小,能够有效地反映信号的情况。通过对比目前滨松常见的光子计数探头和半导体光子探测器型号在同样光强环境下的信噪比,可以看到,在弱光环境中,光电倍增管具有一个很好的信噪比。图4 不同类型探测器弱光信噪比对比(光子计数探头&MPPC&SPAD)通过以上对比我们可以看到,光电倍增管在单光子探测中,具有面积大、噪声小、信噪比高的特点,所以在弱光探测环境中,我们还是推荐使用光电倍增管!以上就是本期的讲解,如果还有其他问题,欢迎评论区留言或者直接联系相关工程师获取技术支持。相关阅读喏,你要的光电倍增管全解析在这里~想了解光电倍增管原理及应用,这一场报告就够了关于光电倍增管(PMT)模块的选型与使用光电倍增管:光照灵敏度&辐射灵敏度“差别”在哪?光电倍增管动态范围的定义不是?而是?光电倍增管(PMT)分压器设计原理
  • 光电倍增管大家族概览,原来都有它们……
    科学新发现、理解大自然的根本动力是好奇心,人们又通过对自然的仔细思考和实验推动了科学的发展。在追寻未知未涉的过程中,最简单的探测和记录装置就是我们人类自身的感觉器官,但是对于现代科学,这种“自然”的探测器要么灵敏度不够,要么适用范围不广。就拿我们人眼为例,要产生视觉影像至少得几十个光子,而一个光电倍增管可以很容易地探测到单光子;人眼观察的光谱也只是集中在可见光(400-800nm),而自然界的电磁波频谱从广播电波到微波、红外辐射、可见光、紫外光、X射线、伽马射线,足足跨越了23个量级。 我们的眼睛了解世界是有限的,而好奇心赋予了人类对未知未涉世界的渴望,也推动了光探测器技术的发展。滨松公司的研发一直是从与光的对话开始的,从最初的光电管、摄像管的研发生产开始,逐步发展到拥有光探测器及光源、半导体光电产品、图像分析与计测装置、激光以及相关技术等全系列光电产品的公司。在滨松公司发展过程中光电倍增管技术起到了不可磨灭的作用,也一次又一次地把滨松公司的探测器产品推向了世界的舞台。光电倍增管是一类用于极微弱光探测的真空电子管,第一只光电倍增管(PMT)于80多年前由美国国家辐射公司(Radio Corporation of America)发明,并于1936年首次成为商用产品。滨松公司从1955年开始了对光电倍增管技术的研发,经过了无数次的实验和磨练以后生产出了性能优于其他厂家的光电倍增管,并且在1959年侧窗型光电倍增管投放市场。经过50多年的发展,滨松公司已经成为了世界上技术最先进、产品种类最全、市场占有率最高的光电倍增管生产厂家。光电倍增管由光阴极、电子光学系统、倍增级、阳极、真空保护壳组成,其中光阴极是由逸出功较小的碱金属化合物镀膜形成,光阴极在一定能量的光子照射下发生外光电效应,将光子转化成电子,电子在电场约束下通过电子光学系统进入倍增级,电子通过电场加速后轰击倍增级表面的二次电子材料实现电子的倍增,电子信号经过多级倍增以后可以达到105-109倍的放大,最后放大后的信号被阳极收集输出。由于光电倍增管优秀的倍增特性,到目前为止光电倍增管仍然在很多极微弱光探测领域有着不可取代的地位。从结构上光电倍增管可以分为侧窗型光电倍增管和端窗型光电倍增管,不过这样很难充分体现光电倍增管的本身特性。下面我们就从功能和应用上对光电倍增管进行一下简单介绍。常规光电倍增管光电倍增管用在光学测量仪器和光谱分析仪器中,它能在低光量光度学和光谱学方面测量波长115-1700nm的极微弱辐射功率。闪烁计数器的出现,进一步扩大了光电倍增管的应用范围,激光检测仪器的发展与采用光电倍增管作为有效接收器密切相关,我们的日常生活和健康也离不开光电倍增管。目前光电倍增管被广泛地应用在冶金、电子、机械、化工、地质、医疗、核工业、天文和宇宙空间研究等领域,也和我们的日常生活息息相关。滨松光电倍增管大家族,从Macro到Micro 图中的20寸光电倍增管为世界最大的光电倍增管,并于2014年获“IEEE”里程碑认证超级神冈实验中的滨松20英寸光电倍增管(共11200个)高温光电倍增管常规的光电倍增管一般的使用温度是-30℃-50℃,如果常规的光电倍增管超过50℃工作,首先噪声会变的非常大;其次高温也会加速光电倍增管阴极和倍增级材料的性能退化,降低光电倍增管寿命。在我国一般的石油勘探都要达到3500m左右的地层,而在这个地层下温度高达175℃,常规的光电倍增管就无法满足要求了,为了这样的应用环境,我们开发了耐高温、耐振动的高温光电倍增管产品。 低温光电倍增管低温作用下光电倍增管的阴极面电阻会变的非常大,面电阻增大会阻碍阴极电流的流出,所以常规的光电倍增管在低温下工作时候,阴极线性电流会变的非常小,极大限制了光电倍增管的应用,尤其是在一些类似液氙、液氩环境中进行的直接暗物质探测的试验中。滨松公司通过低温碱源技术,以及在阴极面内部镶嵌金属辐条技术,大大的降低了低温下阴极面的面电阻,使光电倍增管低温下使用成为了可能。低本底辐射光电倍增管低辐射光电倍增管是随着宇宙射线探测、暗物质探测应用而生的,在我们自然界中存在着大量的天然放射性物质,铀系、钍系、钾等物质是自然辐射的主要来源,当然在我们常规的玻璃管壳中也存在较高的自然辐射本底,然而由于辐射与光阴极面反应截面很小,自然辐射对于我们常规的光探测几乎是没有影响的,但是对于闪烁测量,尤其是对本底要求很高的暗物质检测的试验中,这些本底辐射可能就是致命的,会对有效信号造成干扰,从而影响实验的效果。