当前位置: 仪器信息网 > 行业主题 > >

补偿收缩混凝定仪

仪器信息网补偿收缩混凝定仪专题为您提供2024年最新补偿收缩混凝定仪价格报价、厂家品牌的相关信息, 包括补偿收缩混凝定仪参数、型号等,不管是国产,还是进口品牌的补偿收缩混凝定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合补偿收缩混凝定仪相关的耗材配件、试剂标物,还有补偿收缩混凝定仪相关的最新资讯、资料,以及补偿收缩混凝定仪相关的解决方案。

补偿收缩混凝定仪相关的论坛

  • 补偿式量热仪

    补偿式量热仪

    补偿式量热仪是把研究体系置于一等温量热仪中,测量体系与环境之间迸行热交换时,两者的温度始终保持恒定,并且与环境温度相等。反应过程中研究体系所放出或吸收的热量是依赖恒温环境中的某物理量的变化所引起的热流给予连续的补偿,使体系温度保持恒定。实验过程中,利用相变潜热、电-热、电-制冷效应来实现温度补偿。 (1)相变补偿量热 设将一反应体系置于冰水浴中,其热效应将使部分冰融化或使部分水凝固。已知冰的单位质量熔化焓,只要测得冰水转变妁质量,就可求得热效应的数值。反之,反应体系发生吸热反应,也同样可以通过冰增加的质量来求得热效应。这种量热仪除了冰-水为环境介质外,也采用其他类型的相变介质。这类量热仪简单易行,灵敏度和准确度都较高,热损失小,但热效应是处于相变温度这一特定条件下发生的。造类方法为确定热效应的环境温度提供了热化学数据,但也限制了量热仪的使用范围。 (2)热效应补偿量热 对于一个吸热的化学或物理变化过程,可将研究体系置于一液体介质中,利用电热效应对其补偿,使液体介质温度保持恒定。这就要求电加热时,热损失可忽略不计,这时所吸收的热量可由加热器所消耗的电压(U)、电流(I)和时间(t)的精确测量直接求得。如果不考虑研究体系的介质与外界的热交换,该变化过程所吸收的热量可用公式计算,即:http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440560_2698790_3.jpg 在这里,介质温度可根据需要予以设定,温度变化可用高灵敏度的温差温度计测量,电压、电流、时间的测量可用精确度高的仪器测量,只要液体介质恒温良好,热量的测量值就准确可靠。介质与外界的热交换、介质搅拌及其他因素的影响所产生的热量可以通过空白实验予以校正。 对于放热效应就要使用电制冷元件,利用帕提尔(Peltier)效应来补偿。在两种不同金属组成的回路上通一定电流,双金属的接点上将分别形成冷端和热端。帕提尔功率在两端的分配比例与电流大小有关。两端功率相等时的回路电流为I0,在某一小于I0的工作电流I时,其制冷功率为 http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440563_2698790_3.jpg ,式中,n称帕提尔系数,它与所用元件材料及工作温度有关。实际上,由于冷热端之间的导热,将使制冷效率低于计算值,这会给放热效应带来一定的测量误差。

  • 【求助】关于IR降补偿的测试结果疑问(有图)?

    【求助】关于IR降补偿的测试结果疑问(有图)?

    如图,本人对混凝土中的钢筋进行腐蚀性测试,测试模式用线性极化,由于混凝土的电阻很大,所以我考虑在测试过程中对其进行IR补偿,但是测试出来的结果却发现,与没有补偿的结果相比,补偿后的线性极化已没有了线性特征,如附图,不知是什么原因,请高手指点,谢谢了!此外要说明的是,我 用的是PARTSTAT2273[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191650_623889_1639123_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/03/200803031510_80354_1639123_3.jpg[/img]

  • Z向断面收缩率

    Z15等,在厚度方向上要求时经常提出两点:硫的含量和断面收缩率,请问断面收缩率与什么有关?为何不从最根本的材料上提出要求? 根据《钢结构设计规范》第3.3.3条,钢材应满足抗拉强度、伸长率、屈服强度和硫、磷含量的要求。伸长率反应的是钢材的塑性变形性能,而截面收缩率和伸长率基本上是同一个性能指标,反映的也是钢材的塑性变形能力!!钢材的韧性专门有韧性冲击试验进行评价的! 对于比较厚的钢板,由于在厚度方向性能可能不一致,在荷载作用下可能发生层状撕裂,因此对其又做了两点规定,即硫的含量和断面收缩率,可以这么理解:(1)硫的含量对钢材的可焊性和韧性有影响,因此对其含量应予以控制;(2)在厚度方向应有足够的塑性变形能力,这也是保证钢材力学性能的重要指标之一。

  • 【求助】关于IR降补偿的测试结果疑问(有图)?

    【求助】关于IR降补偿的测试结果疑问(有图)?

    如图,本人对混凝土中的钢筋进行腐蚀性测试,测试模式用线性极化,由于混凝土的电阻很大,所以我考虑在测试过程中对其进行IR补偿,但是测试出来的结果却发现,与没有补偿的结果相比,补偿后的线性极化已没有了线性特征,如附图,不知是什么原因,请高手指点,谢谢了!此外要说明的是,我 用的是PARTSTAT2273[img]http://ng1.17img.cn/bbsfiles/images/2008/03/200803031509_80352_1639123_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/03/200803031510_80354_1639123_3.jpg[/img]

  • 【讨论】干燥收缩率与干燥收缩值的关系

    目前墙体用的砖和砌块基本都存在干燥收缩率这个指标检验方法基本都应用到:GB/T2542-2003和GB/T4111-1997这两个标准问题就出在标准规定的是干燥收缩率/单位为%,而检验方法所给出的是干燥收缩值/单位是mm/m,如何把干燥收缩值换算成干燥收缩率标准没有给出解释?请教各位是如何看待这个问题的?这两个单位间如何换算?

