当前位置: 仪器信息网 > 行业主题 > >

微型个人跟踪定位器

仪器信息网微型个人跟踪定位器专题为您提供2024年最新微型个人跟踪定位器价格报价、厂家品牌的相关信息, 包括微型个人跟踪定位器参数、型号等,不管是国产,还是进口品牌的微型个人跟踪定位器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微型个人跟踪定位器相关的耗材配件、试剂标物,还有微型个人跟踪定位器相关的最新资讯、资料,以及微型个人跟踪定位器相关的解决方案。

微型个人跟踪定位器相关的资讯

  • 我国首颗科普卫星亮相 将跟踪拍摄雾霾
    “我要出征了,咱们太空见!”今天上午,中国第一颗由中学生全程参与研制制作并主导载荷设计的科普小卫星完成出厂评审,在八一学校举行出征仪式。这颗卫星将由八一学校学生研制团队中的5名代表队员参与护送到发射场地,进行最后的联调试验。之后,卫星将在年底择期发射,完成自己的科普使命。  小卫星将由学生研制团队中的5名代表队员护送到发射场地  卫星定名“八一少年行”  长不足12厘米、宽约11厘米、高20厘米出头的小卫星上午一亮相,就引起了全场热烈的掌声。同时亮相的还有一个为其量身订做的蓝色盒子,据八一学校副校长朱凯介绍,这个盒子是由我国自主研制、享有自主知识产权的微小卫星分离装置,小卫星将与其一起升空。  这个小家伙将如何完成自己的科普使命呢?奥秘在其搭载的载荷上。据了解,结合最终实现的难度和意义等方面考虑,这颗定名为“八一少年行”的卫星的载荷最终确认为四种,分别是对地拍摄、无线电通讯、对地传输音频和文件以及快速离轨试验。卫星研制参与队员之一、来自八一学校高二的朱迅告诉记者,这四种载荷是队员们“头脑风暴”后精挑细选、经过可行性论证的产物。“一开始在我们队员中间征集了十几种载荷方案,但是经过专家点评、指导后,我们慢慢淘汰掉了不合理的方案,剩下了现在的四种载荷。”  卫星将跟踪拍摄雾霾  对地拍摄功能的实现依靠的是航天相机。卫星升空后,可以从几百公里的高空中俯瞰地球。在未来可开展活动的畅想方案里,八一学校会将卫星拍摄的图片公布,让同学们猜测卫星拍摄的图片来自地球上哪个位置。同时,同学们还将通过学习卫星轨道知识,指令卫星进行定时拍摄,从而得到拍摄特定坐标所需要延迟拍摄的时间,最终验证是否达到预期效果。此外,队员们还希望通过卫星上的相机,跟踪拍摄雾霾和台风等天气现象,从而进行一定气象观察数据的积累。  搭载《东方红》和校歌  卫星的无线电通讯载荷,则承担了交流沟通“中转”站的功能。这项功能可以实现数据和语音的转发,为后期各个学校之间的连通、学校业余无线电教学以及与其他业余无线电爱好者的通联打下基础。  让人期盼的是,明年是八一学校建校70周年校庆,即将升空的小卫星上也提前寄托了孩子们对于母校的祝福。原来,此次卫星搭载了对地音频和文件传输载荷,当接收到地面遥控的指令之后,搭载在卫星上的音频文件就可以通过下传“解码”后进行播放。我国第一颗人造卫星播放过的《东方红》、八一学校建校70周年校歌等音频文件将伴随卫星一同升空。  设计试验清理太空垃圾  在载荷的选择上,孩子们关注的目光还更长远。通过系统的学习卫星知识,学生研发团队的队员们了解到,空间卫星领域发展至今,空间碎片的数量迅速增长 而随着空间碎片数量的积累,使得卫星与空间碎片相撞的几率不断增加,卫星碎片又会碰撞形成新的卫星碎片 如果不及时采取措施,卫星事业的发展将会被这种潜在的多米诺效应所严重阻碍。因此,队员们想借着此次卫星发射的时机,为太空垃圾的清理贡献一定的力量。  根据预想,当确定卫星处于寿命末期时,就下指令进行快速离轨试验,使原先的迎风面对准太阳、迎阳面迎风,从而增加迎风面积,同时尝试控制磁力矩器,使其与地磁场相互作用,使卫星尽快离轨。朱迅告诉记者,在这个过程中,可以通过实时监测卫星的运行状态,通过观察轨道参数等数据,验证所采取措施对于帮助卫星快速离轨的可行性。  带动各校参与航天科普  据八一学校相关负责人介绍,学校目前正在进行卫星地面站的建设,在卫星发射升空后将开始为卫星的信息接收和处理进行服务。同时,以八一学校的测控地面站为主节点,带动其他学校地面从站,一起参与航天科普。
  • 激光跟踪仪:在大尺寸高端装备中大显身手
    导语:激光跟踪仪作为大尺寸空间几何量精密测量仪器,由于具有较高的技术门槛,国内企业又缺乏深厚的经验积累,导致该产品长期被国外垄断。历经十余年的研发与实践,中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队终于在激光跟踪仪的技术领域有了与国际先进技术比肩的突破性进展。本文将带您了解这个研发团队的激光跟踪仪和它在精密制造中扮演的关键性角色。说起激光跟踪仪,高端装备制造企业对它大概并不陌生,它是一种大尺寸空间几何量精密测量仪器,是大型高端装备制造的核心检测仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点。检测的装备体积越大越能显示出此类产品的优越性,所以它更多出现在航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域等先进制造领域。激光跟踪仪是激光干涉测距技术、激光绝对测距技术、精密测角技术、光电探测技术、精密机械技术、精密跟踪技术、现代数值计算理论等各种先进技术的集大成之作,需要突破百米的测量范围、毫秒级的测量时间、微米级的测量精度以及动态实时跟踪测量等各项技术难点,技术门槛非常高,需要长期的经验积累,几乎不存在弯道超车的可能性。目前,世界范围内主要有美国FARO、美国API、瑞士Leica三家公司生产销售激光跟踪仪,我国当前尚无成熟的激光跟踪仪产品销售。因此,攻克关键技术难点实现激光跟踪仪国产化迫在眉睫。组建团队 攻关激光跟踪仪技术壁垒由于激光跟踪仪的重要性、特殊性和不可替代性,国家层面高度重视激光跟踪仪的自主研发。中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)一直致力于实现激光跟踪仪的国产化。该团队激光跟踪仪的研发历史已有十余年,并阶段性取得骄人成绩:(1)2011年中科院微电子研究所 (原中科院光电研究院激光跟踪仪研发团队)在国内率先开展激光跟踪仪整机研制;(2)2013年推出国内首台原理样机,初步形成具有一定规模的、专业稳定的整机开发团队,引领国内激光跟踪仪的整机与系统关键技术发展,积极追赶国际前沿;(3)2017年推出国际首台三自由度飞秒激光跟踪仪样机,从技术层面上实现了跨越式发展;(4)2021年研制成功国内第一台六自由度激光跟踪仪样机,并通过技术指标测试;(5)2021年三自由度激光跟踪仪进入到产业化阶段,立足海宁集成电路与先进制造研究院,组建了数十人的激光跟踪仪产业化团队,建立激光跟踪仪小批量生产线。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利32项(已授权21项),软件著作权6项,发表研究论文60余篇。2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果荣获中国机械工业技术发明特等奖和中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图1所示。除此以外,该团队还可以根据用户的要求定制解决方案,更加贴近客户的使用需求,解决用户的“非标”问题。图1 ICAM-LT-3DOF型激光跟踪仪图2 ICAM-LT-6DOF型激光跟踪仪干货满满 技术原理深度剖析当三自由度激光跟踪仪工作时,如图2所示,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图3 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,如图3所示,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。图4 六自由度激光跟踪仪原理图多项技术突破 跻身国际先进该团队历经10余年的垂直深耕,在激光跟踪仪领域相继突破了高速激光干涉测距、高精度绝对测距、精密跟踪转台设计、高精度测角、动态伺服跟踪、目标快速识别锁定、多源融合姿态测量、系统误差检测与补偿等多项关键技术,在80m范围内,跟踪测量速度大于4m/s,具有良好的目标快速识别锁定能力,测量精度达到15μm+6ppm,技术性能跻身国际先进行列。优势突出 大尺寸精密测量显身手在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,在实践中可以为为航空航天、汽车制造、重型机械制造、重工与船舶、科学研究、能源、医疗等领域等行业提供可靠的技术保障。(1)航空航天领域在航空航天制造领域,飞行器具有外形尺寸大、外部结构特殊、部件之间相互位置关系要求严格等特点,飞行器的装配通常是在各部件分别安装后再进行总体装配,在部装的某些环节和总装的整个过程中都需要进行严格的几何检测。激光跟踪仪测量的现场性和实时性以及它的高精度可以满足飞机型架和工装的定位安装、飞机外形尺寸的检测、大型零部件的检测以及飞机维修等工程测量需求。例如,测量一架大型飞机的内外形尺寸,首先要确定整架飞机的空间坐标,保证所测量的外形尺寸空间点都在同一坐标系中,可以布置足够的激光跟踪仪测站,这些测站保证了飞机上、下、左、右、前、后等整个外形都在激光跟踪仪测量范围内。其次要保证飞机处于静止状态,测量过程中不能产生移动。激光跟踪仪在每个测站测量某一个区域的飞机外形坐标点,将各个测站下的飞机外形坐标连接起来就构成整架飞机的外形尺寸坐标,对这些点进行处理可形成飞机外形的数字模型。激光跟踪仪扫描范围大,采集数据速度快,数据采集量大,精度高,大大提高了飞机测量的工作效率。(2)汽车制造领域在汽车制造领域,激光跟踪仪用于车身检测、汽车外形测量、汽车工装检具的检测与调整。通过激光跟踪仪采集汽车不同部位的点云数据,再进行拼接得到完整的汽车曲面点云数据,利用三维造型软件得到汽车三维模型。另外,汽车生产线需要以最高级别的自动化程度和准确性进行定期检测,以进行重复性和适产性测试。激光跟踪仪这种移动坐标测量设备适合工业现场使用,在检测工程中使汽车生产的停工期大幅缩短。(3)重型机械制造领域在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪仪。在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸一致,同时将零部件物理模型迅速数字化,得到的数字化文件可以用各种方法处理从而得出测量结果。在工件模具生产中,激光跟踪仪对工件模型进行扫描测量后建立数据模型,由数据模型生成可被加工中心识别的加工程序,从而加工出模具。三维管片和模具测量系统也是激光跟踪仪的典型工程应用之一,通过跟踪测量成品管片各个表面上的空间点坐标,经过坐标系转换和纠正将表面数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,便可判断成品的质量是否合格。与传统的检测方法相比,激光跟踪仪测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,不仅工作效率高,而且大大节省了人力物力。(4)重工与船舶领域在造船工业领域中,激光跟踪仪常用于舰船外形尺寸检测、重要部件安装检测与逆向工程等。例如,船舶制造公司对于甲板都有着极高的要求,每一个拼接块的连接点都必须恰好能够和另外一片拼接块严丝合缝对接,且甲板外侧的外观必须与船体形状严格吻合,如此才能体现船舶的质量和性能。激光跟踪仪能够实时地对长度以及横向曲率进行测量,代替笨重的模板进行现场装配与检测,可使生产时间节约60%-70%,大大提高了船舶的生产效率。(5)能源领域在能源领域,激光跟踪仪常用于大型零部件的高精度加工、尺寸检测和辅助维护。例如,水力发电站中,新的涡轮发电机投入工作之前,必须获得精确的涡轮机转子形状,以便后续的勘测;当进行水力发电站的检测时,需要对在役涡轮机转子开展数字化测量,从而确定涡轮转子的磨损情况。在风力发电站中,对大型风电轮毂叶片外形尺寸进行高精度测量是保证风电轮叶片正常工作的关键。激光跟踪仪能够完成定轴轴径、同轴度、轮毂连接孔位置度的高精度测量,并且仪器轻便灵活、精度高、测量范围大、能够现场测量,已成为风电行业的必然选择。(6)科研领域在科研领域中,激光跟踪仪在粒子加速器的定期检测与调整、重要核心部件安装检测以及机器人制造校准中发挥了重要作用。例如,机器人在工厂机械安装、马达驱动安装、夹具重组等整个生产周期过程中必须保持规定的精度,才能称为高性能工业机器人。机器人设计尺寸与实际生产尺寸的偏差往往较大,主要是由于机械公差和部件安装误差所引起的。在校准机器人的实际应用中,一般有两个工作测量组,一组负责装配机器人,一组则负责检测校准安装部件,激光跟踪仪安置在这两个测量组之间。操作人员通过计算机控制定位,激光跟踪仪可以监测两个工作小组的测量工作。在一组操作人员利用激光跟踪仪检测机器人配件的同时,另一组工作人员负责装配经过检测的工件,装配后再利用激光跟踪仪进行校准。这样,大幅提高了机器人生产安装的工作效率,也节省了人力物力。(7)医疗领域在医疗领域中,质子医疗机在治疗时最重要的是需要准确定位患者体内癌细胞位置,通过控制治疗床移动,将患者需要治疗的部位送到有效的治疗区域内,才能够进行准确有效的治疗。因此医疗机在安装调试时,要求系统能够控制机械臂,将末端工装精确地移动到理论位置。这对测量方案提出了更高标准的要求:能够准确调整病灶中心的位置,X、Y、Z方向偏差要求小于0.1 mm;能够调整连接法兰的姿态精度,RX、RY、RZ要求小于0.1°,同时检测、分析效率要尽可能高。在质子医疗机安装调试过程中,激光跟踪仪可以提供简单便捷的应用方案。首先通过测量固定在墙体上的定位点,建立离子源坐标系,在软件中将机器坐标系定位到离子源坐标系统;通过坐标转换得出病灶中心与工装上定位孔的坐标关系,解算出定位孔的坐标。其次,将反射球放置在定位孔上,通过监视窗口功能查看当前位置偏差,实时调整工装,使偏差逐渐缩小至公差要求。该团队研发的激光跟踪仪已在卫星天线变形与位姿测量技术、飞机大型部件装配测量技术、船舶分段对接测量技术、高能加速器准直调节测量技术、工业机器人现场校准技术等领域开展了一系列应用研究,并取得了良好的社会效益。制造业中的智能装备、复杂结构制造、高精密制造和装配的兴起,对于测量系统提出了精度更高、智能化程度更高、适应性更强的要求。激光跟踪仪作为最先进的三坐标及姿态精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。由于激光跟踪仪应用范围广、测量效率高、测量精度高,该仪器在高端制造领域扮演的角色越来越重要。激光跟踪仪的国产化,对于我国的制造业,尤其是高端制造领域,具有十分重大的意义。借势而起 稳扎稳打培育市场目前,国家政策一直在主张推进仪器的国产化,实现国产仪器与进口仪器的同台竞争。中国仪器仪表行业协会与中国和平利用军工技术协会在此方面做了大量的工作,这对国产激光跟踪仪的市场化推进是极大的政策性优势。在国防军工行业,激光跟踪仪的应用主要在导弹的测量、潜艇的测量、战斗机的装配、军舰的测量、天线的装配及外形检测,大型结构件测量检测等。由于进口的高端激光跟踪仪含有摄像头装置,这对我国国防军工行业造成了安全隐患。另外,由于进口激光跟踪仪不对我国展示源代码,不排除进口激光跟踪仪含有潜在的功能,这对我国部分商业秘密也带来了风险。如此种种安全隐患更是急需国产激光跟踪仪技术的开发与产品的应用。这是提供给国内企业的机会更是挑战。该团队也将借助他们国际领先的技术优势、可靠的数据链优势,以及强有力的价格优势和维修服务优势,不遗余力的为客户提供高质量的定制化产品和服务。结束语随着中国先进制造业和高端装备的飞速发展,以激光跟踪仪为代表的高精度、数字化、智能化的精密检测设备已经成为这些领域企业占领行业制高点的制胜法宝。一方面,激光跟踪仪在先进制造和高端装备领域的关键作用日益凸显,成为制造行业的核心仪器,国内对激光跟踪仪的需求量激增,国产化呼声高涨;另一方面,近年来西方对我国的技术限制和打压,使激光跟踪仪的采购和售后具有一定的不确定性,这将影响我国高端装备的发展,所以国家对激光跟踪仪等关键核心仪器的国产化大力支持。显而易见,未来激光跟踪仪的产业化具有极为光明的市场前景。
  • 杨宗银:绘制光谱仪微型化“全景图”