滨松公司一方面采用无钾玻璃作为光电倍增管管壳来降低本底,另一方面为了进一步降低本底,滨松公司采用金属作为光电倍增管外壳、用陶瓷作为基板,通过这样的措施可以将本底降到常规光电倍增管的1/10以下。 位置检出型光电倍增管光电倍增管大多数情况下是作为点探测器使用的,然而像PET、伽马相机等既要判断入射光电强度,又要判断光斑位置的应用,我们可以采用在闪烁体技术以及计算机数据处理等方法,用常规光电倍增管实现应用;如果我们要达到更好的位置分辨效果,就需要位置检测型光电倍增管了。位置检测型光电倍增管一般采用通道式的打拿极结构,这样的结构可以有效地把电子倍增过程约束到一个很小的空间内,这样可以降低通道间的串扰,根据阳极结构的不同我们也把位置检测型的光电倍增管分为多阳极光电倍增管和位敏型的光电倍增管,多阳极光电倍增管采用多个独立的阳极作为输出,而位敏型的光电倍增管则采用十字金属板的阳极,通过X、Y轴信号的大小来判断光的位置和强度。MCP型光电倍增管时间响应特性和时间分辨能力是光电倍增管非常重要的参数,尤其是用在一些荧光寿命检测或者是快速时间响应的应用中,例如系统事业部生产的Q-τ(荧光寿命分析仪),就利用了MCP-PMT的高时间分辨能力。MCP(微通道板)是一种通道式的电子倍增系统,能够对带点粒子、X射线、极紫外等射线进行探测,同时作为电子倍增系统具有极高的时间分辨率,可以达到Ps级别,利用MCP作为倍增系统的光电倍增管,不仅可以探测光,同时也具有时间分辨率高的特点。 混合型光电倍增管混合型光电倍增管在我们销售过程中不太常见,不过由于其能量分辨率高、时间响应速度快等特点,在高能物理研究领域有着非常重要的地位。从结构上看混合型光电倍增管由前级的光电阴极、电子加速系统、半导体雪崩系统、输出系统构成。混合型光电倍增管阴极接收光子产生光电子,电子在高压加速系统中加速,高能量的电子轰击半导体,利用雪崩效应产生大的增益,最后电子由输出系统输出。μ-PMT是MEMS技术和真空电子管技术的完美结合,他利用MEMS技术在硅晶片上加工打拿极,利用真空电子管技术形成光阴极以及倍增级。虽然他仅仅手指大的体积,但是他可以实现106倍的增益。μ-PMT为光电倍增管的发展开辟了一条新的道路,使我们看到光电倍增管微小化、集成化、柔软化成为了可能,也使我们看到了光电倍增管更广的发展和未来。滨松微光电倍增管(μ-PMT)为世界上最小的光电倍增管 在半导体探测器蓬勃发展的今天,有人说光电倍增管快过时了。不过我们看到的是滨松更高量子效率、更低噪声、更耐环境的光电倍增管技术研发,以及新型的μ-PMT的技术研发。我们可以相信光电倍增管技术永无止境,而且必定还会在我们未来的生活和科学研究中发挥更大的作用
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 探访海南展创:光电倍增管中国造
    仪器信息网讯 相比于北方,12月初的海口温暖如春,和所拜访的企业一样充满着绿色和生机。仪器信息网慕名而来,是因为这里有一家在分析仪器行业内并不知名的企业&mdash &mdash 海南展创光电技术有限公司。公司虽然不出名,但其产品在分析仪器行业无人不知:光电倍增管。   海南展创厂房外景   在此行之前,仪器信息网已从多位专家处了解国产光电倍增管的情况,多位专家均对海南展创的技术和产品赞不绝口。   参观合影(中间为海南展创总经理王芳)   海南展创总经理王芳向我们介绍了海南展创光电技术有限公司的情况。展创成立于2009年11月。2011年,公司根据国内外市场需求和自身发展的需要,进行了增资扩股,开始启动光电倍增管生产线收购项目。   目前能满足科学仪器使用需求的光电倍增管主要供应商是北京滨松光子技术股份有限公司。国内投资企业虽然有卓立汉光、江苏仪征以及上海飞乐等企业涉足,但是在性能和市场都处于边缘化地位。海南展创能否打破这种局面?   王芳介绍说,&ldquo 海南展创光电技术有限公司注册资本为5000万元人民币,实际投资已高达3个多亿。公司通过收购具有国际先进水平的法国PHOTONIS公司的一条光电倍增管生产线,在海南省澄迈县老城开发区建厂。收购的项目包括全部生产设备、专利、工艺技术资料,以及设备安装、调试并确保使产品达到PHOTONIS公司现有产品品质。所引进的生产线是当今世界顶级的两条PMT生产线之一,该生产线设计独特、产量稳定,且具有不可复制、不可替代的唯一性。其产品的设计、质量标准一直处于国际领先地位,是GE、西门子、飞利浦等公司PET/SPECT等医疗设备核心零部件的供应商。海南展创拟通过此项目实现我国光电倍增管产品的技术突破,提高技术水平,从而在更大的空间里整合以医疗仪器、分析仪器为代表的电子整机装备制造能力,以发展我国光电倍增管民族产业自主品牌,配合努力打造我国最大的光电倍增管产业集群,并最终实现我国中高端光电倍增管的产业化。&rdquo   海南展创目前已成功试制出XP1455,XP5312,XP5382,XP1912,XP53B20,XP1805,XP5212等各类型光电倍增管十余种,分别应用于高端医疗器械(美国GE医疗集团)、高能物理(中科院高能物理研究所)和闪烁计数(清华大学)等领域,以及以色列、丹麦的单光电子CT。各产品样管都已经交由各个客户进行产品的测试和最终调试。其中,供给美国GE医疗集团的XP1455(主要用于PET-CT等医疗器械)样管近100支,全面通过以严格和高标准著称的美国GE医疗集团的各项产品性能测试,产品性能指标表现优异。   &ldquo 众所周知,作为医疗仪器设备知名厂商,GE对自己的供应商有着非常严格的审核标准。一般情况下,对核心元器件供应商来说,没有2-3年的考察,很难通过GE认证。而展创仅用了不到一年的时间,即通过了美国GE医疗集团供应商认证,成为GE医疗全球合格供应商,也侧面表明了海南展创的技术实力。&rdquo 王芳说。   据了解,在高能物理领域,海南展创已向中科院高能物理所交付了专为其订制的用于高能物理射线探测的光电倍增管XP1805。XP1805具有8英寸的大体积,属于光电倍增管行业里制作难度最大的管型之一。在试制过程初期,主要面临增益小,光阴极灵敏度偏低,光阴极均匀性差等问题。经过海南展创工程师的不懈努力,以上问题基本得到解决,与光阴极相关的参数也已符合标准。2013年11月7日,中国科学院高能物理所江门中微子实验负责团队一行5人,专程来到海南展创,就江门中微子实验所需的光电倍增管与海南展创进行了细致的探讨,并就双方接下来的合作交换了意见,正式邀请海南展创参加将于2014年1月中旬在开平召开的江门中微子实验国际合作组会议。   王芳还介绍说:&ldquo 根据现有市场需求分析以及公司发展规划,我公司已制定了3年期的产品计划和目标。现阶段正有序的按照计划开展试制与生产工作&rdquo 。   针对科学仪器市场,根据该行业应用特点及海南展创自身技术优势,海南展创也提出了相应的解决方案:   ● 将大力开发端窗型光电倍增管,该产品类型具有更大的有效面积,拥有从几十平方毫米到几十平方厘米的光阴极,是侧窗型光电倍增管不具备的。   ● 进一步巩固和提高产品的信噪比,目前光电倍增管产品对某些元素具有极低的检测下限。此特点是其他检测器所达不到的。例如在检测高纯物质,如99.997%的电解铝或者电解铜时,CCD无法检测。再如做纯金属分析或个别军工用特殊合金产品,检出限在1ppm或0.1ppm,须选用PMT。海南展创也将进一步提高产品性噪比来巩固这一传统优势。   ● 温度适应性高,工作温度普遍为-30度到+50度。   ● 稳定性好,工艺成熟,产品寿命长。   ● 海南展创还能依据客户需要,在特定波段提高检测极限值,使得仪器相对于其他同类产品有更精确的检测结果,从而更有竞争力。   10万级洁净间   王芳介绍说,&ldquo 海南展创的成立以及伴随而来的光电倍增管生产线的国产化,光电倍增管的性价比将不断提高。我们愿意与仪器厂商一同研发,共同进步,为推进国产分析仪器行业健康发展贡献力量。&rdquo   我们一行还参观了海南展创的生产车间,其高自动化的生产设备给我留下了很深的印象。当然,在海南展创生产出科学仪器厂商所需的核心部件之前,还有很多路要走,还需要和仪器厂商更多的沟通。但是,从现场和展创人身上,我们也看到和感受到了其扎实的技术实力和自信心。相信,中国高科技领域年轻的创业者们将给中国科学仪器行业带来巨大活力的潜力。   撰稿:陈丽英
  • 中高端光电倍增管试产 填补我国产业空白
    拇指般粗细的机械臂从传送带上取出一根小小的玻璃柱,放到火焰枪下煅烧数秒,“腾”的一声,玻璃柱被弹射出去,滑落到装接成品的小篮子里。这些玻璃柱,将填补我国产业空白的中高端光电倍增管(PMT)产品。   这只是海南展创公司中高端光电倍增管生产工序中的一道。展创公司负责人告诉记者,海南展创与世界最先进的两家中高端光电倍增管生产企业之一法国PHOTONIS(弗通尼斯)公司合作,生产数十种不同类型的光电倍增管。光电倍增管广泛应用于高新电子、分析仪器、医疗仪器、石油油田测井和地质勘探、核电站测量及防护、核物理应用和高能物理应用等7大领域。目前我国现有中高端光电倍增管生产水平,仅限于小批量有限品种的生产,大量产品依赖进口。   据悉,该公司已进入2000只光电倍增管的试生产环节。展创公司将在下月中旬举行正式开业庆典,同时迎接来自国内以及法国、荷兰等地的国际高能物理研究巨头举办的业内峰会,使展创中高端产品更适应各自的科研需求。   展创的中高端光电倍增管项目总投资为5亿元,一期计划投资3.2亿元,现已完成投资2.97亿元,计划在3年内达到年产23万只产品的规模,前期主要满足欧美市场,后期开发国内市场。
  • 投资5亿元光电倍增管生产线在海南投产
    2012年12月12日,由海南展创信息技术有限公司引进的展创中高端光电倍增管生产线投产。该项目填补我国中高端光电倍增管器件及整机产品制造空白,迅速拉短我国该技术落后国际先进水平40年的差距。   该项目承接法国弗通尼斯公司21项专利技术,生产35种不同类型的光电倍增管,广泛应用于高新电子、分析仪器、医疗仪器、石油油田测井和地质勘探、核电站测量及防护、核物理应用和高能物理应用等7大领域。目前我国现有中高端光电倍增管生产水平仅限于生产单个产品,大量产品依赖进口。   展创公司总经理王芳向海南日报记者介绍,项目总投资为5亿元,一期计划投资3.2亿元,今年已完成投资2.97亿元,主体建设完工,开始安装主厂房机电和生产线,预计9月份点火,11月份生产出样管,计划在3年内达到年产23万只不同型号光电倍增管产品的规模,前期主要满足欧美市场,供应法国弗通尼斯公司包括美国GE、荷兰NIKHEF,丹麦DDD等在内的原有用户,3年目标累计订单规模为2.5亿欧元,约合人民币20亿元,利税2亿元 后期启动与中国科学院研发生产基地项目后,国内外市场总销售规模可达30亿元,产生利税5至10亿元。   王芳表示,受国际经济危机及国内人力成本上涨影响,法国弗通尼斯公司与展创公司合作,将生产线转移到中国,由于这一行业技术门槛高、客户需求专业性强,展创公司前期的原料采购和市场销售均放在欧美,随着生产线扩大、设备管理和产品设计等核心技术的逐渐转移,原料采购和销售市场将随之本地化。
