当前位置: 仪器信息网 > 行业主题 > >

软射线相机

仪器信息网软射线相机专题为您提供2024年最新软射线相机价格报价、厂家品牌的相关信息, 包括软射线相机参数、型号等,不管是国产,还是进口品牌的软射线相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合软射线相机相关的耗材配件、试剂标物,还有软射线相机相关的最新资讯、资料,以及软射线相机相关的解决方案。

软射线相机相关的资讯

  • 近100%量子效率,鑫图专业软X射线相机上线!
    鑫图Dhyana 95/400BSI是背照式sCMOS相机的典型代表,已成功应用于国内外多个软X射线研究领域,能有效解决传统背照式CCD因读出噪声过大带来的采集时间拉长,动态范围受限和图像对比度较低的问题,大幅提升软X射线成像品质,数十倍帧率的提升为动力学实验提供了更多可能性,而且性价比极高,已成为软X射线应用研究的新宠。 成像性能再升级,鑫图专业软X射线相机上线 为进一步提升在软X射线领域的应用优势,鑫图在第一代Dhyana 95/400BSI应用基础上进行了卓有成效的技术改进,基于定制的无抗反射镀膜芯片进行再开发,实现了软X射线短波段近100%超高量子效率的重大突破,同时采用灵活的法兰适配方案,能更好地满足真空系统的密封要求,是新一代软X射线探测系统的不二之选。 无抗反射镀膜芯片,近100%量子效率 如图所示:鑫图专业sCMOS软X射线相机采用的全新一代无抗反射镀膜芯片,在1.24-12.4nm区间内量子效率得到了大幅提升,整体超过了90%,部分波段近乎达到了100%的超高水平,在对应的80–1000 eV光子能量范围内,具备更专业的成像性能。 法兰可定制,灵活适配真空系统 鑫图专业软X射线相机适配真空系统的法兰可提供标准方案,也可根据您系统定制尺寸,全力满足您的应用需求。 CF63,CF100,CF150... 鑫图专业软X射线相机,多种成像方案可选 Dhyana 400BSI-SV/Dhyana95-SV是基于鑫图成熟相机平台推出两款专业软线相机,后期我们还可根据用户需求开发更多软X射线产品方案。产品型号中的 “S”代表“Soft”,”V”代表 “Vacuum”,“SV”后缀即“软线真空”的意思,将作为鑫图专业软线相机型号命名使用。 目前,鑫图“SV”系列软X射线相机已有少量标准品可接受试用,无论您是预约测试还是需要更深入的技术探讨,欢迎与我们联系!
  • Greateyes国内首台定制款软X射线CCD相机成功安装
    5月29日,Greateyes国内首台定制款的软X射线CCD相机于上海同步辐射E-line线站成功安装。我司工程师在用户现场主导了相机的安装和调试工作。用户对相机安装调试工作的顺利进行表示肯定。这既是对我司工程师售后服务能力的肯定,也是对Greateyes公司产品的认可。 该款相机根据客户需求,对真空法兰的类型和sensor的位置进行了定制。具体表现在,相机采用可旋转的真空法兰,为安装提供了更大的调节灵活性。而突出的sensor位置(较法兰面前凸约25mm)使相机的可探测角度最大化,能够充分利用相机的靶面,从而更好的满足用户的实验需求。Greateyes GmbH成立于2008年的greateyes公司,以德国柏林洪堡大学的技术为基础,迅速发展成为了国际知名的科研级CCD相机生产企业。目前,其用户遍布全球多个国家的科研与工业领域,典型的用户如表一所示。自成立以来,Greateyes公司一直致力于科研级高性能CCD相机的研发、生产和销售,其产品被广泛应用于成像和谱学应用领域。同时,greateyes公司也为光伏企业提供基于电致发光与光致发光的成套检测系统和方案。基于独特的平台概念,greateyes公司可提供带真空接口的一系列相机,可用于真空紫外、极紫外以及软/硬X射线的成像和光谱应用。基于直接探测技术路线,能确保相机在真空紫外、极紫外以及软/硬X射线波段的良好响应。同时,在紫外、可见和近红外波段,也能提供性能优异的产品。作为Greateyes中国区授权总代的北京众星联恒科技有限公司,我们的工程师均经过原厂培训,拥有专业的售前产品知识和过硬的售后服务经验,从而能够为客户提供专业、及时的服务。目前,我司已成功将greateyes公司的科研级CCD相机产品推广到多个研究机构,这不仅让更多的科研用户了解到了性能优异的科研级CCD相机产品,为科研工作者的调研工作提供了更多选择,也增强了Greateyes公司在中国市场的品牌影响力。了解更多Greateyes产品:
  • 普林斯顿发布新型SOPHIA-XO相机,可快速、超低噪检测软X射线
    p    strong 微光成像和光谱仪器的领先制造商—普林斯顿仪器公司于昨日发布了数款全新的快速、超低噪相机,可应用于 span style=" color: rgb(255, 0, 0) " 真空紫外线(VUV) /span 和 span style=" color: rgb(255, 0, 0) " 软X射线 /span 的直接检测。SOPHIA-XO相机平台专用于 span style=" color: rgb(255, 0, 0) " VUV/EUV/XUV成像,X射线衍射,X射线显微镜,X射线全息摄影,X射线光谱,和X射线等离子 /span 这类科学应用领域。 /strong /p p style=" text-align: center " strong img width=" 400" height=" 331" title=" 2-1.png" style=" width: 400px height: 331px " src=" http://img1.17img.cn/17img/images/201805/insimg/d593b932-f14f-4b17-b345-c1a9331d0d1d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p   新式SOPHIA-XO相机使用了 span style=" color: rgb(255, 0, 0) " 背照式CCDs /span ,这种CCDs可直接检测到 span style=" color: rgb(255, 0, 0) " 极宽范围的VUV和X射线(5eV到30keV) /span 。这些新款“XO”相机机型,丰富了普林斯顿仪器公司受欢迎的SOPHIA& reg 产品线,具有 span style=" color: rgb(255, 0, 0) " 100%填充系数的2048× 2048和4096× 4096图片格式,高达150000e-的最大阱容,& gt 95%的QE(Quantum Efficiency量子效率)峰 /span 的特点,可读出 span style=" color: rgb(255, 0, 0) " 低至3.5e- rms(root mean square均方根)的噪声 /span 。一个 span style=" color: rgb(255, 0, 0) " 4端口,16MHz的读出架构 /span 使这些新型相机可 span style=" color: rgb(255, 0, 0) " 每秒传递超过3个全帧 /span —这比之前的两端口相机要快 span style=" color: rgb(255, 0, 0) " 7倍至10倍 /span 。 /p p   SOPHIA-XO可用于VUV应用所需的紫外线增强膜或软X射线应用所需的非减反射膜。所有SOPHIA-XO相机均采用普林斯顿仪器公司的 span style=" color: rgb(255, 0, 0) " 创新性专利技术ArcTec& #8482 span style=" color: rgb(0, 0, 0) " , /span /span 该技术使用气体或液体热电冷却的形式将温度降至 span style=" color: rgb(255, 0, 0) " -90℃ /span 。 /p p   将快速、高灵敏性独特而严密的、完善的结合在一起,使新型SOPHIA-XO相机在实验室、同步加速器和OEM系统的无数大视野X射线应用中表现完美。通过一个可旋转的、符合行业标准的、具有高真空度密封设计的 span style=" color: rgb(255, 0, 0) " CF法兰 /span 与 span style=" color: rgb(255, 0, 0) " UHV仪器 /span 进行连接简单而方便。 /p p    span style=" color: rgb(31, 73, 125) " i “SOPHIA-XO提供了真正杰出的直接检测性能,”普林斯顿仪器公司的影像产品经理Michael Melle讲道。“我们的工程师精心地设计‘XO’的每一个方面以制作一个完美的相机平台,为我们的客户提供无与伦比的高帧率低噪灵敏度,为激动人心的新技术及科学发现提供可能。” /i /span /p p   SOPHIA-XO相机支持采用普林斯顿仪器公司的知名 span style=" color: rgb(255, 0, 0) " 64位LightField& reg 影像和光谱分析软件 /span ,并将其作为一个可供选择的系统。LightField提供了数百种用户增强功能,包括内置一个强大的实时数据分析数学引擎。LightField同样允许使用第三方软件包直接进行控制,如 span style=" color: rgb(79, 129, 189) " LabVIEW& reg (美国国家仪器公司)、MATLAB& reg (迈斯沃克)、Python& reg (PSF)和EPICS(Experimental Physics and Industrial Control System实验物理和工业控制系统)同步加速器软件 /span 。 /p
  • 重磅发布 | Marana-X--用于直接软X射线和EUV成像的超快、高灵敏相机
    近期,专业的科学成像与光谱解决方案供应商牛津仪器Andor Technology宣布推出新的Marana-X系列相机,专业用于高能射线的检测分析和成像。兼具高帧频、高动态范围、高量子效率 该产品集成全新科研CMOS技术(sCMOS),专为超快软X射线/EUV层析成像和高次谐波产生(HHG)等应用而设计。与传统的慢扫描CCD相机相比,Marana-X的出现代表了重大的技术进步。它通过同时提供高帧频、高灵敏度和高动态范围,克服了软X射线-EUV能量范围内慢扫描CCD的传统局限性。它集成了“无涂层”、420万像素的sCMOS传感器,在80 eV-1keV范围内量子效率大于90%、全幅速率为74帧/秒以及更高的动态范围(34000:1@16bit), 这种独特的组合使用户可以更好地采集动态变化的过程,增加高质量图像数据的输出通量,同时可缩短实验时间,非常适用于大型层析扫描图像的重构等实验。sCMOS内置的无快门技术解决了传统机械快门寿命和重复率有限的问题。Marana-X 同时配备即插即用的USB3接口和适用于高能物理环境的CoaXPress接口,可轻松集成到各种基于真空的实验装置中。牛津仪器Andor-高能探测产品专家Thomas Woodward 评价该款仪器:"Marana-X是对Andor高性能sCMOS产品系列的进一步补充。随着世界范围内高能物理光源升级到更高的光学通量和重复频率,科学家需要合适的探测器技术来最大限度地利用这些新的高能光源。Marana-X具备的高灵敏度、高帧频和出色的动态范围,是应对这些实验挑战的理想选择。" Marana-X 参数 项目参数高灵敏:QE高达99%高帧频:可高达74帧/秒高动态范围:可高至16位抗EMP:CoaXPress数据接口真空深度冷却:-45℃ 制冷