  • 【原创】介绍一种力学性能试验机--干热收缩仪

    【原创】介绍一种力学性能试验机--干热收缩仪

    该仪器最早设计用于与邓录普橡胶公司轮胎中,用于测试轮胎帘线(纱)在准确的温度控制下的收缩情况。应用: 干热收缩仪是用来测试纤维及纱线在设定温度下热收缩值的专业仪器,仪器有上下两个加热盘,加热盘之间为设定温度的干热空气,纤维通过夹持器被推入加热盘之间的干热空气区域后发生收缩变化,通过传感器测量该纤维在热源下长度及收缩力的变化原理: 将纺织帘线在一定张力 (标准预张力或非标准预张力)下放置在一个加热至相对均匀温度的环境中,在标准预张力或其他预张力下,将纺织试样放置在干热收缩仪加热板之间,当帘线受热时,会收缩或伸张,致使轮移动或者产生一个张力,即干热收缩力,该轮直接连到一个指针或传感器上,它们会表示帘线试样收缩或伸张的长度,即干热收缩率,当轮换成力值传感器时,即输出干热收缩力值生产厂家: 现在有许多公司能够生产,不过世界大公司还是以英国T一家公司生产的MK3 MK5型为主,国内的北京及广西等几家公司也在生产,而且北京的产品比较先进,现在我们公司使用英国及北京两家公司的产品购置要点: 购置时要注意产品的精度及经济实用性[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902031231_131028_1621551_3.jpg[/img]

  • 如何区分缩水率、缩率、门幅收缩率?

    如何区分缩水率、缩率、门幅收缩率?

    [font=-apple-system-font, BlinkMacSystemFont, &][color=#3e3e3e][b]导读[/b]缩水率、缩率、门幅收缩率,三个在染整场景经常遇到的概念,里面都有一个“缩”字,致使有些业内朋友容易将三者混淆。[/color][/font][font=-apple-system-font, BlinkMacSystemFont, &][color=#3e3e3e]三者的内涵并不一样,其产生的机理和控制方法也完全不一样。[/color][/font][size=14px][b]以梭织纤维素纤维织物为例:[/b][/size][size=14px][b]一、缩水率:[/b][/size][size=14px][color=#021eaa][b]缩水率[/b][/color][/size][size=14px]是指织物经洗涤后尺寸发生了变化,其产生的机理有两个,如下图,纤维素纤维织物的缩水率的机理有三个层面的原因,分别是纤维、纱线、织物。不同纤维素织物,缩水率的形成主因并不完全一致。[/size][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2023/04/202304141649125511_8120_1954597_3.png!w690x419.jpg[/img][size=14px]一个原因是纤维的湿模量过小,导致纤维/纱线在有张力染整过程中容易被拉伸拉长,经水洗烘干后这种拉伸伸长被回复而产生了尺寸变化,这个是粘胶织物有比较大的缩水率其中一个主因,但不是棉麻等湿模量比较大的纤维织物的主因。[/size][size=14px][color=#222222]棉[/color][/size][size=14px][color=#222222]麻[/color][/size][size=14px][color=#222222]织物缩水产生的原因是由于存在交织结构以及纱线本身是圆柱体结构,纱线在织物中并不完全是直线,而是有一定弯曲的曲线,我们把这个弯曲程度称为织缩,而把纱线在织物交织结构中所要延展的长度称为绕程。[/color][/size][img=,685,288]https://ng1.17img.cn/bbsfiles/images/2023/04/202304141649454984_4939_1954597_3.png!w685x288.jpg[/img][size=14px]棉麻人棉等纤维素纤维遇水后,都会发生溶胀,而且这个溶胀是各向异性的,即直径溶胀的大,长度方向伸长的少,纱线变粗了但并没有怎么变长,纱线变粗导致绕程要增大,但纱线又不能伸长多少,因此只有织缩变大纱线变得更弯曲才可以,从而导致了织物尺寸的变小。这个是棉麻织物缩水的最主要原因。[/size][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=14px][color=#333333]控制缩水率也分两个层面,一个是选用湿模量大的纤维或通过交联提升纤维湿模量和弹性回复能力;[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=14px][color=#333333]另一个是染整厂的控制,通过预缩、超喂和丝光来分别控制棉麻类织物经纬向缩水率。[/color][/size][/font][size=14px]此外,织物的[/size][b]尺寸稳定性[/b][size=14px]和缩水率,有些业内朋友也经常将其混用,将其视为同一个概念,但严格的讲,两者是有明显不同的指向的。[/size][size=14px]缩水率更多的是指向织物染整加工的控制结果,其关键在于内应力的消除和纱线绕程的预缩预留量,而尺寸稳定性更多的是指向织物材质即纤维本身的性能性状,其关键纤维指标是湿模量以及应力应变性能。[/size][size=14px]举例来讲,粘胶织物可以通过多次超喂或松式烘干的方法,可以使其缩水率做到3%以下,但这个很低的缩水率并不表明它的尺寸稳定性就很好,它的尺寸稳定性性能依然很差,只有对它的进行化学交联后,它的尺寸稳定性才会有所改善。[/size][size=14px]反过来说,一个尺寸稳定性很好的纤维织物,如果染整控制不当,也很有可能缩水率很大。[/size][size=14px][/size][size=14px]比如粘胶材质的衣服,缩水率3%的衣服尺寸稳定性可能并不好,它存在两种尺寸稳定性变化的情况:[/size][size=14px]1、多次洗涤后缩水率持续变化;[/size][size=14px]2、越穿越大。[/size][size=14px][/size][size=14px]这些都是由其纤维湿模量和应力应变性能导致的,和染整无关。[/size][size=14px][b]二、缩率:[/b][/size][color=#021eaa][b]缩率[/b][/color][size=14px]是指梭织物经染整后,其经向总长度的变化,比如100米的坯布,在没有任何染整损耗的情况下,成品变成了95米,其缩率就是5%。这种长度变化会和纬密变化有一致性,即不需要测量布长,仅需要测试坯布和染色成品布纬密,就可以算到缩率:[/size][size=14px][/size][size=14px][color=#021eaa][b]缩率[/b][/color][/size][size=14px][b]=(成品纬密-坯布纬密)/坯布纬密x100%。[/b][/size][size=14px][b][/b][/size][size=14px]产生缩率的原因是染整加工的张力因素,全程经向有大张力尤其有丝光工序的染整工艺,布的缩率一般为负,即布有盈长(这个在密度稀疏亚麻布长车染整上会经常发生,有时盈长超过5%),全程松式如全机缸工艺则缩率为正,即布会变短,但棉麻为经的织物在机缸染整工艺下,其缩率一般在3%-9%间,极少超过10%。缩率产生的原因主要取决于染整工艺中的张力因素、,或者说,和织物的染整工艺路线选择有关。当然也会和织物的缩水率控制有关,如果一个纯棉长车染整的织物经向缩水率特别大,比如-8%,那么他的缩率很可能很小甚至为负,产生了盈长,但当我们通过预缩的方法将织物缩水率控制在3%左右时,他的缩率就要增大5%了。因此,我们通常讲的缩率,是指织物在可接受的缩水率下的缩率。[/size][size=14px]染厂还经常使用另一个和缩率有关的概念:[/size][size=14px][color=#021eaa][b]缩损率[/b][/color][/size][size=14px] ,是指染整过程中缩率加损耗的总和,染整损耗包括缝头、取样打样、降等等生产过程中不能入库发货的数量,它的大小更多的是由生产管理水平决定的,是布真的发生了减少(其总纬纱条数肯定减少了);而缩率是由染整工艺决定的,而且也仅是布的长度发生了变化,布本身并没有减少,其总纬纱条数还是守恒的。它们与制成率的关系如下:[/size][size=14px][b] [/b][/size][size=14px][color=#021eaa][b]制成率[/b][/color][/size][size=14px][b] = 1-缩损率 = 1-缩率-损耗率[/b][/size][size=14px][b]三、门幅收缩率:[/b][/size][b]门幅收缩率[/b][size=14px]是指坯布门幅在染整过程中以及最终染整完成后成品布的门幅变化率。[/size][size=14px][/size][size=14px]纯棉布一般坯布门幅63英寸,成品门幅58英寸。[/size][size=14px][/size][size=14px]产生门幅的收缩的原因也有两个:[/size][size=14px]1、织物染整时经向张力,经向被拉直,而纬纱的要变得更弯曲来适配经向的拉直;[/size][size=14px]2、溶胀收缩或碱缩,碱缩只能表现在纱线和面料上,不会表现在纤维上,其原理是纤维溶胀的各向异性,直径溶胀很大,而长度基本不变,导致纱体要通过退捻回缩来消除这种溶胀张力。[/size][size=14px][/size][size=14px]纤维横向溶胀率越大、捻度度越高、面料紧度越低,碱缩效果就越明显。[/size][size=14px]紧度小,尤其经向稀疏,纬纱回缩阻力越小,回缩空间大,就更容易产生门幅收缩。[/size][size=14px]比如低紧度的全棉 60sx60s 90x88细布,经丝光后门幅收缩就特别厉害,63英寸坯布成品门幅只能做52/53英寸,但高紧度的全棉60sx60s 140x120就没有这个问题。[/size][size=14px]要减小无弹棉布门幅收缩率,关键在设计合理的织物紧度,以及控制染整过程的张力和溶胀程度,尤其是丝光浓度。[/size][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][color=rgba(0, 0, 0, 0.3)]以下文章来源于纺染天地[/color][/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][color=rgba(0, 0, 0, 0.3)] [/color][/size][/font][font=system-ui, -apple-system, BlinkMacSystemFont, &][size=15px][color=rgba(0, 0, 0, 0.3)],作者付忠诚[/color][/size][/font]

