当前位置: 仪器信息网 > 行业主题 > >

近红外透射光谱检测

仪器信息网近红外透射光谱检测专题为您提供2024年最新近红外透射光谱检测价格报价、厂家品牌的相关信息, 包括近红外透射光谱检测参数、型号等,不管是国产,还是进口品牌的近红外透射光谱检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近红外透射光谱检测相关的耗材配件、试剂标物,还有近红外透射光谱检测相关的最新资讯、资料,以及近红外透射光谱检测相关的解决方案。

近红外透射光谱检测相关的资讯

  • 蓝菲光学成功交付上海市质检院定制摄影镜头光谱透射率及色贡献指数检测系统
    2019年11月蓝菲光学成功交付上海质检定制摄影镜头光谱透射率及色贡献指数检测系统。光谱透射率及色贡献指数是衡量摄影镜头质量优劣的重要指标。摄影镜头的光谱透射比特性直接影响彩色摄影的色再现质量,ISO规定了以用对数透射比为基础的色贡献指数来描述照相镜头的色再现性(ISO 6728-1983)。我们知道照相镜头是由多片透镜组成的,其设计是由全世界多个厂商共同协作的,不同厂商根据其设计方案,则选用不同的透镜玻璃。照相机的色贡献指数是由整个镜头的综合光谱透过率决定的。从某种意义上讲,用于照相镜头的每一块透镜玻璃都应该测量其色贡献指数,并且测试值符合标准要求。上海市质量监督检验技术研究院,是国家市场监督管理总局批准设立的,经上海市人民政府依法设置的非营利性公益科研类政府实验室,是国家级产品质量监督检验研究院。是集产品质量检验检测、计量校准、体系与产品认证、标准化服务、培训与咨询为一体的全国最具有综合竞争力的检测院所之一。上海市质检院针对采购检测仪器具有很高的产品要求,在产品质量、性能、售后服务等一系列考察后,选定蓝菲光学定制生产镜头色贡献指数检测系统。蓝菲光学定制生产的镜头色贡献指数检测系统基于积分球的光谱透射率测试系统,来获取镜头的光谱透射比。待测镜头最大尺寸128mm(D)*366mm(L), 待测镜头重量5kg以内。镜头透过率范围一般在4%-98%。硬件系统由积分球,光谱仪,准直光源,夹具和暗室组成。系统符合JBT8248.1-1999 照相镜头光谱透射比的测量方法和JBT8251-1999 照相镜头的色贡献指数国标。蓝菲光学高漫反射涂料很受行业认可,该测试系统积分球内部使用Spectraflect® 涂料在紫外-可见光-近红外光谱区内漫反射率高达98%。积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够最大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。蓝菲光学的光谱仪光谱范围350-1100nm,该光谱仪内置的电制冷、薄型背照式CCD探测器可高效地抑制杂散光。所使用的准直光源均匀性>90%,光斑大小可调,配套软件显示光谱透射比和色贡献指数,光谱间隔为10nm,此外允许我们自定义光谱及对软件二次开发,方便实用。图1 上海质检定制摄影镜头光谱透射率及色贡献指数检测系统图图2 摄影镜头光谱透射率及色贡献指数检测系统软件界面蓝菲光学定制的摄影镜头光谱透射率及色贡献指数检测系统设计灵活,可依照标准定制,适用于各类镜头透过率和色贡献指数测试。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 【瑞士步琦】近红外光谱分析技术在玉米品质检测中的应用
    近红外光谱分析技术在玉米品质检测中的应用近红外应用”1介绍玉米是我国重要的粮食作物。根据国家统计局数据显示,我国 2021 年玉米播种面 4332 万 hm2,玉米产量达 2.7 亿 t。玉米中的水分、蛋白质、脂肪、糖类等主要化学成分含量会直接影响到玉米的经济效益。化学成分含量的测定已成为原料品质评价中的重要环节。玉米种子作为生产中最基本的资料,其质量的好坏直接影响玉米的产量及品质。玉米品质指标(水分、蛋白质、淀粉等)的检测常用理化方法,安全指标(毒素等)的检测使用液相等物理或化学方法,可用冷浸法等对种质品质进行分析,但这些方法均会对样本本身造成破坏,存在处理时间较长以及需要专业人员操作、仪器成本高等缺点。因此,探究一种可以对玉米进行无损、快速检测技术显得尤为重要。近红外光谱分析技术具有样品不需复杂耗时的前处理、无损耗、多成分同时分析、无污染的检测优势,近年来得到了广泛关注。近红外光谱分析技术是利用物质对光的吸收、散射、反射与透射等特性对待测物进行分析的检测技术,通过样品的吸收光谱及理化分析结果可对样品进行定性或定量分析。近红外光谱分析技术的检测步骤为使用化学计量法对近红外光谱数据进行预处理及建立模型,将样本的预测集通过模型进行检测,验证模型是否精准,并对模型进行评价及优化。近红外光谱技术常用处理方法,由于近红外光谱中强大的背景信息造成的噪声干扰和存在冗余变量,导致从样品的近红外光谱中提取与检测目标相关的信息较困难,因此,需对光谱数据进行预处理。常用的光谱预处理方法有去噪自编码器(DAE)、正交信号校正法(OSC)、标准正态变换(SNV)、多元散射校正(MSC)等。2近红外光谱技术模型评价指标定量模型评价指标 评价近红外光谱定量模型预测准确性的实质是模型的预测结果与样品结果的接近程度,评价预测模型一般采用校正决定系数(R2c)、验证决定系数(R2v)、校正相关系数(Rc)、验证相关系数(Rv)、校正均方根误差(RMSEC)、验证均方 根 误 差(RMSEV) 和 相 对 分 析 误 差(RPD)等参数,决定系数与相关系数是预测值与使用化学方法检测出的真值样本集相关性的标准,通常 R2c、R2v、Rc、Rv 越大时,认为所建模型效果越好;RMSEC 和 RMSEV 是校正集与验证集的预测值和使用化学方法检测出的真值之间差异大小的量度,RMSEC 和 RMSEV 越小,认为所建模型性能越优;RPD 是衡量模型可靠性的指标,当 RPD3,认为所建立的预测模型可靠性较高,3RPD2.5,认为模型可用于分析;RPD定性模型评价指标 近红外光谱技术在定性分析中多用于样品分类,常用判定指标有正确率、敏感性、特异性等。相关检测设备从采样现场到实验室快速无损检测样品的指标,主要包括水分、脂肪、蛋白、灰分等。可以帮助企业优化生产过程,控制最终产品质量,提高利润。近红外光谱仪检测过程无需化学试剂,可大大降低实验室湿化学成本。检测快速,可大大减少操作人员的劳动力,降低使用门槛,节约管理费用。▲ 步琦近红外光谱仪 ProxiMate防水型不锈钢外壳,入口防护等级为 IP69,可进行高压管冲洗,即使是最苛刻的工作环境也能满足多种即时可用的预校准,适用性广泛直观的现触摸屏界面,简单、明了样品使用磁耦合驱动装置旋转器,分析完成后该装置可拆除,轻松清洁允许用户利用近红外光,可见光或将两种信号结合来提高测量性能和全面评估样品,从而使其测量性能达到最大化3相关模型参数ProductParameterRangeSpectraSEPMaizeStarch16-76%6553.5MaizeFat3.14 -5.352980.2MaizeProtein6-21%6821.3MaizeMoisture7-13%6820.5MaizeAsh1-8%3070.04步琦公司为您提供完整的玉米检测解决方案,同时提供定制化服务和使用,欢迎用户前往我司实地参观考察。
  • 突破光学透射深度瓶颈,NIR-II小动物活体成像装机量攀升——恒光智影CTO艾中凯博士
    小动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。广泛应用于生物医学、药物筛选等领域。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别策划“小动物活体成像技术”主题征稿活动。本期,特别邀请到恒光智影联合创始人兼CTO艾中凯博士围绕小动物活体成像技术发展与应用展开阐述,着重就恒光智影聚焦的近红外二区(NIR-II)成像技术的优势及未来发展进行分享。 本期嘉宾:艾中凯博士,上海恒光智影医疗科技有限公司CTO/联合创始人2008年-2014年,博士毕业于新加坡国立大学电气与计算器工程系。 2015年 至2019年就职于美国普林斯顿仪器公司 (Princeton Instruments),担任应用科学家职位,负责探索弱光信号探测技术在前沿科学中的结合,深度参与许多前沿的科技项目,在弱光成像技术上有多年持续的积累。2020年至今,作为恒光智影联合创始人之一,参与公司技术专利8项,推出了新一代平台型近红外二区活体成像系统,具有丰富的产学研结合经验。 01 从动物模型到小动物活体成像技术人类疾病动物模型是现代生物医学研究中重要的实验方法与手段,是对医学研究和药物研发的有力支撑,有助于更方便、更有效地认识人类疾病的发生、发展规律以及研究防治措施。与此同时,由于大鼠、天竺鼠、小鼠等小动物作为动物模型具备诸多优势,在生命科学、医学研究及药物研究开发等多个领域的应用日益增多。众所周知,影像技术在基于动物模型的研究过程中发挥着至关重要的作用。近些年随着科学仪器设备技术的创新与突破,面对层出不穷、日新月异及个性化的科研需求,市场涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。 02 市场规模破百亿,小动物活体成像五大主流技术路线据调研机构对小动物成像(活体内)行业市场数据的统计显示,2022年全球小动物成像(活体内)市场容量为115.86亿元(人民币)。预计全球小动物成像(活体内)市场规模在预测期将以9.94%的CAGR增长并预估在2028年达203.38亿元。动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术目前主要分为光学成像 (optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。根据数据类型,又可以分为绝对定量数据和相对定量数据两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量。光学成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI则介于两者之间。 分子成像技术使活体动物体内成像成为可能美国哈佛大学Weisslede于1999年提出分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。此前传统成像技术大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件,而分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商最新研发的背部薄化、背照射冷CCD,配合密闭性非常好的暗箱,使得直接监控活体生物体内的细胞活动和基因行为成为现实。科学家借此可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。所以说该技术是伴随着背部薄化、背照射冷CCD的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体动物体内光学成像技术具有越来越高的灵敏度,对肿瘤微小转移灶的检测灵敏度极高。在该技术诞生后的10几年间,科学家借此取得了大量的科学成果,发表了几千篇文献资料,大部分都是应用以背部薄化、背照射冷CCD为核心部件的成像系统而得出的。活体动物光学成像技术的应用史,从设备技术层面,也是生物学家应用背部薄化、背照射冷CCD进行生物微弱发光检测的应用史。该技术之所以促进活体动物光学成像技术的发展,主要是由于超低温的CCD芯片,CCD镜头温度越低,噪音越小,信噪比越好,灵敏度越高因此对物微弱发光具有极高的灵敏度,使近年来产生了大量的高水平的应用活体成像技术进行肿瘤学、基因治疗、流行病学等研究的文献,极大的促进了生物医学在分子成像方面的发展。 03 突破透射深度瓶颈的近红外二区(NIR-II)成像技术 荧光成像技术,对比X-ray CT、PET-CT、MRI、超声等技术,在多个方面具有优势并拥有广阔的应用前景,但透射深度是光学活体成像最关键的瓶颈所在。小动物活体成像技术路线特点分析红外光线应用于活体层面,科学家们常用拓展到 760~900 nm 的近红外一区(NIR-I)窗口进行成像。然而,在该窗口内,在生物组织中传播的光子仍然受到较强的散射作用,这严重限制了组织荧光成像的成像深度和图像分辨率。2003年, 哈佛医学院 Frangioni教授及麻省理工学院 Bawendi 教授等预测了大于 1000 nm 光学窗口的大深度成像潜力。2009年,斯坦福大学戴宏杰教授团队利用单壁碳纳米管实现了首例大于1000 nm的近红外活体荧光成像。不久后,1000~1700 nm 作为第二个近红外成像窗口(近红外二区 NIR-II,又称短波红外波段SWIR)被大家熟知。NIR-II比NIR-I拥有更低的水吸收,不易受组织自发荧光或者实验室光照环境影响,更低光散射等特性,使得NIR-II比NIR-I拥有更佳的组织穿透性,从而获得高清晰度的活体成像数据。近6年,人们发现NIR-II和NIR-I成像更重要的是检测器上的差别。传统NIR-I成像使用的是Si检测器,NIR-II成像使用的是InGaAs检测器。其检测灵敏度如下图所示:传统Si检测器的响应范围在400nm到1000nm之间,InGaAs检测器的响应范围在1000nm到1700nm之间。于此同时NIR-I,NIR-II荧光成像波长的差别带来的荧光成像透射深度及分辨率的差别极为明显,如下图所示:NIR-II染料CH1055-PEG 在1200~1700nm对小鼠脑部血管成像的效果远远好于临床应用的NIR-I染料ICG(750~900nm)。脑部主要血管(~4mm深度)在NIR-II荧光成像中清晰可见,但在NIR-I成像中难以分辨清楚。如下图对比所示,在类似的曝光时间下,3mm深度NIR-II的空间分辨率可达0.04mm,而且产生极少量的自荧光现象。 NIR-II染料与三维光学断层成像技术相得益彰光学分子影像具有高度灵敏、实时直观、成像快速、操作简便、成本低、无放射性危害且可同时观测多分子事件等优点。 尽管光学分子影像学技术已被广泛应用于药物开发、肿瘤早期诊断及复发监测、辅助治疗、预后判断等生物医学领域,但是它也有一些不足,如但荧光分子不稳定性导致其存在重现性差、光在体内散射致使探测深度较浅等问题。此外,由于空间分辨率相对较差并缺乏深度信息,常规平面光学成像不能用于定位组织深处的光学探针,因此难以通过其获得特定分子或目标在组织内的空间分布信息。近年来,多功能光学分子探针和各种三维光学断层成像技术,包括光学相干断层成像(Optical Coherence Tomography,OCT)、荧光分子断层成像(Fluorescent Molecular Tomography, FMT)、生物自发光断层成像(Bioluminescence Tomography, BLT)、切伦科夫荧光断层成像(Cerenkov Luminescence Tomography, CLT)等新技术的发展,提高了光学成像的灵敏性和特异性,探测深度、范围和空间分辨率,使光学分子影像技术在生物医学的基础和应用研究中展现出良好的前景。就荧光分子断层成像(FMT)而言,能够提供目标物在生物体内的分布信息,克服平面荧光成像的局限性,在肿瘤检测、基因表达、蛋白质分子检测、揭示机体功能变化等方面有着很大的应用潜力【1】。荧光分子断层成像以荧光探针标记的分子或细胞为成像源,在外部光源的激发下产生荧光,通过测量组织边界处的荧光光强,结合光子在组织中传播的模型,来重建出组织内部的荧光光学特性的分布图像以及组织光学参数。由于NIR-I染料的兴起,NIR-I荧光分子断层扫描(NIR-I FMT)已被充分开发用于临床前诊断和小动物实验,然而NIR-I FMT要达到令人满意的效果仍然是一个具有挑战性的问题),因为NIR-I光在生物组织中的强烈散射,NIR-I FMT仍然呈现严重的缺陷和问题。NIR-II比NIR-I减少了组织散射效应和更长波长产生的最小自发荧光,因此NIR-II荧光成像具有更深的组织穿透深度(厘米级)和更高的空间分辨率。NIR-II FMT预计可以进一步提高重建精度和空间重叠。另一方面,有效且临床可用染料的缺乏也在技术发展初期限制了NIR-II成像的临床应用。但是最近的研究报道吲哚菁绿(ICG)在NIR-II窗口中发出尾部荧光,适用于NIR-II FMI。这些进展促进了NIR-II成像的发展,为NIR-II FMT创造了有利的条件【2】。 聚焦NIR-II成像,恒光智影突破多项技术攻关上海恒光智影医疗科技有限公司成立于2019年,由海外留学归国团队创办,公司的研发团队核心成员来自斯坦福大学、新加坡国立大学、中国科学院大学、武汉大学、哈尔滨工业大学、中国科学技术大学、浙江大学等国内外知名高校,60%以上具有博士学位,技术研发专注于近红外二区(900-1700nm)及全光谱(400-1700nm)小动物活体成像系统,并整合CT、X-ray、光谱、超声、光声成像技术,可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。2022年被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。自公司成立以来,恒光智影坚持以产品研发和技术创新为核心驱动力,突破了多项技术攻关,完成新产品研发和交付:• 2020上半年疫情期间,团队克服种种困难,没有间断产品研发,于2020年7月1日,恒光智影自主开发的近红外二区小动物活体成像系统MARS正式面市;• 2020年12月,在南方科技大学完成MARS的首台装机。MARS面市后,凭借出色的产品性能与售后服务,得到了用户和市场的广泛认可。