  • 国内首条20英寸新型光电倍增管生产线启动
    光电倍增管  11月25日,由中国科学院高能物理研究所(以下简称高能所)牵头成立的微通道板型大面积光电倍增管研制合作组(以下简称合作组)宣布,国内首条年产7500支的20英寸微通道板型光电倍增管生产线建成运行。未来两年内,中国兵器工业集团北方夜视技术股份有限公司将为中科院战略性先导科技专项——江门中微子实验提供1.5万支该产品。  该生产线的建成及运行,标志着20英寸新型光电倍增管正式进入批量生产阶段,它不仅是产学研有机结合的范例,也将为我国在中微子实验的研究领域再登高峰夯实基础。  中微子看不见摸不着,只参与弱相互作用,即便是与液体闪烁体相互作用也只产生很少的光子,极难探测。要想探测中微子,就需要极弱光探测技术即光电倍增技术,该技术可以检测微弱光信号,具有极高的灵敏度和超快的时间响应,就像猎手敏锐的猎眼。  “20英寸新型光电倍增管代表着光电倍增管的最高技术水平。”高能所所长王贻芳告诉《中国科学报》记者,光电倍增管是粒子物理及核物理实验的关键通用部件,其主要作用是将光信号转换为电信号。  据悉,2008年,在高能所提出大亚湾中微子实验二期实验(现更名“江门中微子实验”)设想时,大亚湾中微子实验所用的2000多支8英寸口径光电倍增管由美国合作者从日本购买。  在此背景下,高能所决定启动新型光电倍增管的预研并希望实现国产化。2011年底,由该所牵头,并与北方夜视技术股份有限公司、中国科学院西安光学精密机械研究所、中核控制系统股份有限公司和南京大学等单位组成合作组。  合作组用4年时间,攻克了高量子效率的光阴极制备技术、微通道板、大尺寸玻壳等多个技术难点,最终研制出量子效率、收集效率和单光电子峰谷比等关键技术指标达到国际先进水平的样管。  记者了解到,江门中微子实验计划将于2018年底启动光电倍增管安装工作,并预计于2020年前后开始中微子实验的数据采集工作。
  • 江门中微子专项:2016支国产光电倍增管已交付!
    p   熟悉中国科学院先导专项的人都知道,自2011年起,中科院组织实施了战略性先导科技专项,并把它分成了A、B两类,A类侧重于前瞻战略科技,B类侧重于基础与交叉前沿方向布局。 /p p   不过,细心的人会发现,在A类先导专项的名单里,有一个特殊的条目——“江门中微子实验”。与所有其他专项都不同,“江门中微子实验”专项只为一项实验而设。 /p p   回望过去,这个特殊的先导专项,曾因独特的国际竞争而提前诞生。五年来,它一步步为撑起中国中微子研究的新辉煌而前行。 /p p    strong 提前五年启动的项目 /strong /p p   江门中微子实验先导专项的诞生,还要从大亚湾实验说起。 /p p   2007年10月,大亚湾反应堆中微子实验开工。热衷于“走一步看三步”的科学家们一边建着大亚湾工程,一边盘算着下一步还可以做点什么。 /p p   在后续研究的各种可能中,现任中科院高能物理所所长王贻芳和研究员曹俊提出的“中微子的质量顺序测量”方案很快成为二期实验的首选。不过,二期实验能不能做,取决于一个前提——大亚湾实验测出的中微子振荡几率一定要够大。 /p p   2012年3月8日下午两点,高能物理所召开了一场新闻发布会,王贻芳向世界宣布,大亚湾实验测到了中微子第三种振荡,振荡几率为9.2%。这一结果,远远超过他们最早期待的1%到3%。科研人员心里有数了:“后续的中微子实验能做!” /p p   最终,实验选址广东江门,距阳江和台山反应堆群分别约53公里,由原先的“大亚湾中微子二期实验”更名为“江门中微子实验”。 /p p   让人意想不到的是,项目的启动比预期中提前了五年。“2008年时,我们预计如果大亚湾实验结果比较好,十年后可以启动后续研究。”曹俊说。 /p p   大亚湾实验结果公布之后,中微子质量顺序测量成为下一步的研究热点,美国、日本、甚至印度都逐渐明确了下一步的计划。“我们如果走常规的经费支持申请渠道,新的研究项目批下来至少还要四五年,到那时,这事儿就黄了。”曹俊说。 /p p   于是,他们申请了先导专项的支持。2013年2月1日,唯一一个以单一实验项目为内容的战略性先导专项成立了。根据科学目标,“江门中微子实验”工程建成后将着力解决国际中微子研究中下一个热点和重大问题:中微子质量顺序,同时开展超新星中微子、地球中微子、太阳中微子等一系列国际领先的天体物理研究,巩固我国在中微子研究领域的国际领先地位。 /p p    strong 关键器件已实现国产化 /strong /p p   项目启动,技术挑战也随之而来。大亚湾中微子实验项目积累下来的经验,虽然为江门中微子实验建设提供了支撑,却无法解决新出现的所有技术问题。科研人员要面对的第一大挑战,就是高量子效率光电倍增管的研发。 /p p   中微子看不见、摸不着,极难探测,被称为“幽灵粒子”。要想探测中微子,就需要极弱光探测技术,即光电倍增技术,该技术可以检测微弱光信号,具有极高的灵敏度和超快的时间响应,就像猎手敏锐的猎眼。