  • Greateyes新一代4K4K 软x射线CCD相机准备交付NSLS
    近日,我们的合作伙伴德国Greateyes公司,又完成了一台大靶面X射线探测器的生产、测试工作。该相机包含了一个4K4K的CCD芯片,由一个全新的相机平台驱动,该平台具有很多创新性特点和功能。如下图为Sensor定制化相机实物图,此相机正准备发到位于美国布鲁克海文国家实验室的国家同步辐射光源(NSLS)。成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户已遍布多个国家。Greateyes开发、生产并销售高性能、全帧、科学级CCD相机。得益于其高的动态范围、优异的灵敏度被广泛应用于成像与谱学应用领域,波长覆盖x射线到极紫外、可见到近红外。同时,Greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。北京众星联恒科技有限公司作为Greateyes公司中国区授权总代理商,为中国客户提供Greateyes所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的x射线产品及解决方案。
  • Raptor Photonics发布Raptor 电子倍增型X射线成像相机 Falcon III XO新品
    英国Raptor公司即将推出Falcon Ⅲ XO相机是业内率先基于EMCCD的直接探测X-ray相机,相比以往产品具有更高速度和灵敏度的优势。相机分辨率1024x1024,像元尺寸10um,满分辨率帧频可达34fps,X-ray探测范围1.2eV-20KeV。该相机非常适合对灵敏度、帧速有更高要求的软X-ray探测的应用。主要特性:● 来自e2v的EMCCD芯片,不带镀膜● CF152(6“)法兰设计直接与真空室连接● 帧频34fps@1024x1024● 深度制冷到-70℃,暗电流● 探测能量1.2eV-20KeV技术参数:型号FA351XO-BN-CL芯片1“背照减薄EMCCD分辨率1024x1024像元尺寸10umx10um有效面积10.2mmx10.2mm满阱电荷 35Ke-读出噪声rms34fps曝光时间1ms to 1 hour暗电流0.001e-/p/s@-70℃A/D深度16bit光谱范围1.2eV-20KeVBinning1x1 to 32x32法兰CF152(6英寸)电源12V DC±0.5V功耗~+55℃存储温度-30℃~+60℃外形尺寸(LxWxH)129mm x 112mm x 94mm典型应用:X-ray显微成像、断层影像、相衬成像和源特性、X-ray等离子诊断、晶体学、极紫外/真空紫外成像、全息成像和半导体光刻、高次谐波产生创新点:全球首款采用电子倍增EMCCD芯片探测真空紫外及软X射线成像的相机,属于业内首创,将灵敏度与拍摄速度有机结合,为真空紫外探测及软X-射线探测提供了更多可能。 Raptor 电子倍增型X射线成像相机 Falcon III XO
  • 软X射线吸收谱在材料科学研究中的应用
    软 X 射线是波长介于 0.1nm 到 10nm 之间的 X 射线,由于在这个能量波段的光子能够特异性地激发元素周期表上大多数元素的原子共振能级,并发射出特征荧光或俄歇电子,因此,软 X 射线吸收谱能够适用的材料研究非常广泛。利用软 X 射线吸收谱进行材料结构及其变化过程研究的一个非常重要的因素就是它可以在不破坏研究材料结构的前提条件下同时获得材料近表面和亚表面的结构信息,另一方面,由于软 X 射线吸收谱对原子的轨道电子结构具有高度的敏感性,可以同时实现研究材料中元素价态、轨道电子自旋态以及轨道杂化等信息的探测。基于这些特点和优势,软 X 射线吸收谱在材料科学、生物科学、能源科学及环境科学等多学科及交叉学科领域复杂体系材料结构表征中发挥了非常重要的作用,为重大科学问题的研究提供了重要的实验数据支持。传统光谱表征技术(像 UV-Vsi、FT-IR 等)受激发波长的限制,其对材料结构的表征往往止步于分子层面。软 X 射线吸收谱能够以亚原子的分辨能力,通过选择性地激发原子芯能级轨道电子,实现对同一元素在不同环境条件下的键荷分析。这里以辐照前后的 PET 聚合物的结构表征为例,通过特征元素吸收边附近的能量激发,可以获得材料在二维图像上的元素分布信息和特征元素原子与周围原子的轨道杂化信息,继而解决了传统光谱表征技术对材料结构分析的局限。在能源催化领域,软 X 射线吸收谱能够定性和定量地解析催化剂材料中的活性官能团,为催化剂材料的构效关系建立提供必要的数据支撑。在这篇文章的工作中,伦敦大学 Parkin 教授的研究团队利用 SiO2 作为模板制备了氧官能团修饰的多孔碳催化剂,通过 C 和 O 的 K 边吸收谱,精确地揭示了催化剂材料中氧官能团的轨道电子结构在不同退火温度条件下的可控变化,并结合电化学分析,为醌基官能团在双电子氧还原制备 H2O2 中的优越性提供了重要的实验证据。在能源电池领域,软 X 射线吸收谱对解析正极材料中阴离子的电荷补偿行为同样表现出了独特的优势。传统的观点认为,锂电池材料中锂的脱嵌过程只涉及金属离子得失电子,因而金属离子中可转移的电子总数决定了正极材料的理论电容。但在这篇文章的工作中,东京大学 Mizokawa 教授小组通过 O 的 K 边和 Co 的 L 边吸收谱同时研究了 LixCoO2 正极材料在不同脱锂状态下的轨道电子结构变化。结果发现,不仅 Co 离子在这个过程中发生了氧化还原反应,O 阴离子同样也参与了这个反应过程。更有意思的是在 0° 和 60° 的不同入射角度条件下的 O 的 K 边吸收谱表征结果表明,材料在脱锂状态下的 Co-3d 和 O-2p 轨道杂化表现出明显的各向异性,从微观层面上揭示了 LixCoO2 正极材料在充放电过程中具有良好导电性的根本原因。在生物科学领域,利用软 X 射线吸收谱研究土壤和岩石矿物中金属和有机质的组成结构演化,有利于打破传统土壤腐殖质学对土壤有机质过程和功能认识的局限,让我们能够从生命活动的本质及其代谢产物与矿物的相互作用重新审视土壤和岩石矿物与生命耦合的协同关系。此外,基于水窗波段的软 X 射线对水分子的高透性,软 X 射线吸收谱能够实现生物膜上不同磷脂分子层的结构表征,对针对性地设计和研发生物体的靶向纳米药物具有重要的指导意义。在生命医疗领域,从亚细胞水平研究人体骨组织的结构和病理机制,有利于骨关节炎的前期诊断和治疗。在这篇文章的工作中,圣彼得堡国立大学的 Sakhonenkov 教授团队通过 Ca 的 L 边和 O 的 K 边吸收谱研究了正常骨组织与受损骨组织中羟基磷灰石的结构差异。发现骨质的硬化过程伴随着新的氧价态的生成和 Ca-O、磷酸键的增加,这不仅让我们对骨关节炎发生过程中骨组织的微观结构变化有了新的认识,同时也为骨关节炎的前期诊断和治疗提供了新的思路。总的来说,软 X 射线吸收谱在多学科领域复杂体系的材料结构表征中扮演了非常重要的角色,且随着 X 射线显微技术的发展,STXM-NEXAFS 技术联用为材料结构的多尺度高分辨表征提供了可能。但相比于硬 X 射线吸收谱而言,由于软 X 射线本身在材料中的强吸收效应,要在常规实验室条件下实现软 X 射线吸收谱表征,其难度非常之高。不仅要求高的真空操作环境,高亮的软 X 射线发射光源,同时要求各光学组件对射线的吸收也要小。因此,目前软 X 射线吸收谱表征主要还是依赖同步辐射光源。但矛盾的是,同步辐射光源的机时紧张,很难满足日益增长的科学研究需求。近年来,随着实验室 LPP、DPP 等软 X 射线光源及高精度光学组件(例如反射式波带片、平场光栅等)的开发,基于激光驱动等离子体光源的软 X 射线吸收谱仪系统也逐渐发展成熟,并成功应用到多学科领域的材料结构表征。其中,基于平场光栅几何的软 X 射线吸收谱仪系统以其紧凑的结构设计、宽的摄谱范围以及高的光谱分辨率脱颖而出,并成功实现了商业化应用,基本能够满足实验室软 X 射线吸收谱表征的需求。由德国 HP Spectroscopy 公司推出的实验室软 X 射线吸收谱,尤其适用于薄膜材料的结构表征。同时我们也可以提供针对 5-12 keV 能量波段的实验室硬 X 射线吸收谱,希望能够给相关老师和研究人员在科学研究中提供帮助。HP Spectroscopy德国 HP Spectroscopy 公司成立于 2012 年,致力于为全球科研及工业领域的客户定制最佳 X 射线解决方案,是全球领先的科研仪器供应商。现可提供 5-12keV 的非扫描式桌面 X 射线吸收精细结构谱仪 hiXAS,以及200-1200eV 的平场光栅软 X 射线吸收精细结构谱仪 proXAS,产品线还包括 XUV/VUV/X-ray 光谱仪,beamline 产品等。主要团队由 x 射线、光谱、光栅设计、等离子体物理、beamline 等领域的专家组成。长期与全球领先的研究机构的科学家维持紧密合作,关注前沿技术,保持产品的迭代与创新。众星联恒作为 HP Spectroscopy 中国区 XAS 系统授权总代理商,为中国客户提供所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。 相关阅读 小尺度,察纹理!实验室软X射线显微和吸收光谱探索微观结构的奥秘非扫描台式X射线吸收精细结构谱仪,加速非晶材料结构及其演化过程探索的步伐“足不出户,走进XAFS” proXAS高分辨实验室桌面NEXAFS谱仪助力材料化学结构表征分析太强了!看最新非扫描式桌面XAFS谱仪在催化领域出神入化的应用 参考文献 1. Prasad S., et al. Intl. J. Spectrosc. 7, 249 (2011)2. Wachulak P., et al. Spectrochim. Acta Part B At. Spectrosc. 145, 107 (2018)3. Liu L., et al. Angew. Chem. Int. Ed.20234. Mizokawa T., et al. Phys. Rev. Lett. 111, 056404 (2013)5. Holburg J. et al. Anal. Chem. 94, 3510 (2022)6. Novakova E., et al. Biointerphases, 3, FB44 (2008)7. Sakhonenkov S., et al. Nano. Ex. 2, 020009 (2021)8. Jonas A., et al. Opt. Express, 27, 36524 (2019) 9. Holburg J. et al. Anal. Chem. 94, 3510 (2022)
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • EAST软X射线-极紫外高分辨光谱诊断系统通过验收