  • 关于对电导率仪的温度补偿器进行计量检定问题的探讨

    《计量技术》2012年第10期发表的文章: 关于对电导率仪的温度补偿器进行计量检定问题的探讨杨继光1 顾家钰2 刘朝阳3(1、3.宁夏计量测试院,宁夏银川,750001;2、北京计量科学研究院,北京,100013)摘要:论述了对电导率仪的温度补偿器进行计量检定的重要性,并对检定方法进行了探讨。关键词:电导率仪,温度补偿器,计量检定。0、 引言 温度对电导率仪的测量影响很大,一般在电导率的测量中,为了保证测量的准确,要进行温度补偿,还要对温度系数进行设定。JJG376-2007《电导率仪》计量检定规程,对温度系数的检定和温度传感器的检定作了规定,对温度补偿器的检定未作说明。随着科技的发展,国产及进口的电导率仪在设计上都有了温度补偿器的调节装置,这也是保证测量准确性的一个重要因素,所以对电导率仪的温度补偿器进行检定就显得非常重要了。1、 电导率仪的温度补偿 电导率仪中跟温度有关的器件有三个部分,它们分别是温度系数、温度补偿器和温度传感器。(1) 温度系数 当溶液的温度一定时,它的电导率随温度的升高而增加,在一般的测量中用下式计算被测介质在不同温度下的的电导率值,Kt = K25℃ (式1)式中:Kt为某一温度下的电导率值,K25℃为25℃时的电导率值,α为温度系数,t为被测溶液温度。 对大多数离子来讲,绝大部分溶液的温度系数在1.5﹪~3.0﹪之间,在这个范围内,它是呈线性变化的,如α值选择2%,既每增加1℃,电导率值就增加2%,则(式1)可以改写为: Kt = K25℃=K25℃=K 25℃(0.5+0.02t) (式2) 电导率仪的生产厂家在电导率仪出厂时,一般都把温度系数设定为2%,但是有些离子的温度系数可达4%-6%,呈非线性变化。如果用现行的这种检定电导率仪的温度系数的检定方法对该仪器进行检定,很可能判别该仪器为不合格。好在这类仪器数量很少,大多是进口仪器用于特殊用途,如何对其仪器的温度系数进行检定,还有待于探讨。 我们就温度、温度系数和电阻、电导率之间的关系,作了试验和研究,并作成了表格,供大家参考。(见表1)(2) 温度补偿器 大多数电导率仪的温度补偿器作在面板上,是一个温度调节旋钮。温度调节范围一般为(15-35)℃,也有做成(0-60)℃的仪器,分辨率为1℃。在电导率的测量中可以发现只要把温度补偿器的旋钮稍加转动,电导率值就发生变化,它的准确与否,对电导率的测量影响很大,所以必须对其进行计量检定。(3) 温度传感器温度传感器是电导率仪附带的一个配件,测量精度大多为0.1℃,可以比较准确的测量溶液的温度,它的检定方法在JJG376-2007中作了规定。 对电导率的测量来讲有两种方法,一种是温度补偿法,一种是温度不补偿法。温度补偿法,直观、快捷、对环境条件要求不高,所以大部分测量都是用温度补偿法。温度不补偿法不直观、费时、费力,对环境温度要求高,主要是对不了解溶液温度系数是多少的溶液用不补偿法测量。表1 电导率仪温度补偿对照表(有两种方法)方法一(不补偿法)方法二(补偿法)温度系数[/siz