光电倍增管是粒子物理及核物理实验的关键通用部件,其主要作用就是将光信号转换为电信号。 /p p   当初,大亚湾中微子实验采用了2000多支8英寸口径光电倍增管,都是由美国合作者从日本购买。 /p p   “对江门中微子实验,这样的光电倍增管已经达不到要求,必须在现有技术上突破,大幅提高探测效率,才有可能实现测量中微子质量顺序的科学目标。我们在2008年提出实验设想时就意识到了这个问题,设计了新型光电倍增管,启动了技术研发。但项目提前启动给研发带来了巨大的压力,直到2015年底,我们仍然心里没有底,到底能不能成功。”曹俊告诉记者。 /p p   2011年底,由高能所牵头,北方夜视技术股份有限公司、中国科学院西安光学精密机械研究所、中核控制系统股份有限公司和南京大学等单位组成了产学研合作组。 /p p   4年时间,他们攻克了高量子效率的光阴极制备技术、微通道板、大尺寸玻壳等多个技术难点,最终研制出量子效率、收集效率和单光电子峰谷比等关键技术指标达到国际领先水平的样管。 /p p   2016年11月,国内首条年产7500支的20英寸光电倍增管生产线建成运行。截至今年9月18日,江门中微子项目已经得到了2016支国产光电倍增管。 /p p    strong 向着“最高”和“最大” /strong /p p   2015年1月,项目启动建设。中国科学院院长白春礼为此发来贺信:“我国科学家在中微子研究领域迈出的重大步伐,对于巩固我国在中微子研究的领先地位具有重要意义”。 /p p   “江门中微子实验将致力于测量中微子的质量顺序,并进一步精确测量中微子混合参数,其土建工程规模约是大亚湾反应堆中微子实验项目的3至5倍。” 王贻芳曾在接受《中国科学报》记者采访时说。 /p p   按照实验项目的计划和判断,江门中微子实验项目不仅比大亚湾中微子实验工程规模大,它还将是世界上能量“精度最高”、“规模最大”的液体闪烁体探测器。 /p p   “精度越高,能发现的内容就越多,因为或许就差那么一点点,我们就会错失认识世界的机会。”曹俊说。 /p p   实验要求探测器的能量精度达到3%,比当前国际最好水平还要高1倍。要想实现“精度最高”,不仅探测光子的光电倍增管效率要高,发出光子的液体闪烁体也要效率高、透明度高。 /p p   为了测试透明度,科研人员拿出了大亚湾实验八台中微子探测器中的一台。“目前我们已经完成了20吨液体闪烁体的光学纯化和本底纯化,光学性能已经可以达到设计指标。放射性纯化方面,我们还在用大亚湾的探测器做进一步研究。”曹俊说。 /p p   与此同时,江门中微子实验要求有2万吨液闪,比当前国际最大的液闪探测器大20倍,这也为工程设计和建设提出了挑战。 /p p   经过很长时间评审讨论,项目最终选择用有机玻璃罐装液体闪烁体。这意味着工程建成后,江门的地下700米深处将会有一个13层楼那么高的大玻璃球。 /p p   今天,有幸到江门中微子实验工地的人,能够看到建设过半的巨大地下实验室,这是施工人员克服了多次万吨级地下涌水困难后建造出来的。而三年后,这里将成为科学家更清晰地观测“幽灵粒子”的地方,也将成为中国领先国际中微子研究的新平台。 /p
  • 滨松20英寸光电倍增管科技成就荣获“IEEE里程碑”
    引滨松日本2014年10月15日文章——日本浜松光子学株式会社(滨松公司)凭借开发用于天文科研,如超新星、中微子探索的20英寸光电倍增管的科技成就,受到了世界最大的电子,信息,通信领域的专业学会IEEE(美国电气与电子工程师学会,总部:美国纽约)的认可。20英寸光电倍增管最初是受到小柴昌俊教授(东京大学荣誉教授)的拜托而制作的,小柴昌俊教授亦因此探测到了宇宙中微子进而获得了2002年诺贝尔物理学奖。最初,在“神冈核子衰变实验”中制造并配备了上百个20英寸的光电倍增管。而后,在“超级神冈中微子探测实验”中则装备上千个20英寸的光电倍增管。 “IEEE里程碑”是IEEE用于认可在某个其涵括的科技领域里的“科技创新和对人类探知发现有卓越贡献的独立产品、服务,影响重大的种子论文,专利”,而20英寸光电倍增管凭借在中微子探测中的贡献,而被授予了“IEEE里程碑”。滨松制20英寸光电倍增管“IEEE里程碑”铭牌 新闻来源:http://www.hamamatsu.com/jp/en/news/news/20141015000001.html IEEE里程碑认证 IEEE电子工程及信息技术领域里程碑 标题:20英寸直径光电倍增管,1979-1987 原因: 滨松公司应小柴昌俊教授所托,于1979年在丰冈工厂开始制作用于3000吨储水的契伦科夫粒子探测,神冈实验第二期。实验配备1071个光电倍增管收集粒子落于水面而产生的光子。神冈实验第二期于1987年探测到了超新星SN1987A的中微子爆炸,因此发现小柴昌俊教授获得了2002年诺贝尔奖。
  • 天津拓普光电倍增管集成冷却系统专利获审批