自2021年起,在近红外二区小动物活体成像系统领域的市场占有率遥遥领先;• 2021年7月,恒光智影推出近红外二区高光谱小动物活体成像系统;• 2021年8月,MARS推出自主研发的多波长融合激光光源;• 2022年1月,恒光智影推出全球首款近红外二区小动物体视活体成像系统并实现首台装机交付;• 2022年11月,推出并实现首台全光谱小动物活体成像系统装机;• 2022年11月,推出全球首台近红外二区+CT小动物活体成像系统并实现首台订单;• 2023年6月,推出X射线辐照近红外二区小动物活体成像系统并实现首台装机;• 2023年9月,推出全球首台近红外二区双光子共聚焦成像系统并完成首台装机; 跨尺度全光谱小动物活体成像凸显核心竞争力恒光智影聚焦在近红外二区成像技术,提出跨尺度活体成像概念,其产品组合已覆盖宏观成像、体视成像、共聚焦显微成像、X射线和PET-CT模块、荧光寿命模块、荧光光谱、拉曼光谱等模块,并且整合可见光至近红外一区系统,推出全光谱小动物活体成像设备,全方位满足生物医学、临床前和临床应用科研工作对活体成像的需求。——产品优势/核心竞争力——1、高灵敏度宏观光学系统(MARS),实现高清晰度活体动物成像:1)深制冷InGaAs相机,提供了高灵敏,低噪声,高速读出的优异性能;2)自主开发高光通量宏观镜头,光折损小,对低亮度探针成像适应性更强;3)丰富且灵活可变的荧光通道,轻松滤除干扰信号,获取目标荧光信号。2.可快速切换至体视光路(Pathfinder),1-7X连续变倍观察,实现30mm-2mm小鼠宏观整体到局部介观超宽范围FOV的成像:3.自动化激发时分复用系统(Multicolor),可整合1- 6路激光,可实现单/多波长同时激发,匹配不同探针体系;4.暗室+旋转舱门结构设计,除了提供正常成像过程中所需要的暗室环境外,打开时可提供180°的开阔空间,供2-3名研究人员同时进行手术导航等操作;5.可扩展的多模态平台架构,可在MARS宏观系统上增配体视光路系统、荧光寿命系统、X-ray和CT断层扫描模块,实现多模态功能扩展,节省设备复购的成本,更适合科研应用;——应用领域——近红外二区荧光活体成像技术适用于多个生物医药科研的应用领域,包括:1.肿瘤成像/手术导航/靶向性/诊疗一体化/抗癌药研发等;2.血管成像/颅内血管造影/血栓研究/脑中风模型/血脑屏障BBB等;3.脏器系统/药剂崩解追踪/肠道菌群/肾代谢/外泌体追踪/骨结构成像等;4.药物药理研究、药效评价、分子药物药代动力学研究等;涉及颅内血管、肿瘤、骨关节、肝胆、肠道菌群,淋巴系统等多个器官和组织的活体成像,以及荧光探针的发射光谱、靶向性能、荧光寿命、生物毒性、发光强度等性能指标的研究和测试:自2020年上市以来,恒光智影MARS已在复旦大学、上海交通大学、中科院上海药物研究所、深圳先进技术研究院、西安交通大学、北京化工大学等40多家国内知名院校及医疗机构的相关课题组和重点实验室完成了系统安装和交付使用,已协助科研人员发文20余篇。 04 展望:NIR-II成像技术多领域应用潜力可观对于肿瘤学研究,NIR-II成像为活体内三维结构、血管分布、血流和肿瘤中动态免疫细胞浸润过程的成像提供了可能。通过结合多种内源性和外源性NIR-II探针,进一步发展多种光谱成像方法,将为全面分析肿瘤的发生、发展和转移提供一种独特的工具,从而为肿瘤的精确诊断和治疗提供理论依据。就临床应用而言,NIR-II成像最有希望的应用是图像引导的肿瘤手术;在未来,先进的NIR-II成像技术可能会大大提高肿瘤手术的精度和预后。此外,与FDA批准的基于ICG的NIR-I成像相比,NIR-II成像在组织穿透深度和时空分辨率方面具有优越的性能,因此在临床心血管疾病的精确诊断和治疗方面也具有巨大潜力。在再生医学领域,无创NIR-II成像也将在探索基本生物学问题方面发挥重要作用,如胚胎和器官的发育过程以及干细胞的谱系和命运。应用多光谱NIR-II成像技术可以提供丰富的成像通道,同时监测干细胞的易位、活力、旁分泌、分化和老化,从而全面了解干细胞再生的过程和潜在机制。 05 后记:习近平总书记曾说道:“我们比历史上任何时期都更需要建设世界科技强国”。建设世界科技强国,首先必须建设世界仪器强国。中国在近红外二区荧光成像方向上的科学技术水平引领世界,恒光智影正是怀揣着这样的科研理想,通过在近红外二区成像技术的不断研发创新,打造高端科研仪器,肩负起中国仪器之崛起,助力中国走向世界科技强国,实现中华民族伟大复兴的历史使命。参考文献:【1】“Application of Three-Dimensional Optical Tomography for in Vivo Bioimaging”,LI Zhuhenga,b, ZHANG Huab, LIU Dianjunb, WANG Zhenxinb,DOI: 1000-0518(2018)12-1411-09 【2】”NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice Based on Gaussian Weighted Neighborhood Fused Lasso Method”, Meishan Cai, Zeyu Zhang, Xiaojing Shi, Zhenhua Hu,and Jie Tian , Fellow, IEEE, DOI: 10.1109/TMI.2020.2964853征稿提纲:https://www.instrument.com.cn/news/20230925/685455.shtml欢迎持续投稿!投稿文章后续将在【小动物活体成像技术专题】展示并在仪器信息网相关渠道推广。投稿邮箱:liuld@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系刘编辑:13683372576(同微信)。
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 天津能谱全新推出大样品无损检测专用紫外可见分光近红外光度计
    为满足不同样品检测的要求,天津能谱成功研发出大样品无损检测专用紫外可见分光近红外光度计,该产品的研发具有重要的科学意义和实际应用价值:1. 拓宽应用领域:传统紫外可见近红外分光光度计通常适用于小样品或液体样品的检测,而大样品无损检测设备能够处理更大尺寸的固体样品,如建筑材料(如玻璃幕墙)等,常规最大尺寸一般控制在110mm以内,样品再大样品仓等放不进去,天津能谱成功研发出的大样品无损检测从而拓宽了该技术的应用领域。特别反射附件测试不在局限于样品大小的限制。2. 提高检测效率与准确性:这类仪器设计用于大尺寸样品,通常配备有专门的光学系统和大样品室,可以在不破坏样品的前提下,快速准确地获取样品的光谱信息,这对于需要保持样品完整性的应用尤为重要。3. 促进材料科学研究:在材料科学领域,这种设备可以用于研究材料的光学性质,如透过率、反射率和吸收特性,对于新材料的开发、质量控制及性能评估极为关键。4. 建筑材料:建筑材料的能效特性(如玻璃的透光性和隔热性),有助于环境保护和公共安全。5. 文物保护与鉴定:对于文物和艺术品的鉴定与保护,无损检测技术可以提供宝贵的信息,帮助专家了解材质老化、修复历史等,而不会对珍贵文物造成任何伤害。6. 光学质量控制:在光学制造行业,大样品镜片等的无损检测对于确保产品质量、优化生产工艺、减少浪费具有重要意义。 iCAN 3000G建筑玻璃可见光透射比/遮阳系数检测仪是iCAN 3000 紫外可见近红外分光光度计的基础上升级专门用于测定各种建筑玻璃可见光透射(反射)比、太阳光直接透射比、太阳能总透射比、紫外线透射(反射)比及有关玻璃等参数。根据所记录的图谱对被测物质进行定性或定量分析,是检测建筑玻璃参数的一个重要工具。可检测的样品有:普通平板玻璃、电浮法玻璃、夹层玻璃、离子镀膜玻璃、溅射镀膜玻璃、LOW-E玻璃、汽车安全膜等;用于建筑幕墙玻璃节能参数的测定、玻璃镀膜材料研和分析; Ø 设备可满足以下测试:紫外光透射比 Tuv可见光透射比 TV室外侧可见光反射比 pvo室内侧可见光反射比 pvi太阳光直接透射比 Te太阳光直接反射比 pe太阳红外直接透射比 TIR太阳能总透射比 g遍阳系数 SC光热比 LSG太阳红外热能总透射比 glR向室内侧二次热传递系数 qi向室内侧太阳红外二次热传递系数 qin传热系数U
  • 近红外应用 | 水果在线分选检测
    当我们走进水果店时,会发现同一种水果会分不同的价格售卖,而影响价格的主要原因是其品质,这时我们就会产生疑问 ➙什么样的荔枝核小而甜?什么样的西瓜皮薄瓤多脆又甜?我们今天来分享一些关于:如何用科学的方法区分不同品质的水果(当然也能区分同一类水果的不同产地与品种)随着生活质量提高和消费水平的改变,消费者对于水果品质不同的需求也就促成了水果的销售分级处理;利用非接触式水果分选检测技术,不断细分果品,以便满足不同消费市场的需求。什么是水果分选?一般来说,将其分为四类:大小、重量、外观品质(颜色、新鲜度)、内部品质 其中在内部品质分选中,主要判断的指标如下:糖度硬度酸度内部缺陷然而传统的破坏性检验方法不仅成本高,还造成资源浪费,因此光谱无损检测的方法成为一大趋势。水果分选机因其具有检测速度快、可同时检测多种内部成分等优点,近年在农产品内部品质检测方面发展迅速。其基本原理是:当用近红外光照射水果时,不同的水果内部成分对于不同波长的光学吸收和散射程度不同,而内部光谱也会随着水果内部成分质量分数的不同而发生变化。利用这一特性,即可根据近红外光谱特征分析水果中的主要成分及其质量分数。为什么是近红外光谱?近红外光谱近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。近红外光谱优劣势但是近红外经过两百多年的发展与应用开发,仪器的进步与算法的革新,仪器制造商与科学家们已经可以将越来越多的劣势规避,从而更好地发挥了近红外不消耗化学试剂,不污染环境等优点,因此也受到越来越多人的青睐。应用案例基于近红外光谱技术检测水果糖度(水分/黑心病【可见+近红外】)主要过程:(1)选取具有代表性的水果(2)通过漫反射或透射方式采集水果样品相关光谱数据;(3)对光谱数据预处理,消除不同因素对水果模型精度带来的误差,选择更有代表性样品的光谱数据;(4)采用国家和国际认证的化学分析方法测量水果样品成分的准确含量;(5)建立预测模型(6)未知水果样品近红外光谱的采集,然后用所建立的预测模型预测未知样品的成分含量。(7)用标准的化学分析方法测量未知水果样品成分的含量,验证所建立预测模型的准确性,然后对预测模型进行校正和优化。典型装置设计:三大功能模块:光路模块、附件模块、数据处理模块光路模块的光源对待测水果样品进行有效照射,通过光纤传递给光纤探头,再将透过水果样品的光谱信息进行收集,并通过光纤传递给数据处理模块的光谱仪。通过微处理器进行处理、计算和分析,从而完成对待测水果样品糖度的预测,在显示屏上获取结果,实现水果糖度的无损检测。由于水果的尺寸大小、果肉薄厚,糖酸度有高有低,且分布不均的情况,在光谱采集模块中有多种方式:图片来源:仪器信息网以下图为实际的光谱采集谱图案例▼▼▼脐橙原始光谱采集(可见+近红外)苹果吸收光谱(可见+近红外)香蕉的不同反射光谱(近红外)并做归一化平均草莓反射光谱(可见+近红外)正常与不同腐变程度的苹果透射光谱比较图(可见+近红外)化学计量学建模在完成光谱采集后,数据处理成为整个装置的核心步骤。再建立准确化学值与光谱信息之间的化学计量学模型。化学计量学模型的建立主要包括两个过程:校正和预测硬件:光谱采集模块① 光谱仪(近红外系列光谱仪,可见-近红外光谱仪)② 光源(海洋光学提供集成和光路设计方案,解决客户在光学部分的担忧;因集成到在线设备,我们推荐使用高度可集成化、高稳定性的光源,以适应在线设备的光路设计和长时间稳定运行。) ③ 光谱收集附件(可选配/定制/也可空间光耦合的光纤、准直镜附件,帮助客户解决系统中光传输和耦合问题。)软 件① 光谱读取软件定制/二次开发(Omnidriver/Seabreeze)② 近红外光谱建模软件(可根据需求选取不同建模软件)③ 数据传输与分选机制协议定制针对不同的水果产线和分选机制,为客户定制数据传输模块及协议方式。由于通讯方式的差异及需求差异,我们还可以为客户进行光谱仪器协议、固件等开发,实现同样光谱设备在不同应用中发挥其不同长处。理由1:触发准确性在水果分选设备产线中,光谱仪工作在外触发模式,当传输带送入一个水果到测量位置,立即触发光谱仪开始积分,积分时间100ms,因此对触发的准确性要求很高。而竞争对手的产品外触发时间不准确,如果产线使用的是高功率卤钨灯,多停留一段时间就有可能造成水果的热损伤。理由2:量产能力性机器人自动校正并保证每台设备的精准校调,确保每条产线的分选标准一致。理由3:量身定制在线系统中如果出现系统故障会影响整条产线的正常运行,我们可为客户定制系统运行自测协议,减少人为检验步骤,提高生产效率。本文来源:海洋光学关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。如需了解更多详情或探讨创新应用,可拨打400-860-5168转5895客服电话。
  • 闵顺耕谈近红外光谱技术发展动态
    2013年9月23日,&ldquo 近红外光谱应用新进展&rdquo 专场研讨会如期召开。闵顺耕教授做题为《从NIR 2013看近红外光谱技术发展动态》的综述性报告,报告中介绍了NIR 2013的概况以及会上所展现出来的近红外光谱新技术。 中国近红外光谱专家一行(第二排左二为闵顺耕教授) NIR 2013概况    NIR 2013 于2013年6月2-7日在法国召开,各领域的专家学者500余人汇集一堂,共同探讨近红外光谱分析技术在食品、农业、环境、医药以及其他产业的应用。NIR 2013聚焦于近红外光谱技术在土壤、生物医学领域的应用,以及在生态、考古、工业等领域的特殊应用。全球主要的近红外仪器与软件供应商都参加了此次会议。 而且,就像上文所说,中国近红外光谱专家一行众人也参加了此次会议。   NIR 2013上进行的报告以及交流的海报近400篇,其中,食品领域所占比例最大。   NIR 2013上关于近红外成像方面的报告共有10多篇,其中,农产品质量安全领域的研究最多。   近红外新技术新仪器新方法   散射-吸收光谱新装置   传统的近红外光谱仪通常测定的是总漫反射强度,包括了化学成分的吸收和物质对光的反射两部分。而这一新装置将样品放置在两个积分球之间,利用两个积分球分别测定漫反射光谱和透射光谱,漫反射光谱与样品的组织结构、物性有关,透射光谱与样品的组成(浓度)有关。   时间/空间分辨近红外光谱应用   而能够分别测定光子吸收强度和光子散射强度的两种独立信息的光谱仪器还有另外一种类型,即时间/空间分辨漫反射光谱仪。对于浑浊样品,在其不同位置进行光谱检测,因为光在样品中传输的距离不同、光传输到不同位置的时间也不一样,通常是纳秒或皮秒级,即形成了时间/空间分辨近红外光谱。   时间分辨近红外光谱仪器的研制已有10多年的历史,但是具体的物质测试应用则是近年来开展的。目前,光源和检测器的光谱范围扩大是此类仪器研发的发展方向。   散射介质中的气体吸收光谱   NIR2013上展出的近红外气体分析仪器至少有4种,其中一个是利用770nm、980nm两种波长,15米光程测定气体中甲烷、水、氧气三种成分的含量,该仪器主要用于天然气和环境监测中。近红外在气体检测中的应用值得重视。   漫反射成像技术   传统的漫反射成像,由于光的漫反射使得光斑变大,空间分辨率下降。现在的检测技术利用一些手段使得检测集中在照射区,照射区之外的漫反射不进行测定。目前,已有的手段包括通过光纤定位检测或利用不同波长的光成像,再通过软件进行重构,及通过硬件、软件两方面技术实现了高分辨成像。   闵顺耕教授也介绍了近红外技术发展趋势,主要包括近红外成像技术、仪器微型化技术、近红外时间/空间分辨光谱技术、化学计量学方法与数据利用、近红外在线分析、食品品质与安全领域等。 撰稿人:刘丰秋
  • 我国近红外光谱技术和应用研究齐头并进——参加全国第八届近红外光谱学术会议心得体会