    走进浙江大学信息与电子工程学院智能传感所的百人计划研究员杨宗银的办公室,可以看到电路焊接平台上,电烙铁、电路板、各种零配件一应俱全,办公室俨然是一座实验室。杨宗银(左)指导学生做实验 王崇均/摄“回到浙大任教后,我对自己的办公室做了规划,圆了儿时的梦想。”杨宗银说,“很享受制作机械电路的过程,比打游戏有趣。”继2019年在《科学》杂志刊发世界上最小光谱仪成果后,今年3月,杨宗银作为第一作者撰写的综述,又在线发表于《科学》。该文章首次系统性总结了光谱仪微型化的技术方案和发展历程,引起国际科学界高度关注。150次失败后的成功 把心路写进实验记录本光谱仪是测量光谱线中各个波长强度的设备,可以对物质成份和结构进行测知,广泛应用于科研、生产和生活中。比如一个苹果是否成熟、含糖量如何,通过光谱仪的“火眼金睛”就能一目了然。杨宗银研制的世界上最小光谱仪,直径在一百微米以下,不到头发丝直径的一半。“这么小的尺寸很适合装进我们的手机中,将来或可通过拍摄进行食品安全和健康的监测。”他在谈及未来应用时说,“再过几个月,团队研制的微型高光谱成像样机就将面世。”这样一个比头发丝直径还小的器件,杨宗银前前后后研究了8年。攻读博士期间,杨宗银每天都是剑桥大学电子工程系实验楼最晚走的那个人,但每一次回寝前都对实验结果不甚满意。 “早起努力!” “新idea明天试一下… … 又失败了。”打开杨宗银的实验笔记,上面用英文密密麻麻写着各类实验优化的细节,但每天都有几句中文格外醒目。“刚开始做实验是非常有新鲜感的,但是失败次数越多自己也会感到很无力。”他说,于是自己便在笔记中记下实验中的灵光一闪,或者勉励的话,“每天都期待好的结果,同时又期待新的一天快快到来。”“当时就写了整整三大本笔记本。”杨宗银说,偶尔也会心灰意冷,但是内心的那份热爱总能驱使自己去找失败的原因再尝试一次。2018年8月,历时3年,历经150次失败,实验终于成功,他的论文于第二年5月投稿《科学》杂志,7月便被接受。评审专家评价这个工作是“集合了世界上最先进的材料合成工艺,配上最高超的器件制作水准、实验技巧和巧妙的算法,是一个惊艳之作。”荣誉随之而来,杨宗银获得了剑桥大学国际生全额奖学金和国家优秀自费留学特别优秀奖,还被选为剑桥大学国王学院研究员,是学院第一位华人研究员。交叉与蜕变 兴趣是最好的老师杨宗银这份愈挫愈勇的劲头,在他求学浙大期间就已经打下基础。在浙大读硕士生的杨宗银,在世界上首次“生长”出了彩虹渐变的半导体纳米线。这种材料可以发出五颜六色的光,非常漂亮。这份光亮的背后是他近一万个小时的不断试错改进的艰辛。凭着兴趣与热爱,他在浙大学习时打开了一片新天地。在机械工程学院完成本科学业时,杨宗银就把机器人、机械设计等领域的各类竞赛都参加了一遍,乐在其中,还拿过全国大学生机械创新设计大赛一等奖。浙江大学机械工程学院教授顾大强,在担任杨宗银导师期间,经常教导他“要用最巧妙的机构完成一件复杂的事情”。这种思维训练对杨宗银来说终身受益。后来杨宗银被保送到浙大光电科学与工程学院攻读硕士。他回忆道:“交叉融合的求学经历为我后来研究提供了便利条件,当面临没有现成的设备时,可以直接自己做一个。”“我从小就喜欢做点小发明,比如随着光照自动响的闹钟、光控灯,或者把家里收音机、闹钟等拆开,研究其中的机理。为此也没少挨父母批评。”杨宗银笑称。在硕士期间,杨宗银除了生长出彩虹渐变半导体纳米线,还基于这种材料开发了世界最宽光谱可调谐激光器。就像收音机不同的调台,能够听到不同的节目,不同的激光波长能够对物质进行不同层面的探测。读文献到写文献 绘制一个领域“藏宝图”现如今,传统的光谱仪由于体积庞大已经无法满足日益发展的光谱检测技术的需求,然而,减小光谱仪的分光元件或探测器尺寸将导致光谱分辨率、灵敏度及动态范围显著下降。光谱仪的微型化是目前科技界面临的一项重大技术挑战。回到浙大任职后,杨宗银的研究是将微型光谱仪进一步往应用端迈进。“光电技术终究还是要落实到百姓的实际应用中才更有意义”。其中,向全球科研探索者们展现微型光谱仪领域的“全景”也成为其工作计划之一。杨宗银认为,只是把技术原理和研究进展介绍清楚是远远不够的,还要有全局观,用一个清晰的脉络把全文串起来。一篇好的文献综述,就是认识一个领域的主心骨,是一张“藏宝图”。“我把整个领域几百篇文献捋了好几遍,了然于胸,最后像介绍老朋友一样把它们串起来讲。”杨宗银介绍,“在后续的修改中,我和另外几位合作者讨论了几十次,不厌其烦地对文章进行精雕细琢。记得我在准备文章图片的时候盯着屏幕好几天就为了不让它们有一点瑕疵。”如何用好“藏宝图”?杨宗银也有自己的独家秘籍。担任博导的他,会给新生“打样”,面对面教学生如何读文献管理文献。“每读完一篇文献后,在软件里做个标签,这样日积月累,大量的文献就能理出一个脉络,后续根据这些标签迅速找到需要的文献。”从前沿探究的坚持不懈,到带领学生探索的孜孜不倦。他还会手把手指导学生如何搭建和使用实验仪器,也乐在其中。“如果说,科研的成就感在于做出独创的贡献和价值,”杨宗银说,“那么带学生就是自我价值的延伸。”
  • 科技部科学仪器重大专项评审专家谈激光跟踪仪技术及应用
    激光跟踪仪技术及应用周维虎1,周培松2,石俊凯11. 中国科学院微电子研究所2. 海宁集成电路与先进制造研究院一、引言激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。目前,国际上主要有瑞士Leica、美国API和美国FARO三家公司生产销售激光跟踪仪。其中Leica公司凭借自身百年光学仪器制造优势,全球市场占有率最高,目前该公司主推产品型号为AT960,该仪器最大测量距离为80m,空间坐标测量精度为15μm+6μm/m,数据输出速率为1000点/秒;API公司激光跟踪仪小型灵巧,安装和校准快捷,移动方便,便于携带,目前主推产品为Radian系列,其中Radian Pro最大测量距离可达80m,三维坐标测量精度为为10μm+5μm/m;FARO公司财力雄厚,研发投入高,销售网络强大,目前主推产品为Vantage系列,其中VantageS6最大工作范围为80m,角度测量精度为为20μm+5μm/m,数据输出速率为1000点/秒。自1997年开始,国内天津大学、清华大学、中国科学院光电研究院等科研院所先后对激光跟踪测量技术及设备进行了相关研究,其中天津大学最先对单站式结构跟踪仪坐标测量系统进行了研究,并开展了测量功能实验,为激光跟踪仪的后续开发奠定了基础;清华大学对组合式多自由度跟踪测量系统进行了研究,基于三组跟踪测量系统构建空间位置姿态测量系统;中国科学院光电研究院团队(该团队于2018年划转至中科院微电子研究所)自2009年开始研究激光跟踪仪,在中科院装备项目、国家重大仪器设备开发专项、国家重点研发计划、装备发展部、国防科工局等项目的支持下,经过10余年研发和技术积累,实现了激光跟踪仪的自主研制,打破了国外技术封锁和垄断。当前,激光跟踪仪技术正向高精度、小型化、多功能、智能化等方向发展。激光跟踪仪是机器人校准的理想仪器,可以配合机器人实现高精度智能制造。高端激光跟踪仪含有大范围超清摄像头,用于测量过程断光后靶标的自动寻找和测量续接。除此之外,激光跟踪仪结合不同的测量靶标还可以实现隐藏点测量、工件局部形貌高密度扫描测量以及六自由度测量。随着激光跟踪仪在航空航天、舰船、核工业等大型装备制造中的重要性日益凸显,国内用户对仪器国产化的要求越来越高,随着中美贸易战的加剧和发达国家对我国高技术产品的打压,激光跟踪仪国产化替代势在必行。二、激光跟踪仪测量原理激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。2.1三自由度激光跟踪仪如图2.1所示,当激光跟踪仪工作时,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图2.1 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。2.2 六自由度激光跟踪仪图2.2 六自由度激光跟踪仪原理图六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。三、激光跟踪仪产业和市场分析随着我国制造业产业升级和科技领域的迅猛发展,高端制造、精密制造、智能化制造成为我国未来工业和科技领域的主流方向,激光跟踪仪等精密测量仪器具有巨大的应用前景。在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,激光跟踪仪应用领域主要包括航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域。根据国外市场研究机构,2017年全球激光跟踪仪市场规模为2.595亿美元,2020年全球激光跟踪仪市场规模为3.438亿美元,预计2023年有望达到5.216亿美元,2028年有望达到8.364亿美元,市场主要驱动力来自质量控制和检验、对准、逆向工程和跨行业校准的需求。按应用细分,质量控制和检验占据最大的市场份额。这是因为激光跟踪仪被越来越多地用于监控和测量跨行业的质量,如汽车、航空航天和国防。为确保客户的要求和规格,质量控制和检验是汽车、航空航天和国防工业的重要参数。为了做到这一点,这些行业主要依靠激光跟踪仪来检查和监测元器件、组装件和成品质量。激光跟踪仪在建筑产品测量、过程优化和通过快速精确测量提供解决方案方面具有精确度高和易便携等不可替代的优势。按行业细分,汽车、航空航天和国防有望引领整个激光跟踪仪市场。在航空航天和国防行业中,激光跟踪仪用于三维测量、逆向工程、武器系统、轴与导轨对准、雷达罩剖面图、飞行器传动装置,以及许多其他测量产品和服务。在航空航天行业中,激光跟踪仪最常应用于夹具部件检查和机翼部件装配。在汽车行业中,激光跟踪仪被用于自动化生产线校准、铰接线和车身部件对准、大型面板和装配主体面板测量、逆向工程、部件验证表面测量、工业机器人调整、变形和动态测量、质量控制和检验等。按地区细分,欧洲占据激光跟踪仪市场的最大份额。为了满足生产过程中的质量和安全要求,欧洲的原始设备制造商(OEMs)早已经开始使用激光跟踪仪。在汽车行业中,激光跟踪仪也得到了多种应用,例如质量检查、对准和校准。因此,日益增长的汽车行业对激光跟踪仪需求也在逐渐增加。德国、英国和法国有望成为欧洲激光跟踪仪市场的三大贡献国。亚太地区市场预计将获得最高的复合年增长率,该地区市场增长的关键驱动因素是市场参与者对新技术的日益关注和采用,这一地区已成为全球投资的焦点和业务拓展的机会。四、国产激光跟踪仪新成果及应用国内开展激光跟踪仪研发主要有中国科学院微电子研究所周维虎团队、深圳中图仪器公司、海宁集成电路与先进制造研究院等,近年来在国家和地方相关部门的支持下仪器研发取得了快速发展,主要体现在以下方面:1)与绝对测距技术相融合,提高仪器的测量精度和测量方便性。激光跟踪仪都是基于球坐标的测量系统,在没有绝对测距之前,没有测量信息冗余,测量过程中任意一个参数丢失,都直接影响测量数据的准确性。新一代激光跟踪仪都增加了激光绝对测距功能,这使得激光跟踪仪的测量信息有了冗余,保证了测量的精确性,在测量过程中丢失部分信息依然可以完成测量工作;同时,由于被挡光时不需要重回基准点复位,这也提高了使用方便性和测量效率。2)与视觉测量系统相结合,实现六自由度测量功能。激光跟踪仪与视觉测量系统相结合不仅能精确定位目标的三维位置,而且还能通过配合特定的靶镜对目标的空间三维姿态进行检测。不仅如此,视觉测量系统还可以识别目标靶镜,保证光路中断后可以通过视觉方式重建测量光路,且无需用户介入。3)测量靶镜多样化。针对三自由度、六自由度等测量需求需要提供不同的测量靶标,另外,仪器还配有隐藏点靶标、扫描测头等附件,使仪器具有隐藏点测量功能和局部区域扫描功能,不仅使仪器测量复杂结构的能力大大提高,还拓展了系统的通用性。4)自我诊断功能。精密测量要求仪器在各种测量环境下保证稳定的工作状态,所以仪器在测量中对自身状态的检测和诊断显得特别重要,自我诊断能在系统工作时实时显示系统的状态,排除微振、升温、光强不足等因素带来的影响。5)飞秒激光频率梳测距技术。飞秒激光频率梳绝对测距技术能够实现大量程、高精度和快速测量三者的完美统一,是激光测距领域的重大突破,有望为大型零部件外形测量、大型设备装配对接,尤其是未来空间任务提供新的技术支撑,在激光跟踪测距、高精度激光雷达测距、卫星编队位置测量、导航星间链路测距、深空探测、引力波测距等领域具有广阔的应用前景。6)组网协同测量技术。针对大型复杂设备装配测量中被测目标尺寸较大或者存在遮挡,单测站难以完成测量任务的难题,通过激光跟踪仪多次设站或者利用多台跟踪仪组网可实现对于大型复杂装备的测量。组网测量技术基于空间多公共点约束,建立激光跟踪仪多测站平差模型,利用平差的权重、约束条件等进行多测站空间位置和姿态的解算,同时求解出所有被测点的三维坐标,得到空间被测物体关键尺寸和特征信息的最优解。7)功能强大的测量软件。激光跟踪仪软件是测量系统的重要组成部分之一,系统软件通过TCP/IP通讯与硬件进行实时数据交互,对硬件上传的数据进行处理和分析,并控制硬件系统执行相应的测量等控制指令。软件系统为用户操作提供人机交互接口,通过数据库管理可实现用户对测量数据的编辑和输入输出等操作,在此基础上通过三维显示操作可面向用户实现测量数据和拟合数据的直观显示和交互操作。为了进一步提升系统测量精度,激光跟踪仪软件系统利用误差补偿算法对激光跟踪仪测距、测角和几何误差进行实时修正,结合激光跟踪仪硬件系统实现大型复杂工件或设备的高精度测量。近年来由中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)致力于实现激光跟踪仪国产化。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利45项(已授权32项),软件著作权5项,发表研究论文130余篇。 2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果于2020年分别荣获中国机械工业技术发明特等奖、中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图4.1所示。图4.1(a) ICAM-LT-3DOF型激光跟踪仪图4.1(b) ICAM-LT-6DOF型激光跟踪仪ICAM-LT-3DOF型激光跟踪仪与ICAM-LT-6DOF型激光跟踪仪的主要技术指标如表4.1和表4.2所示。表4.1 ICAM-LT-3DOF型激光跟踪仪主要技术指标指标参数最大测量范围(半径)80m空间坐标测量精度15μm+6μm/m水平角测量范围±320°垂直角测量范围-45°~+60°数据采集速度1000 点/秒跟踪速度>4m/s表4.2 ICAM-LT-6DOF型激光跟踪仪主要技术指标指标参数空间坐标测量范围(半径)80m空间坐标测量精度15μm+6μm/m姿态测量范围(半径)25m姿态测量精度≤0.05°水平角测量范围±320°垂直角测量范围±145°角度测量误差≤1’’数据采集速度1000 点/秒跟踪速度>4m/s截至目前,该团队研制的国产激光跟踪仪已在航天五院514所、航空304所、武船公司、中科院高能所、中科院国家空间科学中心、航天科工集团三院三十一所等多个科研院所和企业进行了应用。1)航天领域应用图4.2 激光跟踪仪在航天五院514所应用激光跟踪仪在航天五院514所进行了如下应用:① 紧缩场结构测试:完成紧缩场实验室结构测量,测得最大反射面尺寸10m×15m,最大测量距离35m,最高公差1mm;② 卫星壳体焊接工装结构测量:完成典型零件测量,测得工件尺寸1.5m-3m,测量距离:10m,最高公差0.2mm。在上述测量工作中,使用激光跟踪仪突破了传统测距在测程、精度和测量速度方面难以协调的瓶颈,提高了卫星和空间有效载荷的制造及组装精度。2)航空领域应用图4.3 激光跟踪仪在航空304所应用激光跟踪仪在航空304所进行了如下应用:① 航空工装测试:坐标不确定度达0.05mm,满足航空制造对精度溯源要求;② 飞机水平飞控部件姿态测量:位置传感器测量精度在线校准精度达0.018mm。在上述测量工作中,使用激光跟踪仪主要解决了两个问题:① 解决了大尺寸航空工装测量问题,提供了可供溯源的依据和测量基准,为数字化制造提供了可靠的计量保证;② 解决了飞机水平飞控部件姿态测量问题,实现了飞机部件姿态高精度高效率数字化测量,为航空制造安全提供了保障。3)船舶领域应用图4.4 激光跟踪仪在武船公司应用在船舶领域中,激光跟踪仪在武船公司进行了如下应用:① 与API激光跟踪仪测试数据进行比对,验证本激光跟踪仪的准确性、可靠性、稳定性、可操作性等综合性能;② 对船台建造过程中的分段结构外形尺寸、装配尺寸、位置偏差等进行了测量,突破了大尺寸测量仪器三维坐标测量方法关键技术。根据应用结果,在船舶领域应用激光跟踪仪,建立了相应的应用方法/规程,可逐步推广到船舶建造其他阶段,为船舶建造精度控制提供新的方向。4)大科学装置应用在大科学装置方面,激光跟踪仪在中科院高能所进行了如下应用:① 对北京正负电子对撞机储存环部分设备进行了准直调整,调整精度达0.1mm;② 在中国散裂中子源建设过程中,对隧道控制网进行测量,相对点位测量精度0.08mm,绝对点位测量精度0.05mm。图4.5 激光跟踪仪在中科院高能所应用在上述测量测试工作中,使用激光跟踪仪主要解决了两个问题:① 利用标准杆进行空间测量,大跨度搭接测量控制网,提高了控制网测量精度和效率;② 采用边长法进行高精度设备标定,彻底消除了测角误差的影响,提升了大科学装置安装精度。此外,该团队研发的激光跟踪仪还广泛应用于机器人磨削、航天钻孔及铣削、机器人校准等场景中,如图4.6所示。图4.6 激光跟踪仪在机器人场景的应用机器人磨削(左),航天钻孔及铣削(中),机器人校准(右)随着现代工业技术的迅猛发展,高端制造业对设备尺寸及空间位置精度要求越来越严苛,激光跟踪仪作为最先进的三坐标精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。(点击图片查看专题)
  • 指尖大小的小型光谱仪即将开启新应用——滨松微型光谱仪C12666MA