    近日天津市拓普仪器有限公司申请的WSZ-5A型单光子计数实验系统光电倍增管的集成冷却系统专利获得 中华人民共和国国家知识产权局的审批。专利号为:ZL 2008 2 0074024.1 WSZ-5A型单光子计数实验系统是我公司最新开发的一套实验系统,该实验由单光子计数器、制冷系统、外光路等部分组成。该系统的信号处理部分采用脉冲高度甄别,甄别后的信号送脉冲计数器进行计数。输出的信号也直接引出至面板,实验者可以根据自己的实验情况进行实验扩展,这样给实验者以更加大的实验空间以到达学习与锻炼的目的。 主要特点: 采用内置水循环半导体制冷系统,不需外部水源; 应用USB与计算机通信,可以很方便地进行实验,操作简单,结果明了; 应用稳定的脉冲计数器,具有计数范围宽、计数准确等优点; 采用CR110光电倍增管接收,利用半导体制冷技术以降低仪器的暗计数; 可以方便的进行实验扩展 主要技术指标: 波长范围:360-650nm 高压控制:数字可调 积分时间:数字可调 最大计数:107 甄别电平:数字可调 暗计数:≤30CPS(-20°C) 仪器成套性: 主机:一台 半导体制冷器电源、减光片、保险管、USB接口、计算机(由用户选配)
  • 中国企业获2.7亿光电倍增管合同 打破日企垄断
    p   2015年12月16日,中国兵器工业集团北方夜视科技集团与中科院高能物理研究所就“20英寸光电倍增管采购合同”举行签约仪式。高能所正式委托夜视集团开始生产高性能微通道板型光电倍增管(MCP-PMT)。在为国家重大基础科研做出贡献的同时,也标志着夜视集团进入了国际光电倍增管主流供应商行列。 /p p   中微子探测对探索理解宇宙起源有重要意义。该项研究是中科院最重要的基础理论前沿课题,王贻芳院士因此获今年世界基础物理学突破奖。 /p p   探测中微子要采用高灵敏、大面积的光电倍增管阵列,过去器件都被日本公司垄断。从2011年至今,以高能所牵头,夜视集团参与了中科院中微子探测项目研究,由夜视集团承担光电倍增管的研制和生产。经过四年努力,夜视先后成功研制了8英寸、20英寸MCP-PMT产品,性能指标国际领先。在2015年12月的国际招标中一举击败日本公司,中标江门项目15000支20英寸MCP-PMT, 是目前国际上MCP-PMT单笔采购数量和金额最大的合同。 /p p   此项目竞标的成功,打破了国外的技术垄断,填补了国内空白,拓展了微光探测的技术领域,也是光电高技术军转民的重要成果& amp #823& amp #823 /p p br/ /p
  • 滨松MPPC(硅光电倍增管)助力我国LHAASO宇宙线探测项目
    日前,中国政府采购网公布了中国科学院高能物理研究所光敏探测器成像阵列-硅光电倍增管采购项目中标结果。滨松成功中标,确定将为我国高海拔宇宙线观测站(LHAASO)项目供应上万片特殊定制的MPPC(硅光电倍增管)产品,用于宇宙线的探测。 高海拔宇宙线观测站(LHAASO) LHAASO三大系统之一——广角契伦科夫望远镜阵列(WFCTA)滨松MPPC产品将在该系统中发挥关键作用 高海拔宇宙线观测站(LHAASO)由中国科学院高能物理研究所主持,为我国“十二五”期间的国家重大科技基础设施项目,也是对宇宙线起源之谜发起的一次猛烈的冲击。它位于海拔4410m的四川稻城海子山,面积达1.36平方公里,总投资12亿人民币。其建成后将跻身世界四大宇宙线研究基地之一,并带来三个世界之最:最高的高能伽马射线探测灵敏度;最灵敏的甚高能伽马射线巡天探测;最宽广的宇宙线能量测量范围。 滨松中国十分荣幸能参与到LHAASO当中。通过淬炼新型光电器件MPPC技术,为我国又一伟大实验提供了可靠的光电技术支持。MPPC多被称为硅光电倍增管(Silicon Photomultiplier,SiPM/SSPM)是当下光探测器届的新晋明星,根据其工作原理,也被称为多像素光子计数器(Multi-Pixel Photon Counter),即MPPC。其由多个工作在盖革模式下的APD组成,虽然本质上是一个光半导体,但具有优良的光子计数能力,适用于监测在光子计数水平下极弱光的场合。滨松各MPPC阵列产品(非项目组用)
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p style=" text-align: center " img width=" 250" height=" 321" title=" ea14fe0b8668f5b02fa47ae1ab982279.jpg" style=" width: 250px height: 321px " src=" http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。 /p
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title=" 微信图片_20170518091903_副本.jpg" / /p p style=" text-align: center " 文章封面以及毛细力构筑单热点结构示意图 /p
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 br/ /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院) /p p br/ /p p br/ /p
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 15年攻关,国产微光探测器的突破与产业化——访中科院大连化物所关亚风研究员