    南开大学化学学院 安宏乐 段潮舒 孙岩 (导师:邵学广)  2020年11月6-8日,为期三天的全国第八届近红外光谱学术会议在线上召开,共计2000余人报名参会。会议共安排了72个报告,内容丰富,包含温控近红外光谱技术、在线近红外光谱技术、近红外模型的建立及转移、近红外光谱相关标准的制定等。此外,各位专家还介绍了近红外光谱技术在农业及食品、疾病筛查、生物制药、环境、半导体材料等领域取得的最新应用进展。  为期两天的会议,与会专家学者与参会代表进行了深入的交流与讨论,群策群力,共同助力我国近红外光谱分析技术的发展。以下从技术、方法、应用、仪器等几个角度分别介绍参加全国第八届近红外光谱学术会议心得体会:  温控近红外光谱、在线近红外光谱、高光谱成像等新技术引关注  本次会议中,多位专家分享了温控近红外光谱、在线近红外光谱、高光谱成像等新技术的研究进展,吸引了大家的关注。  其中,南开大学邵学广教授进行了题为《温控近红外光谱技术及应用研究》的报告,基于近红外光谱的温度效应,使用高维算法、互因子分析(MFA)、连续小波变换(CWT)、蒙特卡洛无信息变量消除(MC-UVE)、基于知识的遗传算法等化学计量学方法,邵学广教授对温控近红外光谱技术进行了深入的研究,其指出温控近红外光谱技术在定量分析、结构与相互作用分析、蛋白质凝聚、LCST过程、疾病诊断等方面具有很好的应用前景,其中特别提到,CWT计算简单,可以有效提高光谱分辨率,有助于提取物质的结构信息。报告最后,邵学广教授还从扰动光谱学、化学计量学、水光谱探针三个方面进行了展望,呼吁广大学者积极拓展近红外光谱的应用领域。  北京中医药大学的曾敬其介绍了一种智能制造黄柏提取过程沸腾时间NIR在线监测方法与装备,其首先指出沸腾时间NIR在线监测的可行性,NIR光谱的水分子特征吸收强,液态水中水分子氢键受温度影响,达到沸腾后基本稳定;然后对黄柏中小檗碱含量进行NIR在线监测,发现提取过程在线NIR光谱有效、稳定,可实现APIs过程监测;最后,建立了沸腾时间NIR在线监测MBSD模型,并验证了其耐用性。  从“点”到 “面”再到“空间”的高光谱成像技术在本次会议中同样吸引了参会者的眼球,高光谱技术为待测样品带来了丰富的数据信息,其数据立方体同时包含了二维空间图像数据和光谱数据,展现了“空谱融合”和“时频融合”的特点。会议中,相关专家学者分别介绍了高光谱技术在橡胶叶片、木材、马铃薯等分析中的应用。  化学计量学、变量选择、模型转移等关键点需重视  化学计量学在近红外光谱技术的研究分析中起到重要作用,山东大学臧恒昌教授作题为《近红外光谱分析技术在制药过程中的建模难点与应用》的报告,分别从近红外光谱模型质量问题,近红外光谱分析技术在固体制剂、中药、生化药物中的建模难点与应用几个角度进行了报告,并指出近红外光谱在制药领域中的应用存在三大难点,分别是药品的复杂性、模型质量和药品法规约束。臧恒昌教授进一步介绍说,以上难点可通过工艺提升、过程分析和智能控制等技术的进步,得到大量有效数据,通过数据采集、信息挖掘和数据标准保证数据质量,在数据的有效支撑下产生适应性的法规,可达到释放技术生产力的目标。  在变量选择方面,暨南大学潘涛教授报告了《近红外光谱变量优选的大尺度策略分析—回顾与思考》,基于变量优选的搜索算法是采用直观特征参数进行搜索,具有通俗、便于程序化的优点。“大尺度”策略,体现在一次优化(大范围变量筛选)和二次优化(接近全局的变量筛选);天津工业大学卞希慧博士介绍到,目前近红外光谱领域广泛应用的变量选择方法有区间偏最小二乘回归(iPLS)、竞争性自适应重加权采样(CARS)、MC-UVE、随机检验(RT)等。报告中,卞希慧博士重点介绍了群体智能优化(swarm intelligence)算法,包括布谷鸟搜索、蝙蝠算法、萤火虫算法、灰狼算法、鲸鱼算法等。此外,卞希慧博士还对集成建模方法和集成预处理方法进行了讲解,并分享了自己参加学术会议的学习情况和做算法的心得体会;南开大学韩丽重点介绍了利用多级同时成分分析(MSCA)方法来处理复杂的高维光谱数据。实验测量了脯氨酸水溶液在温度、浓度、pH扰动下的近红外光谱,得到四维光谱数据,通过建立三级MSCA模型,分析不同扰动对光谱的影响,并做了定量和结构分析,结果表明水结构随着扰动发生了变化,进一步证明了水作为水溶液体系探针的可行性。  模型转移同样是解决近红外光谱实用性的重点与难点问题之一,越来越多的学者就模型转移算法的优化进行了相关的研究。其中,深度学习作为当代的科技发展热点,凭借其出色的数据挖掘能力成为今后建模方法的重要发展方向。模型转移、变量选择以及各种定性定量模型的建模方法,对拓展近红外光谱的应用范围和改善近红外光谱模型具有非常重要的作用,但其种类繁多、对使用者经验要求高,难以被广泛接受和使用。当前,化学计量学方法的培训和普及仍是近红外光谱应用领域中的重要任务之一。  农业与食品、疾病筛查、生物制药等多领域应用取得新进展  本次学术会议的大量报告属于“农业与食品”主题,中国农业大学田喜利用短积分全透射光谱对苹果糖度进行在线检测,结果表明苹果是一个不均匀的结构体,采用局部区域的光谱是不能对整果糖度进行高精度的预测。透射光谱番茄糖度和成熟度在线检测,结果表明绿果的检测精度较高,粉果和浅红色果检测精度较低。通过苹果内部霉心病在线检测,采集不同姿态下苹果的透射光谱,结果表明,整果和核心区域光谱优于霉心病果;暨南大学李佳琪的报告题目为:《Vis-NIR光谱结合Bayes分类法运用于葡萄酒多品牌鉴别》,该报告提出一种简便的Bayes光谱多分类判别方法,这种方法是基于单波长吸光度服从正态分布和概率独立性假设,并结合等间隔组合的波长选择方法,应用于葡萄酒品牌的5分类判别分析,结果明显优于经典欧式距离法。该方法可望用于多品牌葡萄酒的快速鉴别,对于规范酒类市场,促进食品安全具有重要意义;中国科学院合肥物质科学研究院马玉涵博士找到了灵芝多糖中红外和近红外光谱的特征性位点,用近红外光谱分析技术实现了对灵芝多糖的定量分析。此外,本次会议中多位老师还介绍了近红外光谱技术在罗非鱼片新鲜度检测、鱼粉质量检测、玉米种子活力研究、果蔬无损检测、乳制品检测、现代蚕桑业、油料产品品质检测和烟草等方面的应用。  近红外光谱在疾病筛查领域具有广泛的应用前景,东北大学的李志刚博士利用FTIR-ATR光谱技术,通过对血糖、甘油三酯、胆固醇的分析来进行糖尿病和心血管疾病的筛查,对导数光谱的获取与集成建模进行了介绍。报告特别指出多项式平滑(SG)算法虽然被广泛使用,但是该算法具有一些缺陷,比如数据截断、多项式阶次与数据窗口宽度参数缺乏标准化选取方法、欠缺噪声抑制能力等,因此他们设计了基于奇摄动理论和泰勒级数的高精度、抗干扰性强的导数光谱估计器DSE,用来平滑实测光谱以求取实测光谱的导数;德国联邦物理技术研究院的杨林博士报告题目为:《基于超快激光与单光子计数技术的近红外光谱探测深层脑区血氧量的研究》,报告介绍到,近红外光谱技术具有携带方便,选择性好,非渗透性,强穿透性(约3-4 cm),高时间分辨率(约100 ms)等优点,因此可用于脑部神经活动监测和疾病创伤诊断;南开大学孙岩指出近红外光谱对于水分子的结构变化非常敏感,其利用近红外光谱研究了肝素诱导的R2/wt聚集过程水结构的变化,使用尿素和海藻糖作为渗透剂,用来减缓或者加速聚集。通过主成分分析方法(PCA)提取与蛋白质相互作用的水的光谱信息,观察到了不同结构水的光谱特征,并通过二维相关光谱分析了聚集过程中水分子的变化顺序,发现与NH基团形成氢键的水分子比疏水基团周围的水分子更早的发生改变;暨南大学张静博士基于PLS-DA方法,探讨了Vis-NIR光谱分析方法用于血清乳腺癌样品判别分析的可行性,等间隔组合的波长筛选方法可用于提高血清乳腺癌筛查判别模型的效果,采用模型融合的分析评价方法,可取得良好的补偿效果,张静博士提出的方法框架对于血液定性分析方法的发展具有重要意义。  近红外光谱在生物制药领域的研究进展也引起了与会者的关注。其中,天津中医药大学李文龙博士提出近红外光谱能够充分反映物料的动态变化,信息丰富,适用于中药制药工艺动态复杂体系,尤其对于状态的监控和批次一致性评价至关重要。李文龙博士指出基于NIRS的MSPC技术非常适合中药制药工艺的在线监测;爱尔兰都柏林大学的徐君丽博士报告题目为:《Prediction of cell focal adhesions using Fourier transform infrared spectroscopy》(利用傅里叶变换红外光谱预测细胞的粘着斑),其指出细胞必须首先与材料粘附,才能进行下一步的迁移、分化和增殖,粘着斑是细胞与周围介质表面最主要的结合方式,是一个大分子复合体,连接着细胞骨架和细胞外基质。材料表面的形貌、亲疏水性、表面基团和表面电负性会影响细胞在生物材料表面的粘附,该报告利用傅里叶变换光谱技术实现了预测细胞粘附在生物材料表面的情况的研究目标,揭示了细胞与生物材料表面相互作用的机制;中国科学院西北高原生物研究所的李朵采集了青海省14个不同地区的637份样品进行研究,利用近红外光谱技术结合化学计量学方法,开展了全缘叶绿绒蒿原药材中活性成分-总黄酮近红外定量检测工作,实现了全缘叶绿绒蒿中总黄酮含量的快速、准确检测,有助于从源头控制药材的品质,为后期生产高品质成药奠定基础。  土壤重金属污染是我们需要亟待解决的环境问题之一,近红外光谱技术在检测土壤中重金属污染情况也具有较大的应用前景。西安建筑科技大学的杨敏博士介绍了矿物的近红外光谱现状和研究意义,指出在2000-2500 nm范围内产生近红外谱带的矿物主要有碳酸盐矿和含羟基的矿物。杨敏博士通过选择典型区(约127 km2)进行无人机高光谱数据获取,得到高光谱反射率图像,通过地面土壤采样,进行室内光谱测量,建立光谱-重金属含量模型,最终实现高光谱重金属含量预测,进而检测土壤重金属污染情况;暨南大学的施小文指出土壤中重金属含量超标,会导致土壤及农产品中有害物质增加,危机人类健康,常规的检测方法成本昂贵、耗时、专业性强,不适用于大规模土壤检测,而近红外光谱具有可直接测量样品、快速简单、可多指标同时分析等优点,可用于土壤中重金属分析。他们利用Vis-NIR光谱建立珠江三角洲滩涂土壤重金属指标(Cu、Zn、Ni、Cr)同时快速分析模型,该模型是基于SG平滑参数优化和EC-WSP-PLS建立的,具有良好的预测效果,有助于实现近红外光谱技术在土壤分析方面的广泛应用。  此外,会议还邀请了知名企业仪器专家进行了交流,罗海峰经理针对光谱技术在白酒行业应用新进展进行了报告,指出光谱技术在白酒行业可以应用于提前预测可能的造假、失误、反常的粮食原料及酒制品,可以使用近红外定量分析来检测原粮、酒中间体以及成品的营养组成。罗海峰在报告中介绍了近几年近红外光谱分析技术在白酒行业的应用情况,尤其在高粱原粮中直链淀粉的开发、大曲的定标开发、成品酒的各种风味指标开发、成品酒的年份分级等方面得到广大学者的关注;王睿经理介绍了近红外技术在半导体行业的应用新进展,指出近红外光谱技术在半导体行业中清洗液、刻蚀液等方面进行定性和定量分析具有其独特的优势:无需稀释样品,可实现无损、在线检测,具有良好的应用前景,并为大家介绍了DS2500L近红外分析仪具有仪器校验更加简便、自动识别附件种类、恒温速度快、抗震防尘、友好交互界面等优点。  小微型近红外光谱新仪器值得期待  仪器的小型化一直是一个重要的发现方向,在本次会议中,小微型近红外光谱仪器也是一个重要的主题。江苏大学陈斌教授的报告就聚焦了小微型近红外光谱仪现状与选型时考虑的问题》。  近年来,不同分光原理的小微型光谱仪数量逐年增加,其应用领域越来越广泛,智能水平也在逐步提高。陈斌教授回顾了近红外光谱仪的发展,从几十年前的滤光片型、光栅型、傅里叶型、AOTF型,再到如今的MEMS型等,充分展现了光谱仪器的演变过程与应用的新水平和新局面。陈斌教授介绍说,未来小微型仪器将在现场检测、实时分析中发挥重要作用,更多的新方法、新原理也将用于指导新仪器的软硬件设计。不过同时,陈斌教授也指出小微型近红外光谱仪的产业化应用才刚起步,其仪器的稳定性、分析模型的可靠性、规模化应用的一致性等很多挑战性难题还需要科研人员去攻克。  本次会议内容充实,报告严谨认真,参会人员线上讨论激烈,热情高涨,为近红外光谱技术的发展起到了积极的推动作用。会议闭幕式还评选了10位优秀青年报告奖,值得我们学习。相信本次会议的顺利进行,将吸引更多的研究者加入到近红外光谱技术研究的队伍中,共同推动我国近红外事业的蓬勃发展,实现近红外光谱的技术转化,达到更好的服务社会的目标。
  • 2020红外/近红外光谱新品盘点:以应用驱动产品创新
    国外某研究机构的最新市场研究显示, 2020年全球红外光谱市场预计10亿美元,2025年将达13亿美元,复合年增长率为4.1%。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。而同时,这些相关行业严格的法规,以及对质量水平越来越高的追求都推动了红外光谱市场的增长。  虽然2020年COVID-19的爆发和蔓延影响了很多行业发展,也使很多工厂停工或者关闭,但同时也导致了药品和其他医疗设备产量的增加,这在一定程度上也增加了红外光谱在医疗保健和制药终端行业的需求,进而导致市场对红外光谱产品和解决方案的需求增长。  基于市场的需求,各大仪器厂家也在不断的推出新的产品。据统计,申报仪器信息网2020年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计11台,其中红外光谱仪9台,近红外光谱仪2台。值得一提的是,不管是小型化、云数据管理、专用化及在线仪器等,以上新品特别注重从用户的角度考虑问题,从应用的角度着手进行产品的开发和设计。以下将根据2020年度申报新品的情况进行简单的概述:  近年来,小型化一直是仪器设计和制造的一个重要发展趋势,仪器小型化不仅能满足空间有限的分析测试现场使用需求,而且便于集成拓展,非常适合手持式/便携式仪器开发。  在本年度申报的仪器新品中,滨松光子学商贸(中国)有限公司推出了FTIR光谱仪引擎 C15511-01。基于精心重构光学干涉仪的设计思路,并采用独特的MOEMS技术,滨松光子成功开发出了一款高性能的微型化FTIR引擎。迈克尔逊光谱干涉仪和控制电路内置其中,仅手掌大小,却实现了在1.1-2.5μm区域超高的灵敏度,具有远超同类产品的高信噪比表现(10000:1),以及高光谱重现性。据悉,该产品可内置于便携式FTIR仪器中,实现整机小型化的同时,也可保证高性能的实现。  此外,荧飒光学仪器(上海)有限公司也推出了两款便携式的仪器新品:便携式傅里叶红外气体分析仪+Mobile10-G、便携式傅里叶变换红外光谱仪 Mobile10。其中,前者集成小体积长光程的9.8米气体池及内置抽气泵、电池,现场开机即可工作;后者不仅集成平板及电池,现场开机即可工作,而且具有与台式红外光谱仪一样的性能。  对于科学仪器而言,软件是一个绕不开的话题,随着应用需求的提升,用户不仅关注仪器硬件的改进,对软件及数据的云端管理也提出了新的需求。  软件在云平台和云服务方面的创新,是现代仪器发展的一个重要方向。珀金埃尔默企业管理(上海)有限公司推出的Spectrum 3™ 傅立叶变换红外光谱仪不仅提供全集成的热重-红外(TG-IR)联用(EGA4000)解决方案的FT-IR平台,涵盖近、中、远红外三个波长范围,软件自动切换光源、分束器、检测器等部件。而且,特别值得一提的是,该仪器首次将云办公软件“NetPlus”引入红外光谱检测领域,数据实现云端连接。基于Web的应用程序,允许从任何设备查看、上传/下载和管理云端数据,提供更加准确的结果、整合的工作流和团队成员间跨实验室/设备实时协作。  对于中药材的分析而言,数据分析是重点也是难点。北京鉴知技术有限公司(原同方威视拉曼)推出的IT2000中药分析仪,针对中药材质量控制,通过丰富的数据库和识别算法,一键分析实现中药饮片的真伪鉴别、品种识别、产地溯源和品质分析,光谱采集、分析、测试报告等同步自动完成。  应用拓展一直是近红外人努力的方向和目标,而找准应用环境对近红外仪器而言至关重要。很多业内人士指出,专用化和在线仪器的发展存在着较强的生命力和巨大的潜在应用市场。  瑞士万通中国有限公司推出了DS2500 L近红外光谱液体分析仪,在上一代产品的基础上,该仪器由分体式改为了一体机的形式,使得仪器本身防护等级达到了IP65。另外,其智能附件设计,为分析液体样品设计了不同光程的附件,每个附件上都带有芯片,附件插入仪器后可以被读取;荧飒光学仪器(上海)有限公司推出了为工业在线用户设计的8通道在线检测近红外光谱仪--傅里叶变换在线近红外光谱仪MASTER10-Pro,其采用完全国内自主的傅里叶变换技术,自主国产的干涉仪,立体角镜,永久准直,抗震性强。  除了红外透射、红外反射、衰减全反射(ATR)、漫反射等大家熟悉的测量方式,在本次申报的新品中,荧飒光学仪器(上海)有限公司还推出了傅里叶变换红外发射光谱仪和傅里叶变换光致发光光谱仪。红外发射光谱虽然应用范围不如红外吸收光谱广,但在一些特定研究领域有其独特的优势。荧飒光学仪器(上海)有限公司推出的傅里叶变换红外发射光谱仪 FOLI 10-RE是独立式、专用型红外发射光谱仪,其光路设计紧凑,可以明显降低辐射损失,提高辐射通量;作为一种有效的无损光谱检测手段,光致发光光谱广泛应用于半导体的带隙检测、杂质缺陷分析等。荧飒光学仪器(上海)有限公司推出的傅里叶变换光致发光光谱仪 FTPL-10具有弱信号探测能力强、测量速度快和用户操作使用简单等优势。在仪器性能方面,该仪器的光谱分辨率达到0.8nm以上,测量速度达到每秒1张谱图,信噪比超过500:1。  此外,荧飒光学还推出了旋转透射红外液体分析仪+FOLI10-RT,该仪器最多可同时配置4个不同光程的光学窗,非常适合液体的定量测量;天津恒创立达科技发展有限公司推出了MATRIX-50 傅里叶红外光谱仪,该产品采用专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。
  • 果蔬近红外检测技术中的点点滴滴