  • 安捷伦压缩因子补偿及可变冲程体积

    [align=center][font=黑体]如何进行压缩因子补偿?[/font][/align][align=left][font=宋体]当系统的背压变化时,所用溶剂压缩因子将影响保留时间的稳定性(例如,色谱[/font][font=宋体]柱的老化)。为最大程度地减少该影响,泵提供了一种压缩因子补偿的功能,此[/font][/align][align=left][font=宋体]功能可以按照溶剂类型优化流量的稳定性。该压缩因子补偿功能设定为缺省值,[/font][font=宋体]可通过用户界面进行修改。[/font][font=宋体]如果没有压缩因子补偿功能,在第一个柱塞杆的冲程过程中将发生以下问题。柱[/font][font=宋体]塞杆腔内的压力增加,腔内的体积将根据背压和溶剂类型进行压缩。由于体积被[/font][font=宋体]压缩,转移到系统的体积将减小。[/font][font=宋体]设定压缩因子值后,处理器将根据系统中的背压和所选压缩因子来计算补偿体[/font][font=宋体]积。该补偿体积将被添加至正常冲程体积中,并补偿前面所述的、在第一个柱塞[/font][font=宋体]杆输送冲程中[/font][font=黑体]减少[/font][font=宋体]的体积。[/font][/align][align=center][font=黑体]可变冲程体积如何工作?[/font][/align][align=left][font=宋体]由于泵腔体积的压缩,泵的每个柱塞杆冲程都将产生一个小的压力脉动,这将影[/font][font=宋体]响到泵的流量稳定性。压力脉动的振幅主要取决于冲程体积和所用溶剂的压缩因[/font][font=宋体]子补偿。在相同的流速下,与高冲程体积相比,小冲程体积将产生更小振幅的压[/font][font=宋体]力脉动。此外,压力脉冲的频率也更高。这将减小流量脉动对定量结果的影响。[/font][font=宋体]在梯度模式中,较小的冲程体积对流量波动的影响也更小,这样便减小了组分的[/font][font=宋体]波动。[/font][font=宋体]模块使用处理器控制的转轴系统来驱动柱塞杆。针对选定的流速优化正常的冲程[/font][font=宋体]体积。小的流速使用小的冲程体积,而较高的流速使用较高的冲程体积。[/font][font=宋体]缺省情况下,泵的冲程体积设置为 AUTO 模式。这就是说针对使用的流速优化冲[/font][font=宋体]程。增大冲程体积是可以的,但是我们不建议这样做。[/font][/align]

  • 【分享】混凝土材料的物理力学性能习题

    一、填空题1.钢筋和混凝土两种材料组合在一起,之所以能有效地共同工作,是由于 (钢筋和混凝土间有良好的粘结力、 二者温度线膨胀系数接近 )以及混凝土对钢筋的保护层作用。2.混凝土强度等级为C30,即 (立方体抗压强度标准值 )为30N/mm2 ,它具有 95% 的保证率。3.一般情况下,混凝土的强度提高时,延性 (降低)。4.混凝土在长期不变荷载作用下将产生 (徐变) 变形,混凝土 随水份的蒸发将产生 收缩 变形。5.钢筋的塑性变形性能通常用 (伸长率) 和 (冷弯性能) 两个指标来衡量。6.混凝土的线性徐变是指徐变变形与 (应力) 成正比。7.热轧钢筋的强度标准值系根据 (屈服强度 ) 确定,预应力钢绞线、钢丝和热处理钢筋的强度标准值系根据 (极限抗拉强度 ) 确定。8.钢筋与混凝土之间的粘结力由化学胶结力、 (摩阻力) 和 (机械咬合力) 组成。9.钢筋的连接可分为 (绑扎搭接) 、 (机械连接) 或焊接。10.混凝土一个方向受拉、另一个方向受压时,强度会( 降低) 。11.我国采用按标准方法制作养护的边长为( 150mm )的立方试块,在 (28天) 龄期,用标准试验方法测得的具有 (95% )保证率的抗压强度作为(立方体抗压强)度标准值.12.钢筋按化学成分的不同,分为 ( 碳素结构钢) 和 (普通低合金钢) 两类。13.软钢是指 (有屈服点的 )钢筋,其质量检验的四项主要指标是 ( 屈服强度 ) 、 (极限强度 ) 、 (伸长率 ) 、 (冷弯性能 ) 。14.硬钢是指 ( 无屈服点的钢筋) 、其质量检验以 ( 极限强度) 作为主要强度指标,设计上取相应于 (残余应变为0.2% )的应力作为条件流限。 15.HPB235、HRB335、HRB400钢筋的符号分别 ( )、( )、( )。16.粘结作用产生的三方面原因为 ( 摩擦力) 、 ( 胶结力) 、 (机械咬合力) 。17.钢筋的连结接头可采用 (机械连接接头) 、( 焊接接头) 、 ( 绑扎搭接接头) 。18.反映钢筋塑性性能的指标是 (伸长率) 和 (冷弯性能) 。

  • 什么是高收缩纤维?

    高收缩纤维:沸水收缩率高于15%的化学纤维。根据其热收缩程度的不同,可以得到不同风格及性能的产品。如热收缩率在15%-25%的高收缩涤纶,可用于织制各种绉类、凸凹、提花织物