    微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。  长期以来,我国民用微光探测器处于“国外品牌独秀,国内依赖进口”的被动局面。针对这种“卡脖子”现象,中国科学院大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  近期,该产品通过了由中国仪器仪表学会组织的新产品成果鉴定,获鉴定委员会一致认可:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平。  微光探测器研制成功的背后,有哪些鲜为人知的故事?产品在替代进口器件方面有何优势?团队接下来还有哪些产业化计划?带着疑问,仪器信息网特别采访了团队的核心人物——中国科学院大连化物所关亚风研究员。中国科学院大连化物所关亚风研究员  Q、首先祝贺关老师团队研发的“微光探测器(光电放大器)”通过中国仪器仪表学会组织的新产品成果鉴定。据了解,您团队研制该技术已经有15年的时间了,请您介绍该项目的研制背景?  关亚风:说来话长,我本人是从上世纪90年代初开始从事微型色谱的研究,开始时就是研制微型色谱仪的关键器件与部件。  2003年,团队承接了“十五”科学仪器攻关专题“液相色谱激光诱导荧光检测器(LIF-D)的研制与技术开发”,当时为激光诱导荧光检测配套的是进口光电倍增管(PMT)。由于背景光的存在,光电倍增管用在激光诱导荧光检测器时的信号增益只能用在5,000~30,000区间,但实际上光电倍增管的增益可以达到百万以上,也就是说我们只使用了光电倍增管的低增益区。由此,我想到了使用雪崩光电二极管,但试验结果显示雪崩二极管的灵敏度无法达到要求,而且当时雪崩二极管的价格加上辅助电路价格达到PMT价格的2/3,只能放弃这条技术路线。  2005年,我开始尝试用光电二极管来检测荧光,尽管选择了当时性能最好、自带前置放大器的光电二极管(都是日本、英国公司的产品),但距离理想的灵敏度还有2个数量级的差距。从那时起,我开始构思如何提高光电二极管的检测灵敏度。借鉴我在气相色谱微型热导检测器研制上的成功经验,将思路放在降低噪音和漂移上,而不是提高增益上。我在研制气相色谱的热导检测器时,国际上都是通过提升其热敏丝的温度来提高检测器的灵敏度。但我反其道而行之,不去提升它的响应值,而是通过降低检测器的噪音,优化信噪比,再配合一个低噪音低漂移前置放大器来提升灵敏度。所研制的微池热导检测器的灵敏度在当时可以比肩国外公司的产品。我当时的实验室条件无法提高光电二极管的响应值,很自然地想到通过降低噪音来提高信噪比。  我首先考虑了光电材料界面以及连接导线界面的热电偶和接触电阻对噪音和温度漂移的影响,后来想出了抵消这个影响的方案。经过数年努力,到2012年时对弱光的检测下限达到了雪崩二极管的检测灵敏度,同时线性范围达到了5个数量级,比雪崩二极管宽2个数量级。这时我决定启用团队力量,集中力量攻关,2013年达到用PMT的进口名牌荧光检测器灵敏度的1/4水平,也就是PMT增益在4千左右的水平。耿旭辉2013年博士毕业后加入我们团队继续研制荧光检测器并加入微光探测器攻关。到2014年底,我们的微光探测器噪音、漂移比常规光电二极管降低了两个数量级,不仅检测灵敏度达到PMT增益在2万的而水平,而且动态范围延申了2个数量级,达到近6个数量级。2015年底实现了微光探测器产业化并开始推广销售。团队用简单、低成本的方式实现了弱光信号的高灵敏检测,解决了卡脖子难题,使国内微光探测器不再单纯依赖于进口光电器件,同时也克服了光电倍增管和雪崩二极管线性范围窄的问题。  Q:您刚才提到了微光探测器攻克的技术难点以及取得的成果,我们想追问,AccuOpt 2000系列微光探测器(光电放大器)相比进口器件而言有哪些优势,未来还有哪些需要提升的地方?  关亚风:我先讲一下优点,首先它性能长期稳定、不漂移 其次它对强光免疫,AccuOpt 2000受强光照射后秒级恢复,不影响性能 第三它抗强烈震动和冲击,抗电磁干扰,可以放在手持式仪器上,摔地上也不怕 第四是它不需要高压模块,且功耗低 第五是开机3分钟即能达到稳定状态 第六是使用寿命长,达15年 再有就是价格便宜,不需要调理电路,拿来就能直接用。  缺点是响应速度比较慢,10毫秒级。不过90%的应用对于响应速度没有要求,只有10%的高端应用追求响应速度快,需要高速调制,这点我们无法满足。另一个即可以说是缺点也可以说优点,就是光谱响应范围较宽,为300~1150 nm,但在深紫外区间没有响应。目前国内ICP等发射光谱的重点在紫外区,这是AccuOpt 2000所欠缺的,也是未来重点拓展的一个方向。AccuOpt 2000系列微光探测器(光电放大器)  Q:AccuOpt 2000系列微光探测器应用有哪些?其中实际应用效果最好的案例是哪个?解决的最大问题是什么?  关亚风:最牛的应用是高端,我们团队采用小型、廉价的激光二极管替代激光器为光源,用自主研制的硅基微光探测器替代进口光电倍增管探测荧光,由耿旭辉博士负责研制出“紧凑式”共聚焦激光诱导荧光检测器,我们分析了单个白血病细胞中的active caspase3蛋白,检测限达7个分子(91 pL检测体积内)。研究成果在Analytical Chemistry这一分析化学的国际顶级期刊上发表。  我们最欣喜的、量大的应用是黄曲霉毒素荧光检测器。我们放了一台在一家知名国外仪器公司的实验室,他们自己测了一年,证明灵敏度比他们现有仪器高一倍,漂移少一倍。