    本文题目之所以叫“果蔬近红外检测技术中的点点滴滴”,就是因为近红外技术的大理论、大思维、大方法诸位早已熟知,一些没有覆盖着的小理论、小思维、小方法也很重要,有待大家共同挖掘,以期弥补不足 另外一个含义是所有内容都与近红外相关,但相互间关系不大,甚至无关,敬请谅解。中国农业大学 韩东海教授  1、用心感悟样品光物性  图1是2019年6月23日在微信朋友圈发的信息,得到众人点赞。这是我第一次看到这么形象地描述水果光物性的图。这张图清晰地告诉人们,哪些水果容易检测,哪些比较困难,可以帮助人们在研发水果品质无损检测过程中,及时采取应对措施,减少失败,争取时间。  通常我们希望物料透光性要好,可是过于透光,近红外光谱中待检成分信息变弱,不利于分析。例如,葡萄、迷你西红柿。此时,通常采用加大光程的办法加以解决。AMAICA手持仪2),多种果实检测硬件是通用的,只有西红柿在加大光程后,硬件进行了单独设计,独立使用。  透光度低,难以获得有效信息,后续分析无法进行,例如,红薯。在众多物料中,红薯透射性极差,以至于很难实现透射检测。现有研究中,红薯主要采用漫反射采集近红外光谱3,4),受制于透射深度有限,一旦径向待检成分分布差异大,就很难得到正确结论。再就是在红薯断面上采集近红外光谱5),虽然这种方法也具有一定的意义,但已经不属于无损检测了。此类物料要实现在线近红外检测,难度更大。  2、 定量利用光谱强度,定性利用光谱形状  有关近红外吸光度谱的论述很多,也很成熟。多数情况下,利用近红外吸光度谱的强度进行定量分析,而关于原始光谱的探讨少之又少,所以原始光谱容易被忽略。实际上,利用原始光谱形状在一些问题的分析处理上也具有一定的优势。  图2是几种果蔬的近红外原始光谱图。总体来讲,原始光谱波形比较简单,通常就是两个峰,一个谷。个别情况只有一个峰,如葡萄。因为苹果皮薄,质地均匀,内部品质多种多样,特性稳定,故以苹果为基准论述原始光谱特性。两个峰一左一右,左峰在710nm附近,右峰在810nm左右(注释:仪器不同,多少有些差异,无标准而言)。右峰的位置基本在810nm±5nm范围内,而左锋有时则相差很大,大则右移15nm。  苹果、柿子、梨和桃等波形相似,710nm峰值高于810nm 西瓜、甜瓜、蜜桔、葱头、绿蜜桔、柠檬、圆白菜、土豆的波形相像,共同特点是710nm峰值低于810nm。葡萄、迷你西红柿、草莓、牛油果、枇杷、甜椒最特殊,只在810nm处有一个明显高峰。  类别相同但品质不同果蔬的710nm峰值上下变化大,而810nm峰值略微上下浮动。例如三种内部品质不同的正常苹果、褐变苹果、糖心苹果的810nm峰值相差不大,而710nm处的峰值规律为糖心苹果正常苹果褐变苹果三种中的任一810nm峰值(图3)。由此可知,内部品质在原始光谱上主要显现在710nm峰值上,这样就可以利用这个特点进行定量分析或定性判别。  为什么710nm处既有上下变化,又有左右位移呢?现无定论。我认为,一是受水分影响,例如糖心苹果水分高于一般苹果,水分高则光易通过,所以糖心苹果的710nm峰值最高;二是受颜色影响,710nm为红色波长,红色的补色是绿色,当果实不论是瓜皮还是果肉呈现绿色时,则吸收红光,透射光减少,710nm峰值降低。未成熟苹果的710nm峰值与810nm不相上下,就是因为果肉呈浅绿色,吸收了红光,透过光减少,导致710nm峰值降低。西瓜的710nm低于810nm就是因为厚厚的绿色瓜皮阻挡了红光透过,而810nm这些属性不显著。左右位移是否受果实质构的影响有待进一步论证。  关于葡萄等物料只在810nm处有一个明显高峰的解释,暂且无人讨论。本人认为,这些果实透光性极好,很小的功率即可满足要求,710nm的能量尚未达到透过物料时,810nm处已接近饱和。  所以,果蔬原始谱更多地反映了样品的质构信息、形状差异更为突出。  现在的在线果蔬品质判别多数是先定量后定性。例如褐变苹果的判别大致程序是光谱预处理、二阶导、建立PLS模型、计算预测值、确立阈值、按照阈值区分正常还是褐变。如果采用原始光谱就可以直接进行定性分析,这样的研究案例曾多次报道。特举三个案例,具体如下。  1)当公式(1)和(2)的IBrowning都大于0时,为褐变苹果;当IBrowning都小于0时为正常果6)。  2)Seo利用原始谱尝试了多种组合进行糖心苹果、正常苹果、褐变苹果的判别,如表1所示,(T710-T800)/T675的效果最好7)。  3)王加华基于原始谱利用PADA、PCADA、PLSDA三种算法进行了定性判别,获得PLSDA的效果最佳(表2)8)。  3、 一点测量很重要,两点测量更完美  在实验室进行实验时,由于水果的糖酸度分布不均,用漫反射进行近红外光谱采集时,往往在赤道上选择2个或4个点求平均,这确实是两点或多点测量。但本文要介绍的两点测量不同以往,另有含义,如图4所示9)。  这是苹果在线分选线上的实际情况。苹果果柄冲上放置在移动托盘上移动,在第一个位置进行糖酸度、褐变、糖心等的检测,一般水果到此为止足以,但富士苹果有果柄根部裂果现象,必须在第二个位置进行果柄根部裂果检测,所以才有了两点检测一说。有人可能会说,如果果柄冲下放置的话,一个位置就能解决了。如果苹果分选只进行这几个指标的检测确实如此即可,但苹果还要进行外观颜色的评价,因为苹果受太阳的照射,果柄周边颜色艳丽,所以日本苹果装箱时果柄都是冲上的,这样才能获得最佳商品性。又有人会说,所有检测项目都由上面的检测器承担了,这些问题就可在一个工位解决了。确实,有些单位就是这么做的,但是,上位检测遮光问题难以彻底解决,而现在的方法,很方便放心地解决了杂散光干扰。  葱头分选时,葱头根部冲下放置。当葱头内部腐烂严重时,只通过光纤2(图5)的检测就能胜任。不过,对于常发生在上半球的轻微腐烂,光纤2接收不到上半球的信息,漏检现象严重。为此专门设置了光纤1,这样就能把轻微和严重一并检出。这种两点检测设计,是由物料的性质所决定的。两点测量后,轻微腐烂检出率由79.5%提升到95.7%。  苹果检测是一台光谱仪在两个不同工位采集光谱,葱头检测是在一个工位同时采集两条光谱。苹果检测一台光谱仪约50万人民币,为了降低成本,采取了一台两工位。  葱头检测为了避免杂散光进入检测器实施了挡板措施,苹果检测无任何遮挡。据说,苹果检测虽有杂散光影响,仍能获得正确检测结果。  4、日常生活与专业兼顾的Brix和SEP  食品的甜度测量采用高效液相色谱法和气相色谱法,两种仪器价格贵,操作要求高。另外,物料还需要繁琐的前处理,仪器稳定需要数十分钟的等待。近红外技术检测的果蔬糖度是包括酸在内的可溶性固形物,单位是Brix。因为构成Brix的多数水果的主要成分是糖,所以把Brix称为糖度,与日常生活中的甜度不完全一样。  破坏性检测Brix可用折射仪测量。业界常用的PAL系列测量精度一般在±0.2%,而非破坏的近红外方法达到这个精度绝非易事。折射仪有标准蔗糖溶液校正,可明确规定其检测精度,而近红外方法没有基准物,加之影响近红外测量的干扰因素过多,不能用最大误差而只能用标准误差表达。折射仪测量一个群体的果实糖度是抽样先榨汁再测量,而近红外方法无法严格规定测量范围和测量部位,特别是对于成分分布不均的果实而言难上加难。再加上,果实细胞大小、纤维多少、果皮薄厚均影响着光的传播。因为存在着这么多的影响因素,近红外方法只能用统计误差SEP表示11)。  如果近红外方法检测某种果实100个的标准误差SEP是1°Brix,实测糖度为15°Brix,则实际意义为16个高于16°Brix,16个低于14°Brix,68个在15±1°Brix,如图6所示。这一点特别需要向用户解释清楚,不然日后会受到责怪,而通俗易懂地解释清楚并非易事。  参考文献  1) http://mechatronics.co.jp/   2) http://www.astem-jp.com/   3) 農業総合センター農業研究所:「ベニアズマ」生いもデンプン含量の非破壊測定技術,2012年  4) 卜晓朴,彭彦昆,王文秀,王凡,房晓倩,李永玉:生鲜紫薯花青素等多品质参数的可见-近红外快速无损检测,《食品科学》2018年39卷16期  5) 松尾美紅?上野敬一郎?宮原照昌?北原兼文?紙谷喜則?河野澄夫:近赤外透過法を用いた安納いも糖度等の迅速測定に関する基礎的研究  6) 高井 秀悦:光によるリンゴの褐変判別法に関する研究,職業能力開発報文誌VOL.30 No.1(49),2018  7) Y. W. Seo:Nondestructive Detection of the Internal Defects of Fuji. Apple using VIS/NIR Transmittance Spectroscopy. An ASABE Meeting Presentation,Paper Number: 066121,2006  8) 王加华:苹果、洋梨内部品质无损检测信息基础及数学模型的开发,中国农业大学博士论文,2010  9) 蔦 瑞樹, 吉村 正俊, 葛西 智, 松原 和也, 和田 有史, 池羽田 晶文:選果機を用いた可視-近赤外分光スペクトルによるリンゴ‘ふじ’の内部褐変発生予測,日本食品工学会誌 2019年 20 巻 1 号 7-14  10) 西野 勝:近赤外分光法によるタマネギ内部腐敗球の非破壊判別技術  11) 立石 賢二:青果物の糖度を非破壊で計測する簡便な糖度計,計測と制御52 巻 (2013) 8 号(中国农业大学 韩东海教授)
  • 便携式近红外光谱技术在食品分析中的应用
    HAMAMATSU(滨松) PHOTONICS近红外光谱在食品分析中的作用近红外光谱(NIR)是指在750至2500 nm的电磁光谱近红外区域内研究物质和光之间的相互作用[1]。当红外光与样品分子相互作用时,每个波长反射、透射和吸收的电磁能的量取决于样品中存在的键类型[1]。C-H、N-H和OH振动键在近红外区域最普遍,决定了给定物质的光谱形状。近红外光谱通常用于测量和量化样品的近似成分,如蛋白质、水分、干物质、脂肪和淀粉。此外,近红外光谱反映了其物理性质或特性[1]。因此,当应用于食品时,样品的近红外光谱不仅可以提供有关食品化学成分的信息,还可以通过不需要使用试剂的无损、快速和清洁的方法提供有关其功能的信息[2]。便携式仪器的影响直到最近,近红外技术才向小型化设备发展,使近红外分析从实验室进入现场成为可能。便携式近红外光谱是监测作物质量、确定最佳种植条件和收获时间的绝佳工具。鉴于食品易受含量变化的影响,需要保持新鲜以防止质量损失,以及非法掺假的可能性,控制食品质量的重要性怎么强调都不为过。此外,食品生产、配送链的复杂性以及将分析时间降至最低的需要,使便携式光谱仪在该领域向前迈出了革命性的一步[5][6]。用于食品分析的近红外光谱示例Parastar等人将计算技术应用于近红外分析仪获得的吸收光谱,能够准确区分新鲜肉和解冻肉,并根据鸡的生长条件对鸡柳进行正确分类[3]。使用类似的工具,Kucha和Ngadi能够评估猪肉末的新鲜度[4]。这些计算方法,通常被称为“化学计量学”,使用多种算法和统计技术,如多元线性回归、偏最小二乘回归和主成分分析来分析来自光谱仪的数据。这些方法将光谱信息转化为与样品相关的化学和功能特性[2]。便携式近红外分析仪改善奶牛健康,优化灌溉和收割时间便携式近红外分析仪已被用于饲料和牧草的农场监测,以评估其质量。在这个过程中,将饲料样本放在扫描仪前进行分析,并将结果提供给农民或营养学家。这使他们能够及时做出有关提要的管理决策,将获得结果所需的时间从几天缩短到几秒钟。例如,牛饲料中玉米青贮饲料的干物质含量每天变化很大,在六个月内高达41%。通过现场调整,奶牛可以获得更一致的口粮,从而改善牛群的总体健康状况。这是通过血液参数的变化和乳腺炎的减少来观察的,从而增加了产奶量。此外,这项技术可以潜在地减少饲料浪费,从而降低成本并增加收入[7]。便携式近红外光谱法的另一个有价值的应用领域是对作物生长各个阶段的实地评估。Tardaguila等人研究了在不同环境条件下生长的八个不同品种的160片葡萄叶片的吸收波长。他们专门针对含水量评估来确定葡萄酒行业灌溉的优化策略[8]。在收获季节,近红外光谱已被用于评估橄榄果实[9]、葡萄[10]和番茄[11]在树上的成熟度,从而优化收获时间,甚至使用农业机器人实现自动化水果采摘。收获后,近红外光谱技术有助于农民、消费者和质量控制官员对产品质量进行快速无损检测。这项技术还允许检测由于将传统生产的水果错误标记为有机水果而导致的菠萝欺诈[12]。FTIR光谱提供更高的通量和更好的灵敏度在近红外光谱中,分析有机材料的吸收光谱主要有两种方法。第一种方法是基于二极管阵列的光谱学。该技术使用色散光栅将从样品反射或透射的光分离为其波长分量。然后将每个分量聚焦在线性检测器阵列的不同像素上。这种方法速度相当快,可以用于实时测量。然而,二极管阵列光谱仪的光通量与其光谱分辨率成反比,这限制了其有效性。此外,在近红外区域敏感的线性阵列的高成本可能会限制其在某些应用中的应用,特别是在农业和食品中。获得吸收光谱的第二种方法是傅立叶变换干涉测量法。在这种方法中,入射光被分成两条路径,一条指向固定反射镜,另一条指向可移动反射镜。当这些路径被重新组合时,就会得到干涉图。通过对该干涉图进行傅立叶变换,可以获得入射光的光谱,并且通过适当的校准,可以确定样品的吸收光谱。使用这种技术,可以同时测量所有波长,在不影响光谱分辨率的情况下提供更好的吞吐量和更高的灵敏度(通常被称为“Fellgett的优势”)。在该技术中,仅使用单个NIR光电探测器而不是阵列,从而保持低成本。滨松光子的FTIR引擎为食品行业带来了新的曙光滨松的FTIR引擎C15511-01是一个紧凑的傅立叶变换红外光谱模块,对1.1µm至2.5µm范围内的近红外光具有灵敏度,并具有USB连接。该设备的特点是在手掌大小的外壳中有一个迈克尔逊光学干涉仪和控制电路。为了补偿元件小型化造成的光损失,滨松光子公司的工程师为FTIR引擎配备了一个大型可移动MEMS反射镜和一个高灵敏度InGaAs PIN光电二极管。这种MEMS元件的特殊设计抵消了外部振动和器件内部杂散光反射的影响。可移动MEMS反射镜的位置使用专用激光系统进行连续和精确的监测,以确保最高的波长再现性。一般来说,滨松的FTIR引擎可以提供与更大、更昂贵的台式设备相当的高灵敏度、高分辨率和高速测量。使用FTIR引擎进行红外光谱分析有两种测量方法:“反射测量”和“透射测量”。使用这些方法,我们测量了坚果(杏仁、腰果、核桃)和酒精饮料(啤酒、清酒和白兰地)的光谱。透射测量:酒精饮料吸收光谱的比较及其酒精浓度的估计FTIR引擎C15511-01用于观察几种酒精饮料产生的吸收光谱的差异。将液体放入对近红外透明的石英池中,提供1mm的光路长度。使用卤素灯作为本实验的光源。来自灯的宽带光部分被液体吸收,并通过光纤部分传输到FTIR引擎。图中所示的吸收光谱是在室温下获得的,平均128次扫描,并减去参考测量值。这些光谱的形状主要受水中的OH基团(吸收波长:1450 nm和1900 nm)和醇中的CH基团(吸收光谱波长在2100 nm和2500 nm之间)的影响。还测量了纯水和乙醇的光谱,并将其添加到图中进行比较。此外,使用2300nm处的吸收峰来估计每种饮料中的酒精浓度。该测量显示的值与液体中酒精的实际存在一致,证实了使用这种紧凑的设备和方法进行精确估计的可能性。漫反射测量:使用近红外光谱对坚果进行分类当照射到样品上的光的一部分被其表面颗粒有规律地反射时,其余的则穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。漫反射信号通常比通过透射获得的信号弱。因此,使用这种方法的主要挑战之一是提高照明效率。在传统配置中,使用光纤将来自单个卤素灯的宽带光引导到样品。滨松光子最近设计了L16462-01,这是一种针对漫反射测量进行优化的创新光源。该装置配备了多个灯,以特定角度靠近样品。通过光纤收集从样品散射的光,并将其引导至NIR光谱仪。这种配置可测量信噪比,最大限度地减少杂散光的影响。e照射到样品上的部分光被其表面颗粒规则反射,其余部分穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。食物过敏是一种遗传易感个体在食用某些食物成分后出现不利免疫反应的情况。这种反应可能导致立即或延迟的症状,可能是严重或致命的[13]。在过去的几十年里,这种免疫紊乱已经成为全世界关注的一个重要问题,在西方国家,至少有8%的儿童和5%的成年人受到影响。它给医疗系统带来了相当大的压力,并可能严重限制日常甜梅干动[14]。许多种类的坚果,包括核桃(胡桃)、腰果(西方腰果)和杏仁(甜梅干),都被欧洲法规1168/2011列为过敏原,只要存在于食品中,就需要添加到成分表中[15]。出于这些原因,坚果的检测和分类对于食品工业来说是必要的。滨松利用近红外光谱对杏仁、腰果和核桃的吸收光谱进行了研究和分类。使用FTIR引擎C15511-01和新的灯L16462-01获得测量结果。将坚果放置在光源上,无需任何预先准备,平均进行128次扫描以获得每个样品的吸收光谱。所获得的光谱的特征在于1600-1800nm处的峰,这是由从脂质和蛋白质拉伸的CH的第一泛音引起的。当观察光谱的二阶导数时,各种光谱之间的差异更加明显。通过主成分分析法可以对不同种类的坚果进行分类。结论近红外光谱在食品工业中的潜在应用已经被许多科学出版物广泛记录了几年。便携式仪器的出现正在将分析从实验室转移到现场,将结果的时间从几天大幅缩短到几秒钟。最值得注意的是,这种由滨松MEMS技术驱动的硬件小型化在不影响灵敏度或分辨率的情况下实现。新的计算技术正在不断发展,以分析和比较吸收光谱,并估计食品中特定化合物的含量。这些方法使整个行业的非技术用户越来越容易访问该技术。便携式FTIR分析仪是解决食品行业许多重大挑战的宝贵工具。例如,它们可以帮助提高作物产量,从而在面临粮食需求增加时提供一种替代毁林的方法。将这些技术融入农业可以在优化灌溉和限制整个供应链的食物浪费时限制水浪费。最后,FTIR分析仪可以帮助改善我们的食物质量,使其对我们和所有依赖我们的动物更安全、更健康。参考文献[1] K. B. Beć, J. Grabska, and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications”, Molecules, vol. 25, no. 12, p. 2948, Jun. 2020, doi: 10.3390/molecules25122948.[2] D. Cozzolino, “The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities”, Molecules, vol. 26, no. 22, p. 6981, Nov. 2021, doi: 10.3390/molecules26226981.[3] H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, "Integration of handheld NIR and machine learning to 'Measure & Monitor' chicken meat authenticity" in Food Control, vol. 112, pp. 107149, 2020. doi: 10.1016/j. foodcont.2020.107149. [4] Kucha, C.T., Ngadi, M.O. “Rapid assessment of pork freshness using miniaturized NIR spectroscopy”. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9 [5] J.-H. Qu, D. Liu, J.-H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X.-A. Zeng, "Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances" Critical Reviews in Food Science and Nutrition, vol. 55, no. 13, pp. 1939-1954, 2015. doi: 10.1080/10408398.2013.871693.[6] K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, p. 1465, May 2022, doi: 10.3390/foods11101465.