    5月22日,中科院计划财务局组织专家组对中科院合肥物质科学研究院等离子体所承担的中国科学院科研装备研制项目“EAST软X射线——极紫外高分辨率光谱诊断系统”进行了现场验收。 验收会现场   “EAST软X射线——极紫外高分辨率光谱诊断系统”研制项目由等离子体所承担,中国科技大学作为合作单位参与。该项目采用软X射线-极紫外波段平场分光技术,实现宽波段、高光谱分辨和空间分辨测量,同时获得高质量的杂质辐射数据,填补了EAST该波段诊断的空白,为EAST等离子体芯部杂质辐射和杂质输运研究提供必要的装备条件,建成后可对等离子体芯部杂质辐射和杂质输运进行研究。   验收专家组听取了项目组的工作报告、财务报告、使用报告和测试组的测试报告,审核了文件档案及财务账目,并现场检查了装备运行情况。验收专家认为项目组圆满地完成了研制任务,系统运行正常,各项技术指标达到实施方案规定的要求,其中光谱分辨率指标达到国际先进水平,同意通过验收。
  • JEOL正式发布扫描电镜、电子探针用软X射线分析谱仪
    日本电子株式会社(JEOL)近期发布了扫描电镜和电子探针用软X射线分析谱仪(SXES :Soft X-Ray Emission Spectrometer),将扫描电镜和电子探针对材料分析水平、能力和精度大大扩宽。 电子光学仪器上发射的电子束与样品发生复杂的交互作用,产生各种信号,收集不同信号进行分析,可以获得样品的各种不同信息。软X射线分析谱仪就是通过采集样品上被激发出来的软X信号进行分析的仪器。它的能量分辨率为0.3eV,远高于能谱仪(EDS)和波谱仪(WDS)的分辨率;对轻元素的定量分析非常准确,比如B元素的检出极限可达20ppm;还可以进行元素价态分析。将扫描电镜从以侧重图像为主的仪器变身为图像、成分、价态均可清晰表达的超级分析仪器。也将电子探针的分析能力大幅度提升。 详情请咨询日本电子株式会社在中国的全资子公司捷欧路(北京)科贸有限公司及其各分支机构。上图:EDS-WDS-SXES谱峰分辨率比较上图:各种氮化物的谱图检测分析上图:各种碳化物的谱图分析上图:锂电池充电过程观察
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 小尺度,察纹理!实验室软X射线显微和吸收光谱探索微观结构的奥秘
    众所周知,光学显微镜的分辨率即使达到波动光学理论的极限也只不过 200nm,对材料微观结构的认识还存在一定的局限。电子显微镜的点分辨率虽然可以达到 0.1nm,但考虑到电子的穿透深度较低,同时与结构原子相互作用可能引起结构的改变,难以实现蛋白质、DNA 等生物大分子的原位无损观测。近年来,基于水窗波段(2.3nm-4.4nm)的软 X 射线显微和光谱学技术的发展为土壤和生物细胞的原位分析提供了新的途径,避免了化学提取或样品处理过程产生的人为干扰。基于透射 X 射线吸收成像原理的软 X 射线显微成像技术,能够在纳米尺度的空间分辨率上获得材料的三维图像信息,实现样品的无损观测。软 X 射线吸收精细结构光谱分析能够获取样品内在元素价态及分子结构的变化信息。两种技术相结合的软 X 射线原位成像和光谱分析已成功在同步辐射光源上得以验证,并在纳米尺度上观测到土壤有机质和生物体细胞内碳元素种类的异质性分布。但同步辐射测试机时紧张,往往跟不上科研需求,极大地限制了这类表征技术在各领域的应用。鉴于此,德国 HP Spectroscopy 公司推出了实验室软 X 射线吸收精细结构光谱仪和显微成像系统。该系统采用双光路设计,核心是激光驱动气体等离子体产生的 XUV 光源,能够同时满足水窗波段的软 X 射线显微和高分辨率的 NEXAFS 表征。图1. 激光驱动等离子体 XUV 光源系统得益于水分子对水窗波段的软 X 射线的高透性,利用该系统可以原位观测一种耐辐照球菌和囊裸藻类生物的活体显微结构,如图2 所示。从显微图像可以看出,受限于生物样品的厚度,虽然这些生物体内部更详细的结构信息难以被观测到,但生物体的边界轮廓非常清晰。图2.一种耐辐照球菌(DSM no. 20539)(左)和囊裸藻类生物(SAG 1283-11)(右)的软 X 射线显微成像图,曝光时间分别为 5 min 和 60 min与此同时,利用软 X 射线吸收精细结构光谱的元素的特异性及局域环境的敏感性,通过原位探测土壤有机质的分子结构变化,能够让我们从生命活动的产物在土壤中的滞留状态及这种状态与土壤中生命的关系重新审视土壤有机质的本质。例如,NEXAFS 光谱中脂肪族 C 峰强度的增加可能与根系沉积物的滞留有关等。图3 聚酰亚胺、腐植酸、富里酸和淋溶土的碳 K 边 NEXAFS 谱图(左)和几类有机质的碳 K 边 NEXAFS 谱图,单个光谱采集时间为2.5 min软 X 射线吸收精细结构光谱和显微成像系统——proXAS德国 HP Spectroscopy 公司采用的激光驱动等离子体产生 XUV 光,无固体碎屑产生,可满足 1-6nm 波长范围内的光谱分析及多个特征波长的单色 XUV 光发射。像差校平场光栅结构能够实现最高 400 eV 带宽的摄谱范围,元素吸收边覆盖 C、N、O 等轻元素的 K 边及 Ti、V、Mn 等过渡金属元素的 L 边。目前得到的 1-6nm 波长范围内的 NEXAFS 光谱分辨率 ≥1500。系统主要参数描述如下激光驱动XUV光源波长/能量范围1-6 nm/200-1200 eV重频20 Hz像差校正平场光栅谱仪光源光通量1E15 photons/s/sr @ 200-800 eV光谱分辨率λ/∆ λ≥1500 @ 200-1200 eV摄谱能量带宽∆ E=250-400 eV @ 200-1200 eV光谱采集时间≤5 min (100 nm有机薄膜)分析元素浓度≥0.2 wt%腔室真空度≥1E-5 mbar控制及光谱分析系统探测器类型CCD探测器探测器像素尺寸≤13.5 μm×13.5μm控制及光谱分析软件集成光谱系统控制、光谱分析及校正功能软X射线显微系统单色波长λ=2.88 nm(其他波长可定制)空间分辨率≤50 nm相关阅读利用实验室XANES改进电解催化剂使用实验室XANES优化合成气转化催化剂“足不出户,走进XAFS” proXAS高分辨实验室桌面NEXAFS谱仪助力材料化学结构表征分析太强了!看最新非扫描式桌面XAFS谱仪在催化领域出神入化的应用非扫描台式X射线吸收精细结构谱仪,加速非晶材料结构及其演化过程探索的步伐关于HP Spectroscopy德国 HPSpectroscopy 公司成立于 2012 年,致力于为全球科研及工业领域的客户定制最佳 X 射线解决方案,是全球领先的科研仪器供应商。现可提供 5-12keV 的非扫描式桌面 X 射线吸收精细结构谱仪 hiXAS,以及200-1200eV 的平场光栅软 X 射线吸收精细结构谱仪 proXAS,产品线还包括 XUV/VUV/X-ray 光谱仪,beamline 产品等。主要团队由 x 射线、光谱、光栅设计、等离子体物理、beamline 等领域的专家组成。长期与全球领先的研究机构的科学家维持紧密合作,关注前沿技术,保持产品的迭代与创新。众星联恒作为 HP Spectroscopy 中国区 XAS 系统授权总代理商,为中国客户提供所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。参考文献:[1] Zhe (Han) Weng, Johannes Lehmann, et al. Probing the nature of soil organic matter, Critical Reviews in Environmental Science and Technology, 52(22), 4072-4093 (2022). DOI: 10.1080/10643389.2021.1980346.[2] Jonathan Holburg, Matthias Müller, et al. High-Resolution Table-Top NEXAFS Spectroscopy, Analytical Chemistry 94 (8), 3510-3516 (2022). DOI: 10.1021/acs.analchem.1c04374.[3] Matthias Müller, Tobias Mey, et al. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet, Opt. Express, 22, 23489-23495 (2014). DOI: 10.1364/OE.22.023489.[4] Matthias Müller, Tobias Mey, et al. Table-top soft X-ray microscopy with a laser-induced plasma source based on a pulsed gas-jet, AIP Conf. Proc., 1764, 030003-03008 (2016). DOI: 10.1063/1.4961137.免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 780万!中国地质科学院地质力学研究所高精度软X射线分析仪采购项目
    项目编号:HCZB-2022-ZB0536项目名称:高精度软X射线分析仪预算金额:780.0000000 万元(人民币)采购需求:设备名称数量(套)简要规格/要求交货期交货地点备注高精度软X射线分析仪1软X射线谱仪1套:场发射主机系统1套;主机配备的必要的稳压电源、降压变压器1套 电制冷能谱仪1套 波谱 4道 扫描系统1套 原厂高真镀膜仪1套 标准样品1套 循环水冷系统1套 长期使用的备品备件、消耗品完整1套等。各系统及配套装置详细技术指标见第四章采购需求。合同签订之日起12个月内全部到货。中国地质科学院地质力学研究所接受进口设备投标合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目( 不接受 )联合体投标。
  • 27载电镜人新探索:高效捕获电子态信息的软X射线发射光谱——访吉林大学电镜中心主任张伟教授
    在过去的近百年里,电子显微镜在现代材料科学研究中起着不可或缺的作用。随着电子显微镜技术的发展,能量色散光谱(EDS)、波长色散光谱仪(WDS)以及电子能量损失谱(EELS)等基于电子显微镜的光谱分析手段不断涌现。在电镜空间分辨率的基础上,这些光谱分析手段为电镜表征又赋予了能量分辨率的维度,通过将两者相融合,电镜技术得以在分析过程中获得高能量分辨率和高空间分辨率并存的结果。近年来,随着先进光谱分析手段的发展,出现了一种基于电镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。吉林大学张伟教授在国内、乃至国际,较早的围绕SXES展开了系列研究,并取得了诸多亮眼成果。近三十年,张伟教授围绕电镜,在诸多材料体系均有代表性成果产出,这不仅基于他对电子显微学的热爱,也离不开对电镜技术的“敏感”。近日,仪器信息网有幸采访了张伟教授,请其分享了SXES技术的最新进展与应用潜力,也聆听了其与电镜的故事。张伟,吉林大学电子显微镜中心主任、材料科学与工程学院“唐敖庆学者”领军教授。现任吉林省电子显微镜学会理事长、英国皇家化学会会士(2022),科睿唯安“全球高被引科学家榜单”(2023,交叉学科)。关注电化学能源存储/转换材料的表/界面的化学和物理调控及与性能的构效关系,强调先进材料的电子显微分析。作为学术带头人引进人才来吉林大学工作前,先后在日本国立材料研究所、韩国三星综合技术研究院、德国Fritz-Haber研究所、丹麦技术大学、西班牙能源协作研究中心从事合作和独立的科学研究。2017年起先后任电子显微镜中心副主任、主任。2020年起任唐敖庆学者-领军教授。27载电镜魅力职业:既是技术手段,更是一门学问“热爱,往往收获意外的惊喜”1997年至2004年,张伟在我国电子显微学重要发展地之一的中国科学院金属研究所攻读硕士和博士,师从我国著名电子显微学专家李斗星研究员、隋曼龄教授。