  • 湿洗形态稳定性(水洗尺寸收缩率)操作流程

    湿洗形态稳定性(水洗尺寸收缩率)操作流程

    湿洗形态稳定性(水洗尺寸收缩率)1.0目的与范围 1.1 本方法适宜下列标准: 中国 GB/T 8269 美国AATCC135(布片) 美国AATCC150(时装) 国际标准ISO 6330 英国BS4923 欧盟 EN6330 1.2 目的是测试针织布、梭织布及成衣在经过一次或多次家庭式洗涤以后的收缩率(或伸长率)。2.0 原理 布片及成衣的收缩率是由样本上划定的或量定的标准长度在洗涤前后的差距计算出来。3.0 标准温湿度环境 温 度: 20±2℃ 相对湿度: 65±2%4.0 设备及材料 4.1 洗衣设备 4.1.1 搅动式洗衣机1.1.1.1 Kenmore或Whirlpool自动洗衣机。 4.1.2 水平鼓式洗衣机,Wascator FOM71。 4.2干衣设备 4.2.1 转筒式Kenmore或Whirlpool自动烘燥机。 4.2.2 网状干衣架。 4.2.3 绳索及木夹用作晾挂衣物及滴水晾干。 4.2.4 平面电热熨板。4.3 洗衣粉及助剂 4.3.1 AATCC1993 标准参考洗涤剂或AATCC WOB (不含荧光剂) 4.3.2 ECE。 4.3.3 过硼酸钠。4.4 加重用的布片(陪洗布片) 4.4.1 AATCC标准漂白棉布(36in x 36in)或漂白及丝光的混纺布(50%聚酯织维50%棉),每一块为92x92cm。 4.4.2 GB. BS . ISO:两层缝合全聚酯织维针织布,每块为(30±3)x(30±3)cm, 重35±3g。 4.5 防水划笔。4.6 可量度到mm的软尺及不锈钢尺。4.7 托盘秤。4.8 锁缝机。4.9 工作台。 4.10 温度计。4.11 做缩水率测试的标准模板。5.0试样取布离布边2英寸以上的位置,每种织物按左、中、右沿斜对角线取试样3个。5.1梭织布:5.1.1将试样平坦地置标准温湿度环境中欧洲及国标16小时,美国4小时。5.1.2 欧洲标准剪裁为不少于50x50cm的布片,美国为38x38cm平放于工作台上。5.13 用黄油笔画出箭头在试样上标出经纱方向。5.1.4 将模板平放于布办上,在每一方向上平行于经、纬向划出三对35x35cm的符合(国标及欧洲标准)﹔或25x25cm(美国标准)5.1.5 在试样上写上经纱及纬纱符号的长度。5.1.6 将试样的四周锁缝。5.2 针织布:5.2.1 将样品平坦地置于标准温湿度环境中(国标及欧洲16小时,美国4小时)5.2.2 在距布边不小于2寸处裁剪为不少于50x100cm的布片平放于工作台上。5.2.3 将试样沿布长对折。5.2.4 在试样上用黄油笔划一箭头表式线圈纵向(布片方向)。5.2.5 将模板放于布办上,在每一方向上划出三对35cm x 35cm 的符号(欧洲标准)或25cm x 25cm (美国标准)。5.2.6 在试样上写纵向及横向符号的长度。5.2.7 将试样沿布长方向缝成圆筒形。美国标准只需做一块25cm x 25cm的布片并将试样的四周锁缝即可,不用做成圆筒形。5.3 服装:5.3.1 将服装持在衣架上,置于标准温湿度环境中最小4小时。5.3.2 然后将其平放于工作台上。5.3.3 用防水划笔在指定的量度部位划上记号。5.3.4 用软尺或不锈钢尺量度每一部位的距离,量至1mm。5.3.5 记录每一部位量得的尺寸。6.0 洗涤程序6.1 根据服装的标签或其纤维成份选择适当的洗涤程序(参考附绿一)。 6.1.1 美国标准,使用美国Kenmore或Whirlpool洗衣机。 6.1.2 国标及欧洲标准,使用WascatorFOM71洗衣机。6.2 AATCC标准(附绿一) 6.2.1 选择适当洗衣程序,然后把水位控制器调至中水位,加水并调节至所需洗衣温度。 6.2.2 利用入水温度控制器(热/温/冷)调校清洗温度。 当洗衣温度为120°F或以上时,清洗温度为105±5°F﹔ 当洗衣温度低于120°F时清洗温度85±5°F。 6.2.3 将66±1g AATCC1993标准参考洗涤剂溶解后加入。6.2.4 将试样及加重用布片共重1.8kg(4lb)或3.6kg(8lb)。 注:一般测试都采用1.8kg洗衣量。如果是3.6kg(8lb),则需要调节到最高水位。 6.2.5 将洗衣机门关上并开动洗衣机。6.3 GB/BS/ISO 标准化试验(附录2) 6.3.1 在计算机显示屏幕选择所须程序。 6.3.2 将0.08g/L ECE洗衣粉及0.02g/L过硼酸钠溶解后加入。 6.3.3 将试样及加重用布片依所需重量(2kg或4kg)放进洗衣机。 6.3.4 将洗衣机门关上并开动洗衣机。6.4 当试样需要滴水晾干时,在脱水前须把试样从洗衣机中取出。6.5 若使用其它干法时,在完成整个程序后,将试样立即取出。 注:洗衣时,试样重量不能超过总洗衣量的一半。7.0 干燥程序7.1 晾干: 利用木夹将试样挂在绳上,布长必须悬重,让其在室温中干燥。7.2 烘干: 将试样与加重布片放进转筒烘燥机中并选择适当干衣程序,当试样及加重布片烘干后,继续转动衣物最少五分钟,但不加热。7.3 平放:将试样平放于网架上,用手捂平皱痕,但不可拉长试样使其变形,让其在室温干燥。7.4 滴水晾干:将试样挂在绳上滴水,布长必须悬重,让其在室温中滴干。平面熨干:将平面电热熨板调至所需温度,将试样平放于板上,热压至试样完全干燥。8.0量度 8.1 将已干燥的试样平坦地置于或挂于标准温湿度环境中,美国4小时,欧洲16小时。 8.2 将试样平放于工作台上。 8.3 量度并记录每对符号间或服装上每一量度部位的距离。 8.4 如有必要,重复进行洗衣及干衣程序。一般美国标准需洗涤五次或客人可同意洗多少次。同时当客人有说时,在每次洗涤及干衣后都必须量度一遍。 8.5 如试样有折痕时,用熨斗熨平折痕,并将试样平放于标准温湿度环境中至少4小时后再行量度。9.0 计算及结果表示 9.1 用以下算式计算湿洗收缩率:洗后长度-原长度 x100% 原长度9.2 布片 计算每个方向的平均收缩率或伸长率。9.3 符号 9.3.1 AATC/CAN,GB/BS/ISO, AS标准:(-)号代表收缩﹔(+)号代表伸长。10.0 测试报告: 10.1 报告中须注明测试方法。 10.2 简列洗水温度、水量、洗涤及干衣程序。 10.3 注明是否经过熨烫。 10.4 注明所有与标准有别的细节。 10.5 列明洗衣及干的次数。10.6 列明每一方向或每一量度部位的收缩或伸长率。11. 附图1 (美国标准):附录(一) AATCC135: 适用于布片(搅动式洗衣机) 洗衣机程序 洗衣条件 干衣程序 代号 程序 代号 温度 代号 干法 (1) 正常 II 27+/-3℃ A 转筒烘干 (85+/-5°F)