[7] "Can On-Farm NIR Analysis Improve Feed Management?", Penn State Extension. [Online]. Available: https://extension.psu. edu/can-on-farm-nir-analysis-improve-feed-management.[8] J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, and M.P. Diago, "Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer", J. Sci. Food Agric., vol. 97, pp. 3772-3780, 2017. doi: 10.1002/jsfa.8241.[9] A. J. Fernández-Espinosa, "Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time", Talanta, vol. 148, pp. 216-228, 2016. doi: 10.1016/j.talanta.2015.10.084.[10] G. Ferrara, V. Marcotuli, A. Didonna, A. M. Stellacci, M. Palasciano, and A. Mazzeo, “Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device”, Horticulturae, vol. 8, no. 7, p. 613, Jul. 2022, doi: 10.3390/horticulturae8070613.[11] H. Yang, B. Kuang, and A.M. Mouazen, "In situ Determination of Growing Stagesand Harvest Time of Tomato (Lycopersicon Esculentum) Fruits Using Fiber-Optic Visible—Near-Infrared (Vis-NIR) Spectroscopy", Applied Spectroscopy, vol. 65, no. 8, pp. 931-938, 2011. doi: 10.1366/11-06270.[12] C. L. Y. Amuah, E. Teye, F. P. Lamptey, K. Nyandey, J. Opoku-Ansah, and P. O. Adueming, "Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits", Journal of Spectroscopy, vol. 2019, Article ID 5975461, 9 pages, 2019. doi: 10.1155/2019/5975461.[13] Z. Husain and R.A. Schwartz, "Food allergy update: more than a peanut of a problem", International Journal of Dermatology, vol. 52, pp. 286-294, 2013. doi: 10.1111/j.1365-4632.2012.05603.x.[14] S. H. Sicherer and H. A. Sampson, "Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment", The Journal of Allergy and Clinical Immunology, vol. 133, no. 2, pp. 291-307.E5, Feb. 2014. doi: https://doi.org/10.1016/j.jaci.2013.11.020 [15] A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, and L. Monaci, “Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products”, Foods, vol. 11, no. 5, p. 728, Mar. 2022, doi: 10.3390/foods11050728.本文来源:HAMAMATSU PHOTONICS(滨松电子),Applications for portable NIR spectroscopy in food analysis,www.hamamatsu.com供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 国内首个掌上MEMS傅里叶近红外光谱仪面市
    在本次2015 BECIA大会上,无锡微奥科技公司首次发布了一款掌上MEMS傅里叶近红外变换光谱仪产品,并在现场成功演示了对7种白色药品的分类鉴别、以及对水蜜桃糖分的定量分析。图1.微奥掌上MEMS傅里叶近红外光谱仪近年来,全球掀起了微型化近红外光谱仪产品的开发热潮,就“微型”而言目前已有多种技术解决方案,但如何在微型化的情况下还能保证高信噪比、高光通量、全波段信号采集、透射与漫反射功能兼具,则是真正实力的比拼。 图2.微奥掌上近红外光谱仪对不同药片的分类微奥科技这款光谱仪产品是基于微奥独特的光学MEMS微镜开发而成。该MEMS微镜具有创记录的大位移、小体积、高度集成等巨大优势,并结合傅里叶变换光谱仪特点,仅需单个探测器即可实现高分辨率、高信噪比的近红外全谱光谱分析,从而大幅度地降低了产品的成本及体积。这款命名为Demeter 1000的掌上MEMS傅里叶近红外光谱仪,可覆盖整个近红外光谱(800~2500nm),还可进一步扩展至中红外波段。Demeter 1000可分别通过透射和漫反射方式对液体和固体进行准确的定性定量分析。该光谱仪可通过蓝牙将光谱分析信息直接传输到移动终端设备,从而可实现在手机上实时快速获知所测物质的成份及含量。微奥的微型光谱仪,革命性地实现了红外光谱仪的便携性及低成本性,使原来遥不可及、只有大型企业或研究机构方能使用的光谱仪产品,走进了普通老百姓的生活,甚至人手一个,用于监测我们日常生活中的如饮用水、奶制品、肉制品、果蔬品等食物的安全性、新鲜度、以及通过成分含量的摄入而实现个人健康管理。让我们吃得放心、住得安心!图3.微奥掌上MEMS近红外光谱仪对水蜜桃糖分的定量分析微奥在本次展会上还展出了另外一款专用于工业在线检测的光谱仪,该光谱仪与掌上光谱仪均基于相同的光学MEMS微镜及光干涉平台,可广泛应用于石油化工、生物医药、粮油、安防、环境、宝石鉴定、纺织、临床医学等领域。同时,基于此相同的MEMS微干涉平台还可开发远红外、中红外、拉曼光谱仪等产品。 图4.微奥MEMS傅里叶近红外微型光谱仪 图5.MEMS微干涉平台
  • 海洋光学的微型近红外光谱仪Flame-NIR新品上市
    上海2016年3月14日电 /美通社/ -- 近红外光谱检测是一种快速、无损、适用范围广的检测方法,可以鉴定、区别和分析多种样品,无需或只需较少的前处理,就能获得所需的光谱数据。在食品安全、鉴定鉴伪、生物医学研究等关系民生领域中起着重要的作用。  相比市场上已有的各类近红外光谱仪,英国豪迈的便携式光谱仪品牌“海洋光学”的Flame-NIR微型近红外光谱仪能为用户提供多种独特而有竞争力的价值,包括小巧便携、低价格、高性能、灵活配置、稳定和一致性,以及简单易用。  小巧便携:传统的近红外仪器,体积,重量大,Flame-NIR尺寸仅为:89.1mm*63.3mm*31.9mm,重量265g。  低价格:搭配光纤和光源,全套系统价格低于10000美金。  高性能:相对于其他低成本的NIR光谱仪,Flame-NIR近红外光谱仪配备的InGaAs二极管阵列检测器可对范围内所有波长同时进行高灵敏度的测量,光谱范围最大可覆盖 900 nm~1700 nm。  灵活配置:海洋光学Flame-NIR近红外光谱仪提供预配置型号,也可以由客户根据应用提供自定义配置。狭缝可自行更换,用户可根据应用需要调节光谱仪的分辨率和光通量。  稳定和一致性:在不损失灵活性和可配置性的情况下,Flame NIR近红外光谱具有较高的热稳定性、较低的台间差异,这是传统的模块化微型光谱仪做不到的。  简单易用:海洋光学Flame-NIR近红外光谱仪使用micro USB接口,连接简单,上手快。通过驱动程序和软件支持,使得它易于集成到几乎任何系统。LED指示灯显示工作和数据传输状态,可以搭配光源、采样附件,是反射、辐射及透射测量的理想工具。  具有众多优势的海洋光学Flame NIR近红外光谱仪,是适用于科研,仪器制造,系统集成领域的理想产品。
  • 海洋光学微型近红外光谱仪Flame-NIR新品上市
    近红外光谱检测是一种快速,无损,适用范围广的检测方法。可以鉴定、区别和分析多种样品,无需或只需较少的前处理,就可以获得所需光谱数据。在食品安全,鉴定鉴伪,生物医学研究等关系国计民生领域中起着重要的作用相比市场上已有的各类近红外光谱仪, Flame-NIR微型近红外光谱仪能为用户提供独特和有竞争力的价值。 Flame-NIR微型近红外光谱仪小巧便携:传统的近红外仪器,体积,重量大,Flame-NIR尺寸仅为:89.1mm*63.3mm*31.9mm,重量265g。低价格:搭配光纤和光源,全套系统价格低于10000美金。高性能:相对于其他低成本的NIR光谱仪,Flame-NIR配备的InGaAs二极管阵列检测器可对范围内所有波长同时进行高灵敏度的测量,光谱范围最大可覆盖 900nm~1700nm。灵活配置:Flame-NIR光谱仪提供预配置型号,也可以由客户根据应用提供自定义配置。狭缝可自行更换,用户可根据应用需要调节光谱仪的分辨率和光通量。稳定和一致性:在不损失灵活性和可配置性的情况下,Flame NIR具有较高的热稳定性、较低的台间差异,这是传统的模块化微型光谱仪做不到的。简单易用:Flame-NIR使用micro USB 接口,连接简单,上手快。通过驱动程序和软件支持,使得它易于集成到几乎任何系统。LED指示灯显示工作和数据传输状态,可以搭配光源、采样附件,是反射、辐射及透射测量的理想工具。Flame NIR用于塑料回收在线分拣 具有众多优势的Flame NIR,是适用于科研,仪器制造,系统集成领域的理想产品。
  • 布鲁克推出新一代小型化TANGO-T近红外光谱仪
    布鲁克光谱事业部长期致力于傅立叶变换近红外技术的研发与创新,并一直保持全球的领先地位,继2011年首先推出了世界上第一台小型化傅立叶变换近红外光谱仪&mdash &mdash TANGO-R之后,今年又重磅推出了系列篇新品&mdash &mdash TANGO-T。   布鲁克公司将在BCEIA 2013前期举办集团新品发布会,其中包括这款产品的详细介绍,并将在BCEIA 2013展会现场进行展示,届时将是TANGO-T首次在国内亮相,欢迎广大用户、专家莅临布鲁克展位:9021,9022,9023,9024,9025,9026。   TANGO-T傅立叶变换近红外光谱仪具有设计精巧、系统稳健、性能卓越、操作直观等特点,为用户随时随地的分析工作带来极大的便利,实现了真正意义的便携式检测。   TANGO-T傅立叶变换近红外光谱仪   TANGO-T仍采用布鲁克公司专利技术&mdash &mdash RockSolidTM(坚如磐石)干涉仪,利用了三维立体角镜技术,保证光路永久准直、性能长期稳定、数据准确可靠、仪器抗震性强;其光学镜面均采用镀金处理,反射率比铝镜提高5%以上,确保仪器的高光通量和高灵敏度,使光学性能更稳定、使用寿命更长。此外,TANGO-T还配有控温系统,可以在20-80° C范围内调节温度,并通过传感器实时监测器皿的温控情况,当样品的温度达到指定要求时才会开始进行光谱扫描。   TANGO-T液体透射样品腔   TANGO-T主要用于液体样品的快速测量。配有背景自动采集功能,无需插拔样品即可测量。其体积小巧,对空间有限的实验室来说是绝佳的理想选择。能够满足不同用户在不同环境下的测试要求(如直接用于通风橱、手套箱或流动手推车),能够随时随地进入工作状态且无需任何调整。   TANGO-T 配有易学易用的触屏微电脑,令使用变得更加简单:触屏式操作软件,界面友好、形象直观,支持多种语言版本,能够帮助用户更加快捷、安全的完成整个测试流程。仪器用户无需具备专业的理论知识,即便未经过培训也能正确无误的实现测量。   TANGO-T有多种用途,既可用于测定油脂的碘值、FAA、不饱和脂肪酸,也可用于测定化工产品的羟值、水分以及化学助剂的鉴别.能为食品、石油、化工等行业提供高效的解决方案,帮助企业改善生产工艺、提高产品质量、降低运营成本。   此外,TANGO-T可与布鲁克具有液体透射测量功能的MPA实现模型传递和数据共享。以下是TANGO-T的测量谱图:
  • 2021红外/近红外光谱新品盘点:做适合应用场景的分析仪器
    随着应用需求的拓展,红外/近红外光谱技术也在不断的发展。相较于高分辨率、成像等高性能指标,越来越多的仪器厂商将重点放在了实用上,从细节处着手,着重解决用户使用过程中的实际问题。据统计,申报仪器信息网2021年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计12台,其中红外光谱仪8台(含附件),近红外光谱仪4台。另外,还有7台基于红外/近红外光谱原理的专用化仪器。虽然红外光谱仪已经相对比较成熟,但是其发展却从未停滞。随着应用需求的变化,红外光谱仪近年来的发展也呈现多样化。各大厂商相继在操作的灵活性、便捷性、智能化及兼容性等多方面入手,提升仪器的性能和使用体验。2021年度,荧飒光学仪器(上海)有限公司推出多台红外光谱新品,包括,研究型傅里叶变换红外光谱仪Foli20、双样品腔傅里叶变换红外光谱仪 Foli10-R-S、移动式傅里叶变换红外光谱仪Foli10 Plus、傅里叶变换红外光谱仪 Foli10-R-T等。其中,研究型傅里叶变换红外光谱仪Foli20首次实现入光口/出光口多光路设计,光源和检测器自动切换,增加了科研的灵活性和扩展性。该产品全光谱的分辨率优于0.4cm-1,具备升级更高分辨率的能力;双样品腔傅里叶变换红外光谱仪 Foli10-R-S实现积分球漫透射及常规透/反射测量于一体。仪器可测量不同弧度的样品,可兼容不同反射角测量附件,可配置室温检测器和/或低温电制冷、低温液氮MCT检测器,双通道A/D采集自适应;移动式傅里叶变换红外光谱仪Foli10 Plus主机和平板可智能化充电,可实现户外即开即用。该产品的集成智能化红外特征峰峰位识别功能及多组分连续差减功能,可实现混合物的快速搜索,并可更换各类测量附件,一键式卡扣锁紧,适合不同应用场景;傅里叶变换红外光谱仪 Foli10-R-T,采用双样品腔双通道设计,相互独立且等效使用,并可同时实现2种大型红外附件的测试,可同时配置室温检测器和低温液氮MCT检测器,双通道A/D采集自适应,实现最快60K扫描速度。此外,天津港东科技股份有限公司推出的傅里叶变换红外光谱仪FTIR-650S在多重防潮设计和抗电磁干扰设计方面也进行了创新,产品采用了更大容量干燥剂筒结构设计,更优异的干涉仪和探测器防潮设计,大幅降低更换干燥剂的频率,有效保护红外光谱仪的光学系统和探测系统。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。质量控制是中药评价的关键问题,而采用单一的化学成分分析方法无法适用于成分复杂的中药体系。应用现代仪器分析手段,建立于中药整体系统上的光谱量子指纹图谱技术是中药质量一致性评价的新方法,特别FTIR红外光谱测定快速,指纹特征性强,是开展中药原料药物和中成药质量控制的简单易行方法。天津市能谱科技有限公司推出的中药红外量子指纹一致性评价系统(LZ9000FTIR)通过FTIR红外光谱法原理,对中药红外光谱指纹进行分析测试。该产品把连续光谱量子指纹化,它能按照官能团量子指纹特征峰类型对化合物进行官能团分类的定性和定量分析,通过对其准确分析进行评价,可揭示数据背后的质量变异而作为中药的质控依据,为建立中药红外量子指纹图谱提供大量特征信息数据。随着FTIR光谱仪器技术的不断进步,红外附件也在不断发展,从而促使红外光谱技术得到更加广泛的应用。比如,天津市能谱科技有限公司的珠宝漫反射附件 IRA-51是一款设计独特的仓外大样品漫反射附件产品,测量平台位于仓外,大尺寸样品可直接置于样品台上,完全摆脱了珠宝尺寸大小的局限;Specac的Arrow系列一次性ATR单次反射附件采用最新的Si芯片技术,是一款可抛弃型ATR样品盘,其采用可回收聚丙烯制成,专门用于污染、腐蚀、胶黏、强酸碱性样品。一次使用一片,即插即用,用完即可抛弃。作为一类实用型的分析方法,近红外光谱仪器的创新也更多以更加适合应用场景为目的。仪器操作的简单便捷,让近红外光谱仪走入了更多的应用领域,得到越来越多不同类型用户的认可,而小型化的产品设计给在线及系统集成提供了更多的便利。2021年度,福斯分析仪器公司推出了近红外多功能品质分析仪NIRS DS3,产品采用全新设计的操作软件ISIscan Nova,可预约定时开机,定时自检。新的软件系统将实时监控光源使用情况,并在预期寿命结束前500小时给出提醒,而且光源连接使用全新设计,无需任何工具即可徒手更换,更快更简便。海洋光学亚洲公司也推出了两款近红外光谱仪,其中高灵敏度NIRQuest+近红外光谱仪采用增强光学台和孔径设计,改善光谱仪的响应,实现更低的检测极限。同时,由于灵敏度的提升,积分时间缩短,从而降低了检测时间,在流水线或流动液体样品检测时具有很大优势;Flame-NIR+ 近红外光谱仪无移动部件,坚固耐用,可用于严苛环境。产品的小尺寸非常适合集成在手持系统中,并且客户可以根据自己的应用自行更换狭缝,来调整光谱仪的通光量及分辨率。任何一类仪器都不可能“放之四海而皆准”,针对不同行业或领域开发的专用化仪器不仅可以针对性地解决问题,而且可以提高通用仪器的利用率,并在一定程度上支撑国家产业和科技的高质量发展,成为当前科学仪器的一个重要发展方向。从2021年度申报的红外/近红外光谱仪器新品来看,在气体和油品检测方面有多款新品推出。在气体检测方面,谱育科技的EXPEC 1900 傅里叶红外气体遥测仪将可见光成像+红外成像+化学成像三合一叠加显示。对比常规的可见成像+化学成像的图像显示,增加了红外成像的叠加显示。红外成像不仅可以在夜间提供视野支持,同时可利用红外热像显现检测区域内的高温污染云团、排口等,叠加显示于化学成像的图像上,可辅助研究污染气体云团的分布与扩散趋势。另外,产品采用了云台扫描与振镜扫描相结合的速扫描方式,提高扫描效率的同时,提升了检测区域的准确性;北京乐氏联创科技有限公司推出了9100FIR 傅里叶红外气体分析仪,这是一款便携式傅里叶变换红外气体分析仪,其采用PLS偏最小二乘法,高分辨率分析模式(1cm-1的分辨率),开放气体组分化学计量方法模型构建功能,适用于对各种排放气体进行现场在线分析,包括工业废气、锅炉烟气排放、焚烧炉排放,也可用于环境空气中无机气体、有机气体的快速应急检测;此外,常州亿通分析仪器制造有限公司也推出了红外一氧化碳气体分析仪(CO) ET-3015AF。在油品检测方面,深圳市德沃仪器有限公司推出了用于成品油检测的近红外光谱仪DW-NIR-PD。该仪器属于光栅扫描型,采用德州仪器的数字镜像整列微型近红外光谱仪InGaAs探测器。据悉,该产品收集了1000多份汽油和柴油的样品和数据,样品覆盖全国各地的大小炼油厂和检测机构的数据,并针对国内使用的油样自行开发近红外数据模型;此外上海昂林科学仪器股份有限公司推出了全自动便携式红外测油仪OL1025,山东格林凯瑞精密仪器有限公司推出了新款含油量检测红外分光测油仪GL-7100,分别在仪器的便携性和智能化方面进行了改进和创新。