另外一家知名国外仪器公司买了我们一台,与它最新型号相比我们的灵敏度高两倍,比它老的型号高5~6倍。进口品牌荧光检测器的功耗在75瓦~150瓦之间,而我们的产品总功耗只有4瓦,其中3瓦消耗在了交流-直流变换器和直流-直流变换器上。  2019年和2020年,团队与中国科学院深海科学与工程研究所共同研制的4500米级多种型号深海原位荧光传感器搭载深海勇士号/探索一号和二号在某海域科考航次中多次海试成功,均获得了有效数据。AccuOpt 2000就是我们荧光传感器中的荧光探测器件,取代进口PMT得到优于国外同类传感器的灵敏度和更宽的动态线性范围。  眼下新冠肺炎疫情来袭,团队也探索AccuOpt 2000在PCR等设备上的应用。不过,检测器灵敏度过高,而国内试剂的使用量又太大,限制了该部件在国产仪器中的使用。当前团队正与企业展开合作,希望能突破这一关键问题。  Q:AccuOpt 2000系列微光探测器目前产业化情况如何?与哪些仪器企业进行了合作?下一步有哪些产业化计划?  关亚风:AccuOpt 2000系列自2014年研制成功,2015年已着手推进量产工作。五年来,器件的性能不断优化,团队基于ISO9000质量管理体系来管理生产全流程,短时间内完成了960支成品的生产,面向市场售出约140支,自用了200多支。  我们是专业的研发团队,生产装配不在话下,难点反而在于市场销售。以新冠检测为例,国内所有做荧光检测、生物检测的都是我们的潜在用户,但问题卡在哪?就是刚才说的国内试剂使用量太大,检测器的高灵敏度反倒成了问题。一些灵敏度比我们低得多、售价七百元以下的光探测器反而能卖出去。我们必须介入到更早期的研发中才能培育市场需求。后续我们也会加大宣传,推进它的市场销售。  Q:核心零部件/器件对科学仪器至关重要,光电探测器更是影响仪器整体性能提升的关键一环。关老师您从事光电器件的研究近二十年,据您观察,当前国内光电探测器的发展情况如何,国产光电探测器面临哪些关键问题,您有哪些发展建议?  关亚风:国产光电器件的品种相对较少,有些特殊应用领域的做得不错,但是民用的、工业用的相比国外差距还很大。卡脖子问题往往是“叫好不叫座”,都知道关键器件很重要,但落实到具体层面做的人反而很少。我认为有两方面的原因:  首先对企业来说,别看光电器件重要,但研制难度大,实际的产值低、做出的产品卖不出去多少,所以利润薄。如果没有政策引导和项目扶持,企业自然不愿意投入经费与人力,最后成了公益事业,产业发展举步维艰。需要政策倾斜,例如企业根据销量享受相应的退税优惠,或者科技攻关项目给予经费支持,企业才有动力去啃这块“硬骨头”。  其次对于科研院所而言,现有基层的评价体系侧重于论文、专利、产值等评价指标,而研发光电器件的有效成果又不能去发论文或申请专利,原因是很容易被他人或竞争对手复制 但不发论文又意味着与提职称、评奖基本无缘,这就导致了真正潜下心来研究能实际应用的光电器件的人才越来越少。评价体制要落地,而非悬在半空中。这些问题不解决,关键器件的研制很难往下走,就会永远被别人卡着脖子。  光电器件的研制需要理论基础扎实、知识面广的复合型人才,这样的人很容易在热门领域发光发热,能潜心去坐这张“冷板凳”的人才不多。  话说回来,我最初也不是专门研究光电器件的,而是光电器件的用户。当初进入这个领域,是受越来越高的进口器件价格和日益严苛的进口限制所迫。把一个学化学的人逼着去搞光电器件并取得成功,这也是个小概率事件吧。
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 滨松在华新工厂将投产,产值或倍增至10亿元
    北京滨松光子技术股份公司(以下简称北京滨松)廊坊工厂的新厂房已在日前竣工,并于2014年1月11日上午9:30举行了竣工仪式。新厂房预计将于2014年2月开始启用。新厂房总建筑面积约15000平方米,超过12000余平方米的原厂房,总工程投资约6000万元,于2012年3月动工。原厂房生产的产品较多,包括分光光度计、石油勘探设备,放射医疗、用于影像诊断设备伽马相机的光电倍增管、光电倍增管相关零部件、接收辐射的闪烁体(在辐射射线衰变时产生萤光的晶体,用于辐射成像)、各种传感器、用于电子零件的玻璃材料和产品、医用放射成像设备、环境监测仪器等,员工数量约500人。新厂房投产后,除了光电倍增管仍在原厂房生产以外,包括北京浜松永清工厂(廊坊)生产的闪烁体和玻璃加工等均将移至新厂房生产。 北京滨松新厂房   北京滨松的新厂房每层面积约为3000平方米,预计地下1层用于配置电力系统,1层用于业务单位、质量控制、仓库和办公室等,2层用于闪烁体生产,3层用于环境监测仪器和图像测量设备生产以及新产品原型的开发,4层用于会议室及将来的产能增加,5层用于玻璃加工,新厂房共计将有约270名员工。   由于欧洲和美国的客户纷纷在中国设立生产基地,生产低价格产品满足中国市场需求,因此在过去的几年内滨松的在华业务也不断增长。滨松集团在中国的销售额主要包括三部分,分别来自于北京滨松、在华销售子公司滨松光子学商贸(中国)公司,以及从日本滨松光子学出口的产品。2013财年(截至2013年9月)这三部分的销售额总计达到约5亿元。滨松新厂房的产能相当于5亿元销售额规模,如果满负荷生产,其产值将倍增至10亿元。 编译:魏昕
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制