在此,张伟开始开展电镜相关研究,与电镜结缘,并对这个学科产生浓厚兴趣。2004年博士毕业以后又先后在多个国家从事合作和独立的科学研究。2014年开始到吉林大学工作。这十余年间,虽然研究的材料体系广泛、领域不同,但电镜都是最重要的研究手段或对象。回顾以往,“因为我可能经历的地方很多,当时我的直觉,在哪个地方离开的时候都要留下些什么”。在这种直觉和热爱驱动下,十余年的科研历程收获诸多“意外惊喜”,每个领域和阶段也都有一些值得回忆的成果。攻读博士期间,张伟专注于金属与合金的研究。利用电镜深入探索,通过快速加热的方法,发现了传统钛合金中一种特殊的相变形式——快速升温马氏体相变。由于马氏体相变在材料科学和凝聚态物理领域都扮演着至关重要的角色,这一成果在当时备受关注,不仅发表在应用物理快报上,还得到了中国科学院官方报纸科学时报的专门报道。在德国研究期间,基于团队自由的学术氛围,得以深入研究一些有趣的方向。在电镜中,张伟发现了一种超大单胞的表面终结状态,这在当时具有重大意义。传统观念上,透射电镜主要研究块体结构,但此研究成功挑战了表面研究的难题。通过调整衬度传递函数,结合先进球差电镜中的HAADF-STEM技术,揭示了超大单胞结构表面终结于非完整通道的现象,解决了团队长期关于侧面或表面态原子排布的争议。这一工作发表后,引起了广泛关注,并启发了后续相关的诸多研究。回顾这一发现,张伟认为这依旧是自己目前最具原创性的工作之一。随后在丹麦继续研究期间,张伟在电镜中随意观察石墨烯样品时,意外发现石墨烯上会留下痕迹,敏锐地意识到这可能是一种纳米书写工具。于是深入探究,最终发表了题为“以石墨烯为纸,电子束为墨”的纳米书写技术论文。发表后迅速受到国家科技日报海外头版头条报道,这一结果因他灵活的想法和电镜的作用而备受关注,也让张伟备受激励。回国后,张伟致力于能源存储领域研究,并与西班牙能源协作研究中心和韩国基础科学研究所合作,发现了氢氧化物赝电容超级电容器的新机制,即氢离子的嵌入脱出过程,而非传统认为的表面氧化还原反应。成果发表受到广泛关注,至今被引超过250多次。2019年诺贝尔化学奖获得者古迪纳夫教授甚至专门撰写文章评价了这一工作的重要意义。尽管运用了多种研究手段,但核心仍是张伟对电镜的敏锐洞察,通过观察特征形貌演变和电子衍射谱分析,发现了充电和放电结构的高度相似性,这一发现对后续研究起到了关键作用。张伟讲授“电子显微镜魅力职业”课堂一瞥问及在诸多材料体系中都有一定成果的原因,张伟讲到,“一个可能是我兴趣在,再有一个也确实热爱”。正如张伟曾经给本科生、研究生和留学生讲授几门相关的课程“材料科学测试方法”、“电子显微镜应用与实例分析”或讲座“电子显微镜魅力职业与追求”中所阐释的,电镜除了是生存手段,更成为喜欢的一个魅力职业。“双管齐下”的学科:电镜既是手段,更是一门学问在谈到电子显微学这门学科时,张伟认为,首先,电子显微学是一门实用性极强、应用范围广泛,起着为其他学科服务支撑的重要作用。但另外,电子显微学本身也蕴含了丰富的理论,是一门需要不断研究、探索和突破的学问。作为现代科研的重要支撑学科,电子显微学在材料物理化学等领域扮演着不可或缺的角色。无论是探索新现象、新机理,还是揭示物质结构,电镜都发挥着举足轻重的作用。通过电镜对材料的深入研究,科学家们得以发现许多未知的领域,为科学进步贡献着力量。回顾以往,许多革命性成果的获得,正是依赖于电子显微学的突破性发现。例如,碳纳米管、准晶的发现等,背后都离不开电子显微学的直接贡献。同时,随着电镜技术的飞速发展,空间分辨率、能量分辨率以及时间分辨率等方面都取得了前所未有的提高,这些进步离不开新的理论支撑。例如,空间分辨率方面,球差电镜如今已经能够达到0.5埃甚至0.4埃的尺度。然而,一篇物理快报中提到,如果能克服某些限制,分辨率甚至可以达到0.01埃以下。这些突破性的进展,都需要其他学科的研究支持,以实现对分辨率不断突破的目标。总之,电子显微学是一门“双管齐下”的学科。它在支撑其他学科发展的同时,也在自身领域内不断取得新的突破和进展。二者相辅相成,共同推动着电子显微学不断向前发展。张伟的科研工作也与电子显微学的以上两个特性十分契合,在不同材料体系中广泛应用电镜的同时,也在围绕一些电子显微技术进行系统研究。2017年,吉林大学成立电子显微镜中心,张伟先后任电子显微镜中心副主任、执行主任、主任,并开始“双肩挑”的工作。一方面继续在材料学院从事科研工作,一方面也在电镜中心负责管理行政工作,同时也开始“回归”电镜相关研究,希望能通过一些原创性工作,为电子显微学的发展做出一些贡献。其中,软X射线发射光谱的应用与发展就是张伟近来比较聚焦的一个研究方向。探索新方向:基于电镜,以高能量分辨率表征电子态信息的SXES技术SXES技术发展历程:一种高效表征键合电子态信息的光谱方法诞生X射线发射光谱(XES)属于X射线光谱学,其分析原理是入射电子束辐照内层能级电子使其激发,被激发的电子脱离原来稳定的系统,内壳层会存在空穴,此时整个系统处于一种不稳定的激发态。与此同时,外层电子会向内壳层的空穴发生跃迁(退激发De-excitation),从而促使X射线的发射,通过分析发射光子的能量可以获得相关材料的电子信息。X射线发射光谱有多种类型,其中,软X射线发射光谱(SXES)也可用于确定材料的电子结构。1924年,林德(Lindh)和伦德奎斯特(Lundquist)首次发表了关于X射线发射光谱的实验结果,随后X射线发射光谱被广泛应用在材料研究中。虽然这些早期研究提供了对小分子电子构型的基本见解,但X射线发射光谱直到在同步辐射设施提供高X射线强度束后才得到更广泛的应用。近年来,随着先进光谱分析手段的发展,出现了一种基于电子显微镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。SXES的能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS(120-130 eV、5000 ppm)和WDS(8 eV、100 ppm)。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。SXES与WDS,EDS对比(参考日本电子数据,根据安装的装置不同而不同)SXES作为附着在电子显微镜上的光谱分析方法,其目标是获得更高的分辨率,为了达到超高的能量分辨率以及空间分辨率,该技术也经历了几代漫长的发展。2000年,日本东北大学M Terauchi等人开发了连接到透射电子显微镜的第一代亚电子伏特分辨率软X射线光谱仪(JEM 2000FX)。光谱仪由VLS光栅和冷却的CCD探测器组成。首次在TEM中以0.6 eV能量分辨率的特定样品区域观察到价带(VB)的部分态密度(DOS)。然而,由于空间分辨率仅为1μm,在分析更小结构时能力不足。2002年,第二代软X射线发射光谱仪被开发。与第一代相比,能量分辨率从0.6 eV提高到0.4 eV,空间分辨率从1 μm提高到400 nm。可以设置两种不同的光栅,能量范围为60-1200 eV。然而,高能量区域的收集角和能量分辨率仍然不够。因此,从2008年到2012年,日本科学技术振兴机构(JST)资助了一项产学研联合种子创新项目,开发了一种光谱仪,该光谱仪利用VLS光栅作为色散元件,以达到超高的能量分辨率,可以在50 eV到4000 eV的宽能量范围内对软X射线光谱进行测量。成功研发出新一代商用软X射线发射光谱仪(SS- 94000 SXES),随后日本电子以商业化产品推向市场。该光谱仪带有两个光栅,可以检测50 -210 eV的一阶光谱和高达420 eV的二阶光谱,以及更高阶的光谱。该光谱仪可以探测到70多种元素的软X射线发射信号。到目前为止,SXES已经成为在纳米尺度上描述材料物理性质的成熟技术。SXES技术优势:高分辨,无损、化学键状态、锂元素分析X射线发射光谱工作原理示意图X射线发射主要是由电子束辐照引发的电子从价带(键合电子)到核心能级的电子跃迁。发射的X射线携带着有关键合电子(如Li的2s电子,C的2s和2p电子)的能量状态信息。通过检测电子从价带跃迁到内壳引起的X射线发射(上图),可以获得键合电子的部分态密度。由于核心能级态具有良好的对称性,发射强度分布反映了价带的部分态密度。作为一种基于电子显微镜的光谱分析方法,在样品制备过程中无需对样品进行特殊处理;在低加速电压下工作时,可以实现纳米级空间分辨率;在对简单金属、半导体和铝基化合物进行光谱分析时可以探究其能带结构效应。也就是说,一种新的、方便的表征键合电子态信息的光谱方法诞生了,该方法正在蓬勃发展,并在各个领域中得到应用。SS-94000 SXES检测金属Li图谱(图自日本电子)关于SXES技术的优势,张伟表示,一方面是分辨率高,其能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS和WDS。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。另一方面,SXES还具有可视化和选择分析区域的优势,这使得SXES能够获得材料的局部或平均信息。此外,SXES 还具有几个独特的优势。第一,SXES的检测深度在几纳米到几百纳米之间,这使得SXES能够对样品进行无损的分析。其次,由于SXES具有非常高的能量分辨率和检出限,因此高能量分辨率的SXES可用于分析材料中化学键的状态。第三,也是最重要的一点,SXES可以对材料中的锂元素进行分析,这对于当下热点研究的新能源材料、能量存储材料中的应用是十分重要的。SXES技术应用进展:成果广泛,应用潜力被低估当前,从事基于电镜SXES技术研究与应用的团队较少,国际上主要是日本在推进相关研究,张伟则是我国鲜有的从事相关应用研究团队。日本偏技术推进,而张伟则在应用研究方面做了系列工作。并在全球率先发表了以基于电镜SXES技术应用研究为主题的综述。安装于吉林大学的国内首台基于扫描电子显微镜的软X射线发射光谱仪吉林大学也在2017年,购置了国内首台基于扫描电子显微镜的软X射线发射光谱仪(SS-94000 SXES),配置在JSM-7900F热场发射扫描电子显微镜上。基于SXES,张伟团队成功地将SXES应用于电化学能源和电催化领域,并为团队一些文章提供了关键数据,起到画龙点睛的作用。近两年来,张伟团队产出6篇实验型文章,1篇综述型文章。在水系电池领域,通过SXES揭示了CuHCF正极材料中铵离子的可逆嵌入/脱出,伴随Cu/Fe可逆价态转变的储能机制,发表于国际纳米领域的权威期刊Nano Lett上(Nano Lett. 23 (2023) 5307-5316)。在双离子电池工作中,团队利用SXES技术检测了石墨电极中Li-K和C-K边发射峰,证明了Li+成功的预嵌入石墨电极中,发表在国产卓越行动计划期刊JEC上(Journal of Energy Chemistry 71 (2022) 392-399)。团队将SXES与XANES的结果一同分析,研究了充放电过程中Bi电极和碱金属离子(Li+、Na+ 和K+)之间的电子结构演化过程,发表在影响因子高达20.4的ESM期刊中(Energy Storage Materials 45 (2022) 33-39)。此外团队也将这种表征手段应用于OER中,采用熔融盐辅助硼热反应法制备了FeCoB2。通过SXES对OER反应后催化剂的表征,证实OER反应后的催化剂中B原子与FeBO4中B的存在形式相同,与XPS的结果一致(Journal of Energy Chemistry 72 (2022) 509-515)。