    大概5年前,拇指大小的小型光谱仪(MS系列)上市发售并显著拓宽了光谱仪的应用。滨松公司现在已经研发了比以前更小的低成本微型光谱仪。该微型光谱仪是一个只有5克重量的超小模型。尽管性能和我们现在的小型光谱仪(MS系列)大部分相同,但是微型光谱仪更加紧凑坚固,且价位低廉。应用包括仍存在巨大的未开发市场的消费电子领域。为了更多了解微型光谱仪的研制背景、潜在应用和未来发展前景,我们采访了参与研发产品的4名成员。滨松微型光谱仪C12666MA 世界上最小的光谱仪你们是如何着手把一个指尖大小微型光谱仪的想法转化为产品的? Shibayama:光谱仪的通常形象是安装在实验室工作台上的一个大设备,但我们坚持研发的目的在于开发一种尽可能小的高度便携可移动产品。大约10年前,我们发布了掌上电脑大小的小型光谱仪(TG系列),大概5年前,发布了拇指大小的小型光谱仪(MS系列)。然而客户仍要求我们让它们尺寸更小价位更低。因此,我们着手工作并研发这种新的微型光谱仪。 Yokino:与宽度小于75px的小型光谱仪(MS系列)相比,微型光谱仪大概2厘米宽,在体积和重量上比MS系列的小型光谱仪小和轻约50%。这种新型微型光谱仪的封装用是金属制作的,而MS系列是塑料封装。具体来说,我们换了一个高度可靠和坚固的密封封装(见注)。这让我们在保持与MS系列相同性能的同时大幅的降低了成本和尺寸。注意:密封封装是金属-金属或者玻璃-金属焊接的气密性封装,能够保护内部组件并隔绝湿度。 客户尺寸更小的需求背后有什么背景吗? Ito:考虑到尺寸和价格,传统光谱仪主要用于测量和工业应用,不用在个人或者私人层面。然而,市场上小型光谱仪(MS系列)的出现改变了这一概念,我们随之开始研究更小更便宜的光谱仪。但在尺寸和价位方面需要更进一步,以使它们在消费电子市场得到广泛应用。 Hikita:小型光谱仪可以内置在紧凑设备中。例如,我们将看到室内与智能手机或医疗设备相连接的新应用。 Yokion:考虑到室内和室外使用,我们决定采用高坚固、可靠的金属来制造密封封装,而不使用水分可以穿过的塑料封装。 市场上有类似产品吗? Hikta:是的,只考虑尺寸,有类似产品。然而严格来说,它们并不相同,因为我们的微型光谱仪让光线从狭缝通过,而竞争产品使用光纤传导光。 Ito:所以如果你规定相似产品为允许直接输入光的光谱仪,那么我们的产品是世界上最小的,并且具有高性能。我们的产品很可能在市场上开拓了一个全新的领域。 采用MEMS和图像传感器制造技术实现紧凑尺寸和高性能相比目前的产品,你们如何能使其尺寸更小? Shibayama:通过重新审视光学设计和组成部分,优化MEMS技术并简化结构,我们实现目标。此微型光谱仪包括三个部分,一个光线可以进入的狭缝,一个光谱衍射光栅和一个探测光的图像传感器。我们利用MEMS技术制造这些部分,因此MEMS技术是我们可以制作更小的微型光谱仪的主要因素。更具体地说,我们利用MEMS干法刻蚀技术形成让光通过到达图像传感器的狭缝,还使用了称为纳米压印的精细成型技术形成衍射光的光栅。 Yokino:在光谱仪尺寸和性能特点间有一种权衡关系。当尺寸变得更小,分辨率和性能都下降。我们的微型光谱仪采用光在光谱仪内部反射一次后再衍射的方法,并在尺寸和性能方面都具有尽可能好的表现。 降低成本过程中你们如何解决遇到的问题? Shibayama:小型光谱仪(MS系列)使用一个玻璃透镜作为光传输的介质。如果玻璃本身的尺寸精度可以保持,玻璃能够提供为光谱仪所要求的精度。然而,玻璃透镜的成本高,所以我们不得不放弃玻璃镜片并找到满足要求的低成本替代品。 Yokino: MS系列的小型光谱仪通过纳米压印在玻璃上形成一个光栅。然而,如果纳米压印失败,玻璃透镜将无法使用,造成的问题成本更高。所以我们重新评估将光栅作为独立单元制造来代替在玻璃透镜上形成光栅的可能性。这将减少生产光栅的玻璃,在降低成本上也是有效的。 微型光谱仪中使用了何种型号的传感器? Yokion:微型光谱仪使用一个集成了入射狭缝的图像传感器。此类型传感器可使光谱仪减小到指尖大小。入射光经光栅衍射后,短波长光到达入射狭缝位置很近。如果狭缝和传感器是分离的,需要极高精度的定位,否则会降低光谱性能。和传感器集成的狭缝不存在此定位问题。 Shibayama:我们还给集成了入射狭缝的图像传感器增加了截止滤波片(见注)。在生产小型光谱仪(MS系列)时,我们在金属接线的玻璃接线板上安装图像传感器,并在此玻璃接线板上制造截止滤波片。但是对于微型光谱仪,我们不用玻璃而是利用中空来传导光,所以用这种方式为图像传感器制造截止滤波片是不可或缺的工序。 Ito:除了接收光的基本功能,由于具有入射狭缝和截止滤波片,图像传感器还有其他价值。我们的独特优势是同时具有图像传感器技术和MEMS技术。注:截止滤波片是能够去除多重反射光和衍射光等杂散光分量的滤波片,却不影响被测光。 为客户应用开发提供理想性能参数你们预期此微型光谱仪具有何种应用? Ito:我们目前收到有关颜色的应用需求,比如便携式色度计和打印材料的颜色检测等。从小型光谱仪(MS系列)到微型光谱仪也增加了与定点医护工作相关的手持医疗设备的咨询。使用小型、低价、高可靠性的防潮封装证明是成功的。 Hikita:我们的立场是帮助客户开发用于消费电子产品的光谱仪应用。因此我们认为我们的主要任务是为客户提所需性能参数以使光谱仪应用成为现实。 你们可以定制生产设计来满足客户需求吗? Ito:我们首先验证客户所需性能参数和预计数量,如果需要大量产品,我们之后会提出符合要求的设计。当收到产品需求,初始阶段我们的工程师会讨论研究。 你们可以举一个和客户讨论的具体例子吗? Hikita:比如针对糖尿病患者的葡萄糖监测仪的讨论。如果一个产品能够利用光来诊断葡萄糖水平,这将解除患者巨大负担。为了使这种产品成为现实,我们首先验证必须的特性参数,之后做必要协调和调整。 Yokino:我们在去年九月份举办的科技展览——2013光子展览上介绍了微型光谱仪,收到了来自参观者的积极反馈。我们准备了与智能手机相连接的概念模型来验证诸如颜色分析等应用,引发在光谱分析和其他应用中使用的特定讨论。通过向客户展示模型本身并引导他们联想实际中如何应用,我们获取了重要的结果。 Ito:光子展览上有很多对微型光谱仪与智能手机相耦合感兴趣的客户。也有一些特别的咨询,比如是否能够用于调整剧场照明或者在教学中是否能够教导孩子光波长。小型尺寸引发人们思考,它是否可以用于此处呢也同样激发人们关于新应用的想象。大多数情况下,是先有一个目标应用,再生产满足此应用的产品,但是微型光谱仪却更可能是创造新应用。你可以它称为反向工作的现象。不去管它究竟能完成什么,我认为它确实拓展了未来可能性。 从今年三月份官方发布后,反响如何? Hikita:官方发布前,去年底我们已经能够提供样品,销售了大约100个样品,其中很多被国外购买。一些客户评价,尽管外形小巧,仍然可以保证精确测量。还有其他诸如此类的积极反响。 Ito:今年9月份,我们的新13号大楼将在主要工厂投入生产。我们将在那里做产品研发并建立车载装置和移动终端大规模生产系统,比如基于MEMS技术的微型光谱仪,同时提出解决日渐增加的客户需求。(工厂现已投产) 你们从这里预测到什么样的发展趋势? Shibayama:尽管微型光谱仪现在已经做到可以放到指尖上的尺寸,我们仍接到来自客户做到更小更薄的需求。目前反射光束一次的方法已经达到此尺寸的极限,所以为了满足更多的需求,我们不断地把新的想法融入设计来开发更小的设备。 Hikita:直到现在我们都采取只提供硬件,把电路和软件开发留给客户。但是如果我们也为客户解决这些额外的请求,我们的产品将会更易使用。我是负责模块开发领域,所以我们现在准备提供包含必要电路的软件和模块产品,而不仅仅是设备级。 滨松微型光谱仪MS系列和新型微型光谱仪C12666MA比较规格MS系列光谱响应范围340 to 780 nm640 to 1050 nm340 to 750 nm光谱分辨率(FWHM, 最大值)15 nm20 nm14 nm总像素数256 pixels256 pixels256 pixels测量条件Ta=25 ℃典型值 Ta=25 ℃ (特殊说明除外)典型值 Ta=25 ℃ (特殊说明除外)重量5g9g9g大小20.1 × 12.5 × 10.1 mm27.6 × 16.8 × 13 mm27.6 × 16.8 × 13 mm 更多滨松微型光谱仪信息,敬请点击表格按钮。
  • 环保部督查组遭排污企业各种阻挠跟踪
    今天是我国中东部地区遭遇此次灰霾污染的第5天。虽然卫星遥感数据表明,空气污染较重的面积较昨天已经缩小,但根据现有气象条件,直到2月27日冷空气来临,京津冀等重污染地区才有可能走出灰霾。   在此轮灰霾袭击我国100多万平方公里国土面积的过程中,环保部正好派出12个督查组对京津冀及其周边地区的污染防治情况进行督查,本报也派出记者随一路督查组采访。   多个督查组发现,一些地区的企业仍在肆意排污、处于无组织排放状态,个别企业污染严重,影响了区域环境质量。甚至在有的地方,企业居然阻止环境执法人员进厂检查,还有的对督查组的车辆尾随、跟踪。   每次灰霾污染大规模袭来,环保部都会分析形成的原因,排在首位的都是污染排放量大、强度高。   谁是污染的贡献者?此前,环保部环境监察局局长邹首民曾表示,机动车污染和秸秆焚烧等问题对灰霾污染的贡献不容忽视,但当前大气污染的来源中,企业违法生产依然是污染的主要组成部分。   也正是基于这样的判断,2013年10月,环保部决定,在这个冬天的整个采暖期,都将派督查组督促京津冀及周边地区的大气治理。   在一二月陆续结束的各地两会上,至少有26个省(区、市)在各自的政府工作报告中提出&ldquo 治理大气污染&rdquo 的民生目标,&ldquo 铁腕治污&rdquo 、&ldquo 背水一战&rdquo 等军令状不绝于耳,可就是在政府这样的高压治理态势以及民众对蓝天白云的迫切要求下,居然还有不少企业肆意违法排污。   此轮重污染发生时,环保部华北督查中心正负责对河南郑州的大气治理情况进行督查。在当地,督查组在对企业进行执法检查时,被多家企业拒之门外。   督查组成员回忆,在新郑福华钢铁集团门口,当环保执法人员要求进厂检查时,被门卫以工厂已经停产为由拒绝。对执法人员提出的任何问题,门卫均以&ldquo 不知道&rdquo 来回复。后据督查组了解,该企业并没有停产。   同样的情况出现在新郑市恒益瓷业,当督查人员进入厂区找到相关人员要求进行执法时,被工作人员强行要求离开,并声称他们&ldquo 不搞环保&rdquo 。   在登封市铝庄碳素厂,当执法人员进厂,准备对违法行为进行拍摄取证时,遭到了企业负责人的阻扰。   环保部污染防治司和华北督查中心组成的联合督查组在河北邢台进行执法检查时也数次遇阻。   据介绍,在邢台的建滔(河北)化工有限公司厂外,督查组的执法车被从厂区冲出来的车堵住,车上下来的保安将执法人员团团围住。在纠缠了20多分钟后,保安才离去。   包括本报记者随访的去河北邯郸的督查组在内的多路执法人员都有被企业车辆跟踪、尾随的经历。督查组的一位负责人对记者说,一些心虚的排污企业,一看有北京号牌的车辆在厂区附近转悠,就会采取尾随、跟踪、驱赶的做法。   12个督查组的检查报告陆续完成,&ldquo 企业无组织排放&rdquo 成为郑州、石家庄、天津、德州、唐山、邢台等地区共同存在的问题,而且有一些企业是当地屡查屡犯的污染大户。   在唐山,督查组查看了46家工业企业,其中34家存在各类环境问题,其中的河北鑫达钢铁有限公司因为多台烧结机未按期完成脱硫设施建设曾被环保部门要求停产。但目前这家企业依然在没有脱硫设施的情况下,将大量污染物直排大气。   在北京周边,也有违法排放的企业。环保部华北督查中心在北京郊区进行检查时就发现,房山区太行前景水泥有限公司(金隅集团下属公司)除尘设施不运行,在熟料转运过程,大量粉尘无组织排放,场地积灰严重 牛栏山酒业公司三台锅炉烟气均未实质脱硫,数据造假 燕京啤酒北厂锅炉烟气密封不严,存在漏气情况。   环保部科技司司长熊跃辉曾多年在执法一线工作,每当有人和他讨论灰霾污染成因时,他总会提及责任不到位,其中既有政府部门监管责任不到位,也有企业治理污染的责任不到位,当然也有一些地方执法监管的不到位。   来自环保部的监测数据显示,2月23日,京津冀及周边地区中,有18个城市出现重度及以上污染,其中邢台、邯郸、阳泉、张家口、石家庄、衡水和德州7个城市空气质量为严重污染。
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p   从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。 /p p   限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。 /p p   对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。 /p p   大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title=" 1.png" width=" 600" height=" 429" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 429px " / /p p style=" text-align: center " 图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自 sup 5 /sup /p p   然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。 /p p   一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。 /p p   于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title=" 2.png" / /p p style=" text-align: center " 图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献 sup 8、9、10 /sup 和 sup 11 /sup /p p   之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题: /p p   1 如何将飞秒激光有效的导入微型显微镜 /p p   2 如何在微型显微镜内进行扫描/图像重建 /p p   3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。 /p p   4 如何有效的对荧光信号进行收集 /p p   5 如何使整个系统在动物剧烈运动时仍保持稳定 /p p   6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /p p   本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title=" 3.png" width=" 600" height=" 470" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 470px " / /p p style=" text-align: center " 图3 FIRM-TPM示意图,来自 sup 12 /sup /p p   新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title=" 4.png" width=" 600" height=" 437" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 437px " / /p p style=" text-align: center " 图4 FIRM-TPM实物图,来自 sup 12 /sup /p p   树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title=" 5.png" width=" 600" height=" 283" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 283px " / /p p style=" text-align: center " 图5 三种模式在结构学成像中的成像质量对比,来自 sup 12 /sup /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title=" 6.png" / /p p style=" text-align: center " 图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自 sup 12 /sup /p p   从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。 /p p   纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。 /p p   然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。 /p p   该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。” /p p   1. Denk, W., Strickler, J. & amp Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990). /p p   2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005). /p p   3. Zipfel, W.R.,Williams, R.M. & amp Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003). /p p   4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013). /p p   5. Minderer, M.,Harvey, C.D., Donato, F. & amp Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016). /p p   6. Hamel, E.J., Grewe,B.F., Parker, J.G. & amp Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015). /p p   7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011). /p p   8. Helmchen, F., Fee,M.S., Tank, D.W. & amp Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001). /p p   9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & amp Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008). /p p   10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009). /p p   11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009). /p p   12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017). /p p   13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & amp Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008). /p
  • 中国科学院大连化学物理研究所微型分析仪器研究组(105组)博士后招聘启事
    微型分析仪器研究组(105组)博士后招聘启事一、研究组简介中国科学院大连化学物理研究所微型分析仪器研究组(105组)主要从事微型色谱仪器、光学检测器的研制与开发,以及复杂样品的前处理技术和分离联用技术的研究。实验室拥有多种先进的仪器设备,为课题组的科学研究提供了良好的技术保障。在国家科技部、国家自然科学基金委、中国科学院和辽宁省科委的支持下,我组一直承担着国家和地方重大项目中的应用基础理论和应用技术的研究。先后研制出有自主知识产权的高纯氩气、高纯氧气等高纯气体分析仪;自主知识产权的微型特种气相色谱仪(已随天和核心舱和问天实验舱发射升空,至今稳定运行);自主知识产权的微光探测器(已出口美国,替代光电倍增管)和高灵敏荧光检测器;样品前处理材料及装置等,多项产品已经实现产业化。目前,我组申报的“辽宁省深海组分探测技术重点实验室”和“大连市深海探测仪器技术创新中心”获批挂牌,面向国家海洋战略重大需求,开展深海原位探测仪器研制开发工作,已研制出我国首套4500 m级深海原位气相色谱仪和系列深海原位荧光传感器并海试成功。研究组主页:www.105.dicp.ac.cn二、招聘岗位及人数招聘岗位:博士后招聘人数:3人三、研究方向及招聘条件研究方向:色谱仪器关键部件研制、特种环境气体传感器、样品前处理技术和装置招聘条件:化学、环境、仪器仪表、化工、材料、物理等专业。四、待遇保障1、研究所为在站博士后(统招统分)缴纳社会保险(五险),建立住房公积金。2、博士后薪资:年收入(非在职中国籍)28万起(包括五险一金、生活补助和地方补助,生活补助和地方补助发放期2年,全口径人员成本);在站博士后平均年收入(税前)33.4万左右。※年收入中包括五险一金、地方补助等,地方支持政策以最新文件为准。3、优秀博士后支持计划:每年组织2-3次遴选,资助等次:10万/年、20万/年、30万/年(资助期2年)4、外部支持:(1)出站博士后留辽工作奖励:30万(博士毕业学校全球排名前200);(2)国家博新计划:20万/年(国内博士);(3)国际博士后交流计划引进项目:20万/年(外籍、海外博士);(4)中科院PIFI项目(外籍博士):25万/年。(5)博士后同事业编制职工同等享受子女入托待遇,子女可进入中国科学院幼儿园,出站入职后子女可进入大连理工大学附属小学(综合排名全市前十)和大连理工大学附属中学(综合排名全市前十)就读。(6)设施完备的博士后公寓,可以拎包入住。星海园区和能源学院园区(提供免费班车,单程40-50分钟)设有博士后公寓(房间户型以入住时实际情况为准)。(7)同事业编制职工同等享受用餐补助和免费健康体检。※地方支持政策以最新文件为准五、未来发展中科院大连化物所出站博士后可以优先留所工作,并为其提供具有竞争力的薪酬待遇和发展空间:博士后即为特别研究助理,出站后留所工作不受招聘竞争性比例限制,通过考核后择优入事业编制。1、中科院大连化物所出站博士后留所工作,具有事业编制身份,缴纳五险二金【职业年金、公积金】。2、符合申领条件者,研究所给予20万元购房补贴;对于具有国内外知名大学授予的理工科博士学位或博士后出站人员,经大连市人才认定,给予30万元安家费。3、中科院大连化物所出站博士后留所工作(博士毕业学校全球排名TOP200),可享受辽宁省优秀博士后来辽工作奖励30万。4、中科院大连化物所博士后出站时,可申请“大连化物所优秀青年博士人才计划”,择优评选,可直接聘为副研究员,研究所给予100万元科研启动经费,并提供50万元个人租(购)房补贴。5、中科院大连化物所博士后出站时,可申请“中科院大连化物所国际英才计划”,择优评选,由研究所提供资助,公派前往国际知名大学、科研机构学习交流。资助金额20万—40万/年,资助期1—3年。※地方支持政策以最新文件为准六、研究组组长简介耿旭辉,中科院大连化学物理研究所研究员、微型分析仪器研究组组长,辽宁省深海组分探测技术重点实验室主任。长期从事高灵敏小型荧光检测器及应用研究,在Analytical Chemistry等期刊上发表论文25篇,授权发明专利35项。主持国家重点研发计划课题、国家重大科学仪器设备开发专项课题、中科院科研仪器设备研制项目。带领团队,研制出系列我国首套4500 m级深海原位荧光传感器,在印度洋和南海海试成功,灵敏度比国外同类产品高数倍;研制出我国首套黄曲霉毒素荧光检测器,灵敏度比国外同类产品高数倍;研制出高灵敏小型荧光检测模块,在非洲猪瘟检测和新冠病毒抗体检测中应用。系列荧光检测装备经成果鉴定为国际领先水平。入选国家万人计划青年拔尖人才、中国科协青年人才托举工程、中科院特聘核心研究岗位、辽宁省“兴辽英才计划”青年拔尖人才;获中国仪器仪表学会青年科技人才奖、天津市科技进步一等奖、大连市技术发明一等奖;任中国仪器仪表学会青工委副主任委员、分析仪器分会副秘书长、中科院青年创新促进会工程与装备分会秘书长;The innovation和Journal of Analysis and Testing青年编委。七、招聘方式有意向的申请人请将申请材料(个人简历,代表性论文)发送至耿旭辉老师。联系人:耿老师联系方式:0411-84379590,15042442584,xhgeng@dicp.ac.cn通讯地址:中国辽宁省大连市沙河口区中山路457号大连化物所生物楼
  • Neuron︱利用微型化双光子技术揭示“摆烂躺平”背后的神经环路机制
    世上无难事,只要肯放弃。你是否也遇到连绵不断花样百出的工作挑战曾经想要摆烂躺平?社会竞争压力越来越大,打工人是“扶我起来,我还能肝”,还是“大胆躺平,妥妥摆烂”,这成为当下社会讨论的焦点。科学家们试图从科学的角度帮助阐述这个问题。既往研究表明,在充满挑战的情况下,个体可能会锲而不舍以实现期望的结果,甚至每次尝试后会更加努力。但是经过多次重复失败后通常会导致个体放弃或者躺平。哺乳动物的大脑如何在挑战性经历中做出从主动出击到摆烂躺平的决定,仍然是一个未解决的问题。目前的人类影像学资料表明,前额内皮质、扣带皮质、背外侧和腹外侧前额皮质、眶皮质、颞-顶区和前扣带回可能会参与放弃的决策过程。但是,支持这种适应性决策的确切神经解剖学和神经化学基础尚未阐明。2023年6月23日,复旦大学脑科学研究院Nashat Abumaria(那德)老师和顾宇老师团队合作于国际著名期刊Neuron发表题为“A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice”的研究论文。在本研究中,作者发现投射到眶额叶皮层(OFC)内GABA能神经元的去甲肾上腺素能神经元是关键的调节因素。利用微型化双光子成像技术(FHIRM-TPM)和其他在体记录手段,作者发现自由行为小鼠OFC中去甲肾上腺素的减少和α1受体的下调,减少了驱动动作行为所必需的GABA能神经元的数量和活性,从而导致行为转变,促使个体在反复结果不可控的状态中做出从行动模式切换到放弃行动模式的决定。作者首先构建了两种从行动模式到放弃行动模式的小鼠模型。在第一个模型中,将小鼠暴露于3天的足底电击。从第1天到第3天,小鼠行为从跳跃和转圈等行动模式为主逐渐转变为放弃行动模式。在另外一个模型中,将小鼠暴露于3天不可逃脱游泳中,从第1天到第3天,小鼠行为从攀爬和转圈等行动模式为主逐渐转变为放弃行动模式。图1:两种动物模型中小鼠从行动模式到放弃行为模式转换过程作者随后通过药物操作手段排除了血清素、多巴胺等对于该行为模式的调控,并发现去甲肾上腺素能神经元的激活和抑制调节了这种行为转变。作者进一步通过顺行示踪和逆行示踪的手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射。OFC神经元接受蓝斑核去甲肾上腺素能输入;蓝斑核去甲肾上腺素能神经元逆行投射到OFC,主要与抑制性神经元形成连接。光激活OFC去甲肾上腺素能神经元后可增加行动模式,抑制该神经元导致放弃行动模式的发生增多。图2:示踪手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射为了在活体动物细胞水平上提供进一步的探究,作者使用微型化双光子成像技术(FHIRM-TPM)对模式动物自由行为下OFC GABA能神经元的实时活动进行了成像。在实验时间过程中跟踪同一群细胞,发现这群细胞整体钙信号逐渐下降,与从行动模式到放弃行动模式的行为转变一致。GABA能神经元活性的降低不是由于光漂白或其他成像伪影,因为在行为训练的3天内基线荧光信号保持相似(没有下降)。作者通过对细胞水平的详细分析发现,并非所有OFC GABA能神经元都对实验有反应。除了降低细胞的总体活性外,作者观察到在实验时间过程中响应的GABA能神经元百分比逐渐降低。图3:微型化双光子成像揭示行为转变期间OFC中的GABA能神经元活动作者随后利用多通道电极,光遗传学刺激,药物刺激等实验手段进一步验证了该发现,OFC GABA能神经元(接受去甲肾上腺素能输入)通过促进行动模式和防止向放弃行动模式的转变来调节行为转换。长时间接触无法控制的结果会导致去甲肾上腺素浓度逐渐降低和OFC中α1受体的下调,两种因素共同导致维持行动模式所必需的OFC GABA能神经元的数量和活性减少,最终使得行为模式转变为放弃行动模式。在这项研究中,作者建立了两种小鼠在长时间经历不可控结局时的行为转变模型。使用这些模型来定义OFC中去甲肾上腺素、α-1a肾上腺素受体和GABA能神经元活动的释放如何调节这种行为。结合微型化双光子显微镜在细胞水平进一步探究这种适应性决策的确切神经解剖学和神经活动基础机制。这些发现为面对反复失败的个人行为(例如戒烟机制)提供了见解,并为该领域的进一步研究提供了易于操作的模型。希望随着该领域的进一步深入研究,对“躺平摆烂”神经机制的更多认识,或许将帮助我们更科学地设立奋斗目标,更积极有效地应对无法掌控的困难,在更多的挑战中都能百折不挠兵来将挡水来土掩。【参考文献】Li, C., T. Sun, Y. Zhang, Y. Gao, Z. Sun, W. Li, H. Cheng, Y. Gu and N. Abumaria (2023). "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron.
  • 思看科技三维扫描仪配件新品——TrackProbe 跟踪式硬测系统发布!
    标题1:思看科技新品TrackProbe 跟踪式光笔测量系统正式发布!标题2:三维扫描仪丨思看科技TrackProbe 跟踪式光笔测量系统正式发布!2023年10月26日,思看科技(SCANTECH) 正式发布TrackProbe跟踪式光笔测量系统。TrackProbe跟踪式光笔测量系统,实力进阶,超越想象,以无畏探索之势,洞见测量边界,开启自由灵活的全新三维测量体验之旅。TrackProbe 跟踪式光笔测量系统,由手持式测量光笔i-Probe和新一代光学跟踪器i-Tracker 组成,专为计量级精度测量量身打造。整个系统凭借其高精度、高便携性和高易用性的特点,能轻松应对大范围、远距离及复杂严苛环境的测量需求。 面对生产车间现场,从夹具调装到基准划线测量、从小型零部件到大型工件如工程机械结构件尺寸检测,TrackProbe跟踪式光笔测量系统都能随时随地、无所拘束地开展高精度三维测量。 广泛可扩展的测量范围 搭配具有超远可视范围的跟踪器i-Tracker,i-Probe测量光笔标准工作距离为6m,单站最远测量距离可至10m,实现大型项目一站式高精度三维测量。性能强大 精密计量 凭借高精度的光学传感器技术和算法性能,能够精确地探测和测量被测对象的几何特征及形位公差。测量范围在49.0m³ 范围内,体积精度可达0.089mm;28.6m³ 范围内,体积精度可达0.067mm;10.4m³ 范围内,体积精度可达0.049mm。深度隐藏点测量 i-Probe长500mm(不含测针长度),结合先进的算法技术,即便遮挡部分靶点也能精准探测,轻松获取基准孔、隐藏点等关键部位的三维数据,大大拓展测量区域,测量更灵活,尤其适合汽车零件、航空部件等复杂内部结构、管道、孔洞以及异形工件等的测量。接续测量 轻松转站 在跟踪器可视范围内,光笔可以自由地从一个位置移动到另一个位置,跟踪器能够实时追踪光笔的位置和姿态,并将其映射到对应的坐标系统中,从而保证测量的连续性,无需重新追踪光笔。基于先进的软件和定位算法,i-Probe只需少量标记点即可实现轻松转站,大大提升了转站的便捷性,简化了测量流程,对于远距离、大尺寸工件数据获取优势显著。灵活便携 测量无束缚 手持探测光笔,无需固定安装,可以轻松被带至任何零部件位置,测量任意尺寸的物体。两种传输模式,按需选择。无线模式,摆脱传统硬测设备受机械结构或线缆的束缚,为现场测量提供更大的灵活性;面对特定使用场景,可选择有线模式,满足数据安全特殊要求。结合TViewer软件能自动统一扫描数据与硬测数据于同一坐标系,实现扫描测量和接触式测量之间无缝切换,测量过程更流畅。多元场景 稳定掌控 整机轻巧便携,性能稳定可靠,不易受震动、温度、湿度、光线等外部因素影响,结合动态测量功能,可以实时计算并校准位置偏差。在复杂车间现场或户外环境也能保持高精度动态跟踪测量,无论是复杂曲面、高精度零件或是大型结构件都能实现精准三维测量。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 国务院进一步支持小型微型企业健康发展