  • 【原创大赛】地表水总磷检测,到底该不该减补偿

    【原创大赛】地表水总磷检测,到底该不该减补偿

    实验中碰到的疑问 简述。。。。在以前做地表水总磷,消解后加了抗坏血酸,底部悬浮物或者浑浊就会消失,根本不需要做补偿。这次不行,做分光的时候无意间发现的,我测之前混匀吸光度就跳到0.100。没摇的话0.050,0.060。感觉有点差别,怕影响数据真实性。就第二天赶着重新做了一遍,这次加了空白样补偿的。这两次的数据差别很大啊。。我想问下各位有遇到过或者做这个项目的同仁我该用哪份报告给别人看?????或者我应该是做补偿还是不用也可以,可以先看看下面我做的数据 地表水总磷检测,到底该不该减补偿项目名称:水质 总磷检测方法:过硫酸钾消解—钼酸铵分光光度法方法简介:过硫酸钾消解:向已加试样并定容到25ml的具塞比色管加入4ml过硫酸钾溶液,再进行消解。消解条件:温度为120℃,30min。分光:消解完毕后,放冷稀释至50ml刻度线,再分别向各管加入1ml抗坏血酸溶液,2ml钼酸盐溶液混匀。显色15min,用30mm的比色皿水样预处理方法:浊度—色度补偿法a、浊色度补偿液——混合两个体积的(1+1)硫酸 , 一个体积的抗坏血酸溶液。b、配制空白对比试样,加3ml浊色度补偿液,不加抗坏血酸跟钼酸盐溶液。c、然后从试料的吸光度中扣除空白试料的吸光度。水样情况:地表水检测,无色透明,略有悬浮物。见图http://ng1.17img.cn/bbsfiles/images/2013/09/201309071935_463020_2721409_3.jpg(一)校准曲线http://ng1.17img.cn/bbsfiles/images/2013/09/201309072017_463025_2721409_3.png(二)未进行浊度—色度补偿的原始数据因为是跟曲线同时做的,跟曲线同一质控。http://ng1.17img.cn/bbsfiles/images/2013/09/201309072028_463028_2721409_3.png注:A2为加浊度—色度补偿液所对应吸光度(三)进行浊度—色度补偿的原始数据http://ng1.17img.cn/bbsfiles/images/2013/09/201309072032_463029_2721409_3.png

  • 【分享】无功补偿设备的几种类型

    1 同步调相机   同步发电机 低压同步发电机 既是有功功率源,又是最基本的无功功率源。当系统的无功功率比较紧张时,必须充分利用发电机供给无功功率。例如冬季枯水季节时,水库水源不多,水力发电厂不可能按装机容量发出额定设计的有功功率,此时应考虑将水轮发电机降低功率因数运行,使其多发无功功率,将发电机以调相机方式运行。同步调相机相当于空载运行的同步发电机,在过励磁运行时,它可作为无功电源向系统供给感性无功功率,以提高系统电压水平。在欠励磁运行时,它可作为无功功率负荷从系统吸收感性无功功率以适当降低系统电压水平,同步调相机欠励磁运行最大容量一般只有过励磁运行时的容量的5~60%。同步调相机一度发挥着重要的作用,被称为传统的无功动态补偿装置。同步调相机容量愈大,其单位容量设备费用就愈低。因此适用于补偿容量较大的集中补偿方式。然而,由于它是旋转电机,运行维护复杂,响应速度慢,难以满足动态补偿要求,现只在短路容抗很小的系统使用。 2 并联电容器   并联电容器是电力系统无功功率补偿的重要设备,主要用于正常情况下电网和用户的无功补偿和控制。由于它投资少,功率消耗少,便于分散安装,维护量小,技术效果也较好,但并联电容器只能减少无功电流损耗且不能减少电压变化下限。一般来说,每个变电站约安装1~4组电容器,对于负荷较大的110 kV变电站和220 kV变电站,则要装更多组数的电容器。我国有些电网高峰时电压过低,其主要原因是系统安装的并联电容器容量不足。有些电网低谷时电压过高,其原因之一是高峰时系统投入的并联电容器在低谷时没有去除或去除不够,造成系统在低谷时无功过剩、使电压过高。因此并联电容器不能平滑调节无功。电容器自动投切装置以主变无功的大小作为电容器开关投切的主要条件。 3 并联电抗器 限流电抗器XD1/2   并联电抗器的工作原理和并联电容器的工作原理正好相反,它属于负补偿,常用于补偿线路电容的作用。并联电抗器是高电压长线路的重要补偿方式,新建变电站的电容器装置中串联电抗器的选择要慎重,不能任意组合,一定要考虑电容器接入、撤出的谐波因素。电容器组容量变化很大时,可选用与电容器同步调整分接头的电抗器或选择串联电抗器混合装设,以便防止电容器组投切时产生的过电压。 4 变压器   有载调压变压器不能作为无功电源,相反消耗电网中的无功功率,属于无功负荷之一。有载调压变压器分接头的调整不但改变了变压器各侧的电压状况,同时也对变压器各侧的无功功率的分布产生影响。分接头上调时,变压器二次侧电压上升,同时流过变压器的无功功率增加;分接头下调后,变压器二侧次电压下降,流过变压器的无功功率减少。 5 无功电压综合控制   无功电压综合控制(VQC)装置是基于变电站自动化系统的。随着无人值守变电站的增多,在变电站中一般均有用于当地和远方监控的自动化系统或具有“四遥”功能的RTU装置,它们有完善的输入、输出功能,包括对测量量及信号量的采集。该装置也具有控制变压器分接头、无功控制设备开关动作的功能。因此在此装置的基础上把相应的电压无功控制模块添加到边远电站自动化系统软件上,即可实现VQC控制目的。根据设备运行需要或各单位运行方式不同,VQC可以有几种调节方式:分接头不调节,电容器按无功定值投切;分接头按电压定值调节,电容器定时投切;分接头按电压定值调节,无功不调节;电容器、分接头都不调节。 6 静止无功补偿器   静止无功补偿器(SVC)被用于输电系统波阻抗补偿及长距离输电的分段补偿,也用于无功补偿。有以下几种类型:晶闸管控制电抗器(TRC)、晶闸管投切电容器(TSC)、TCR/TSC混合装置、TCR与固定电容器(FC)或机械投切电容器(MSC)混合使用。SVC装置是通过改变电抗器来调节其输出的无功功率,它输出的无功电流与系统电压成正比,因此在电力系统电压降低时,SVC装置输出的无功功率会以与系统电压下降的平方的比例下降。要防止SVC装置接入后因改变系统阻抗特性而导致出现谐振。 7 静止无功发生器   随着电力电子技术的进一步发展,静止无功发生器(SVG)诞生了,它采用自换相变流电路,通过改变输出电压调节其输出的无功功率,会以与系统电压下降的比例而下降。他可等效为可控电流源,接入后不会改变阻尼特性。SVG采用门极可关断晶闸管或其他可关断器件,因此价格比较贵,目前还没有广泛应用。 8 静止同步补偿器   静止同步补偿器(STATCOM)是灵活交流输电系统(FACTS)的核心装置和核心技术之一,在电力系统中维持连接点的电压为给定值,提高系统电压的稳定性,改善系统的稳态性能和动态性能。STATCOM是基于瞬时无功功率的概念和补偿原理,采用全控型开关器件组成自换相逆变器 自动逆变电源QLN ,辅之以小容量储能元件构成无功补偿装置,与SVC相比,具有调节速度更快、运行范围更广、吸收无功连续、谐波电流小、损耗小、所用电抗器和电容器容量大为降低等优点。更多技术论文请详见:买电器网(MIDIQI.COM) 知识库[URL=http://]http://www.midiqi.com/Knowledge/Index.asp[/URL][URL=http://]http://www.midiqi.com[/URL]