在HER中,通过SXES对反应前后对MXene量子点催化剂进行表征,证明了在电化学反应后,-Cl基团被氧基团取代,从而优化了HER性能,在EEM期刊上发表,并且作为封面 (Energy Environment Materials 6 (2023) e12438),正逢MXene量子点获得诺贝尔化学奖之际。在ORR中,借助SXES 分析了铠甲催化剂的电子结构,通过对比金属Co元素引入的Co-NC催化剂与没有金属引入的NC催化剂的SXES峰位,表明金属Co物种的引入会使石墨电子结构发生变化,与同步辐射的结果一致,并且在国产卓越行动计划期刊JEC上发表(Journal of Energy Chemistry 70 (2022) 211-218)。随后团队对SXES在锂离子电池中的应用进行了全面的总结,在专注研究材料领域创新性研究成果的国际顶级快报MRL期刊上(年发文量74篇)发表了全球首篇关于软X射线发射光谱仪在锂离子电池研究领域应用的综述型文章,(Materials Research Letters 11 (2022) 239-249)并对SXES未来的发展提出了合理的展望。近两年,张伟团队产出的部分成果显然,SXES将成为在材料科学领域剖析电子结构信息的一个非常重要和强大的表征手段。尽管已经取得了一些进展,但SXES技术在许多的研究领域中的作用仍然被忽视。张伟认为,随着应用的不断深入,相关成果不断涌现,相信SXES技术会受到更多科研工作者的青睐。SXES作为一种简单、方便的光谱分析工具,并不局限于能源和催化领域。另外,张伟也十分看好SXES与其他表征手段联用技术,通过SXES辅助其它表征手段可以简化材料电子结构的研究,通过与其他表征手段的结合可以实现1+1远远大于2的效果。2024年1月,日本电子软X射线发光分光器出货第100台合影留念关于SXES技术的未来展望,张伟十分看好SXES技术以及相关联用技术,并认为,虽然目前SXES技术的研究与应用还处于一个相对初期的阶段,但相信在仪器使用者、研究者,以及仪器企业等多方共同努力下,SXES技术必将在材料电子结构研究领域掀起一个巨大浪潮,从而促进催化、能源以及其他领域的蓬勃发展。后记基于电镜技术,张伟在多个材料体系研究中取得显著成果,并较早投入SXES技术的研究,取得了系列突破。分享经验时,他强调了兴趣的重要性,提倡夯实基础知识,聚焦研究领域,并注重多学科交流。他特别提到,科研应摆脱功利心态,以平和之心面对挑战。就像团队学生们以“正能量满满”来描述张老师,兴趣为伴,乐观的心态下,有生活也有理想,科研与生活之旅中自然收获惊喜。或许,这便是张伟与电镜故事的真实写照。附:4分钟视频一览SXES的特点和功能(视频自日本电子官网)
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 科学家开发手持式X射线仪 图像直接显示于皮肤
    投影仪能在病人的皮肤上,人体模型上或墙上投影出6种预先储存在电脑中的典型损伤图像,以此来帮助病人参照判断自己的损伤类型和程度。    这种设备非常轻便,包括一个投影仪和一个指示器以及相机。   北京时间5月25日消息,据英国《每日邮报》报道,担心病人不愿坚持按照既定疗程治疗的医生们这下可以放心了。科学家们最近发明了一种手持式X射线仪,能够帮助鼓励病人坚持治疗。   这种仪器名为“AnatOnMe”,这是一种手持式的小型仪器,包括一个投影仪,数字相机以及红外相机,还带有一个激光指示器。投影仪能在病人的皮肤上,人体模型上或墙上投影出6种预先储存在电脑中的典型损伤图像,以此来帮助病人参照判断自己的损伤类型和程度。详细的图像还包括了骨架结构,肌肉组织,肌腱和神经系统。   医生们则可以通过这种设备拍摄的图像和视频来查看病人康复的进展,并了解他们是否正在每天采用正确的复健方法进行康复锻炼。而红外相机则能让医生用一个激光指示器在图像上“涂写”。这样,医生们便能很快得到一份图像和相关文件,让病人带回家。   据开发这种设备的美国微软公司研究人员称,患有慢性病的患者有30%~50%会很快放弃坚持治疗。   进行这项研究的小组由倪涛(Tao Ni,音译),艾米卡尔森(Amy Karlson)和丹尼尔维格多(Daniel Wigdor)领导。他们表示,他们希望这种设备的问世将能帮助医生们鼓励自己的病人坚持治疗。   他们同时表示,进行试用的志愿者们表示,相比较传统的治疗方法,这样的设备使用后让他们感觉更加愿意治疗,并且能为病人提供更多的信息。   来自微软研究院的卡尔森表示:“这是一个有趣的新领域,因为尽管各种设备出现了很大的进展,但是用于改善医生和病人之间面对面交流和沟通机会的设备却相对匮乏。”   他说:“最棒的一刻就是当我们将医学图像直接投影在病人的手臂和脚上时,他们表示的肯定。他们当时说,哇!这太酷了!我看穿了我的皮肤!因此我们认为病人似乎对于病理图像能直接显示在自己的皮肤上感到非常惊奇而满意。”
  • 解决方案 | 基于金刚石对顶砧(DAC)的X射线高压衍射实验室解决方案!
    写在前面长期以来,由于对x光源、探测器以及实验技术等方面的苛刻要求,基于金刚石对顶砧(dac)的x射线高压衍射实验只能在同步辐射实现。但同步辐射有限的机时难以满足庞大的用户需求。不能在实验室进行基于dac的x射线高压衍射实验,一直是广大高压科研群体的一大痛点。作为一家以技术服务为立身之本的公司,北京众星联恒科技有限公司一直致力于为广大科研用户提供专业的x射线产品及解决方案。早在2014年,我司就开始关注并参与高压衍射技术的学习和探索。经过数年的技术积累,通过多方交流合作,终于实现了系统的基于金刚石对顶砧(dac)高压衍射实验方案。高压 xrd 系统核心硬件选型方案技术可行性分析基于dac的透射式衍射实验,其核心的问题在于:(1)将x射线聚焦至100微米尺度时还能具备较高的光强,以及(2)对经dac吸收后的弱x射线衍射信号的有效探测。我司的方案中,采用德国incoatec公司的ag靶或mo靶高亮度微焦源与捷克advacam公司的widepix光子计数x射线探测器来解决这两个核心问题。incoatec公司的cu靶、mo靶、ag靶高亮度微焦源可在维持较小的射束截面的同时覆盖较宽的能量范围,使其在单晶和粉末样品的高压衍射研究中具有显著的优势。高亮度微焦源集成了 incoatec 的montel 多层膜聚焦镜,同时具有射束塑形与单色化作用,能将x射线聚焦在百微米水平,并保持较高的通量,详细参数参见产品技术指标部分。同时,我司也基于钼靶的高亮度微焦源,进行了一些验证实验。主要的实验条件和过程描述如下:1 采用incoatec公司的单能(mo-kα)微焦斑x射线源,对放入dac中的nacl样品进行了透射式衍射实验。以钨条作为beam-stop阻挡直通光,advacam公司的widepix 1x5光子计数型阵列探测器作为探测器件。相应的实验布局如下图所示: 2实验中经过聚焦的x光的光斑约为300µm(全尺寸光斑)和100µm(半高全宽)左右,焦点位置处mo-kα光子通量为1e7/s。3以尽可能覆盖较大的2θ衍射角为原则,将探测器放置于直通光轴一侧。经过20min的曝光,获得了较为清晰的衍射数据(如下图所示)。由处理后的一维衍射数据可以看到:在现有的配置下,2θ衍射角可以覆盖到30°的范围,经积分后的衍射峰信噪比也很好。4以牺牲2θ角度覆盖范围来尽可能提升衍射峰信号强度(信噪比)为原则,通过调整探测器位置以获取更完整的衍射环,以获得更高的积分衍射信号。可以看到:通过调整探测器的位置,经过20min的曝光,最强的衍射峰的信号强度提升了将近4倍(由之前的1200左右提升至4500左右)。最后,由以上数据及分析可知:在配置二维大阵面探测器后,可以兼顾2θ角度覆盖范围和衍射环的完整性(对应积分信号),从而大幅缩短实验时间(或提升信号强度),所以在预算充足的情况下,我们推荐更大阵面的widepix 5x5探测器。产品技术指标 a. x射线源incoatec iμs hb x射线输出参数:镜片/靶材光子能量kev发散角mrad焦斑尺寸μm(fwhm)光通量ph/s光通量密度ph/(s*mm^2)ag22.1~4.9951e78e8mo17.4~4.91103e71.9e9 光管尺寸与重量:长高宽重量239mm300mm60mm6.7kg高压发生器:管电流管电压管功率≤ 50 kv≤ 1000 μa≤50 wb. x射线探测器advacam widepix-cdte 5x5型号widepix 5x5像素尺寸55 µm x 55 µm感光材料1000µm cdte像素数1280x1280感光面积71x71mm2单帧动态范围12/24bit探测能量范围10 - 140 kev探测效率90%(@mo-kalpha)暗噪声无冷却方式水冷探测效率关于我们成立于2013年,众星联恒目前在全球范围内和多家高端x射线仪器及核心组件厂商建立了合作关系,致力于向中国的科研用户和工业客户提供高性能的产品与解决方案。我们不仅有完善的产品线:光源方面,产品广泛用于衍射、散射、成像、超快时间分辨等应用方向。x光的调制方面,产品囊括了:多层膜镜片、平晶/弯晶单色器晶体、毛细管透镜、透射光栅等高端光学组件,广泛用于衍射、散射、谱学和成像等领域。探测器领域,我们也有完善的产品线布局,包括:光子计数型探测器、以及可见光、极紫外、软/硬x射线ccd相机等。还拥有具有自主知识产权的桌面超快x射线诊断装置femtox,入围仪器信息网2016“优秀仪器新品”。经过8年的技术积累,众星也在追逐着更高远的梦想,我们将继续保持热忱,走自己的创新之路,成为euv/x-ray领域一流解决方案提供商。
  • 上海光源实现储存环单束团流强高于20 mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20 mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。 图1. 超导三次谐波腔的安装、就位和带束调试图2. 单脉冲X射线超快成像在激光加载后不同时刻(15 μs、20 μs、30 μs、40 μs、50 μs)获得的水中气泡的瞬态图像并观测到气泡中的射流现象上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2 K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 1 ms)、同步定时系统(定时精度达到5 ps)等光束线站关键设备均由上海光源自主研制。特别是,研制成功大数值孔径三镜头双路光学转换系统与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。图3. 快速X光成像线站实验站图4. 研制的单脉冲超快X射线成像探测器。(a)研制的大数值孔径三镜头双路光学转换系统,与两个ICCD相机组合成双幅单脉冲超快X射线成像探测器;(b)研制的大数值孔径三镜头双路光学转换系统,与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器图5. 基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,两幅图像之间最短时间间隔为1.44 μs此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 我国科学家实现储存环单束团流强高于20mA和同步辐射单脉冲超快硬X射线成像