    国务院关于进一步支持小型微型企业健康发展的意见 国发〔2012〕14号 各省、自治区、直辖市人民政府,国务院各部委、各直属机构:   小型微型企业在增加就业、促进经济增长、科技创新与社会和谐稳定等方面具有不可替代的作用,对国民经济和社会发展具有重要的战略意义。党中央、国务院高度重视小型微型企业的发展,出台了一系列财税金融扶持政策,取得了积极成效。但受国内外复杂多变的经济形势影响,当前,小型微型企业经营压力大、成本上升、融资困难和税费偏重等问题仍很突出,必须引起高度重视。为进一步支持小型微型企业健康发展,现提出以下意见。   一、充分认识进一步支持小型微型企业健康发展的重要意义   (一)增强做好小型微型企业工作的信心。各级政府和有关部门对当前小型微型企业发展面临的新情况、新问题要高度重视,增强信心,加大支持力度,把支持小型微型企业健康发展作为巩固和扩大应对国际金融危机冲击成果、保持经济平稳较快发展的重要举措,放在更加重要的位置上。要科学分析,正确把握,积极研究采取更有针对性的政策措施,帮助小型微型企业提振信心,稳健经营,提高盈利水平和发展后劲,增强企业的可持续发展能力。   二、进一步加大对小型微型企业的财税支持力度   (二)落实支持小型微型企业发展的各项税收优惠政策。提高增值税和营业税起征点 将小型微利企业减半征收企业所得税政策,延长到2015年底并扩大范围 将符合条件的国家中小企业公共服务示范平台中的技术类服务平台纳入现行科技开发用品进口税收优惠政策范围 自2011年11月1日至2014年10月31日,对金融机构与小型微型企业签订的借款合同免征印花税,将金融企业涉农贷款和中小企业贷款损失准备金税前扣除政策延长至2013年底,将符合条件的农村金融机构金融保险收入减按3%的税率征收营业税的政策延长至2015年底。加快推进营业税改征增值税试点,逐步解决服务业营业税重复征税问题。结合深化税收体制改革,完善结构性减税政策,研究进一步支持小型微型企业发展的税收制度。   (三)完善财政资金支持政策。充分发挥现有中小企业专项资金的支持引导作用,2012年将资金总规模由128.7亿元扩大至141.7亿元,以后逐年增加。专项资金要体现政策导向,增强针对性、连续性和可操作性,突出资金使用重点,向小型微型企业和中西部地区倾斜。   (四)依法设立国家中小企业发展基金。基金的资金来源包括中央财政预算安排、基金收益、捐赠等。中央财政安排资金150亿元,分5年到位,2012年安排30亿元。基金主要用于引导地方、创业投资机构及其他社会资金支持处于初创期的小型微型企业等。鼓励向基金捐赠资金。对企事业单位、社会团体和个人等向基金捐赠资金的,企业在年度利润总额12%以内的部分,个人在申报个人所得税应纳税所得额30%以内的部分,准予在计算缴纳所得税税前扣除。   (五)政府采购支持小型微型企业发展。负有编制部门预算职责的各部门,应当安排不低于年度政府采购项目预算总额18%的份额专门面向小型微型企业采购。在政府采购评审中,对小型微型企业产品可视不同行业情况给予6%-10%的价格扣除。鼓励大中型企业与小型微型企业组成联合体共同参加政府采购,小型微型企业占联合体份额达到30%以上的,可给予联合体2%-3%的价格扣除。推进政府采购信用担保试点,鼓励为小型微型企业参与政府采购提供投标担保、履约担保和融资担保等服务。   (六)继续减免部分涉企收费并清理取消各种不合规收费。落实中央和省级财政、价格主管部门已公布取消的行政事业性收费。自2012年1月1日至2014年12月31日三年内对小型微型企业免征部分管理类、登记类和证照类行政事业性收费。清理取消一批各省(区、市)设立的涉企行政事业性收费。规范涉及行政许可和强制准入的经营服务性收费。继续做好收费公路专项清理工作,降低企业物流成本。加大对向企业乱收费、乱罚款和各种摊派行为监督检查的力度,严格执行收费公示制度,加强社会和舆论监督。完善涉企收费维权机制。   三、努力缓解小型微型企业融资困难   (七)落实支持小型微型企业发展的各项金融政策。银行业金融机构对小型微型企业贷款的增速不低于全部贷款平均增速,增量高于上年同期水平,对达到要求的小金融机构继续执行较低存款准备金率。商业银行应对符合国家产业政策和信贷政策的小型微型企业给予信贷支持。鼓励金融机构建立科学合理的小型微型企业贷款定价机制,在合法、合规和风险可控前提下,由商业银行自主确定贷款利率,对创新型和创业型小型微型企业可优先予以支持。建立小企业信贷奖励考核制度,落实已出台的小型微型企业金融服务的差异化监管政策,适当提高对小型微型企业贷款不良率的容忍度。进一步研究完善小企业贷款呆账核销有关规定,简化呆账核销程序,提高小型微型企业贷款呆账核销效率。优先支持符合条件的商业银行发行专项用于小型微型企业贷款的金融债。支持商业银行开发适合小型微型企业特点的各类金融产品和服务,积极发展商圈融资、供应链融资等融资方式。加强对小型微型企业贷款的统计监测。   (八)加快发展小金融机构。在加强监管和防范风险的前提下,适当放宽民间资本、外资、国际组织资金参股设立小金融机构的条件。适当放宽小额贷款公司单一投资者持股比例限制。支持和鼓励符合条件的银行业金融机构重点到中西部设立村镇银行。强化小金融机构主要为小型微型企业服务的市场定位,创新金融产品和服务方式,优化业务流程,提高服务效率。引导小金融机构增加服务网点,向县域和乡镇延伸。符合条件的小额贷款公司可根据有关规定改制为村镇银行。   (九)拓宽融资渠道。搭建方便快捷的融资平台,支持符合条件的小企业上市融资、发行债券。推进多层次债券市场建设,发挥债券市场对微观主体的资金支持作用。加快统一监管的场外交易市场建设步伐,为尚不符合上市条件的小型微型企业提供资本市场配置资源的服务。逐步扩大小型微型企业集合票据、集合债券、集合信托和短期融资券等发行规模。积极稳妥发展私募股权投资和创业投资等融资工具,完善创业投资扶持机制,支持初创型和创新型小型微型企业发展。支持小型微型企业采取知识产权质押、仓单质押、商铺经营权质押、商业信用保险保单质押、商业保理、典当等多种方式融资。鼓励为小型微型企业提供设备融资租赁服务。积极发展小型微型企业贷款保证保险和信用保险。加快小型微型企业融资服务体系建设。深入开展科技和金融结合试点,为创新型小型微型企业创造良好的投融资环境。   (十)加强对小型微型企业的信用担保服务。大力推进中小企业信用担保体系建设,继续执行对符合条件的信用担保机构免征营业税政策,加大中央财政资金的引导支持力度,鼓励担保机构提高小型微型企业担保业务规模,降低对小型微型企业的担保收费。引导外资设立面向小型微型企业的担保机构,加快推进利用外资设立担保公司试点工作。积极发展再担保机构,强化分散风险、增加信用功能。改善信用保险服务,定制符合小型微型企业需求的保险产品,扩大服务覆盖面。推动建立担保机构与银行业金融机构间的风险分担机制。加快推进企业信用体系建设,切实开展企业信用信息征集和信用等级评价工作。   (十一)规范对小型微型企业的融资服务。除银团贷款外,禁止金融机构对小型微型企业贷款收取承诺费、资金管理费。开展商业银行服务收费检查。严格限制金融机构向小型微型企业收取财务顾问费、咨询费等费用,清理纠正金融服务不合理收费。有效遏制民间借贷高利贷化倾向以及大型企业变相转贷现象,依法打击非法集资、金融传销等违法活动。严格禁止金融从业人员参与民间借贷。研究制定防止大企业长期拖欠小型微型企业资金的政策措施。   四、进一步推动小型微型企业创新发展和结构调整   (十二)支持小型微型企业技术改造。中央预算内投资扩大安排用于中小企业技术进步和技术改造资金规模,重点支持小型企业开发和应用新技术、新工艺、新材料、新装备,提高自主创新能力、促进节能减排、提高产品和服务质量、改善安全生产与经营条件等。各地也要加大对小型微型企业技术改造的支持力度。   (十三)提升小型微型企业创新能力。完善企业研究开发费用所得税前加计扣除政策,支持企业技术创新。实施中小企业创新能力建设计划,鼓励有条件的小型微型企业建立研发机构,参与产业共性关键技术研发、国家和地方科技计划项目以及标准制定。鼓励产业技术创新战略联盟向小型微型企业转移扩散技术创新成果。支持在小型微型企业集聚的区域建立健全技术服务平台,集中优势科技资源,为小型微型企业技术创新提供支撑服务。鼓励大专院校、科研机构和大企业向小型微型企业开放研发试验设施。实施中小企业信息化推进工程,重点提高小型微型企业生产制造、运营管理和市场开拓的信息化应用水平,鼓励信息技术企业、通信运营商为小型微型企业提供信息化应用平台。加快新技术和先进适用技术在小型微型企业的推广应用,鼓励各类技术服务机构、技术市场和研究院所为小型微型企业提供优质服务。   (十四)提高小型微型企业知识产权创造、运用、保护和管理水平。中小企业知识产权战略推进工程以培育具有自主知识产权优势小型微型企业为重点,加强宣传和培训,普及知识产权知识,推进重点区域和重点企业试点,开展面向小型微型企业的专利辅导、专利代理、专利预警等服务。加大对侵犯知识产权和制售假冒伪劣产品的打击力度,维护市场秩序,保护创新积极性。   (十五)支持创新型、创业型和劳动密集型的小型微型企业发展。鼓励小型微型企业发展现代服务业、战略性新兴产业、现代农业和文化产业,走“专精特新”和与大企业协作配套发展的道路,加快从要素驱动向创新驱动的转变。充分利用国家科技资源支持小型微型企业技术创新,鼓励科技人员利用科技成果创办小型微型企业,促进科技成果转化。实施创办小企业计划,培育和支持3000家小企业创业基地,大力开展创业培训和辅导,鼓励创办小企业,努力扩大社会就业。积极发展各类科技孵化器,到2015年,在孵企业规模达到10万家以上。支持劳动密集型企业稳定就业岗位,推动产业升级,加快调整产品结构和服务方式。   (十六)切实拓宽民间投资领域。要尽快出台贯彻落实国家有关鼓励和引导民间投资健康发展政策的实施细则,促进民间投资便利化、规范化,鼓励和引导小型微型企业进入教育、社会福利、科技、文化、旅游、体育、商贸流通等领域。各类政府性资金要对包括民间投资在内的各类投资主体同等对待。   (十七)加快淘汰落后产能。严格控制高污染、高耗能和资源浪费严重的小型微型企业发展,防止落后产能异地转移。严格执行国家有关法律法规,综合运用财税、金融、环保、土地、产业政策等手段,支持小型微型企业加快淘汰落后技术、工艺和装备,通过收购、兼并、重组、联营和产业转移等获得新的发展机会。   五、加大支持小型微型企业开拓市场的力度   (十八)创新营销和商业模式。鼓励小型微型企业运用电子商务、信用销售和信用保险,大力拓展经营领域。研究创新中国国际中小企业博览会办展机制,促进在国际化、市场化、专业化等方面取得突破。支持小型微型企业参加国内外展览展销活动,加强工贸结合、农贸结合和内外贸结合。建设集中采购分销平台,支持小型微型企业通过联合采购、集中配送,降低采购成本。引导小型微型企业采取抱团方式“走出去”。培育商贸企业集聚区,发展专业市场和特色商业街,推广连锁经营、特许经营、物流配送等现代流通方式。加强对小型微型企业出口产品标准的培训。   (十九)改善通关服务。推进分类通关改革,积极研究为符合条件的小型微型企业提供担保验放、集中申报、24小时预约通关和不实行加工贸易保证金台账制度等便利通关措施。扩大“属地申报,口岸验放”通关模式适用范围。扩大进出口企业享受预归类、预审价、原产地预确定等措施的范围,提高企业通关效率,降低物流通关成本。   (二十)简化加工贸易内销手续。进一步落实好促进小型微型加工贸易企业内销便利化相关措施,允许联网企业“多次内销、一次申报”,并可在内销当月内集中办理内销申报手续,缩短企业办理时间。   (二十一)开展集成电路产业链保税监管模式试点。允许符合条件的小型微型集成电路设计企业作为加工贸易经营单位开展加工贸易业务,将集成电路产业链中的设计、芯片制造、封装测试企业等全部纳入保税监管范围。   六、切实帮助小型微型企业提高经营管理水平   (二十二)支持管理创新。实施中小企业管理提升计划,重点帮助和引导小型微型企业加强财务、安全、节能、环保、用工等管理。开展企业管理创新成果推广和标杆示范活动。实施小企业会计准则,开展培训和会计代理服务。建立小型微型企业管理咨询服务制度,支持管理咨询机构和志愿者面向小型微型企业开展管理咨询服务。   (二十三)提高质量管理水平。落实小型微型企业产品质量主体责任,加强质量诚信体系建设,开展质量承诺活动。督促和指导小型微型企业建立健全质量管理体系,严格执行生产许可、经营许可、强制认证等准入管理,不断增强质量安全保障能力。大力推广先进的质量管理理念和方法,严格执行国家标准和进口国标准。加强品牌建设指导,引导小型微型企业创建自主品牌。鼓励制定先进企业联盟标准,带动小型微型企业提升质量保证能力和专业化协作配套水平。充分发挥国家质检机构和重点实验室的辐射支撑作用,加快质量检验检疫公共服务平台建设。   (二十四)加强人力资源开发。加强对小型微型企业劳动用工的指导与服务,拓宽企业用工渠道。实施国家中小企业银河培训工程和企业经营管理人才素质提升工程,以小型微型企业为重点,每年培训50万名经营管理人员和创业者。指导小型微型企业积极参与高技能人才振兴计划,加强技能人才队伍建设工作,国家专业技术人才知识更新工程等重大人才工程要向小型微型企业倾斜。围绕《国家中长期人才发展规划纲要(2010—2020年)》确定的重点领域,开展面向小型微型企业创新型专业技术人才的培训。完善小型微型企业职工社会保障政策。   (二十五)制定和完善鼓励高校毕业生到小型微型企业就业的政策。对小型微型企业新招用高校毕业生并组织开展岗前培训的,按规定给予培训费补贴,并适当提高培训费补贴标准,具体标准由省级财政、人力资源和社会保障部门确定。对小型微型企业新招用毕业年度高校毕业生,签订1年以上劳动合同并按时足额缴纳社会保险费的,给予1年的社会保险补贴,政策执行期限截至2014年底。改善企业人力资源结构,实施大学生创业引领计划,切实落实已出台的鼓励高校毕业生自主创业的税费减免、小额担保贷款等扶持政策,加大公共就业服务力度,提高高校毕业生创办小型微型企业成功率。   七、促进小型微型企业集聚发展   (二十六)统筹安排产业集群发展用地。规划建设小企业创业基地、科技孵化器、商贸企业集聚区等,地方各级政府要优先安排用地计划指标。经济技术开发区、高新技术开发区以及工业园区等各类园区要集中建设标准厂房,积极为小型微型企业提供生产经营场地。对创办三年内租用经营场地和店铺的小型微型企业,符合条件的,给予一定比例的租金补贴。   (二十七)改善小型微型企业集聚发展环境。建立完善产业集聚区技术、电子商务、物流、信息等服务平台。发挥龙头骨干企业的引领和带动作用,推动上下游企业分工协作、品牌建设和专业市场发展,促进产业集群转型升级。以培育农村二、三产业小型微型企业为重点,大力发展县域经济。开展创新型产业集群试点建设工作。支持能源供应、排污综合治理等基础设施建设,加强节能管理和“三废”集中治理。   八、加强对小型微型企业的公共服务   (二十八)大力推进服务体系建设。到2015年,支持建立和完善4000个为小型微型企业服务的公共服务平台,重点培育认定500个国家中小企业公共服务示范平台,发挥示范带动作用。实施中小企业公共服务平台网络建设工程,支持各省(区、市)统筹建设资源共享、服务协同的公共服务平台网络,建立健全服务规范、服务评价和激励机制,调动和优化配置服务资源,增强政策咨询、创业创新、知识产权、投资融资、管理诊断、检验检测、人才培训、市场开拓、财务指导、信息化服务等各类服务功能,重点为小型微型企业提供质优价惠的服务。充分发挥行业协会(商会)的桥梁纽带作用,提高行业自律和组织水平。   (二十九)加强指导协调和统计监测。充分发挥国务院促进中小企业发展工作领导小组的统筹规划、组织领导和政策协调作用,明确部门分工和责任,加强监督检查和政策评估,将小型微型企业有关工作列入各地区、各有关部门年度考核范围。统计及有关部门要进一步加强对小型微型企业的调查统计工作,尽快建立和完善小型微型企业统计调查、监测分析和定期发布制度。   各地区、各部门要结合实际,研究制定本意见的具体贯彻落实办法,加大对小型微型企业的扶持力度,创造有利于小型微型企业发展的良好环境。   国务院   二○一二年四月十九日
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • MarvelScan:全球首创不跟踪不贴点手持激光扫描系统
    在数字化时代大背景下,三维激光扫描技术作为测绘领域的一项重大科技创新成果,以高速率、高精度、非接触测量和自动处理等独特优势,不仅在工业领域应用发展迅猛,成为推动智能制造的一股新势力,同时也逐渐在文博、教育、医疗、消费品、AR/VR等其它非工业领域不断开疆辟土,成为引领各行业数字化的“新潮流”。海克斯康作为三维数字技术的领航者,致力于3D数字化测量的技术研发与产品开发,为QC质量检测、逆向设计、3D展示等应用提供高效工具。全球首创不跟踪不贴点手持激光扫描模式,MarvelScan集成Inside-Out单目定位技术,无需在物体表面粘贴定位标点,完全省去重复贴点的繁琐操作。同时减少跟踪器和球形靶标框架,携带便捷性得到极大提升,设备校准过程也随之大大简化,能够显著提高扫描工作效率。完全改变了手持式扫描仪的工作方式,是三维扫描行业的代表性产品。产品亮点1.真正的“拿来即扫”:物体表面无需粘贴定位标点,无需跟踪器和球形靶标框架,显著提高扫描工作效率2.独立摄影测量功能:摄影测量相机独立对焦,蓝色LED光源,成像清晰度高,大大提升摄影测量精度3.支持多环境使用及贴点扫描:借助稳定的参照物或便捷式支架,均可实现反向定位扫描,同时支持贴点扫描4.高精度多功能:最高精度0.01mm,纯蓝光技术保证扫描精细度和适应性,扫描速度135万次测量/秒、孔位闪测技术提升测孔适应性和便携性5.无线模块:无线模块利用WIFI5G技术,实现扫描数据的无线传输和处理,摆脱了传统数据线对设备连接稳定性、便携性的影响,让用户真正做到灵活、便捷地进行三维扫描和建模的工作应用领域海克斯康智能3D扫描仪广泛应用于汽车制造、航空航天、轨道交通、机械重工、模具/铸造、文博艺术、生物医学、工业/家居、教育科研、3D打印、VR/AR展示等领域,近年来积累3D工程项目经验2000多例。汽车制造逆向工程、质量控制与零配件测量、竞品分析汽车改装、内饰定制车辆造型与设计仿真与有限元分析(FEA)航空航天快速成型、质量控制/检测MRO与损伤评估、空气动力学应力分析、OEM和旧部件再造逆向工程、部件和装配的检测与调整模具制造质量控制与检测虚拟装配、逆向工程磨损分析与维修工装夹具设计与调整机械重工质量检测与控制、逆向设计MRO与损伤评估、机械/工装设计与调整OEM和旧部件再造原型、工具及模具调整