  • 无功功率补偿的意义

    一、为什么要进行无功功率补偿?  从无功功率(http://www.vfe.cc/NewsDetail-378.aspx)的作用可知,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率,如果电网中的无功功率过低,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。  当电网线路中供给的无功功率远远满足不了负荷的需要时,我们就需要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是我们所说的无功功率补偿。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。二、无功功率补偿的原理 电网输出的功率包括两部分:一是有功功率;二是无功功率。直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能。电流在电感元件中作功时,电流超前于电压90度。而电流在电容元件中作功时,电流滞后电压90度。在同一电路中,电感电流与电容电流方向相反,互差180度。如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理。三、无功功率补偿的方式1、集中补偿:装设在企业或地方总变电所6~35KV母线上,可减少高压线路的无功损耗,而且能提高本变电所的供电电压质量。2、分散补偿:装设在功率因数较低的车间或村镇终端变、配电所的高压或低压母线上。这种方式与集中补偿有相同的优点,但无功容量较小,效果较明显。3、就地补偿:装设在异步电动机或电感性用电设备附近,就地进行补偿。这种方式既能提高用电设备供电回路的功率因数,又能改变用电设备的电压质量。四、无功功率补偿的作用  无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。无功补偿可以收到下列的效益:  1、根据用电设备的功率因数,可测算输电线路的电能损失。通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。   2、采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。   3、无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。   4、减少电力损失,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。  5、改善供电品质,提高功率因数,减少负载总电流及电压降。于变压器二次侧加装电容可改善功率因数提高二次侧电压。   6、延长设备寿命。 改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低10°C,寿命可延长1倍)   7、最终满足电力系统对无功补偿的监测要求,消除因为功率因数过低而产生的罚款。  8、无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。  9、无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】胶粘剂固化收缩率的测定

    胶粘剂固化收缩率的测定方法,本人查了一些资料。一是密度法,用比重瓶测收缩后胶粘剂的密度,根据密度变化测体积收缩,一是体积法,需要有模具空腔。我考虑第一种方法费比重瓶,胶粘剂固化后,很难从比重瓶中去除。而且这种方法对某些类型的胶粘剂未必适用.模具空腔的方法也存在这一问题。请问分析化学或胶粘剂的专家们,还有什么其他的好办法,测定收缩率呢?

  • 什么是补偿导线法?

    [size=14px][font=宋体]在热电偶参考端温度波动变化情况下,参考端的温度[/font][i][font=&]T[/font][/i][font=宋体]是不稳定的,此时,无法对参考端的温度[/font][i][font=&]T[/font][/i][font=宋体]进行修正,即无法对工作对象进行测量,补偿导线法就是在[/font][/size][font=宋体][size=14px][color=#0080ff]热电偶参考端外接一热电偶补偿导线,将热电偶的参考端延伸至温度稳定的环境中,使波动变化较大的参考端处于温度稳定的环境下,再用计算法进行修正,以达到测量目的。[/color][/size][/font][size=14px][font=宋体]热电偶的补偿导线的特性作用和连接方法如下。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]1[/font][font=宋体])热电偶的补偿导线是指在对定温度范围内和所连接热电偶的热电极具有相同热电特性的廉金属导线。[/font][/size][font=宋体][size=14px]([/size][/font][font=&][size=14px]2[/size][/font][font=宋体][size=14px])热电偶的补偿导线一般分为两种:[/size][/font][font=&][size=14px]a.[/size][/font][font=宋体][size=14px][color=#ff0000]延伸型补偿导线[/color][/size][/font][size=14px][font=宋体],是指与所配用的热电偶的热电极化学成分相同的导线。这种导线仅起着延伸热电偶参考端的作用。[/font][font=&][/font][/size][font=&][size=14px]b.[/size][/font][font=宋体][size=14px][color=#ff0000]补偿型补偿导线[/color][/size][/font][size=14px][font=宋体],是指与所配用的热电偶的热电极化学成分不相同的导线,但在参考端温度可能的变化范围内如([/font][font=&]0~100[/font][font=宋体])℃或([/font][font=&]0~200[/font][font=宋体])℃,其电热特性与所匹配热电偶特性相同。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]3[/font][font=宋体])补偿导线的连接方法,[font=宋体]这里要说明的是[/font][font=system-ui, -apple-system, BlinkMacSystemFont, &]补偿导线法的补偿导线作用,只是延长热电极,它并不能消除参考端不为0℃时的影响[/font][font=宋体],还必须用电势修正法对测量的热电势进行计算处理。[/font][font=宋体]注:使用分类中,G为一般用,H为耐热用[/font][/font][/size][font=宋体][size=12px]参考资料[/size][/font][font=宋体][size=12px][1]GB∕T 16839.1-2018 热电偶 第1部分:电动势规范和允差[/size][/font][font=宋体][size=12px][2]马恒儒.热学计量基础知识,2002年[/size][/font][font=宋体][size=12px][3] ANSI and IEC Color Codes for Thermocouples Wire and Connectors[/size][/font]

  • 【求助】关于溶解氧仪盐度补偿误差检定的问题

    我做盐度补偿误差检定的时候,加盐后,溶解氧值不是减小而是增大,这是什么问题?我用荧光法的仪器测也是溶解氧值增大,到搁置很长时间后数值趋向于零盐时的饱和溶解氧值,是什么问题呢?