    近日,上海光源线站工程取得关键进展。储存环内安装的国内首台无源超导三次谐波腔模组将束团长度拉伸约3倍,结合束团纯化系统,实现了混合束团填充模式下单束团流强高于20mA(图1),支持快速X光成像线站在国内首次成功实现了基于同步辐射光源的单脉冲超快硬X射线成像,其成像时间分辨率达到60 ps,并被应用到气泡动力学的超快测量,清晰观测到在激光烧蚀后不同时刻水中气泡的形核、长大、破裂以及射流过程的超瞬态图像,尤其是清晰观测到传统光学诊断手段无法观测到的微射流过程(图2),为气泡动力学这一经典问题的深入研究带来了崭新的手段。   上海光源储存环采用被动式的超导高次谐波腔,运行频率1500 MHz,自2006年进行理论与模型腔设计研究,后在上海光源线站工程加速器性能拓展中作为束团长度控制系统的工程任务,开展了超导腔、恒温器、调谐器和高次模吸收器等的国产化自主研制。2021年2月,完成4.2K下模组的水平测试,结果表明Q0~ 4.0×108 @ Eacc = 7.5 MV/m和Q0 ~ 3.8×108 @ Eacc = 10.0 MV/m;2021年8月,完成隧道内安装就位、降温和信号调试;2021年11月9日以来的带束调试,在储存环均匀填充四个束团串共556个束团时,束团长度(半高宽)从55 ps拉长至122 ps;混合填充1个单束团和520个束团串时,束团长度(半高宽)拉长至165.7 ps,拉伸倍数约3倍,且单束团内的流强高于24 mA,皆优于系统设计指标,为快速X光成像线站的测试提供了良好的束流条件。   快速X光成像线站是一条硬X射线能量段、实现从毫秒到亚百皮秒时间分辨和微米级空间分辨成像的光束线站,该线站配置有先进的材料动态响应实验平台、高速流体动力学实验平台、动态显微CT实验平台(图3),其液氮冷却低温波荡器、液氮冷却双晶单色器、单脉冲超快X射线成像探测器(最短成像曝光时间60 ps)、高速X射线成像探测器(成像帧频达到5 M fps)、快速X射线成像探测器(成像帧频达到100000 fps)、快门系统(控制通光时间 ICCD相机组合成双幅单脉冲超快X射线成像探测器(图4a);与微通道板和高速CMOS相机组合成多幅单脉冲超快X射线成像探测器(图4b);可一次拍摄双幅或多幅单脉冲成像图像,时间分辨率可达60 ps,空间分辨率可达1.3 μm,对于不可重复的超快过程可实现连续、高分辨、单脉冲超快X射线成像。如图5所示,为基于研制的双幅单脉冲超快X射线成像探测器拍摄得到激光加载后两个时刻上的水中气泡的瞬态图像,可以清晰观测到一次激光加载后,水中气泡在两个时刻上不同的结构变化,两幅图像之间最短时间间隔为1.44 μs(为电子绕储存环一周的时间)。   此外,实验站还配备了一级轻气炮、霍普金森杆、燃油喷雾室、高温样品室、力学加载试验机等原位装置和自动换样机械手。该线站的建成表明,上海光源自主建设高水平硬X射线光束线站的能力登上了新台阶,我国已成功突破了同步辐射X射线超快成像的关键技术并取得重要进展,这将为我国在材料冲击响应、结构动力学、高速流体动力学、软物质动力学等方向的基础和应用研究提供了有力支撑,特别是为航空航天复合材料、推进剂和轻质合金动态服役行为研究提供了超快显微观测能力,并对关键工程材料设计具有重要指导意义。
  • 475.6万元!蔡司中标中科院物理所微米X射线三维断层成像仪采购项目
    近日,中国科学院物理研究所微米X射线三维断层成像仪采购项目发布中标公告,卡尔蔡司以475.6万元中标。一、项目编号:TC220805G(招标文件编号:TC220805G)二、项目名称:中国科学院物理研究所微米X射线三维断层成像仪采购项目三、中标(成交)信息供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 卡尔蔡司(上海)管理有限公司 微米X射线三维断层成像仪(X射线显微镜) Zeiss Xradia 515 Versa X射线显微镜 1 4756000 四、招标技术规格1.1 设备用途:设备可对对各类锂电池材料(软包电池,电池极片)、金属材料、油气地质及半导体样品(失效分析)进行高分辨无损三维成像及组织表征。设备采用闭管透射式X射线源、独特的二级放大架构、独有的衬度技术、配合机器的三维数据采集、控制、重构及可视化软件以三维立体图像及二维虚拟切片的形式,清晰、准确、直观地展示各类样品内部的亚微米级及以上的组织形貌(包括样品内部组织结构、内部孔隙、微裂纹等均可清晰展示)。1.2 工作条件:(1)电源:单相 220V(±5%)、50Hz、15A(2)温度:10~25℃, 温度波动<2℃(3)环境湿度:≤70%,无凝结*2.1 分辨率2.1.1 最高空间分辨率:最高三维空间分辨率≤700nm,需提供标样的测试结果,否则视为不响应;2.1.2 最小可实现的体素(Voxel Size)≤300 nm,需提实际样品的测试切片照片,否则视为不响应;2.1.3 能够满足大样品高分辨得测试需求,须具备对锂电池材料中的软包电池实际样品局部进行高分辨率扫描成像,针对≥5cm 宽的软包电池样品的中心位置,可实现≤ 1μm 的体素分辨率的扫描成像能力,以满足采购人单位的科研需求。2.2 三维组织表征及重构2.2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷;#2.2.2 能够自动对样品多个(20)不同区域进行 3 维成像扫描和重构;#2.2.3 具有吸收衬度和可调节相位传播衬度两种衬度模式,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。能够清楚区分样品内的不同组织;2.2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据;具有支持宽视场模式的物镜探测器,具备更宽的视野;*2.2.5 2000 张投影,重构 1k × 1k × 1k 图像的时间少于 5 分钟;2.2.6 支持 180°+Fan 扫描模式,从而实现快速扫描成像。2.3 光源与滤色片及支架*2.3.1 高功率微焦点 X 射线源:采用密封式透射 X射线源,功率≥10W,机器可以不间断连续扫描样品时间达 1 周以上(即 7 x 24 小时)。在用户日常使用过程中无需更换光源灯丝。最大电压≥155kV,最低电压≤30kV,连续可调;2.3.2 配备滤色片转换支架,包含不低于 10 个适用于不同能量段扫描的滤片。2.4 探测器*2.4.1 探测器规格为高对比度平板探测器或更高级的探测器系统,可实现二维有效探测面积≥200mm×200mm,需提供测试方案和样品测试结果,否则视为不响应。像素数量≥2000(长)×2000(宽);2.4.2 具备大视场≤0.4X 光学放大模式,能够实现大视野宽场模式;2.4.3 探测器可移动范围不小于 290mm。2.5 样品台及样品室#2.5.1 全电脑软件控制高精度 4 轴数控可编程马达样品台,具备超高的样品移动精度;#2.5.2 样品台 X 轴运动范围 50mm;Y 轴运动范围 100mm;Z 轴运动范围 50mm;2.5.3 样品台旋转运动范围:360 度旋转;*2.5.4 样品台最大承重≥10kg(X 射线能穿透的情况下);*2.5.5 样品台可承受样品尺寸≥100 cm2;*2.5.6 为了防止 X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品;*2.5.7 系统具备样品自动防撞装置,系统通过快速获取样品轮廓信息,设定硬件工作极限位置,防止因为操作不当样品和探测器、源相撞,避免损坏硬件和样品。2.6 仪器控制与数据采集、重构、可视化及分析系统*2.6.1 具备三维数据采集及控制软件,可编程软件系统,支持三维重构,具备快速抓拍功能;2.6.2 全数字化仪器控制,计算机控制工作站;2.6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量等;2.6.4 可以进行基本图像测量,如图像计算、滤镜等;#2.6.5 具备快速三维数据重构软件,软件界面友好,采用先进的解析算法以保证重构时间快;2.6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释;#2.7 数据处理工作站不低于以下配置Microsoft Windows10 Pro 操作系统Dual Eight Core CPUCUDA-enabled 3D GPU12 TB(4×3 TB)硬盘容量,RAID-532GB 内存可刻录式光驱24寸液晶显示器。2.8 样品座及标样2.8.1 对中和分辨率测试标样;2.8.2 针钳式样品座;2.8.3 夹钳式样品座;2.8.4 夹持式样品座;2.8.5 高铝基座样品座;2.8.6 高精度针钳式样品座。2.9 其他硬件2.9.1 人体工学操作台;2.9.2 四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器;2.9.3 大移动范围、高精度花岗岩工作台。2.10 可扩展功能与双束系统、场发射电镜的数据相互关联,可将 CT 所获得的数据文件格式如 CZI, RAW,TIFF,VTK,DICOM 等格式的二维图像和 TXM 3D X-ray volumes 体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。
  • Advacam为巴西新同步辐射光源Sirius提供了无边Si传感器模块以用于光子计数X射线探测器PIMEGA的制作
    新型Sirius同步辐射介绍新的巴西同步加速器光源Sirius将成为巴西有史以来规模最大,最复杂的科学基础设施,并且是世界上最早的第四代同步加速器光源之一。同步加速器光源是一台大型机器,能够控制带电粒子(通常是电子)的运动以产生同步辐射光。在加速器中生产完后,同步辐射光被导向安装在存储环周围的称为Beamlines的实验站(如上图)。正是在束线中,辐射会穿过待分析的样品。同步辐射光源可容纳多条光束线,并且使用不同的技术进行实验,例如光谱学(从红外到X射线),X射线散射,晶体学,断层扫描等。Cateretê(相干和时间分辨散射)小组在负责CATERETê光束线的建设。同步辐射光源将被优化以用于相干X射线衍射成像(CXDI)和X射线光子关联光谱(XPCS)。这种分析方法的应用之一是研究石油,催化剂和聚合物领域的生物现象和纳米级结构的动力学,以及解决食品,制药和化妆品行业的问题。CATERETê光束线将在生物和软物质成像和动力学实验中提供独特的功能,特别着重于相干X射线散射和衍射技术的应用。相干X射线衍射成像(CXDI)和X射线光子关联光谱(XPCS)实验将是Cateretê光束线计划的活动的核心,同时得益于光源的高亮度,时间分辨的小角度X射线散射也能够开展。Cateretê光束线将在3 keV至12 keV的软X射线下工作,以对生物和纳米材料进行成像,从而充分利用Sirius辐射的相干特性。无边硅传感器模块和PIMEGA探测器Advacam非常骄傲能为这个创新且具开创性的项目提供基于Medipix3芯片的1x6无边缘模块。每个模块均由6个MPX3-RX V2读出芯片和一个14mm x 85.5mm的大面积,单片无边缘传感器组成。所制造的无边缘传感器的厚度分别为300 μm和675 μm。8个MPX3-RX V2 1x6无边缘传感器模块,准备发货到LNLS/CNPEM。PIMEGA-135D探测器由6个无边缘传感器模块紧密拼接而成,尽量避免过大的拼接缝隙(不敏感图像区域)。这个探测器有2,359千个像素 (1536 x 1536)和覆盖85毫米x 85.5毫米的探测区域。高帧率操作在同步辐射应用中是必不可少的,PIMEGA-135D能够以每秒2000帧的速度运行。PIMEGA-135D 探测器包含6个MPX3-RX V2 1x6无边缘传感器和675 μm的硅传感器PIMEGA-540D探测器由24块无边缘传感器模块拼贴而成,避免了激励图像区域。探测器有9,437千个像素 (3072 x 3072)和覆盖170毫米x 171毫米的探测区域。PIMEGA-540D能够以每秒1400帧的速度运行。PIMEGA-540D 探测器包含24个MPX3-RX V2 1x6无边缘传感器和300 μm的硅传感器,它被安装在Cateretê beamline.Advacam公司介绍Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,不仅可以提供基于Medipix和Timepix芯片的辐射成像相机和X射线成像解决方案。同时Advacam是一家提供高质量交钥匙硅传感器制造和微封装服务的一站式供应商。Advacam产品系列:光子计数X射线探测器 minipix 系列光子计数X射线探测器 Advapix系列光子计数X射线探测器 Widepix 系列左右滑动查看更多图片Advacam可提供工艺服务:传感器制造倒装焊接晶圆焊撞北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。