  • 我国工业在线近红外光谱技术发展的关键问题分析
    p   过程分析技术(PAT)是通过对原材料和处于加工中材料的关键质量品质和性能特征进行及时测量,来设计、分析和控制生产加工过程的一项技术。PAT有助于实时掌握各种物料的状态、含量、性质,深刻理解工业过程各个工序的工作实况和本质,更有利于生产过程的实际控制。因此,PAT对于减少生产时间、提高产品质量、提高自动化程度等具有重要作用。在线监测是PAT的重要内容,近红外光谱(NIR)是目前工业PAT中最重要的在线监测技术之一。 /p p   近红外光谱分析技术操作简单、使用方便、测量快速,而且能提供丰富的分子信息,是非常理想的在线监测技术。同时近红外光谱仪器种类多、测量附件全、性价比高等优点也是选择NIR技术实现在线监测的重要理由,因此近几十年来近红外光谱技术在PAT中的应用越来越广泛和普及,代表性的应用领域包括制药、石油化工、基础有机化工、食品生产和加工、酿酒等。 /p p   整体上看,我国近红外光谱技术的发展和应用,包括仪器研发、算法研究、应用开发等,较欧美及日本等西方国家相比并不落后。虽然某些方面还差强人意,但也有一些研究取得了令人惊喜的成果,也成功地拓展了一些我国特有的应用领域。但与此形成鲜明对比的是,在在线NIR领域我们却明显落后于西方国家,我国在线NIR技术的应用远未到达其应有的程度和水平,尤其是在工业生产领域,与中国目前引领世界经济发展的地位非常不相称。本文将着眼于工业领域,探讨在线NIR技术发展的重点或难点,分析制约我国在线NIR发展的关键问题,以期为中国在线NIR的快速发展奉献微薄之力。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 291px " src=" https://img1.17img.cn/17img/images/201908/uepic/dd48837a-0182-4b6c-81c6-d3a216daed30.jpg" title=" 微信图片_20190823095234.jpg" alt=" 微信图片_20190823095234.jpg" width=" 200" height=" 291" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 华东理工大学 杜一平教授& nbsp /strong /p p strong   span style=" color: rgb(255, 0, 0) "  1、重视开发工业在线专用近红外光谱仪器及其配套设备 /span /strong /p p   在线NIR技术的硬件主要包括近红外光谱仪器和配套的测样装置。虽然工业过程的光谱测量一般具有抗震、耐温、防腐、防爆等要求,但经适当的设计和安装,常用的近红外光谱仪器,包括傅里叶变换、光栅扫描、声光可调滤光器型,以及多种分光原理的小型光纤近红外光谱仪器都可以用于工业在线监测中。大型高性能光谱仪在在线NIR中的应用是比较成熟的,在石油化工、制药、烟草等领域已经有了一些比较成功的应用。值得关注的是,近年来小型光纤光谱仪器的发展为在线NIR展现出美好的前景。除了仪器小巧、价格低廉这些必然的优点以外,光纤光谱仪还具有安装容易、灵活,使用方便等优势。虽然在性能上不如大型光谱仪,但对于某些对分辨率和准确度要求并不是很高的应用对象,小型光纤光谱仪更具有吸引力。整体上看,各类近红外光谱仪器为在线NIR提供了非常广阔而灵活的选择空间,NIR仪器并不是在线NIR技术推广的难点。但毕竟工业在线监测具有特殊的要求,针对这些要求开发专用的在线NIR仪器还是非常必要的。 /p p   在线NIR可用于很多生产工序,如反应、蒸馏、混合、分离、烘干、溶解、结晶等,不同生产工艺对在线监测的要求也是五花八门,而且监测点的环境一般也远较实验室恶劣,比如温度、湿度、腐蚀性、振动等条件都会对光谱仪造成影响。因此,在线NIR监测对检测探头和监测条件有很多具体的要求。通常使用光纤将监测点与光谱仪连接起来,这样可以避免很多环境因素的影响和限制。监测点一般采用光纤探头或流通池实现光谱的采集。对于光纤探头,入射光和返回光路设计在一个探头内,使用时只要将探头插入被监测的物料内即可,因此使用方便、灵活。透射光纤探头用于对液体样品的测量,漫反射光纤探头用来测定固体样品。流通池适用于液体样品的在线测量,将流通池固定在监测点的管路上,连接于流通池上的入射光和返回光通过两路光纤进行光传输,并与光谱仪相连。实际生产过程往往很复杂,对在线监测会产生很多的制约,常见的要求包括检测探头必须耐温、耐压、耐腐蚀、耐磨等,还要考虑解决可能存在的探头堵塞、产生气泡等问题。鉴于工业在线NIR对光纤探头或流通池的特殊要求,比较合理的解决方案是根据具体工业过程的特点,开发系列检测探头用于不同需求的应用。这样做有利于检测探头的标准化、规范化,对于提高在线NIR技术的开发效率,推广在线NIR具有重要意义。 /p p span style=" color: rgb(255, 0, 0) " strong   2、提高应用技术人员近红外光谱分析模型的开发能力 /strong /span /p p   对于从事近红外光谱技术应用的技术人员来说,建模是难点问题之一,因为它需要化学计量学知识作为支撑。 /p p   建立高质量的模型(不妨称为最优模型)确实是一件不容易的事情,但是如果简化建模过程,建立一个比较优的合理的模型就不一定很难了。所建模型是最优还是比较优,一般体现在预测误差是最小还是比较小,而在近红外光谱分析的实践中,不同模型的预测误差常常相差不大(在合理建模的前提之下),或者用户对模型预测能力要求不高,这种情况下,完全可以用比较简单的建模过程和方法建立比较优的模型。另外,在线分析关注的是监测指标值的变化趋势,因此相对于监测结果的绝对准确度,其更注重结果的稳定性。如果采用上述的策略,建模就不太难了。 /p p   本课题组在与企业合作开发近红外光谱模型时,所采取的方法就是:我们为用户开发实用的近红外光谱模型的同时,对用户的技术骨干进行建模培训,使其除了掌握模型使用和简单维护的技能以外,还要具备基本的建模能力。如果有必要,我们还提供简易的建模软件。该软件能够使不甚专业(基本的化学计量学知识还是需要掌握的)的使用者,能够用简单的若干个套路“半自动化地”完成建立模型的任务。这样做不但有利于用户更好地理解和使用模型,还可以自主开发新的模型(虽然不一定是最优的,但能保证是较优的),同时也为社会培养了更多的“化学计量学人”。这种做法效果很显著,我们为某化工厂研发了一套在线近红外光谱监测装置,并建立了模型。后来该企业自主开发了第二套监测装置,而且在我们的帮助下,实现了一台在线NIR仪器顺序监测六个监测点的在线监测。再后来他们又独立开发了第三套监测系统,独立完成了建模工作。 /p p   梁逸曾教授曾经多次指出:只要掌握好的学习方法,化学计量学并不难学。我体会到,要普及技术人员建立近红外光谱分析模型的能力,培训是必需的环节,而培训的手段和方法可能更是至关重要的。仪器信息网和近红外光谱分会每年都举办近红外光谱技术和化学计量学的培训活动,这对于普及近红外,推动近红外的发展意义重大。 /p p   另外,本人认为:智能建模,或自动建模是解决建模难这一瓶颈问题的有效途径,这种建模方法的研发是非常有意义,且有重要需求的研究课题,理应引起化学计量学研究者,或NIR模型开发人员的重点关注。 /p p span style=" color: rgb(255, 0, 0) " strong   3、做好产、学、研、用、政环节切实推动我国工业在线近红外光谱技术的应用和普及 /strong /span /p p   在国产分析仪器的发展过程中,人们逐渐将“产、学、研”的传统提法,又添加了“用”和“政”两个内容。“用”是指用户,意为仪器的研发离不开用户的参与或用户的要求,这层含义用在近红外光谱领域(包括在线近红外)更是贴切。下面我想重点谈谈“政”的作用。 /p p   “政”即政府,更广义地理解就是“领导”。在很多场合,南开大学邵学广教授都提到:发展我国近红外光谱技术,我们不但要培训科技人员,还要培训领导。这句话很深刻地道出了“政”的重要性。 /p p   首先,政府重视是发展我国近红外光谱技术的重要条件,这是毋庸置疑的。 /p p   第二,发展我国在线近红外光谱技术另外一个重要因素就是用户企业领导的重视。在推广在线NIR时,企业领导经常担心的问题是这些技术能否影响其正常的生产,或者说,企业已经具备了正常的生产,有没有必要担一定的风险上在线NIR技术。从商业角度看,领导的担心是有道理的,但这却影响了在线NIR技术的普及和推广,实际上也影响了企业未来的竞争力(安于现状能够保证企业今天的现状,但不一定能满足未来发展的要求)。这种问题最好的解决方案就是“培训领导”,改变其对近红外光谱技术的保守看法。另一个思路就是,在线NIR技术在单一企业应用成功后,在同行业中进行推广,使其具有示范作用。即,“一点红带到一片红”。 /p p   第三,发挥“政”的作用还体现在发展标准方法上。在国民经济生产中,标准方法扮演着重要的角色。在生产企业,原材料检测、生产中间产物检测和质量控制,以及最终产品的质量检测,往往都依赖标准分析方法。可惜的是,在标准方法中很少看到近红外光谱的影子。推广在线NIR技术时,非标准方法往往也是企业拒绝该技术的原因。解决这种问题的根本策略就是积极推动近红外光谱技术进入标准方法的进程。在很多近红外人的不懈努力下,近年来这方面工作取得了很大成就,发展了很多使用近红外光谱的国家标准和行业或地方标准,但其覆盖面还远远不足,在在线NIR领域更是如此。另外,进一步推动将NIR技术引入企业标准也是不容忽视的工作。在推广在线NIR技术时,要充分考虑企业在标准化方面的需求,使近红外光谱技术完全满足要求。我们课题组在为一家中药生产企业开发近红外光谱分析技术时,应企业要求,在软件中增加了账户管理系统、历史操作日志的记录与查看、用户权限分级管理系统等模块,就是为了要达到GMP的要求。 /p p span style=" color: rgb(255, 0, 0) " strong   4、提高在线NIR从业人员的综合技术能力 /strong /span /p p   与实验室NIR技术完全不同,在线NIR技术是一种集机械、光学、电子、自控,以及应用领域的多学科体系。在为用户开发在线NIR技术时必然会遇到与用户现有生产过程分析技术(PAT)和过程控制技术(PCT)的融合问题。为了更好地服务于生产企业,从事NIR开发的技术人员,或者技术团队必须要拓展自己的专业知识,完美的、专业的技术服务才容易为客户接受。 /p p br/ /p p   在经济飞速发展的中国,在线近红外光谱技术具有重大的需求,但其发展却受到了很多因素的限制和制约,导致推广和普及在线近红外光谱技术出现了很多问题。解决这些问题的重担责无旁贷地落在我国近红外人的肩上。在中国近红外光谱分会这杆大旗下,团结着各行各业、各种专业背景的技术人员,让我们怀着开放的胸怀,通力合作、取长补短、积极进取,为推动我国工业在线近红外光谱分析技术的发展做出我们应该做的努力。 /p p style=" text-align: right " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " (杜一平 华东理工大学上海市功能性材料化学重点实验室,化学与分子工程学院,上海,200237 /span /strong ) /p
  • 国产掌上MEMS傅里叶近红外光谱仪面市
    p   近日,无锡微奥科技公司首次发布了一款掌上MEMS傅里叶近红外变换光谱仪产品,并在现场成功演示了对7种白色药品的分类鉴别、以及对水蜜桃糖份的定量分析。 /p p style=" text-align: center " img title=" File2015102812555050434.jpg" src=" http://img1.17img.cn/17img/images/201511/noimg/a2b93ccf-7416-47e5-a396-59201a20189f.jpg" / /p p style=" text-align: center " 图1.微奥掌上MEMS傅里叶近红外光谱仪 /p p   近年来,全球掀起了微型化近红外光谱仪产品的开发热潮,就“微型”而言目前已有多种技术解决方案,但如何在微型化的情况下还能保证高信噪比、高光通量、全波段信号采集、透射与漫反射功能兼具,则是真正实力的比拼。 /p p style=" text-align: center " img title=" File2015102811322453616.png" src=" http://img1.17img.cn/17img/images/201511/noimg/61ce5662-2486-4b66-ac69-e9bcb8fe8205.jpg" / /p p style=" text-align: center " 图2.微奥掌上近红外光谱仪对不同药片的分类 /p p   微奥科技这款光谱仪产品是基于微奥独特的光学MEMS微镜开发而成。该MEMS微镜具有创记录的大位移、小体积、高度集成等巨大优势,并结合傅里叶变换光谱仪特点,仅需单个探测器即可实现高分辨率、高信噪比的近红外全谱光谱分析,从而大幅度地降低了产品的成本及体积。 /p p   这款命名为Demeter 1000的掌上MEMS傅里叶近红外光谱仪,可覆盖整个近红外光谱(800~2500nm),还可进一步扩展至中红外波段。Demeter 1000可分别通过透射和漫反射方式对液体和固体进行准确的定性定量分析。该光谱仪可通过蓝牙将光谱分析信息直接传输到移动终端设备,从而可实现在手机上实时快速获知所测物质的成份及含量。 /p p style=" text-align: center " img title=" File2015102811322453616.png" src=" http://img1.17img.cn/17img/images/201511/noimg/a5f3759b-f001-4136-8da3-6aca4d700ade.jpg" / /p p style=" text-align: center " 图3.微奥掌上MEMS近红外光谱仪对水蜜桃糖份的定量分析 /p p   微奥的微型光谱仪,革命性地实现了红外光谱仪的便携性及低成本性,使原来遥不可及、只有大型企业或研究机构方能使用的光谱仪产品,走进了普通老百姓的生活,甚至人手一个,用于监测我们日常生活中的如饮用水、奶制品、肉制品、果蔬品等食物的安全性、新鲜度、以及通过成分含量的涉入而实现个人健康管理。让我们吃得放心、住得安心! /p p style=" text-align: center " img title=" File2015102811322453616.png" src=" http://img1.17img.cn/17img/images/201511/noimg/7bafc42a-0cbd-41d2-90fa-b3ddcef005c4.jpg" / /p p style=" text-align: center " 图4.微奥MEMS傅里叶近红外微型光谱仪 /p p   微奥同时还展出了另外一款专用于工业在线检测的光谱仪,该光谱仪与掌上光谱仪均基于相同的光学MEMS微镜及光干涉平台,可广泛应用于石油化工、生物医药、粮油、安防、环境、宝石鉴定、纺织、临床医学等领域。同时,基于此相同的MEMS微干涉平台还可开发远红外、中红外、拉曼光谱仪等产品。 /p p style=" text-align: center " img title=" File2015102811322453616.png" src=" http://img1.17img.cn/17img/images/201511/noimg/3434c28f-d5d2-4162-aa7e-d1e91269f11d.jpg" / /p p style=" text-align: center " 图5.MEMS微干涉平台 /p
  • 布鲁克MPA近红外光谱仪销量破3000!