  • 法如推出新的 6DoF 激光跟踪仪平台
    p   2018 年10月2日 – FARO& reg (NASDAQ:FARO) ——工厂计量、产品设计、建筑 BIM和公共安全取证的三维测量和成像解决方案供应商, 宣布推出新一代 FARO 激光跟踪仪,配备 6Probe 的 6DoF Vantage 产品系列。 /p p   2015 年,FARO 通过集成 FARO Vantage 跟踪仪和 FaroArm& reg 的强大的超级 6DoF TrackArm 解决方案颠覆了大型 CMM 市场。这种获得专利的综合解决方案能够测量或扫描数十米,而不会损失精度,无视线问题,并且可由多名操作员同时进行测量。 /p p   今天,FARO 推出了 6Probe。这是一款完全集成的手持式探头,可以在难以到达的位置轻松探测隐藏的、难以触及的特征。TrackArm 超级 6DoF 和 6Probe 共同提供最完整的解决方案组合,以很好的价格满足无论的各种大小测量需求。在制造业为重点的行业,这一新功能可满足各种各种大规模计量应用,包括汽车、航空、建筑、重型设备和造船业等行业。 /p p   “获得专利的 FARO 超级 6DoF 和 6Probe 整体解决方案是制造商所需的最完整、最具适应性的计量学平台。我们敢于应对业内任何人对此陈述的质疑。无论您是组装或制造、是大型还是小型、易于或难以触及、复杂或简单,这一平台都可以通过性能和价格的最佳价值组合满足您的需求,” 首席执行官 Simon Raab 博士说道,他也是便携式、适应性强的三维测量的早期创新者。 /p p   6DoF FARO Vantage 产品系列包括两款高性能激光跟踪仪:测距为 35 米的 VantageE6 和测距为 80 米的 VantageS6。两者均经过严格的国际电工委员会(IEC)的冲击、振动和极端高温条件标准测试,防尘防水等级达到 IP52。 /p p   基于 FARO 在提供高价值计量学级解决方案方面 30 多年的经验,详尽的内部测试和来自享有终身职位的计量学专业人员的反馈,6Probe 提供的准确性和动态测量能力可靠地满足绝大多数大型三维测量挑战。结合可以实现更高精度的超级 6DoF,Vantage 平台现在可以满足各种需求。采用超级 6DOF 和 6Probe 的新型 Vantage 6DoF 平台的高性能价值定位将有助于更广泛地采用激光跟踪仪,从而为所有行业提供集成的全面质量保证。 /p p   两种 Vantage 型号均包含具有广角查看功能的 ActiveSeek& #8482 功能,使用户可以放心地从一个位置移动到另一个位置而无需担心。通过允许用户更快地启动实际测量过程并使所有人都可以进行复杂的三维测量,这提高了总体生产力。 /p p   “作为大规模测量的高价值解决方案提供商,我们有着悠久的历史,”工厂计量学副总裁 Pete Edmonds 表示。“鉴于业界对性能可疑或额外溢价价格点感到沮丧,FARO 已经有意识地决定为迄今为止未能享受足够服务水平的、更广泛的用户和应用提供适应大规模工业市场、具有成本效益的解决方案。6DoF、超级 6DoF 和 ActiveSeek& #8482 的强大组合为整个用户行业提供了新的易用性标准。” /p p br/ /p
  • 磁性微型机器人三维精准定位!振动样品磁强计提供关键数据支撑
    磁性微型机器人广泛应用于生物医学工程领域,其特殊的结构和特性有助于实现精准药物传递、无创诊断和基于细胞的治疗等医疗工作。然而,目前控制此类微型机器人运动的技术依赖于同质磁场的驱动,容易受到微型机器人特性和周围环境的影响。当周围环境或微观机器人本身的特性发生改变时,这些驱动方式缺乏通用性和适应性,并且由于电磁驱动系统和微型机器人位置的独立控制,微型机器人的移动容易出现短暂的延迟。针对上述问题,大邱庆北科学技术院的Sarmad Ahmad Abbasi 团队提出了一种通过电磁线圈产生的梯度场对磁性微型机器人进行基于机器学习的位置控制的方法。该方法通过直接驱动线圈电流模拟一个微型机器人运动的环境,从而控制微型机器人在规定工作区域内的三维位置。在模拟训练结束后,上述机器学习过程转移到反映现实世界复杂性的物理电磁致动系统中使用,相比于传统数学模型计算,该方法更精确、更高效。该成果以《Autonomous 3D positional control of a magnetic microrobot using reinforcement learning》为题发表在Nature Machine Intelligence上[1]。图1 磁性微型机器人通过驱动磁场模拟控制三维位置示意图 本文中,作者使用了美国知名低温设备制造商Lake Shore Cryotronics, Ltd.新推出的振动样品磁强计,对该微型机器人的磁化强度进行了表征,用以计算模拟环境中所使用的驱动磁场大小。该设备基于7400系列VSM成熟的产品设计基础上,推出了全新8600系列VSM系统。8600系列以提高产品性能和用户体验为目标,对其各部分的测量元件和操作部件都进行了全新优化升级,在提升灵敏度和磁场分辨率的情况下,还增强了设备的操作性。一、主机部分Lakeshore 8600系列VSM✔ 更优异的性能8600系列VSM采用创新设计,在降低测量噪声的同时还提高了采样速度。系统具有15 nemu的超高灵敏度、1 mOe的磁场分辨率、自带10000 Oe/s的超快磁场变化率和高达10ms/pt的数据采集速度,绘制一个完整的磁滞回线只需30秒。100ms/point 时无样品背景噪声测试,噪声峰值119.5 nemu - 800 nemu(左);10s/point 时无样品背景噪声测试,噪声峰值13 nemu - 50 nemu(右)✔ 更人性化的操作8600系列产品升级的另一个核心是设备的可操作性。Lake Shore公司将自研的QuickLIGN&trade 安装组件内置于该系列产品中,极大地简化了样品安装和更换的流程,单手即可完成操作。同样,QuickLIGN&trade 安装组件与8600系列VSM的所有变温选件兼容,使得安装和配置温度选件5分钟内即可完成。此外,8600系列的VSM磁体内置了ExactGAP&trade 功能,设置了6个可重复的固定间隙,无需进行重新校准。QuickLIGN&trade 安装组件ExactGAP&trade 可重复磁极间隙调整功能✔ 更强大的操作软件8600系列VSM 配备了全新的测量软件,界面简单,只需几步操作即可实现设置、执行程序、实验测量和数据处理等功能。软件包含一个完整的脚本引擎,用户可以使用提供的标准协议脚本或自行创建脚本,设定自定义实验条件进行测量。当与变温选件(86-OVEN, 86-CRYO, 或86-SSVT)联用时,该软件可以自动检测接入系统的变温选件,并与集成的705气体控制器配合使用,从而在4.2 K~1273 K的整个温区中提供自动化的VSM测量。系统软件还具备处理扩展和补偿数据、校准退磁和斜率因子、规范样品质量和体积、从测量数据中修正及扣除衬底数据以及计算及显示导数曲线等功能,进一步提升了实验的准确性和效率。 8600系列VSM操作软件界面✔ 一阶反转曲线功能FORC一阶反转曲线(FORC)是一种新型磁学测量方法,主要适用于测量含有诸多磁性矿物的自然样品,确定磁性矿物矫顽力的分布以及磁性矿物颗粒之间磁相互作用的强弱,帮助区分磁性矿物的种类和磁畴转换。FORC测量需要较高的磁场变化率和数据采集速率,8600系列VSM的标配系统自带FORC测量功能,可以满足测量参数的需求。FORC的测量结果还可以通过2D图像实时显示,测量结果更直观。一阶反转曲线(FORC)测量数据二、 变温选件Lakeshore的8600系列VSM配备了三种不同的变温选件:SSVT一体化变温选件、CRYO低温恒温器选件和Oven高温选件,以满足不同的温度需求。变温选件采用GlideLOCKTM设计,软件可以自动检测变温选件的安装,操作十分简便。GlideLOCKTM变温选件和温度控制器Lakeshore VSM变温选件温度范围SSVT一体化变温选件:100 - 950K(左);低温恒温器变温选件 4.2-450K(中)Oven高温炉选件:303-1273K(右)三、矢量线圈组件Lakeshore 8600系列VSM同样提供了矢量线圈组件,配合振动头的旋转功能,可以进行磁性材料各向异性测量表征,从而确定其矢量磁化分量和电感张量。矢量线圈组件可以进行室温测量,也可以与变温选件联用进行变温测量。室温矢量测量(左);与SSVT选件联用的变温矢量测量(右)关于 Lake Shore Cryotronics, Ltd.: 美国Lake Shore公司(www.lakeshore.com)是知名的极端温度和磁场条件下高精度测量和控制解决方案的创新者。主要产品包括低温探针台、振动样品磁强计、霍尔效应测量系统、M81同步源测量系统、Janis系列低温恒温器、低温控温仪、低温温度传感器、高斯计及霍尔传感器等。Lake Shore公司一直致力于推动科学发展,其产品解决方案不断创新,应用领域从物理实验室到深太空科学探索不断发展。相关产品1、Lake Shore 8600系列振动样品磁强计
  • 珠海开展入海污染通量跟踪监测 取得阶段性成果
    为了解珠海市陆源污染对近岸海域环境的影响程度,全面摸清全市入海河流环境质量状况及入海污染物排放总量,珠海于2021年12月启动了全市首次大规模入海污染通量监测分析。近日,该项目已完成了阶段性任务,初步掌握了全市70条入海河涌排洪渠和31个入海排污口的水质和入海污染通量基本情况。珠海市重点海域入海污染通量跟踪监测项目由珠海市西部生态环境监测中心委托生态环境部华南环境科学研究所、珠江水利委员会水文局等科研单位完成。任务包括开展70条入海河涌排洪渠、断面和31个入海排污口的入海污染通量以及水质指纹(三维荧光光谱)监测和评估,主要监测指标包括盐度、pH值、溶解氧、化学需氧量、高锰酸盐指数、总氮、无机氮(氨氮、硝酸盐氮、亚硝酸盐氮)、总磷、石油类、流量、三维荧光光谱等。在确定监测项目时,珠海市西部生态环境监测中心坚持全面覆盖、纵横兼顾原则,结合该市陆、海域污染特点,以尽可能获取陆域入河海污染状况全貌,科学论证后确定最具有代表性的16项水质监测项目;在开展监测过程中,监测单位运用多普勒流速流量无人走航船、三维荧光光谱仪等先进仪器获取水体水文信息和水质指纹,在摸清入海污染通量的同时,建立可供海洋污染溯源的水质指纹库和溯源模型。所谓水质指纹,就是把水质特征比如成人的手指指纹。水中的污染物组分不同,呈现出来的三维荧光光谱就随之不同,这些特征光谱就是水质的指纹。本项目是基于三维荧光光谱测定结果,建立谱库分析模型,分析入海河涌、入海排污口水质指纹特征,确定其污染类型,然后追溯水中污染物的排放来源。目前,该项目已经完成了三期监测,取得监测数据1115条,其中包括175组16项水文水质监测数据和110组三维荧光光谱数据,初步掌握了全市70条入海河涌和31个入海排污口的水质和入海污染通量基本情况。
  • 利用气泡作为微型机器人实现零件的操纵和装配
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518 图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动 图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。官网:https://www.bmftec.cn/links/10
  • 昆虫追踪定位系统:昆虫行为学研究新解决方案
    昆虫行为的研究在昆虫研究领域中一直是一个重要的方向。无论是昆虫的气味选择实验、产卵偏好实验、寄主偏好实验、食物偏好实验、昆虫取食行为观测实验等相关实验,实验数据都是研究人员通过肉眼观察记录或者判断。这种方法有多个弊端:非常消耗人工,从而会增加时间和预算,同时也会使追踪评估的结果不够客观且不能量化分析。在这个背景下,昆虫追踪定位系统的出现为昆虫行为研究带来了巨大的帮助。一、显示运动轨迹,提高效率昆虫追踪定位系统是一款全新的科研工具,它集高清高帧频工业相机与昆虫行为分析软件于一身。该系统的多种运动参数自动记录功能,软件自动追踪目标昆虫的运动轨迹。昆虫追踪定位系统还拥有目标选择功能,实时观测时支持对实验昆虫进行选择性显示,重点观测分析目标昆虫,并生成随时间变化的X坐标和Y坐标,轻松获得目标昆虫的行为模式。大多数昆虫行为研究都集中在一般的运动行为上。使用昆虫追踪定位系统进行视频跟踪,可以轻松地分析出昆虫的爬行参数,如爬行距离、爬行时长、爬行速度、停留总时长、停留次数、穿越边界次数等,并将运动数据可视化。在研究蝶类求偶飞行、犀金龟为争取配偶而斗争、榄叶提取物对初龄菜青虫乌的拒食和引诱取食作用、花果发育过程中气味挥发物对传粉者行为的调节、光肩星天牛对沙枣和新疆杨的偏好性等昆虫课题时,我们需要观测昆虫的运动,并进一步分析其目的和行为模式。观测昆虫的行为实验时,基于高清高帧频工业相机的记录系统能够捕捉并分析昆虫行动轨迹的详细数据,包括爬行距离、爬行时长、爬行速度等参数。此外,昆虫行为分析软件将捕获的运动数据转化为直观的数据,使得数据可视化,帮助研究人员更轻松地分析数据,发现隐藏在大量数据中的运动规律和行为模式。通过精确捕捉昆虫行为的每一个细节,并清晰地展示目标昆虫的运动轨迹,昆虫追踪定位系统不仅显著提高了研究效率和精度,而且提供了前所未有的观察体验。其客观且可视化的数据,让科学家能够更直观地理解和分析昆虫行为,进一步推动了相关领域的发展。 二、产出量化数据,便于分析更进一步寻找昆虫运动的规律,往往需要工具辅助。研究昆虫行为需要昆虫追踪定位系统自动追踪和记录昆虫的行为,生成量化数据,从而避免了人工观察的弊端,提高了效率和准确性。由于系统能够自动记录数据,避免了人为干扰和主观判断的误差,使得研究结果更加可靠和可信,因此昆虫追踪定位系统还可以提高研究的客观性和可重复性。同时,由于系统可以生成大量的量化数据,研究人员可以进行更深入的数据分析和模型构建,进一步推动昆虫行为研究的发展。将为科研工作提供丰富的数据支持。这无疑将使昆虫行为的研究更加深入和精确。总的来说,昆虫追踪定位系统是昆虫研究领域不可或缺的研究工具。它将开启你的昆虫研究新篇章,让你对昆虫行为的理解更加深入。
  • 陕西卫星多项技术全国创新
    10日12时03分50秒,由陕西省西咸新区空港新城入区企业西安中科西光航天科技有限公司(以下简称“中科西光”)自主研发的西光壹号系列五颗卫星,在酒泉卫星发射中心搭载“谷神星一号”遥七运载火箭成功发射,成为陕西建设秦创原创新驱动平台、打造科技创新高地的又一重大成果。本次卫星的成功发射标志着中科西光航天108星遥感星座阶段建设的顺利推进,该批卫星入轨后,将与今年1月发射的2颗高光谱卫星形成组网,进一步完善中国商业航天高光谱综合遥感星座系统建设,打造国内最大最全的高光谱遥感星座监测体系。此次发射的西光壹号系列中的“西光壹号01星”在国内首次实现多项关键核心技术突破及在轨应用,是目前国内光谱分辨率及地元分辨率最高、功能最多的百公斤级高光谱红外综合观测卫星。该卫星具有探测成像一体、多条带、多目标、视频、凝视、跟踪等12种成像模式及高速数传能力,可实现广域遥感监测、多源遥感数据融合、目标自主捕获与闭环跟踪等功能。西光壹号01星搭载的核心载荷为国内首创超轻小型高光谱成像仪。搭载的红外相机在国内首次实现了全3D打印光学系统、全铝无热化设计等创新技术的在轨使用,研制周期大幅缩短,研制和装调难度大幅降低,提升了遥感载荷的低成本、超快速研制能力。搭载的光交换机在国内首次实现高速全光网络交换技术在轨验证,突破了现有的在轨电交换技术瓶颈,将在高带宽业务数据传输、大容量交换及全光组网等方面提供重要应用价值。作为秦创原临空产业聚集区和开放合作示范区,空港新城充分发挥“临空、自贸、保税、跨境、口岸、航权”六大开放平台功能和独特的临空经济禀赋优势,在政策赋能的同时,加强“产学研用金管服”步伐和园区平台支撑,全力支持中科西光航天等科创型企业创新发展。截至目前,共建成24个园区共计157万平方米科创载体,共申报入库科技型中小企业212家,累计认定国家级高新技术企业85家,累计落地科转企业60家。“未来,空港新城将持续依托秦创原创新驱动平台,营造一流创新生态,在服务端、金融端、人才端、环境端持续发力,推动创新链产业链资金链人才链深度融合,助推临空经济高质量发展。”空港新城党委委员、管委会副主任王新表示。据悉,西光壹号01星的发射将为中国生态环境、农林监测、自然资源、海洋经济、智慧城市、大气环境、防灾减灾、森林火点监测等多重领域提供坚实的航天科技支撑。同时,对推动我国商业航天产业科技创新、加速我国大型高光谱遥感星座建设具有重要意义。
  • 浪声仪器发布浪声 微型大气重金属在线分析仪 GaOA新品