  • 科学家成功研制目前最薄X射线探测器
    澳大利亚科学家使用硫化锡(SnS)纳米片制造了迄今最薄的X射线探测器。新探测器厚度不到10纳米,具有灵敏度高、响应速度快的特点,有助于实现细胞生物学的实时成像。  SnS已经在光伏、场效应晶体管和催化等领域显示出巨大的应用前景。澳大利亚莫纳什大学、澳大利亚研究理事会(ARC)激子科学卓越中心的研究人员此次证明,SnS纳米片也是用作超薄软X射线探测器的极佳候选材料。这项发表在《先进功能材料》杂志上的研究表明,SnS纳米片具有很高的光子吸收系数,它比另一种新兴候选材料金属卤化物钙钛矿更灵敏,响应时间更短,只需几毫秒,并且可以调节整个软X射线区域的灵敏度。  X射线大致可分为两种:“硬”X射线可用以扫描身体观察是否存在骨折和其他疾病;“软”X射线具有较低的光子能量,可用于研究湿态蛋白质和活细胞,这是细胞生物学的关键组成部分。水窗是指软X射线的波长范围在2.34—4.4纳米之间的区域,在此范围内,水对软X射线是透明的,X射线会被氮原子和其他构成生物机体的元素吸收,因此,该波长可用于对活体生物样本进行X射线显微。  SnS X射线探测器厚度不到10纳米。相比之下,一张纸的厚度大约为10万纳米,人的指甲每秒大约长出1纳米。此前制造出的最薄X射线探测器厚度在20—50纳米之间。  研究人员称,未来这种X射线探测器或可用来观察细胞相互作用的过程,不仅能产生静态图像,还能看到蛋白质和细胞的变化和移动。  研究人员称,SnS纳米片的灵敏度和效率在很大程度上取决于它们的厚度和横向尺寸,而这些都不可能通过传统的制造方法来控制。使用基于液态金属的剥离方法,研究人员生产出高质量、大面积的厚度可控的薄片,这种薄片可以有效地探测水域中的软X射线光子,通过堆叠超薄层的过程,可进一步提高它们的灵敏度。与现有的直接软X射线探测器相比,它们在灵敏度和响应时间方面有了重大改进。  研究人员希望,该发现将为研制基于超薄材料的下一代高灵敏度X射线探测器开辟新途径。
  • “双剑合璧”:双色X射线激光提供新探针
    为满足先进的科学实验需求,双色自由电子激光(FEL)成为了国际上高增益自由电子激光研究发展的前沿方向。近些年来,回声增强高次谐波产生(EEHG)、这一全相干FEL新运行机制发展迅速,该机制可以有效提高外种子FEL 的高次谐波转换效率,在正常能量调整深度条件下,可以产生种子激光波长的几十次谐波的微聚束,进而有可能利用单级 EEHG、通过常规的紫外波段的种子激光,产生软 X 射线波段的全相干FEL。上海软 X 射线自由电子激光装置(SXFEL)是我国第一台X射线自由电子激光装置,EEHG也是SXFEL的基本运行模式之一。在这些背景下,我们在SXFEL装置上开展了基于EEHG模式的全相干软 X 射线双色FEL研究。本研究课题提出了在 SXFEL 装置上、基于 EEHG产生双色 FEL 的新方案,利用双色双脉冲的种子激光系统,采用 EEHG 运行模式,产生软 X 射线波段的全相干双色 FEL,基本布局如图1中所示。在该方案中,由于所用种子激光包含两个中心波长不同的脉冲,因此最终通过EEHG产生的也是两个中心波长不同的软X射线FEL脉冲,也即产生了双色FEL。图1 双色FEL方案基本布局双色双脉冲种子激光是该方案的关键核心技术之一,其设计如下图2所示,基本方案是将 800 nm 常规激光分到两路三倍频系统,通过调节两路三倍频中 BBO 晶体的角度来独立调节输出紫外激光的中心波长,并且在一路三倍频系统中加入可调的时间延迟机构,之后将两路紫外激光合束,得到实验所需的双色双脉冲种子激光。图2 双色双脉冲种子激光系统研究团队首先搭建了该种子激光系统,测试了两路三倍频产生紫外激光脉冲的能力,给出了三倍频的转换效率,同时测试了种子激光的中心波长如图3(a)中所示,得到了中心波长分别为 264.85 nm 和 266.28 nm的双色种子激光,在图3(b)中还展示了双脉冲种子激光的时间延迟,采用互相关法测量了双脉冲激光的脉宽以及时间间隔,单个紫外激光的脉冲宽度均为 170 fs,两个脉冲之间的时间间隔约为2 ps,通过调节光契角对,可以在 0-1 ps 之间连续改变两束紫外光的时间间隔。图3 双色双脉冲种子激光光谱(a)与脉冲时间延迟(b)测试结果最后,根据 SXFEL 装置的实际束流参数,利用该双色双脉冲种子激光,进行了三维的 FEL 数值模拟,模拟结果表明,最终可以获得中心波长分别为 5.884 nm 和 5.894 nm、峰值功率约 300 MW的全相干软 X 射线双色 FEL 辐射脉冲,如图4中所示。图4 全相干软X射线双色FEL功率(a)和光谱(b)
  • 蔡司发布全新亚微米级X射线显微镜Xradia 600 Versa
    p    strong 仪器信息网讯 /strong 德国耶拿当地时间,2019年1月23日,屡获殊荣的蔡司Xradia Versa系列又推出了两款新型先进产品 — Xradia 610 Versa和Xradia 620 Versa X射线显微镜。它们的独特优势是能够在全功率和电压范围内更快速地对样品进行无损成像,且不会影响分辨率和对比度。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/ea57ce49-bb64-409b-939e-5d7cb9fc0001.jpg" title=" 1.jpg" alt=" 1.jpg" style=" width: 450px height: 300px " width=" 450" vspace=" 0" height=" 300" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 新型蔡司Xradia 620 Versa /span /p p   蔡司Versa X射线显微镜凭借优异的大工作距离高分辨率(RaaD)的特性,成为了全球优秀研究人员和科学家的“有力帮手”。在相对大工作距离下也能保持超高分辨率,有助于产生意义非凡的科学见解和发现。随着当今技术的快速发展,对分析仪器也提出了更高的要求,而蔡司Xradia 600 Versa系列就是专为应对这一挑战而设计的。 /p p    strong 蔡司 Xradia 610 & amp 620 Versa采用改进的光源和光学技术 /strong /p p   X射线计算机断层扫描成像领域面临的两大挑战是:实现大尺寸样品和大工作距离下的高分辨率和高通量成像。蔡司推出的两款X射线显微镜凭借以下优势完美解决了这些挑战:系统可提供高功率的X射线源,显著提高X射线通量,从而加快了断层扫描速度。工作效率提高达两倍,而且不会影响空间分辨率。同时,X射线光源的稳定性得到提升,使用寿命也更长。 /p p    strong 主要特性包括: /strong /p p   ● 最高空间分辨率500nm,最小体素40 nm /p p   ● 与蔡司 Xradia 500Versa系列相比,工作效率提高两倍 /p p   ● 更加简便易用,包括快速激活源 /p p   ● 能够在较大的工作距离下对更广的样品类型和尺寸的样品进行亚微米特征的观察 /p p    strong 先进科研和工业领域的更多应用将因此而受益 /strong /p p   这两款用途广泛的仪器可以为不同领域的科研机构和工业客户带来更高的工作效率和价值,助力他们的研究和探索。 /p p   凭借RaaD特性,蔡司 Xradia Versa在大工作距离下也能保证超高分辨率,并且能够对安放在环境试验舱室或高精度原位加载装置中的样本进行成像。这可以让材料科学研究人员在受控的环境条件下以无损的方式表征材料的3D微观结构,以探究不同原位条件下(如加热或拉压)造成的影响。 /p p   随着全球能源材料需求呈现爆炸式增长,工业研究人员需要分析这些材料在多个固相和液相阶段的复杂多物理场行为及其相关的结构演变。蔡司 Xradia 600 Versa系列能够帮助研究人员解析这些结构的形态及其在工作条件下的行为。这些基于RaaD技术的X射线显微镜可以对完整的软包电池和圆柱形电池进行高分辨率成像,从而为数百次充放电老化效应的研究提供支持。 /p p    strong 在电子和半导体行业 /strong 中,用户常常会为了工艺开发、良率提高进行结构和失效分析,并对先进的半导体封装进行结构分析。蔡司Xradia 600 Versa系列可以通过无损成像进行封装产品的缺陷分析,如:Bumps或Microbumps中的裂纹、焊料润湿问题或TSV通孔结构。在物理失效分析(PFA)之前对缺陷进行三维可视化,减少人为物理切片引入的假象缺陷,从而提高失效分析的成功率。 /p p    strong 在增材制造行业 /strong 中,3D X射线显微镜在从粉末到零件的整个流程的多道工序中发挥着重要作用。典型应用包括:研究粉末床中颗粒的具体形状、尺寸和体积分布,以确定合适的工艺参数。蔡司Xradia 600 Versa系列具有更高的工作效率和结果效率,实现高效的工作流程。 /p p    strong 在原材料研究领域 /strong 中,用户会进行多尺度的孔隙结构分析,包括原位流体流动分析。全新蔡司Xradia Versa X射线显微镜以更快的运行速度为数字岩心模拟、基于实验室的衍射衬度断层扫描成像和多尺度成像等提供更精确的三维纳米尺度成像,从而减少研究前后衔接瓶颈限制。 /p p    strong 在生命科学领域 /strong ,蔡司 Xradia 600 Versa系列可实现更快、更高分辨率的成像,让研究人员能够研究软组织(如神经组织、血管网络、细胞结构、韧带和神经)、骨骼的矿物组织以及植物结构(如根和细胞结构)。 /p p    strong 持续改进和可升级性 /strong /p p   蔡司X射线显微镜旨在通过不断创新和发展进行升级和扩展,以保护我们客户的利益。这样可以确保随着前沿技术的不断进步,显微镜技术也能向前发展,从蔡司 Xradia Context microCT到蔡司Xradia 500/510/520 Versa,再到现在新增的蔡司 Xradia 610/620 Versa,用户都可以将系统升级至最新的X?射线显微镜。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 关于蔡司 /strong /span /p p   蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。 /p p   全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 蔡司研究显微镜解决方案 /strong /span /p p   蔡司研究显微镜解决方案是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6,300名员工在2016/2017财年创造了总额达15亿欧元的业绩。 /p