  • 【分享】混凝土力学性能检测项目

    1. 混凝土力学性能:抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度、抗折强度、圆柱体劈裂抗拉强度、芯样切割抗压强度、喷射混凝土切割抗压强度;2. 混凝土耐久性能:慢冻、收缩、抗渗、碳化;3. 普通混凝土拌和物:稠度、凝结时间、泌水和压力泌水、表观密度、含气量;4. 配合比设计:普通混凝土配合比设计、轻骨料混凝土配合比设计、喷射混凝土配合比设计、砌筑砂浆配合比设计、净浆配合比设计;5. 建筑砂浆:稠度、密度、分层度试验、立方体抗压强度、抗冻性能、静力受压弹性模量;6. 聚合物砂浆增加:抗压抗折、压折比、拉伸粘结强度、可操作时间、吸水量;7. 砂:筛分析、表观密度、吸水率、含水率、堆积密度和紧密密度、含泥量、泥块含量、云母含量、碱活性、石粉含量;8. 石:筛分析、表观密度、吸水率、含水率、堆积密度和紧密密度、含泥量、泥块含量、针状和片状颗粒总含量、岩石抗压强度、压碎指标值、碱活性;

  • PH计检定:温度补偿器引入的示值误差

    JJG 119-2005中检定PH计手动温度补偿器引起的示值误差时,在每一个检定点输入该温度下相当于PH等电位+6PH单位的信号,这个“该温度下相当于PH等电位+6PH单位的信号”怎么理解???

  • 【求助】酸度计电计温度补偿器引起的示值误差的检定

    各位同行: 你们好! 我觉得只要细心,即使是传统的项目也会有值得思考的问题。今天下厂检定一台手动数字温度补偿、智能标定的上海精科pHS-25型酸度计,在25℃对电计标定后,检定温度补偿器引起的示值误差情况如下:检定的温度/℃输入0.00pH时的 输入6.00 pH时的 示值/pH 示值/pH 0 7.01 13.01 15 7.00 13.00 30 7.00 13.00 45 6.99 12.99 60 6.98 12.98 据上述情况可知:如果在进行不同温度下温度补偿器引起的示值误差检定之前,先在该温度下标定一下,再检定就不会有问题了。其实即使不在不同温度下重新标定,就从上述检定结果看,也看得出:在不同温度下给出的斜率是正确的。而内蒙检定仪的说明书指出:在电计被标定后,选定检定温度点之前,在电计示值为pH7.00情况下,将温度补偿器电位器在其上限和下限之间旋动,此时电计示值的变化应不超过分度值。而现在该被检电计示值变化为0.03 pH,理应判不合格,而且降级使用的余地都没有! 但我们的规程JJG119—2005没有该要求,又不能判该电计不合格,最多也只能说是该电计温度补偿器引起的示值误差为﹣0.01pH。不知内蒙说明书给出:“……温度补偿器电位器在其上限和下限之间旋动,……”的依据是什么?是否是JJG119—1984,因为我没有看过JJG119—1984,不得而知。 对于该电计我已向其用户告知了该情况,用户表示他们只会用到20℃~30℃之间,该电计不影响他们的使用。但是作为我们给出的检定结果,还是要考虑在这样的情况下我应该如何判该电计呢?你们说对吗?所以特向各位同行请教![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=183163]酸度计电计温度补偿器引起的示值误差的检定.rar[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=183164]酸度计电计温度补偿器引起的示值误差的检定.rar[/url]

  • 【转帖】丹麦男子每次做爱都失明 或血管收缩导致

    据英国媒体报道,一名丹麦男子身患怪病,每次做爱时会短暂失明,不得不求医治疗。医生经诊断认为这名男子可能是因血管收缩导致了失明,决定给他服药以使血管变宽。这位不愿透露姓名的男子称,自己每次在性交达到高潮时都会突然失明。令人迷惑不解的是,这名男子在做其他任何耗费体力的运动时都不会发生失明的情况。丹麦哥本哈根大学眼科学系发布报告称,这名男子可能是发生了血管收缩,血管周围的肌肉收缩阻碍了血液的流动。报告称,血管收缩同样能够造成男性勃起障碍。医生决定给这名男子服用药物,以使其血管变宽。美国伯克利大学分子与细胞生物学的2名博士生在博客上透露了这种罕见的病症。

  • 标准滴定溶液标定,关于温度补偿的问题

    硝酸银标准滴定溶液标定,关于温度补偿的问题,温度补正体积。根据国标GB/T601-2016查的,温度为22℃时,每1000毫升补偿体积为-0.38,我这的温度补正体积应该怎么算?是按50毫升空白体积计算为-0.019还是按多少算?求大神帮助。[img]https://ng1.17img.cn/bbsfiles/images/2019/05/201905221024008489_5946_3479914_3.png[/img]

  • 国内外汽蒸收缩仪的比较

    国内外汽蒸收缩仪的比较

    各位,下面几张图是国内外比较大的纺织仪器厂家的汽蒸收缩仪,有用过这些仪器的可以分享下使用心得。http://ng1.17img.cn/bbsfiles/images/2011/09/201109071651_314909_2366190_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/09/201109071652_314910_2366190_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/09/201109071653_314911_2366190_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/09/201109071653_314912_2366190_3.jpg

  • 波纹补偿器

    波纹补偿器的主要弹性元件为不锈钢波纹管,依靠波纹管伸缩、弯曲来对管道进行轴向、横向、角向补偿。其作用可以起到:   1.补偿吸收管道轴向、横向、角向热变形。   2.吸收设备振动,减少设备振动对管道的影响。   3.吸收地震、地陷对管道的变形量。   补偿器按是否能吸收管道内介质压力所产生的压力推力(盲板力),可分为无约束型波纹管补偿器和有约束型补偿器;按波纹管的位移型式,可分为轴向型补偿器、横向型补偿器、角向型补偿器及压力平衡型波纹管补偿器。北京天彩康拓http://www.bjtckt.com

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制