    GaOA微型大气重金属在线分析仪是苏州浪声科学仪器有限公司融合X荧光无损检测技术、空气颗粒物自动富集技术,自主研发的微型化监测仪器,具有体积小巧,检出限低,出数准确,时间分辨率高等特点,可实现空气颗粒物中铅、镉、铬、砷等重金属的连续监测,适合网格化、密集化布点,被广泛应用于城市大气环境监测、工厂厂区无组织排放、交通尾气排放污染气体监测、应急监测等领域。产品原理用X射线轰击样品,样品受激发后产生X射线荧光,X射线通常把元素原子层K层和L层的内层电子打出原子,产生的空穴被高能量的外层电子填补,补充到低能量轨道上的高能量电子把多余的能量以X射线荧光辐射出来,这些辐射出来的谱线中含有各种元素的特征,像指纹一样,并且独立于原子的化学价态。辐射的强度与样品中该元素的浓度成正比。应用范围:辐射监测站的核辐射在线监测固废或垃圾焚烧后在线重金属检测汽车尾气中重金属快速检测环境评价、许可污染源定位、溯源污染预测预警其他现场实验检测执法紧急突发事件监测相关标准:《重金属污染综合防治“十二五”规划》《大气污染物综合排放标准》(GB16297-1996)《固定汚染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)《固定源废气监测技术规范》(HJ/T397-2007)《大气污染物无组织排放监测技术导则》(HJ/T55-2000)《环境空气采样器技术要求及监测方法》(HJ/T375-2007)《环境空气质量自动监测技术规范》(HJ/T193-2005)《污染源在线自动监控(监测)系统数据传输标准》(HJ/T212-2005)《关于加强“十三五”环保规划编制工作的通知》(环发〔2014〕191号)《大气污染防治行动计划》(国发〔2013〕37号)《环境空气质量标准》(GB3095-2012)《重点区域大气污染防治“十二五”规划》(国函〔2012〕146号)《国务院办公厅关于加强环境监管执法的通知》(国办发〔2014〕56号)《国家重点监控企业自行监测及信息公开方法(试行)》(环发〔2013〕81号)《大气颗粒物来源解析技术指南(试行)》(环发[2013]92号)《火电厂大气污染物排放标准》(GB13223-2011)《关于加强重金属污染防治工作的指导意见》创新点:GaOA系统采用5G物联网环境监测和云数据分析技术,通过组合建设网格化、密集化监测设备系统,形成大范围、高时空分辨率的环境监控网络,并实时监控空气质量指标,进一步提高环境监测质量控制水平。 浪声 微型大气重金属在线分析仪 GaOA
  • 智能制造装备十二五发展路线图发布 精密仪器在列
    智能制造装备产业“十二五”发展路线图   智能制造装备是具有感知、决策、执行功能的各类制造装备的统称。作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能制造装备产业对于加快制造业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现制造过程的智能化和绿色化发展具有重要意义。   “十二五”期间,智能制造装备将面向国民经济重点产业的转型升级和战略性新兴产业培育发展的需求,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。经过5~10年的努力,形成完整的智能制造装备产业体系,总体技术水平迈入国际先进行列,部分产品取得原始创新突破,基本满足国民经济重点领域和国防建设的需求。具体是:   一、九大关键智能基础共性技术   1.新型传感技术——高传感灵敏度、精度、可靠性和环境适应性的传感技术,采用新原理、新材料、新工艺的传感技术(如量子测量、纳米聚合物传感、光纤传感等),微弱传感信号提取与处理技术。   2.模块化、嵌入式控制系统设计技术——不同结构的模块化硬件设计技术,微内核操作系统和开放式系统软件技术、组态语言和人机界面技术,以及实现统一数据格式、统一编程环境的工程软件平台技术。   3.先进控制与优化技术——工业过程多层次性能评估技术、基于海量数据的建模技术、大规模高性能多目标优化技术,大型复杂装备系统仿真技术,高阶导数连续运动规划、电子传动等精密运动控制技术。   4.系统协同技术——大型制造工程项目复杂自动化系统整体方案设计技术以及安装调试技术,统一操作界面和工程工具的设计技术,统一事件序列和报警处理技术,一体化资产管理技术。   5.故障诊断与健康维护技术——在线或远程状态监测与故障诊断、自愈合调控与损伤智能识别以及健康维护技术,重大装备的寿命测试和剩余寿命预测技术,可靠性与寿命评估技术。   6.高可靠实时通信网络技术——嵌入式互联网技术,高可靠无线通信网络构建技术,工业通信网络信息安全技术和异构通信网络间信息无缝交换技术。   7.功能安全技术——智能装备硬件、软件的功能安全分析、设计、验证技术及方法,建立功能安全验证的测试平台,研究自动化控制系统整体功能安全评估技术。   8.特种工艺与精密制造技术——多维精密加工工艺,精密成型工艺,焊接、粘接、烧结等特殊连接工艺,微机电系统(MEMS)技术,精确可控热处理技术,精密锻造技术等。   9.识别技术——低成本、低功耗RFID芯片设计制造技术,超高频和微波天线设计技术,低温热压封装技术,超高频RFID核心模块设计制造技术,基于深度三位图像识别技术,物体缺陷识别技术。   二、八项核心智能测控装置与部件   1.新型传感器及其系统——新原理、新效应传感器,新材料传感器,微型化、智能化、低功耗传感器,集成化传感器(如单传感器阵列集成和多传感器集成)和无线传感器网络。   2.智能控制系统——现场总线分散型控制系统(FCS)、大规模联合网络控制系统、高端可编程控制系统(PLC)、面向装备的嵌入式控制系统、功能安全监控系统。   3.智能仪表——智能化温度、压力、流量、物位、热量、工业在线分析仪表、智能变频电动执行机构、智能阀门定位器和高可靠执行器。   4.精密仪器——在线质谱/激光气体/紫外光谱/紫外荧光/近红外光谱分析系统、板材加工智能板形仪、高速自动化超声无损探伤检测仪、特种环境下蠕变疲劳性能检测设备等产品。   5.工业机器人与专用机器人——焊接、涂装、搬运、装配等工业机器人及安防、危险作业、救援等专用机器人。   6.精密传动装置——高速精密重载轴承,高速精密齿轮传动装置,高速精密链传动装置,高精度高可靠性制动装置,谐波减速器,大型电液动力换档变速器,高速、高刚度、大功率电主轴,直线电机、丝杠、导轨。   7.伺服控制机构——高性能变频调速装置、数位伺服控制系统、网络分布式伺服系统等产品,提升重点领域电气传动和执行的自动化水平,提高运行稳定性。   8.液气密元件及系统——高压大流量液压元件和液压系统、高转速大功率液力偶合器调速装置、智能润滑系统、智能化阀岛、智能定位气动执行系统、高性能密封装置。   三、八类重大智能制造成套装备   1.石油石化智能成套设备——集成开发具有在线检测、优化控制、功能安全等功能的百万吨级大型乙烯和千万吨级大型炼油装置、多联产煤化工装备、合成橡胶及塑料生产装置。   2.冶金智能成套设备——集成开发具有特种参数在线检测、自适应控制、高精度运动控制等功能的金属冶炼、短流程连铸连轧、精整等成套装备。   3.智能化成形和加工成套设备——集成开发基于机器人的自动化成形、加工、装配生产线及具有加工工艺参数自动检测、控制、优化功能的大型复合材料构件成形加工生产线。   4.自动化物流成套设备——集成开发基于计算智能与生产物流分层递阶设计、具有网络智能监控、动态优化、高效敏捷的智能制造物流设备。   5.建材制造成套设备——集成开发具有物料自动配送、设备状态远程跟踪和能耗优化控制功能的水泥成套设备、高端特种玻璃成套设备。   6.智能化食品制造生产线——集成开发具有在线成分检测、质量溯源、机电光液一体化控制等功能的食品加工成套装备。   7.智能化纺织成套装备——集成开发具有卷绕张力控制、半制品的单位重量、染化料的浓度、色差等物理、化学参数的检测仪器与控制设备,可实现物料自动配送和过程控制的化纤、纺纱、织造、染整、制成品等加工成套装备。   8.智能化印刷装备——集成开发具有墨色预置遥控、自动套准、在线检测、闭环自动跟踪调节等功能的数字化高速多色单张和卷筒料平版、凹版、柔版印刷装备、数字喷墨印刷设备、计算机直接制版设备(CTP)及高速多功能智能化印后加工装备。   四、六大重点应用示范推广领域   1.电力领域——重点推进在百万千瓦级火电机组中实现燃烧优化、设备预测维护功能,在百万千瓦级核电站实现安全控制和特种测量功能,在重型燃气轮机中实现快速启停和复合控制功能,3MW以上风电机组的主控功能,变桨控制功能,太阳能热电站实现追日控制功能,在智能电网中实现用电管理、用户互动、电能质量改进、设备智能维护功能。   2.节能环保领域——重点推进在固体废弃物智能化分选装备、智能化除尘装备、污水处理装备上推广应用,实现各种再生原料的高效智能化分选、除尘设备和污水处理装备的自动调节与高效、稳定,在地热发电装备中实现地热高效发电建模与控制功能。   3.农业装备领域——重点推进在大型拖拉机及联合整地、精密播种、精密施肥、精准植保等配套机具成套机组,谷物、棉花、油菜、甘蔗等联合收获机械,水稻高速插秧机等种植机械装备上的应用,实现故障及作业性能的实时诊断、检测和控制,实现作业过程的智能控制和管理。   4.资源开采领域——重点推进在煤炭综采设备、矿山机械上应用,实现综采工作面设备信息与环境信息的集成监控、安全环境预警、精确人员定位等功能,在天然气长距离集输设备中实现全线数据采集和监控、运行参数优化、管道泄漏检测定位、站场无人操作或无人值守以及中心远程遥控功能,在油田设备中实现井口关键参数检测、数据处理及集中监测功能。   5.国防军工领域——重点推进专用机器人、精密仪器仪表、新型传感器、智能工控机在航天、航空、舰船、兵器等国防军工领域的应用。   6.基础设施建设领域——重点推进在挖掘机、盾构机、起重机、装载机、叉车、混凝土机械等施工装备上应用,实现远程定位、监测、诊断、管理等智能功能,在机场和码头建设领域推广应用,实现机场行李和货物的自动装卸、输送、分拣、存取全过程的智能控制和管理,集装箱装卸的无人操作与数字化管理。
  • 国家民用空间基础设施陆地观测卫星综合实验场分系统建设取得进展
    作为国家民用空间基础设施陆地观测卫星共性应用支撑平台项目牵头单位,中国科学院空天信息创新研究院于8月9日在京组织项目综合实验场分系统现场评审。综合实验场分系统通过初步验收,后续将逐步面向行业应用部门和区域用户单位开展卫星共性产品综合实验业务服务。国家民用空间基础设施综合实验场分系统是真实性检验场网系统的重要组成部分,面向空基卫星数据产品高质量应用需求,在全国范围内建成东北、华北、华中、华南、西北、西南六个综合实验场,拥有辐射、几何、水体、陆表、大气、植被六类先进的遥感实验设备,具备天空地一体化的综合实验观测能力。   综合实验场具有区域多样性、多要素、多领域、综合性、开放性等数据采集优势,可提供覆盖范围广、地物类型丰富、观测手段多样的星空地同步大型综合实验地面数据集,是真实性检验站点时序观测的有力补充,为开展空基卫星在轨测试评价、遥感产品反演、算法优化和应用验证提供强有力的技术保障。   目前,项目已全面完成全国重点区域的六大综合实验场建设工作,可开展多周期的地表反射率、水体反射率、几何定位控制点、水质参数、土壤含水量、植被含水量、植被覆盖度、叶面积指数、气溶胶光学厚度、大气含水量、地表覆盖、地面粗糙度等参数测量。   “十二五”期间,项目共完成12次多行业联合实验,采集样方超过5000个,数据条目超过12万条,形成了16种共性产品检验数据集,先后为8颗卫星提供在轨测试和产品检验服务。数据集涵盖空基和高分系列卫星以及航空激光雷达和多光谱数据,累计星地同步航空与卫星影像300余景,为全国重点区域的地表多参数遥感监测,提供多尺度、全谱段和高分辨率数据支撑。   此外,综合实验场正逐步完成智能观测高端仪器装备建设和研制工作,拥有地面、机载、车载等共计44台(套)设备,具有智能化、高精度的走航式及面阵数据采集优势。   经过综合实验场的五年稳定试运行,空天院与用户单位、合作单位、设备研制单位等协同工作,取得了一系列初步成果。2018年至今,先后为2米/8米光学卫星(3颗)、高分七号、5米光学卫星(多光谱和高光谱相机)、高分多模卫星、资源04A卫星、资源1-F卫星、高分三号B/C卫星、高分五号 01A卫星的在轨测试和共性产品的验证提供了数据支撑和验证报告。从2021年开始,分别在东北综合实验场——“黑土粮仓”科技会战三江示范区基地以及华中综合实验场——五湖典型水体实验基地,持续开展激光雷达、多光谱飞行实验,同步开展地面观测实验,并协调多颗卫星同步观测,发挥国产卫星遥感数据和产品在区域业务应用中的作用,为黑土地可持续利用与长三角水资源保护提供必要的数据支撑。   本次验收团队包括项目建设单位、用户单位、监理单位、设备研制单位、软件研发单位的负责人、专家和技术骨干。专家组认为项目按照规划建成了六大综合实验场,实验设备指标先进,采集数据类型丰富,有效支撑了空基项目共性产品检验和共性技术算法模型优化,一致同意综合实验场分系统通过验收。   专家组提出继续进一步完善六大综合实验场的建设,同时加强与行业应用部门的联系,做到卫星遥感应用中的共性、基础性服务需求对接,提升真实性检验大型综合实验能力建设和技术水平,为行业用户提供空间信息产品质量检验与品质保障服务,提高遥感卫星的精细化、定量化应用水平。综合实验场建设初步成果
  • 维赛仪器推出水位测量新品– Level Scout 水位跟踪者
    作为世界上知名的水质和流速流量测量仪器的供货商,维赛仪器(YSI)致力于水资源和环境生态保护事业。在不断推出针对地表水测量的水质、水量和流速仪器的同时,YSI推出了针对地下水水位测量的仪器 —— Level Scout 水位跟踪者。进一步丰富了YSI的产品线,为水环境的测量、监测、研究等领域的用户提供了新的工具。 Level Scout应用高精度的水位压力传感器技术,具有测量准确,坚固可靠等优点。其水位量程高达210米,误差仅为全量程的± 0.05%(水位高于3米时)。并具有两种大气压补偿装置可供选择:透气式补偿和非透气式配合气压记录仪(可选)。外壳可以选用钛合金或316号不锈钢,IP68防护等级。可储存多达600,000个数据记录,内置电池寿命可达三年。并可以线性、线性平均、事件触发、对数式多种方式进行采样。接口久经野外工作环境的考验,结实而耐用,可持续多年自动运行。 YSI Level Scout 数据监控软件用于管理数据,可同时运行、监控传感器达16套,通过串行接口或多路网络接口实现数据通信。通过简单地设置,实时或预设采集和显示数据;同时显示数据表格和图形;测量数据易于导出,可转换成Excel等格式等。 应用领域:地下水监测、水资源管理、研究、测井和含水层测量、土壤蒸气提取测试以及明渠、槽位等的测量。
  • 新品速递|瑞明生物发布微型活细胞监测系统,实现整机放入培养箱云端同步数据
    仪器信息网讯 今日,瑞明生物官宣新品MoniCyte微型活细胞监测系统发布上线。MoniCyte微型活细胞监测系统可整机放入细胞培养箱中进行定时图像采集,并将细胞图像实时传送到云端,实现实时细胞计数,汇合度分析及划痕实验等功能,并可在异地通过PC、手机、平板即时登录查看,是细胞培养监测的智能管家。产品应用细胞监测:跟踪细胞随时间的增殖,以监测细胞生长和分布情况; 细胞增殖:无标记活细胞成像工具观察细胞随时间的增殖; 细胞毒性:评估药物/化合物/有毒物对细胞活力影响;细胞迁移:使用划痕分析研究细胞迁移的特定治疗效果;集落监测:跟踪细胞集落随时间推移的数量和大小的变化; 3D微组织:用于临床前药物开发和基础研究中的微组织形态学观察。图像采集参数设置人工智能细胞识别细胞生长曲线分析产品优势传统观察细胞的方式需要频繁将细胞从培养箱中取出,之后在普通生物显微镜下进行观察,环境干扰大,费时费力。微型活细胞监测系统采用集成化结构设计,小巧便捷,可放置于细胞培养箱、超净台、实验台等地方实时对细胞进行观察。 微型化:体型小巧,移动方便,多台设备可放置于一个培养箱,提高效率;智能化采用AI技术进行实时计数及汇合度分析; 远程查看:支持远程通过平板、手机、PC等终端随时随地查看细胞数据;无干扰:电动物镜对焦和荧光切换,免除开箱干扰,稳定性好。规格型号型号MC-B100MC-F100明场照明LEDLED荧光通道——双通道荧光:470nm蓝光LED;530nm绿光LED放大倍数10×固定物镜10×固定物镜传感器6MP CMOS5MP CMOS物镜对焦电动电动培养容器培养皿、培养瓶、玻片、多孔板培养皿、培养瓶、玻片、多孔板尺寸150×170×180mm220×200×220mm重量2kg4kg工作环境温度:5℃-40℃;湿度:20%-95%温度:5℃-40℃;湿度:20%-95%
  • 中科院光电所研制星敏感器助力新一代北斗卫星
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 近日,由中国科学院光电技术研究所研制的星敏感器,协助我国第五颗新一代北斗导航卫星精确调整姿态,顺利进入既定轨道。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 光电所光电传感技术研究室赵汝进博士介绍,星敏感器安装于卫星平台,隶属于卫星姿轨控分系统,承担了卫星姿态测量任务,通过对多颗恒星成像、识别、跟踪、解算等流程实现卫星全自主姿态测量。相对于姿轨控中其他姿态测量设备,星敏感器作为测姿精度最高的单机,测姿精度可达到角秒级甚至亚角秒级,是卫星平台不可或缺的测量设备,也代表了现代先进卫星姿轨控技术发展方向。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据了解,光电所从上世纪90年代起在国家“863”计划支持下开展星敏感器技术攻关。先后研制成功我国首台接入卫星姿轨控系统的国产星敏感器和我国首台在轨应用的国产高轨星敏感器。目前该所在研星敏感器达十余种型号,超过100台(套)。 /p p br/ /p