    布鲁克近红外明星产品MPA 多功能型灵活扩展傅里叶变换近红外光谱仪于2月底销量突破3000台。布鲁克总部生产部 MPA具有强大的扩展灵活性和优越性,成为实验室和过程分析,开发各种方法不可缺少的有力工具。它将样品腔,积分球,漫透射,光纤探头等多种测量方式整合一体。实现从液体,颗粒,粉末,片剂,膏状等各类样品进行测量。仪器具有超高的稳定性,超强的准确度和灵敏度,在MPA建立的模型方法,不需要对光谱和模型进行任何处理,不但能在同型号仪器间传递使用,还可以直接拷贝到其他近红外仪器上正常使用。可以满足不同用户科研和生产QA/QC的需求,更能为工业现场等各种分析提供全方位解决方案。 近红外技术应用广泛,MPA曾在农业食品饲料,石油化工造纸,烟草制药化妆品等行业中,成为强有力的分析助手。第3000台MPA已生产完成,将归属于广西知名制药中心,布鲁克为辉瑞制药,GSK,诺华制药等制药领域用户同样提供解决方案,希望继续将功能及品质发挥极致,为用户的科研事业平添羽翼。固体漫透射&自动进样器 MPA完全可以解决用户对质量控制和品质分析的需求,能够快速准确地非破坏性分析进厂原料、中间体及制成品。降低生产成本,广泛应用于各个领域。液体透射样品腔、固体积分球&乳品进样模块 作为多功能灵活扩展光谱仪,我们称MPA为变形金刚,希望它能够满足您想要的功能,为您提供便捷与力量! 咨询问题可以发邮件至marketing.bopt.cn@bruker.com MPA展台链接
  • 聚光科技亮相第三届全国近红外光谱学术会议
    2010年10月13-16日,第三届全国近红外光谱学术会议及第二届亚洲近红外光谱学术会议在上海航空酒店召开。全国近红外光谱学术会议由中国仪器仪表学会分仪器分会近红外光谱专业委员会主办,每两年举办一次,代表我国最新最前沿的近红外学术交流水平。两个会议吸引了来自12个国家近红外光谱相关领域的专家学者、仪器厂商、用户等300多人前来参会。 大会开幕式 聚光科技是近红外光谱专业委员会的挂靠单位,为专业委员会的发展做了有力的支持。作为本次大会主办方的挂靠单位及会议赞助商,聚光科技借助此平台向参会人员演示SupNIR-2700和SupNIR-2600近红外分析仪在粮油、石化等领域的应用;并以墙报及口头报告形式交流SupNIR-2700在菜籽、菜粕快速检测中的应用。 聚光科技作为中国分析仪器行业龙头企业,拥有国际一流的研发、营销、应用服务和供应链团队,致力于业界最前沿的各种分析检测技术研究与应用开发,提供满足全球市场需求的高端分析测量仪器、完善的行业应用解决方案和售后服务。 SupNIR-2700近红外分析仪基于漫反射方式进行样品分析。通过与RIMP软件连接实现固体颗粒、片状、粉末样品中一些物理和化学成分的无损快速检测。整套系统操作简单,只需要将样品盘放在样品台上,点击测量,仪器自动完成测量分析。在饲料生产、粮油加工、谷物收购、育种研究等领域应用。 SupNIR-2600采用透射方式检测,仪器设计小巧美观,方便实用。应用于液体检测,如燃油、食用油等。 展台前围满咨询的参会人员 韩国近红外专家正在分析SupNIR-2700采集的光谱信息
  • 1000万!北京理工大学场发射透射电子显微镜、紫外可见红外光谱测试系统采购项目
    一、项目基本情况1.项目编号:ZTXY-2023-H22766项目名称:北京理工大学场发射透射电子显微镜采购预算金额:750.000000 万元(人民币)最高限价(如有):750.000000 万元(人民币)采购需求:名称数量单位简要技术要求是否接受进口产品场发射透射电子显微镜1套详见招标文件《第六章 采购需求》是 合同履行期限:合同签订后15个月内。本项目( 不接受 )联合体投标。项目编号:ZTXY-2023-H22774项目名称:北京理工大学紫外可见红外光谱测试系统2.预算金额:250.000000 万元(人民币)最高限价(如有):250.000000 万元(人民币)采购需求:名称数量单位简要技术要求是否接受进口产品紫外可见红外光谱测试系统1套详见招标文件《第六章 采购需求》是 合同履行期限:合同签订后10个月内交货并安装完毕。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月03日 至 2023年12月08日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1103室(或邮件方式)方式:现场报名或邮件方式。邮件方式:在本项目招标文件发售截止时间前,将支付标书款凭证发至邮箱baoming_ztxy100@163.com。邮件主题“【场发射透射电子显微镜】-XXX公司”。邮件内容“【项目信息(项目名称、项目编号),投标人信息(公司全称、统一信用代码),联系人信息(姓名、手机号、电子邮箱)】”以标书款到账时间为准,逾期汇款报名无效(未及时发送报名信息导致的后果,投标人自行承担)。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:林老师,010-68917981      2.采购代理机构信息名 称:中天信远国际招投标咨询(北京)有限公司            地 址:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1103室            联系方式:王文姣、王师安、于海龙、成志凯、张静、鲁智慧,010-51908151            3.项目联系方式项目联系人:王文姣、王师安、于海龙、成志凯、张静、鲁智慧电 话:  010-51908151
  • 岛津应用:将ATR光谱转换为透射光谱的高级ATR校正
    ATR法不仅用于验证分析,还广泛用于异物分析。对ATR法扫描获取的光谱和用透射法扫描获取的光谱进行比较可以发现,因为原理不同,纵轴及横轴的数值有一定差别。所以,将ATR法的光谱与透射法的光谱或数据库进行比较时,通过对ATR光谱进行适当的校正,可取得更高精度的结果。本文向您介绍通过高级ATR校正,对ATR光谱和透射光谱进行近似处理的示例。经高级ATR校正可使ATR光谱与透射光谱相似。并且,如果通过透射法数据库检索ATR谱图,可获取高精度的检索结果。 岛津高级ATR校正功能,可对上述纵轴和横轴变化进行校正。该校正可同时进行以下3种校正:1. 受波长影响的红外光穿透深度带来的峰强度变化。2. 由折射率的异常分散引起的低波数峰偏移。3. 由偏光特性引起的来自朗伯-比尔定律的偏差。 在BCEIA2013上展出的岛津IRTracer-100 了解详情,请点击“将ATR 光谱转换为透射光谱的高级ATR 校正的介绍” 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 聚光科技近红外光谱仪诚招经销商
    聚光科技,总部位于中国杭州,拥有国际一流的研发、营销、应用服务和供应链团队,致力于业界最前沿的各种分析检测技术研究与应用开发,提供满足全球市场需求的高端分析测量仪器、完善的行业应用解决方案和售后服务。 在自主创新中快速发展的聚光科技拥有相关产品全世界最多的发明专利,并承担国家标准和国际标准的制订工作。相关成果获得包括国家科技进步奖在内的四十余项奖励。聚光科技已经成为国家在环境与安全检测分析仪器领域重要的创新平台。 聚光科技近红外事业部是在英贤仪器的基础上进行系列近红外产品的研发、制造、销售和服务。拥有强大的技术及应用服务团队,致力于为各行业提供优质的成套近红外解决方案。系列近红外产品广泛应用于石油化工、食品加工、农业生产、化工制药和高校科研等领域。 近红外系列产品有: SupNIR-1000系列便携式近红外分析仪 针对现场快速检测而设计的一款便携式分析仪,波长范围覆盖600-1800nm,结构紧凑、体积小、内置充电电池、大容量存储设备和液晶显示模块。通过配置不同的测量附件,实现片状、颗粒、膏状、粉末和液体样品中一些物理和化学成分的无损快速检测。在果品种植、食品质检、科学研究等领域有着广泛的应用。 SupNIR-2600近红外分析仪 采用全息数字式光栅和高灵敏度铟镓砷检测器(TEC制冷恒温)相结合的光学设计,基于透射方式进行样品分析,波长范围覆盖1000-1800nm。通过外置PC机和RIMP软件实现液体样品中一些物理和化学成分的无损快速检测。整套系统操作简单,只需要将比色皿放在样品池上,点击测量,仪器自动完成测量分析。在石化行业、质检系统和科研等领域有着广泛的应用。 SupNIR-2700近红外分析仪 采用全息数字式光栅和高灵敏度铟镓砷检测器(TEC制冷恒温)相结合的光学设计,基于漫反射方式进行样品分析,波长范围覆盖1000-2500nm。通过外置电脑和RIMP软件实现固体颗粒、片状、粉末样品中一些物理和化学成分的无损快速检测。整套系统操作简单,只需要将样品盘放在样品台上,点击测量,仪器自动完成测量分析。在饲料生产、粮油加工、谷物收购、育种研究等领域有着广泛的应用。 SupNIR-4000系列近红外分析仪 适用于工业在线实时检测,实现对生产过程中样品的多种指标分析。SupNIR-4000系列在线近红外分析仪可安装于比较恶劣的生产环境中,实现在线或旁路取样直接分析,分析速度快,精度高,分析结果可以直接用于生产控制系统,广泛应用于石化、化工、制药等行业。 现面向全国诚征经销商: 经销商资质: 1. 具有独立法人资格的企业组织形式或个体经营者. 2. 能长期合作,具有良好的市场运作能力和销售网络. 聚光科技为合作伙伴提供:最优惠的价格;严格的市场保护制度;代理商利益优先制;技术支持、市场宣传和售后服务。 聚光科技近红外事业部 北京市丰台区南四环西路188号12区25、26号楼(100070) 电话:010-63706564 传真:010-63706565 http://www.fpi-inc.com (聚光科技总部) http://www.sinonir.com (近红外事业部) email: nir@fpi-inc.com
  • 聚光科技近红外光谱仪诚招经销商
    聚光科技,总部位于中国杭州,拥有国际一流的研发、营销、应用服务和供应链团队,致力于业界最前沿的各种分析检测技术研究与应用开发,提供满足全球市场需求的高端分析测量仪器、完善的行业应用解决方案和售后服务。 在自主创新中快速发展的聚光科技拥有相关产品全世界最多的发明专利,并承担国家标准和国际标准的制订工作。相关成果获得包括国家科技进步奖在内的四十余项奖励。聚光科技已经成为国家在环境与安全检测分析仪器领域重要的创新平台。 聚光科技近红外事业部是在英贤仪器的基础上进行系列近红外产品的研发、制造、销售和服务。拥有强大的技术及应用服务团队,致力于为各行业提供优质的成套近红外解决方案。系列近红外产品广泛应用于石油化工、食品加工、农业生产、化工制药和高校科研等领域。 近红外系列产品有: SupNIR-1000系列便携式近红外分析仪 针对现场快速检测而设计的一款便携式分析仪,波长范围覆盖600-1800nm,结构紧凑、体积小、内置充电电池、大容量存储设备和液晶显示模块。通过配置不同的测量附件,实现片状、颗粒、膏状、粉末和液体样品中一些物理和化学成分的无损快速检测。在果品种植、食品质检、科学研究等领域有着广泛的应用。 SupNIR-2600近红外分析仪 采用全息数字式光栅和高灵敏度铟镓砷检测器(TEC制冷恒温)相结合的光学设计,基于透射方式进行样品分析,波长范围覆盖1000-1800nm。通过外置PC机和RIMP软件实现液体样品中一些物理和化学成分的无损快速检测。整套系统操作简单,只需要将比色皿放在样品池上,点击测量,仪器自动完成测量分析。在石化行业、质检系统和科研等领域有着广泛的应用。 SupNIR-2700近红外分析仪 采用全息数字式光栅和高灵敏度铟镓砷检测器(TEC制冷恒温)相结合的光学设计,基于漫反射方式进行样品分析,波长范围覆盖1000-2500nm。通过外置电脑和RIMP软件实现固体颗粒、片状、粉末样品中一些物理和化学成分的无损快速检测。整套系统操作简单,只需要将样品盘放在样品台上,点击测量,仪器自动完成测量分析。在饲料生产、粮油加工、谷物收购、育种研究等领域有着广泛的应用。 SupNIR-4000系列近红外分析仪 适用于工业在线实时检测,实现对生产过程中样品的多种指标分析。SupNIR-4000系列在线近红外分析仪可安装于比较恶劣的生产环境中,实现在线或旁路取样直接分析,分析速度快,精度高,分析结果可以直接用于生产控制系统,广泛应用于石化、化工、制药等行业。 现面向全国诚征经销商: 经销商资质: 1. 具有独立法人资格的企业组织形式或个体经营者. 2. 能长期合作,具有良好的市场运作能力和销售网络. 聚光科技为合作伙伴提供:最优惠的价格;严格的市场保护制度;代理商利益优先制;技术支持、市场宣传和售后服务。 聚光科技近红外事业部 北京市丰台区南四环西路188号12区25、26号楼(100070) 电话:010-63706564 传真:010-63706565 http://www.fpi-inc.com (聚光科技总部) http://www.sinonir.com (近红外事业部) email: nir@fpi-inc.com
  • 超宽谱近红外LED实现快速无损结构检测
    香港城市大学王锋教授团队通过调控过渡金属-稀土离子间能量传递过程,首次报道了一种具有高量子效率、超大半峰宽以及高热稳定性的新型双钙钛矿近红外荧光粉La2MgHfO6:Cr3+/Yb3+,其在快速无损结构检测方面表现出优越的性能。近红外荧光转换型发光二极管(NIR pc-LED)凭借其发光效率高、宽谱输出、结构紧凑、寿命长、电能消耗低等优势,在安全监测、食品安全、现代农业、夜视、医疗诊断等领域展现出了巨大的应用潜力。NIR pc-LED的器件性能直接由近红外荧光粉决定,因此开发与蓝色LED芯片匹配良好的高效近红外宽谱发光材料至关重要。然而,目前报道的近红外发光荧光粉仍然存在发光效率低、半峰宽窄、热稳定性差等不足,同时其发射光谱在950 nm以后存在明显缺失,一定程度上限制了其在市场中的商业化。针对上述问题,香港城市大学王锋课题组和河北大学索浩博士首次报道了一种新型双钙钛矿荧光粉La2MgHfO6:Cr3+/Yb3+,其展现出了热稳定性优异的高效近红外宽谱发射。相关结在线果发表在Laser & Photonics Reviews上。该研究团队采用传统高温固相设计合成了双钙钛矿荧光粉La2MgHfO6,它具有两个八面体格位(Mg和Hf)和一个十二面体格位(La)供Cr3+和Yb3+占据。基于Rietveld结构精修和第一性原理计算,研究人员证明Cr3+离子倾向于同时取代具有较低晶体场强度的[MgO6]和[HfO6]六面体,这种多格位发光有利于实现超宽谱近红外发射。通过调控Cr3+→Yb3+间能量传递过程大幅度提高了近红外发光的内/外量子效率、半峰宽以及热稳定性,分别达到69%/18.4%,333 nm以及81.6%@423K。研究人员进一步将该荧光粉与蓝光LED芯片结合制备成小型近红外发光二极管,展示了优异的光电转换特性。该器件可以作为近红外光源可以用于夜视照明和生物穿透成像,同时它在在快速无损结构检测方面也表现出优越的性能。该工作为设计宽带近红外发射荧光粉提供了一种新颖的切入点,在工业检测和医疗诊断等实际应用方面具有指导意义。