  • 极强X射线轰击金属制成透明铝
    据美国《每日科学》网站7月27日报道,英国牛津大学科学家利用目前世界上最具威力的软X射线激光轰击金属,制成了透明状态的铝。这一研究成果可对行星科学以及核聚变能利用有所启示。相关论文发表在《自然—物理学》(Nature Physics)杂志上。   透明铝之前仅在科幻小说中存在,由于电影《星际迷航4》而名满天下。由牛津大学科学家所领导的国际研究团队,将所有能量聚焦在直径小于人类头发粗细1/20的点上,利用自由电子激光装置(FLASH)产生短脉冲,轰击样本中每个铝原子的核心电子,而不破坏金属内的晶体结构,从而使铝金属在极端紫外线辐射的状态下变得近乎透明。这表明,极强的X射线源可催生新的物质状态。但这一效应仅能持续极短时间,约40飞秒左右。   牛津大学物理学院的贾斯汀沃克说:“我们所研制的是之前从未有人涉及的新态物质。透明铝只是一个开始,我们正在研发的物质的物理性质与大型行星内部的状况紧密相关 我们还希望通过研究此种物质,能对同样需要高强度激光内爆激发的小型恒星的生成过程有更清晰的了解 有朝一日在地球上也能对核聚变的能量加以利用。”   沃克教授表示:“我们实验的非凡之处在于仅利用高强度激光这一个步骤就将普通的铝转化为了新态的物质材料。在某些特定方面,其表现得如同我们已将每个铝原子转化为了硅原子,这就如同你发现可以利用光源将铅转化为金一样神奇!”   这一发现因比世界上任何同步加速器都亮100亿倍的新辐射源的发展而变得可能。德国汉堡电子同步加速器中心的自由电子激光装置(FLASH)能产生极短的软X射线脉冲,其每条脉冲的能量都比能供应一整个城市电力的发电厂还要强劲。研究人员坚信,这一光化电离方式是研制类似新态物质的理想方式,这也将为行星科学、天体物理学和核聚变能利用等不同领域的进一步研究提供有效帮助。
  • 众星携新一代光子计数x射线探测器亮相第二届射线成像会议
    得益于第一届射线成像会议的完美呈现,第二届射线成像会议于期望中在合肥顺利开展。仅仅两天(2018年11月3日-4日)的会议报告时间,来自全国各地的老师百花齐放,各显神通,围绕射线成像领域呈现精彩的报告内容。 本次大会围绕X射线光源和探测器;X射线成像方法及技术;中子、质子及伽马射线成像方法及技术;应用研究等多个议题展开,邀请到来自三大同步辐射光源、中国原子能科学研究院、中国工程物理研究院、中国科学院上海光学精密机械研究所、上海科技大学等多家国家重点研究单位该领域的知名专家和学者到会共同交流,深入探讨以及分享射线成像技术领域取得的最新研究成果。为该领域的发展又增加了一把新的力量。 本次会议北京众星联恒科技有限公司作为赞助商,强势推出代理产品-来自捷克advacam厂家基于Timepix芯片的混合光子计数探测器,并于会议中做了精彩报告。 Advacam公司生产的Timepix光子计数x射线探测器拥有高动态范围,无噪声,高灵敏度,能量甄别-阈值扫描(技术/阈值扫描模式)以及过阈时间分析(TOT模式)以及大面积无缝拼接等特点,在多个领域如小动物显微CT,微米/纳米CT,K边成像,全光谱成像进行材料厚度测量、能量/空间分辨X射线荧光成像拥有显著特点和性能优势。本次报告吸引多位成像用户对本产品的关注,纷纷于会后到我司展台进行咨询,由我司技术支持进行了逐一解答。大会现场图片 我司技术经理于大会中介绍ADVCAM产品 专家学者莅临我司展会深度咨询产品信息 北京众星联恒科技有限公司代理的德国GREATEYES的科学级相机;捷克ADVACA的光子技术x射线探测器(成像);德国X-SPECTRUM的光子计数探测器(衍射)、德国INCOATEC公司光源、德国Microworks的光栅等光学组件、覆盖了X射线领域从光源到探测器的整个产品线,在物质超快过程研究、精细分辨成像等多个领域研究提供重要科学支持,广泛用于光谱和成像等应用。 更多产品信息欢迎来电咨询!
  • 关于举办“X-射线衍射分析技术”培训通知
    X-射线衍射(XRD)分析技术作为材料结构表征的重要手段,业已成为探索物质微观结构的必不可少的方法之一。随着其用途范围的日益拓展,X射线衍射技术在材料、化学、生物医药、环境、物理等学科及地质矿产、钢铁冶金、冶金建材、石油化工、能源环保、电子信息、新药研发、航空航天等产业部门及司法、考古、商品鉴定等领域都得到广泛的应用。近年来随着新技术的大量出现和引入,XRD软、硬件技术和应用功能不断推陈出新,并迅猛发展。X射线衍射技术的理论教学也受到理工农医在校学生和社会科研院所科技工作者的普遍欢迎,为适应广大分析技术工作者的需求,进一步提高XRD用户的应用和研究水平,推动XRD分析应用的进一步发展,上海交通大学分析测试中心特举办“X-射线衍射分析技术”培训班,全国分析检测人员能力培训委员会(NTC)授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。现将有关事项通知如下:1、 培训目标:了解X-射线衍射的原理与衍射仪的基本结构(涵盖粉末和单晶衍射);了解X-射线衍射检测/校准项目及相关要求;掌握国家标准中X-射线衍射的检测方法;上机实践训练。(一)掌握XRD的测试技术,了解仪器维护方法,确保机器运转最佳状态。(二)面对数据分析中的常见问题,学员可理论联系实际,找到问题原因所在,掌握X-射线衍射分析技术的一般方法及技巧。2、 时间地点: 培训时间:2023年10月16日-10月18日 上海(时间安排:授课2天,考核1天)3、 课程大纲:课程内容10月16日上午X-射线衍射技术基本原理(晶体结构、倒易空间、布拉格衍射方程等)10月16日下午X-射线衍射测试原理及技术要点(各种衍射几何、多物相定性定量分析、测量的误差产生的根源及改进的方法)10月17日上午XRD谱图分析方法10月17日下午XRD仪器结构、功能和主要性能指标(包括零维、一维、二维衍射模式)10月18日上午X-射线衍射仪基本操作(调试操作与维护,仪器类型:Aeris 600、Mini Flex 600及Bruker D8系列)。10月18日下午考核4、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉ATP 005 X-射线衍射分析技术大纲要求,具有NTC教师资格,长期从事X-射线衍射技术研究的专家。5、 授课方式:(1) 讲座课程;(2) 仪器操作6、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。7、 颁发证书:本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培 训委员会(NTC)网站上查询(https://www.cstmedu.com/)。 8、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。 (二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。 (三) 报名截止时间是10月10日16:00前。 (四) 如报名人数不足5人取消本次培训。9、 联系方式联系人:吴霞(报名相关事宜)、饶群力(技术咨询)电话: 021-34208499-6102(吴霞)、021-34208499-6212(饶群力)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • 无损检测仪器——射线标准起草工作启动
    全国试标委无损检测仪器分技术委员会(以下简称标委会),于2010年4月15日-16日在丹东召开无损检测仪器——射线标准起草工作会议。参加会议的有丹东华日理学电气有限公司、丹东市无损检测设备有限公司、丹东方圆仪器有限公司、丹东通用电器有限责任公司、丹东市东方晶体仪器有限公司、丹东通广射线仪器有限公司、丹东东方电子管厂、丹东计量测试技术研究所、丹东荣华射线仪器仪表有限公司、丹东新力探伤机厂、丹东七宝电器设备制造厂、丹东东方仪器厂、丹东亚业射线仪器有限责任公司、丹东辽东射线仪器有限公司、辽宁仪表研究所有限责任公司十五家单位,参加本次会议的委员和代表24人。   本次会议由辽宁仪表研究所有限责任公司承办,会议由标委会秘书长李洪国主持并致欢迎词。秘书长李洪国系统地回顾、总结了过去一年来所做的工作,并对目前标准化的重点工作及下一步工作计划做了阐述和安排。   到会委员和代表对标委会归口的《无损检测仪器 工业X射线探伤机电气通用技术条件》、《无损检测仪器 工业X射线探伤机 通用技术条件》、《X射线晶体定向仪》、《无损检测仪器 工业软X射线探伤机》、《无损检测仪器 射线探伤用密度计》、《无损检测仪器工业用X射线管系列型谱》、《无损检测仪器X射线应力测定仪 技术条件》、《无损检测仪器工业X射线检测系统》、《无损检测仪器 工业X射线图像增强器成像系统技术条件》、《无损检测仪器 X射线轮胎检测系统》十项行业标准的六项修订标准和四项制订标准草案稿进行了认真、细致地讨论。并提出修改意见:   1、《无损检测仪器 工业X射线探伤机电气通用技术条件》:增加“3.1.5电源电压波动”、“3.1.6电磁干扰” 修改了“3.4保护措施”等。   2、《无损检测仪器 工业X射线探伤机 通用技术条件》:增加了“3.1.6电磁干扰” 修改了“3.2技术性能”和“3.3安全与可靠性要求” 对“4 试验方法”进行了逐条逐句的讨论、修改 删除了“表3”中的“13”等。   3、《X射线晶体定向仪》:对“3.2使用性能”多处做了的修改 将“刻度显示型”删掉等。   4、《无损检测仪器 工业软X射线探伤机》:修改了“5.2.1环境温度” 增加了5.6.2对高压变压器的描述 增加了6.11.3.2的参照图表“表6”等。   5、《无损检测仪器 射线探伤用密度计》:修改了“4.1环境条件”和“4.3安全要求”等。   6、《无损检测仪器 工业用X射线管系列型谱》:将表格做了简化,并根据产品发展及市场需要对表1、表2等做了详尽的修改。   7、《无损检测仪器X射线应力测定仪 技术条件》:修改了“4.1环境条件” 在“4.12散射线照射量率”中增加“参照GB22448-2008中3.1规定进行”并将“散射线照射量率”改为“散漏射线空气比样动能率” 将6.7中“射线照射量率”改为“散漏射线照射量率”等。   会议建议起草单位会后根据修改意见进行整理形成征求意见稿广泛征求意见。全体委员和代表经过两天的共同努力使大会圆满结束。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制