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 赛默飞发布赛默飞 GM-5000微型空气质量连续监测仪新品
    GM-5000微型空气质量连续监测仪Thermo Scientific GM-5000微型空气质量监测仪是一款适用于室外的,高性价比,多参数连续空气质量监测系统。仪器采用光学及电化学传感器技术,结合赛默飞领先的空气质量监测产品设计经验,旨在为您提供多样并适合的空气污染物监测方案,帮助您实现更精细,更有效的大气污染防治计划和监管目标。GM-5000微型空气质量监测仪可按照区域网格设计进行高密度安装,作为传统空气质量监测网络的有效补充,对污染物进行加密监测,污染物变化趋势跟踪,动态溯源,异常事件捕获,预警预报数据支撑等应用领域,有助于提高城市各级环境监管和执法检查的针对性和有效性,提高城市大气污染监管和防治的精细化水平。气体样品继续通过一个小的风扇和过滤器,并进入气态传感测量室进行测量; 测量不仅包含颗粒物PM2.5,PM10,和气态污染物(NO2, SO2, O3, CO)的浓度数据,日志文件还包括样品流的温度,压力,相对湿度,样品流速,日期、时间戳等。 所有测量结果通过3G/4G 模块及当地WiFi 传输至仪器嵌入式计算机上运行的网络服务器; 并且可以在运行标准 web 浏览器的计算机、平板电脑或手机上实时显示。测量数据也会记录在仪器内部的SD 卡上, 供以后下载。 主要功能特点 实时连续监测空气中的常规污染物SO2、NO2、CO、O3、PM10和PM2.5 采用加热主动采样和冷却循环气路设计,为传感器提供更优的工作环境 同时监测环境温度、湿度和压力,并对污染物监测数据进行补偿 4G通讯模块实现实时数据传输 仪器内置Wi-Fi功能,可实现操作者与仪器的交互 通过浏览器登录仪器用户界面,直观显示仪器测量数据和运行状态 仪器内置SD卡可存储一年数据记录 可使用标准气体对仪器进行校准,也可通过与标准空气站进行比对校准 防水机箱直接应用于户外,提供多种现场安装方式 应用领域: 城市生活区网格监测,跟踪评价居民日常活动对环境空气质量的影响 道路交通、路边站建设:跟踪评价道路扬尘、机动车尾气等对环境气质量的影响 传统空气站周边范围加密监测,对周边污染物来源进行趋势捕捉和动态溯源,为执法监管区域细化提供数据支撑。 工业园区,重要监管企业边界加密监测,对园区污染物变化趋势及周边空气质量影响提供数据支撑 学校,社区,商业楼宇等环境健康监测 科研院所污染分布及空气质量模型研究等 技术参数检测量程(最大浓度)NO2:20ppmSO2: 50ppmO3: 20ppmCO: 500ppmPM2.5:1500μg/m3PM10: 1500μg/m3检测限(2σ)NO2: 30ppbSO2: 40ppbO3: 30ppbCO: 0.025ppmPM2.5:相应时间(T90)120S(所有传感器)线性5%满量程(所有传感器)零漂1%满量程(所有传感器)重复性2.5%满量程(所有传感器)分辨率10ppb气体流量1.5L/min读数显示更新10S读数显示平均时间120S数据存储间隔1分钟-1小时(技术平均值)存储容量500000(约1年数据)存储内容记录条目、浓度、温度、先对湿度、气压、日志、日期、时间诊断数据关键电压数据读取通过网络浏览器交流电源100-240VAC,50-60Hz操作环境-10℃至45℃;15%-90%HR;非冷凝存储环境-20℃至70℃尺寸406mmH*305mmW*152mmD重量5kg创新点:1. 科学的产品设计 加热采样和冷却循环气路设计,为传感器提供稳定优良的工作环境; 防水机箱使仪器直接在户外安装和运行; 2. 连续精确监测 实时监测传感器运行环境(温度,湿度,压力等)运行状态,并对污染物监测数据进行补偿; 标准气体校准和co-location比对校准相结合,完备的质量控制程序; 监测数据可视化,用户可直接通过与仪器交互查看,下载仪器监测的实际数据; 3. 值得信赖的品牌和服务 赛默飞在空气质量监测领域的丰富经验; 专业团队为仪器的稳定运行提供技术支持; 赛默飞 GM-5000微型空气质量连续监测仪
  • 思看科技发布全新TrackScan-P系列跟踪式三维扫描系统
    近日,思看科技(SCANTECH)发布全新TrackScan-P系列跟踪式三维扫描系统。该三维扫描系统由三维扫描仪和E-Track光学跟踪器组成,采用智能光学跟踪测量技术,配备超高分辨率智能相机,无需贴点即可完成超高精度动态三维测量,可在航空航天、汽车制造、轨道交通、模具制造等行业满足质量控制、产品开发、逆向工程、自动化测量等多样需求。TrackScan-P 系列三维扫描系统可搭配补光模块,光照更均匀,支持钣金件的圆、槽及机加孔精准测量;搭配便携式CMM测量光笔T-Probe工作,能精准获取工件的边界、圆、槽等特征;与机器人协同工作,实现智能在线自动化批量三维检测。无需贴点 智能跟踪基于智能光学跟踪测量技术,TrackScan-P 系列跟踪式三维扫描系统无需贴点、即刻扫描,大幅提升工作效率、降低人力物力成本。极速高效 无惧细节基于不同的扫描场景需求,TrackScan-P系列可自由切换多种工作模式。高速扫描模式,扫描速率最高可达2,600,000次测量/秒;7束平行蓝色激光精细扫描,极致细节,精度可达0.025mm,满足各类工业测量需求;单束蓝色激光扫描,迅速获取深孔及死角位置三维数据。边界检测 精准测量新一代孔测技术,自动提取孔特征,无需导入CAD即可快速测孔,大大提升了孔测适应性及便捷性。灰度值边界测量功能,搭配可拆卸式补光模块,光照更均匀,支持钣金件圆孔、圆槽、方槽及机加孔精准测量,保证对应孔的位置度和孔径的重复性精度。环境感知 超强适应采用航空航天级碳纤维材质,稳定可靠,不易受环境、震动、温度等外界因素影响;具有超强环境适应性,轻松获取光亮、黑色材质物体三维数据。多样适配 无限测量多种方案,TrackScan-P系列三维扫描系统,可与SCANTECH生态系统内不同设备互联协同,应对不同类型测量需求:支持多模式工作,多台跟踪头级联工作扩展扫描范围,有效应对大型工件扫描场景。搭配便携式CMM测量光笔T-Probe,支持多测针适配,单点重复性0.030 mm,获取基准孔、隐藏点等关键部位的精准数据。搭配无线传输模块AirGO Pro工作,在移动端同步投屏展示数据结果,获得更为灵活便携的三维扫描体验.与机器人协同工作,搭建自动化三维测量系统AutoScan-T,实现高效、批量化测量。E-Track配合工具模拟器及路径规划软件,构成M-Track机器人路径智能规划引导系统,赋予机器人“双眼”和“大脑”。
  • TQC Sheen 推出新一代炉温跟踪仪
    六月刚过半,高温预警又如期而至。逼近40度的局部高温,也正在给各行各业的油漆涂装与产品表面性能带来巨大考验。对于油漆涂料及涂装行业的人员而言,油漆涂料应避免高温已是“常识”。在高温下,稀释剂挥发更快,更容易导致涂层的开裂、起壳;而在高温下,未固化的油漆与涂膜易成膜不良,沾染灰尘等细小颗粒物,轻则带来涂装表面瑕疵,重则影响整批产品的涂装,造成经济与声誉的损失。尽管工业涂装相比建材类的油漆涂料而言,受日常气候温度影响较小,但涂装过程中,烘箱的温度分布不均却是工业涂装乃至整个油漆涂料与涂装行业的“致命”强敌。因而,检验涂装过程中的温度分布来确保涂装质量至关重要。作为油漆涂料行业检测设备的领跑者,荷兰TQC Sheen拥有24年炉温跟踪与监测分析的经验。如今,其 CurveX 系列炉温跟踪仪家族再添一员,CurveX 4 炉温跟踪仪正式发布! 炉温分析的重要性 在涂料行业,炉温分析一直是行业的基础,通过炉温跟踪仪获得的信息,能够使用户更好地控制、理解和优化他们的烘箱工艺,并确保其成品的最/佳涂层质量。因而,为保证成品质量,有必要收集有关涂层产品在整个烘箱固化过程中所经历温度的准确信息。 每种粉末涂料都有特定的固化信息(时间和温度值),由涂料制造商提供。为了收集涂层产品所经历的温度信息,炉温跟踪仪必须与产品同步随行——提供完整过程中的温度变化,用真实和准确的数据分析烘箱温度及其性能。炉温分析允许生产现场监控其涂料固化的烘箱温度,并提供有关烘箱性能和涂层产品干燥时间的宝贵见解。 这些见解可以改善固化炉的操作及其涂层产品的生产过程。TQC Sheen 的 CurveX 系列炉温跟踪仪,所有探头均由优质K型热电偶制成,保证了最/高的精度。 同时,设备使用高级磁铁和弹簧,在高温下不会分解或失去力量。我们也提供各种探头类型,允许对烘箱内每个部分进行测量,无论其形状或大小如何。 CurveX 4,不仅是「炉温数据记录仪」此次TQC Sheen CurveX 家族的新成员,CurveX 4 炉温跟踪仪,不仅仅是炉温数据的「记录仪」,更是智能与先进的数据分析系统。CurveX 4 炉温跟踪仪为油漆固化烘箱提供易于使用的高质量温度数据记录。仪器配有三个大按钮,便于操作,三个 LED提供电源、油漆类型、记录和固化信息。除了提供先进的烘箱温度外,新一代 CurveX 4 炉温跟踪仪配备有TQC Sheen 独创的 Ideal Finish Analysis 软件,它提供对烘箱温度效率的洞察,同时简化操作,并降低操作成本。在参数方面,CurveX 也表现出了不凡的实力,-200 ℃ 至 1300 ℃ 的测量范围与± 1 ℃ 的测量精度,支持绝大部分油漆固化烘箱的精确测量。仪器支持2节可充电AA电池的供电;而其扁平设计,仅 16 毫米,适用于包括低间隙烘箱的绝大多数烘箱类型。此外,CurveX 4 炉温跟踪仪拥有强大的内存,总共可以存储 160,000 个读数。 仪器内存分为 20 个内存区,每个内存区可储存 50,000 个读数。对于每个新批次,CurveX 4 将始终从下一个内存区的开头开始,即使前一个内存区仅被部分使用。 超过 50,000 个读数的日志记录在读数 50,000 处停止。 可存储的Max批次数为 20。8 通道的 CurveX 4 炉温跟踪仪内置在坚固的机加工铝外壳中,可满足粉末涂料应用中质量控制的基本需求。 它的易用性和可承受的价格水平使其成为理想的作业涂层测试仪器。 CurveX 4 套件可选:全套配齐,随开随用除了CurveX单机外,工业物理更提供贴心的 CurveX 4 炉温跟踪仪套件,全套配齐,出厂校准,允许您立即对工业涂层烘箱进行分析。 套件包含所有必要的物品,只需添加所需的磁性或夹式探头即可使炉温跟踪仪套件完整。套件包含一个隔热盒,炉温跟踪仪可放置于隔热盒中,当它与工件一起通过烘箱时,可以同时测量产品表面多个位置的温度。 用于测量环境温度和产品温度的多个探头可以连接到数据记录器。 探头包括磁铁探头、夹式探头、环形探头和线形探头。隔热盒一般由脱气硅胶材料制成,适用于粉末涂料应用。但对于无硅或高温应用——您也可以自由选择您的隔热盒。CurveX 4 炉温跟踪仪套件按照 Qualicoat、GSB、ISO 9001、QIB 等标准记录和证明过程质量,并使用随附的「Ideal Finish AnalysisSoftware」高级分析软件创建出色的质量报告—— Ideal Finish Analysis 高级分析软件如果说,CurveX 4 炉温跟踪仪是炉温测试的「心脏」,那么Ideal Finish Analysis分析软件就是测试的「大脑」。可以说,获取温度数据只是了解您的涂层烘箱的一部分。虽然炉温跟踪仪在检索数据方面已经完成了重要的First Step,但需要对其进行分析和评估,以了解产品涂层发生的情况。 通过数据分析,可以为如何改进和更有效地运行生产过程提供有价值的见解。TQC-Sheen Ideal Finish Analysis 分析软件是先进的涂层温度、涂层固化和涂层厚度监测软件包。 Ideal Finish Analysis 具有两个用户级别,可为标准生产工作提供用户友好的报告功能,并为深入分析涂层前的温度参数、涂层期间的固化过程和烘箱性能、以及涂层后的厚度提供高级计算。从固化分析和光泽分析,到厚度分析和气候条件,对于 CurveX 炉温跟踪仪产品系列,Ideal Finish Analysis 软件是一个完整的设置系统,允许用户修改烘箱和生产条件。烘箱分析和固化分析没有限制。 该软件可用于设置每条生产线和烘箱的条件,从生产线的物理长度及其速度,到烘箱的数量和类型。 用户还可以设置正在使用的不同油漆涂料类型,以及正在使用的探头及它们在产品上的布置位置。Ideal Finish Analysis 软件不仅可以让您分析真实的烘箱生产结果,还可以让用户模拟烘箱的任何变化。在软件中,用户可以设置不同的生产场景,例如烘箱规格变化、生产线速度变化、温度变化等,并在进行任何实际且成本高昂的更改之前分析结果会是什么样。例如,用户可以输入他们正在考虑使用的新油漆或涂料类型的详细信息,或者模拟另一条产线的烘箱条件以查看结果。 这对于在实际实施任何物理变化之前模拟生产变化的质量和运行非常有益。 它允许用户设置不同的烘箱类型、条件、生产长度和速度,从而为用户提供完全的控制权。而在结果报告方面,Ideal Finish Analysis 软件具有广泛的报告选项,非常适合质量保证和质量控制团队。 统计数据可以通过各种图形选项以各种方式显示,并且可以专注于烘箱中的特定阶段。用户也可以添加其公司Logo,包括正在测试的产品/组件的图片,并生成包含多个图表、布局和数据的详细报告。 完备的温度探头与隔热盒,我们都有——作为 CurveX 炉温跟踪仪的配件,TQC Sheen 提供完备的各类温度探头,专门设计用于测量烘箱空气温度和烘箱中的零件表面温度。所有探头均由优质K型热电偶制成,保证了高精度。 使用高级磁铁和弹簧,在高温下不会分解或失去力量。 各种探头类型允许对每个零件进行测量,无论其形状或大小如何。除各类探头外,TQC Sheen 提供完备的隔热盒。CurveX 隔热盒专门设计用于保护 CurveX 炉温跟踪仪免受工业烘箱中恶劣环境的影响。所有隔热盒均采用抛光不锈钢外壳,内填充微孔保温材料,防止烘箱热量渗入铝内盒。 在铝制内盒中,一个高密度介质散热器收集任何多余的热量,并使 CurveX 记录仪长时间保持在可接受的工作温度。 洞悉涂层固化, 提升投资回报🪄新一代 CurveX 4 炉温跟踪仪系统提供有关烘箱内活动的必要信息。 通过 CurveX 炉温跟踪仪收集的信息与 Ideal Finish Analysis 软件相结合,可以用真实和准确的数据分析烘箱温度及其性能,使用户更好地控制、理解和优化他们的烘箱工艺,并确保其成品的最/佳涂层质量。点击此处,您可跳转 CurveX 4 炉温跟踪仪详情页面,获取更多参数信息。工业物理,用与时俱进的智能系统,助力整个涂料行业的固化过程✨。
  • 微型环境监测站-一款有求必应的超声波气象站#2022已更新
    微型环境监测站-一款有求必应的超声波气象站#2022已更新【品牌型号:天合环境TH-CQX5_天合环境气象设备口碑不错_是值得信赖选择的好设备】农业在我国社会进步和经济发展的过程中占据了重要地位.我国因为农业领域的显著成果,成为闻名世界的农业大国,这与农业生产的蓬勃发展是息息相关的.气候因素作为影响农业生产的主要条件之一,也是在农业生产中较难把控的一个因素,一、产品简介TH-CQX5超声波气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。该设备创新性的采用五要素一体式传感器,可对风速、风向、温度、湿度、气压等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将五项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压五要素一体式传感器4、标配GPRS传输5、两米碳钢支架,顶部无需法兰盘可直接套接传感器6、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1)风速:测量原理超声波,0~70m/s(±0.1m/s);2)风向:测量原理超声波,0~360°(±1°);3)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃);(北京市气象局校准证书)4)空气湿度:测量原理电容式,0~100%RH(±2%RH);(北京市气象局校准证书)5)大气压力:测量原理压阻式,300hPa~1100hPa(±0.02hPa);(北京市气象局校准证6)采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,7)传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V8)太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%9)数据上传间隔:60s-65535s可调10)7寸安卓触屏,屏幕尺寸:1024*600 RGB LCD四、产品尺寸图五、产品结构图六、上位机软件介绍1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制