  • 【瑞士步琦】利用近红外光谱技术实现冰淇淋品质的快速检测
    近红外光谱测定冰淇淋品质的快速检测近红外应用”1简介夏季到了,随着高温天气愈演愈烈,冰淇淋的消费热度不断攀升,冰淇淋是以饮用水、牛奶、奶粉、奶油(或植物油脂)、食糖等为主要原料,加入适量食品添加剂,经混合、灭菌、均质、老化、凝冻、硬化等工艺制成的体积膨胀的冷冻食品。不同人群对冰淇淋产品有着不同偏好,不同的配方会影响冰淇淋的口感以及营养价值,冰激凌富含优质蛋白质、乳糖、钙、磷、钾、钠、氨基酸、维生素等多种营养成分以及其他对人极为有益的生物活性物质,具有调节生理功能、平衡人体渗透压和酸碱度的功能,因此,冰淇淋在生产过程中也需要保证食品安全和配方标准。通过近红外光谱法测定冰淇淋的理化标准,可以快速判断产品的品质状况,在极短的时间内给出检测结果,为企业生产保驾护航。2应用设备及附件使用步琦 N-500 近红外光谱仪和液体测量池,搭配耐摔杯,将样品温浴至 40℃ 后将样品混合均匀,然后再将样品冷却至 20℃,通过样品的前处理之后,将样品放置检测窗口测量,得到稳定的检测光谱。生产技术人员能立即获得生产产品的各项参数指标,及时调整生产条件,从而有效地保证了产品的生产质量,同时也节约了生产的时间与费用的支出。▲步琦近红外光谱仪 N-500N-500 是一款傅里叶变化近红外,仪器具备较高的分辨率,同时配备各种检测附件,满足各类型样品的检测,在不到 20s 的时间内即可完成样品的扫描,同时给出干物质,蛋白质,脂肪等多个参数的含量。检测软件 NIRWare 软件界面友好、简洁,对普通操作人员的专业知识要求低,无需打开各种各样的菜单就可以进行光谱采集可出结果。定标软件 NIRCal5.0 具有多种定性和定量算法,功能强大。无论是软件还是硬件,都能够满足冰淇淋的快速检测需求。3采集样品,建立相关参数的定标模型随机选取酸奶样品并扫描样品,得到样品近红外吸收光谱,并建立相关理化指标的定标模型其中脂肪,蛋白质,干物质,脂肪,蛋白质的实际测量值和预测值具有较高的相关性,相关系数 R2 都达到 0.95 以上,三个指标的偏差值 SEC 分别为 0.59,0.30,0.11。▲干物质化学值与预测值的相关关系图▲脂肪化学值与预测值的相关关系图▲蛋白质化学值与预测值的相关关系图4结论通过近红外光谱法能够同时测定冰淇淋干物质,脂肪,蛋白质等多个指标,各项指标近红外光谱与原始化学测试的含量之间都具有较好的相关性,模型误差也满足日常的检测标准,更好的服务于您的日常工作,通过实时检测方式为工艺优化提供科学的依据,降低生产成本,提高生产效率。
  • 中药制药过程关键工艺阶段近红外在线监测研究
    2016年4月1日,聚光科技一站式智慧实验室作为协办单位盛装出席了2016广州国际分析测试及实验室设备展览会暨技术研讨会,并成功邀请到广东药科大学中医药研究院博士、中国仪器仪表学会近红外光谱分会理事、中国中药协会中药品种开发与培育专业委员会常务委员肖雪博士做研究报告。 肖雪博士在药品质量控制论坛上做研究报告 在2016广州药品质量控制论坛上,肖雪博士对“中药制药过程关键工艺阶段近红外在线监测研究”做了详细的报告,报告指出:“中药制药过程一般包括提取、浓缩、精制、配制、制剂等步骤,每个环节都对中药制剂的最终质量有着重要影响。目前,中药生产多手动操作,部分生产线上了自动化系统,对生产过程的参数进行主要控制,缺乏对生产过程关键性质的在线检测”。报告中提到:“近红外由于其明显的优势,非常适用于中药制药生产过程的在线监测。其研究团队针对数个中药品种的提取、柱层析、混配、干燥等关键工艺开展了近红外光谱技术的在线应用研究,取得了良好的社会效益和经济效益”。近红外光谱在线分析的优点: 分析速度快(毫秒、秒级); 样品基本不需预处理、操作简单; 无浪费、无污染,可非接触测量; 一次光谱扫描可测定多种成分和指标; 分析结果的统计准确度逼近标准方法; 工业上可以做到实时监控。中药质量控制的在线模式: NIR快速检测,适于inline、online分析; 相同的NIR光谱反映相同的化学成分及含量,NIR光谱用于中药质量定性定量分析,起到类似指纹图谱质量控制(包含多指标成分定量技术)的作用; NIR在线光谱结合智能计算技术可对多个指标成分的含量进行实时预测,对生产工艺进行在线诊断,及检测一些综合量如总氮、以及一些物理量如密度等,其检测范围比单纯的色谱分析更为广泛。 近红外光谱技术(NIR)是“多快好省”的绿色分析技术,是中药质量在线分析、智能控制的仪器基础。 SupNIR-1000系列便携式近红外分析仪是针对现场快速检测而设计的一款便携式分析仪,结构紧凑、体积小、内置充电电池、大容量存储设备和液晶显示模块。 SupNIR-2600系列快速油料品质分析仪是基于透射的测样方式,波长覆盖1000-1800nm。在石油行业、流通质检和科学研究等领域有着广泛应用。 SupNIR-2700系列多功能饲料/油料/谷物分析仪是基于漫反射的测样方式,波长范围覆盖1000-2500nm。在饲料生产、油料加工、谷物收购、育种研究等领域有着广泛的应用。 SupNIR-3000系列独创的光源平移技术,使得全盘扫描成为现实,无死角的样品检测。仪器检测校准准确度、重复性和再现性,满足《GB/T 24895-2010粮油检验 近红外分析定标模型验证和网络管理与维护通用规则》。 SupNIR-4000系列在线近红外分析仪适用于工业过程实时检测,波长范围覆盖1000-2500nm,以液体样品为测量对象,内置多通道光开关、恒温控制系统和液晶显示模块,实现多个测量点的检测。更多产品信息可关注聚光科技一站式智慧实验室!http://www.fpi-inc.com/jgzt/product.php?20/127
  • 徐可欣:埋头近红外技术25年
    近红外光谱分会汇集了众多来自不同学科,具有不同应用诉求的会员,对近红外技术有着各自的理解和期待。大家就一些共同关注的问题从不同角度进行交流是很好的事情。搞理论研究的一些朋友认为它是应用技术,原创少、难写出高水平论文、不适合大学做。一些搞技术的朋友则认为近红外技术的成功应用并不容易,有硬件问题、不受重视导致的缺乏资源、行业壁垒等。对这些问题我也有一些思考。  科学是发现,要认识世界,技术是发明,要改造世界。我认为近红外技术是多学科融合的领域,以物理学为基础,略偏于技术开发。而我们的近红外光谱分会应自成一学派,和而不同,有独创也要有包容。特别是在近红外技术应用领域,需要不同学科的协同合作。但是作为科技工作者首先要自己有一定的学识基础,概念清楚。近红外技术的内涵是什么?它的理论基础与应用开发的难点在哪里?这些话题应该是我们聚首讨论的重点。我非常支持学会发起的这次回顾和交流活动,愿将我个人的片面体会与大家分享。天津大学 精密仪器与光电子工程学院 徐可欣  一、我的近红外经历  我搞近红外不是科班出身,与近红外一脉相承的学科,理科有分子物理、工科有分析仪器,很多专家从博士课题就开始研究、接触近红外的问题了。我的硕士、博士研究方向属于几何量计量专业,1988年8月从天津大学精密仪器工程系博士毕业,课题是用光学方法测量热轧生产线上的棒钢直径,内容包括圆柱体周围高温温度场的干涉测量,光线在该温度场中传播路径的研究等,用的是可见光。毕业后除了1990年开始在日本搞了一年半温度控制的工作,近几年又做了些药械结合的发光免疫测量工作以外,其余25年间的主要工作是围绕近红外光谱测量方法及仪器展开的。从1992年4月起,我在日本开始了应用近红外光进行人体血糖浓度测量的研究工作。当初选择近红外作为手段,一是它有明显的不可或缺的优势,二是当时我们的研究合作伙伴持有近红外无创血糖测量方法的原始专利。当初感觉到光谱测量比起工件的几何量测量要复杂得多,要考虑到被测对象本身,测量人体性状的实时指标靠近前沿。但光谱信息有分子振动的理论支持,近红外光谱测量及化学计量学的方法都便于数学描述。我对于物理依据坚实且数学上可描述的工作有兴趣,同时感到开创性的研发正是我们搞测量及仪器的人施展的时候。也许我们那个年代读大学的人不太计较功利,更看重专业理想与使命感,就这么干下来,至今还持续着这方面的努力,属于屡败屡战吧。  当时日本的科研条件很好,比起国内来不可同日而语。我一头扎进项目 8年没动地儿、有些乐此不疲地沉浸在近红外技术研发的世界中。我的课题组先后购置了Perkin Elmar公司傅立叶变换原理的高性能研究型中近红外光谱仪(我认为目前也是科研级最好的),Brimrose公司的声光可调谐滤波器(AOTF)原理的近红外光谱仪(销售到日本的第一台)、BRAN-UEBBE的光栅型可见-近红外光谱仪(配有全自动进样设备)等。通过对各种分光原理的仪器的性能评价、适合各种测量方式(透射、扩散反射、ATR、积分球、光纤等)的系统构筑,对于光谱测量系统及其适应于各种测量需求的硬件准备上积累了多方面的经验。我在近红外领域从糖的单一成分水溶液到多成分混合样品在不同温度、浓度、光程下的基础光谱特性的研究,从脂肪乳、牛奶等模拟样品到血液样品,从动物到人体的光谱实际测量的一系列的实验研究,对于利用近红外光谱进行浓度测量、特别是测量在日常生活状态下的人体时,探索到了测量条件对于测量结果的影响和单一光谱技术的能力极限。从1996年开始,为了达到更高的光谱测量精度,我们开始自行开发出高精度AOTF光谱测量系统,达到了可以满足人体微量成分测量分辨率的水平。2000年我回到天津大学,至今的主要工作还是持续上述科研内容。由于我对于傅立叶分光方式相当肯定,也觉得一款精度高成本合理的傅立叶光谱仪具有广大的市场,而国内也具备开发这款仪器的条件了,两年前又启动了这个仪器的开发工作。这些年我从仪器用户到仪器产品开发、测量方法研发到高校的科研教学等几个不同角度实践了近红外技术的种种过程,体会了近红外技术的甜酸苦辣。在本领域搞研发这么长时间是因为至今在我要完成的任务中近红外光仍是不可或缺的手段。  我2000年回国后才接触到国内近红外科技圈的许多前辈,比如较早接触到了周学秋博士,后来在展览会见到了德高望重的陆婉珍院士和严衍录教授并得到了他们的鼓励,参与学会工作结识了袁洪福、梁逸曾等教授,还有一心扑在学会工作上的刘慧颖老师和现在为我们群主的年轻的褚小立博士等,他们的专家意识和一心为公的工作热情让我非常敬佩。近红外这一不可见的光线将学会和近红外群中的几百名成员连在了一起,说明了这一领域研发的广阔前景与日臻成熟的研发条件和经验得到了越来越广泛的认同。  二、一些体会  体会1:近红外光谱是关键技术,但也仅是必要条件之一。  近红外技术的开发优越性在哪里?大家知道光的最主要作用之一是作为信息的载体,首先近红外光携带了物质分子振动的信息,但最关键的是它能进入被测物质的内部并将信息携带出来,而其他波段的光或者因信息不足(如分子振动在可见),或者因被测物中多种物质(如水)的存在使得光无法进入其内部(如中红外光子没走几步就都被吸收了)。近红外光能进入样品内部并能携带够用的信息出来,在这一点是独具魅力的,这使得实现样品内部多成分浓度等信息的无损及快速检测成为可能。  为什么说近红外只是实现物质测量的有效手段之一,掌握它还不能满足实现目标的充分条件呢?我认为完成光谱应用至少还有以下几个必要条件:第一个是测量条件。光谱测量物质的浓度为间接测量的方法,需将测得的光谱值依照物理法则通过公式计算得到浓度,但物理法则的成立都是有条件的,如温度、光程、表面反射状态等。测量条件变化了公式成立的前提就得不到满足,它的保证往往不比近红外光谱测量本身容易。第二个是相关基础知识的把握。合理的光谱测量方法的设计和测量条件的保证往往建立在是否全面把握被测样品本身的物理性质,光与物质相互作用的实际行为之上。即包括吸收、散射、折射率变化等的规律。从简单的样品沉淀、分布不均、需均质等措施,到散射样品中光路的分布、散射的影响、及合理的测量光路的选择,往往需要振动光谱以外的综合知识与手段,也会涉及到深入的基础研究。第三是要具有充足可靠的建模用样品。光谱测量需要建立模型,通用可靠的模型往往需要大量有代表性、浓度经更高精度方法标定了的样品,这样的样品积累成本高,行业专门检测机构以外的人不易拿到。  体会2:近红外核心技术需要学问,其应用更具创新空间  我认为近红外自身的核心技术有三项。第一是可对近红外光谱的归属及性质进行解释的分子振动理论,第二是以化学计量学为基础的建模方法,第三是近红外光谱仪器。各领域的应用研究都是以此为基础展开的。即便分子振动理论比较成熟,但被测物质种类繁多,其振动光谱特性如何?除了基本振动外、近红外光谱常常观测的其倍频及合频振动如何?谱线被展宽、随温度等条件变化、其他共存物质间的影响等研究还有空间。光谱仪朝着小微型的方向发展更需要基础研究的支撑,即便成熟的傅立叶变换的光谱获得方式,其扫描干涉方法也不断创新。举一个例子,1996年我们在评价声光可调谐滤波器(AOTF)分光特性时发现+1级和-1级具有正交偏振的衍射光波长并不相同,其偏差随波长变化。经理论分析我们发现只有在入射光与晶体光轴成56度角时可使两者一致,进而提出了AOTF的等值点设计理论,很快就在创刊不久的OE杂志上发表了两篇文章。虽然我们并不知道在宽广的波段中能抽出两个波长相同但正交的光今后有什么实际需求,但这一情节说明做仪器时也能发现新知识。  应用中更需要创新。我们在用近红外光做人体血糖浓度测量研究时,希望在人体上找到没有糖浓度变化的部位来实现参考测量,当然不存在这样的部位。但是我们通过研究光在散射介质中的传播特性时先是发现了相距光源一特定出射距离的光不随被测部位介质中糖浓度变化的现象,进而认为这是由于吸收和散射的综合作用的结果,也就自然地提出了利用其作为参考测量的浮动基准的概念。组内其他老师又发现了存在不受样品散射系数变化的散射不敏感点,这有可能在散射样品上实现满足Lambert-Beer法则的测量,有可能使得透射测量的模型容易向散射样品测量中转换。这些测量方法的创新都是从应用近红外解决实际问题中挖掘出来的。近红外技术开发不但大有可为,也可以收获新发现。  三、入门近红外需要留意的  留意点1:首先要搞清光谱变化的物理原因  被测物质中的目标信息通过近红外技术是否足以被检测出来?有时光谱虽然随着被测物质的不同会有变化,但这个光谱上的变化并不一定是你感兴趣的物质成分的变化所引起的,也有可能来自其他成分或温度等测量条件的变化。有的痕量物质对近红外光线虽有吸收但引起的变化因光谱仪测量能力不够不足以被检测出,有的物质在这个领域就没有吸收,即便光谱表观随着不同的样品有了变化那也是一种伪相关,要特别注意。  留意点2:尽量尝试用定量的方法研究问题  最简单地,根据被测物质的吸收强弱和光谱仪的能力,可以估算出有可能实现的测量精度,反之根据目标可以提出对于仪器能力的要求。为了实现测量精度,往往需要根据掌握的散射介质中的路径、干扰成分、温度等的影响等来设计合适的测量光路以及参考测量的方案,而这些方法的优化和创新都离不开定量计算,大多也就是简单的数学分析手段,所以一开始就养成定量分析研究问题的习惯很重要。2005年课题组部分成员合影于天津大学
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制