当前位置: 仪器信息网 > 行业主题 > >

基菌素苯盐高效分析

仪器信息网基菌素苯盐高效分析专题为您提供2024年最新基菌素苯盐高效分析价格报价、厂家品牌的相关信息, 包括基菌素苯盐高效分析参数、型号等,不管是国产,还是进口品牌的基菌素苯盐高效分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基菌素苯盐高效分析相关的耗材配件、试剂标物,还有基菌素苯盐高效分析相关的最新资讯、资料,以及基菌素苯盐高效分析相关的解决方案。

基菌素苯盐高效分析相关的论坛

  • 【原创大赛】畜禽肉中盐霉素、莫能菌素残留分析方法

    【原创大赛】畜禽肉中盐霉素、莫能菌素残留分析方法

    一、背景1.1莫能菌素﹝Monensin﹞是聚醚类离子载体抗生素,是一种[url=http://baike.baidu.com/subview/138504/138504.htm][color=windowtext]反刍动物[/color][/url]中运用较广泛的饲料添加剂;原为[url=http://baike.baidu.com/subview/150635/150635.htm][color=windowtext]链霉菌[/color][/url]所分泌的一种物质,具有控制[url=http://baike.baidu.com/subview/39929/39929.htm][color=windowtext]瘤胃[/color][/url]中[url=http://baike.baidu.com/subview/3852509/3852509.htm][color=windowtext]挥发性脂肪酸[/color][/url]比例,减少瘤胃中蛋白质的降解,降低饲料干物质消耗,改善营养物质利用率和提高动物能量利用率等作用。1.2莫能菌素为百盛客户对肉类原料中兽药残留的监控项目,为了应对客户要求,满足实验室检测要求,对莫能菌素进行新项目技术开发。盐霉素为原有分析项目,此次技术开发对盐霉素前处理及仪器分析条件重新优化,与莫能菌素合并同为聚醚类抗生素检测检测方法。[img=,490,100]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141014_01_3081717_3.png[/img]二、前处理流程2.1提取称取(2.00±0.02)g样品,加入10mL乙腈混匀,再加入3.00g无水硫酸钠,震荡混匀,超声提取10min;离心取上清液于50mL离心管中,残渣加入5mL乙腈重复提取,合并两次上清液,定容至20mL,加入5mL乙腈饱和正己烷,震荡离心。2.2净化取下层(乙腈层)5mL于圆底烧瓶中,旋转蒸发至1mL,氮气吹干。普通肉类基质:圆底烧瓶中加入1mL乙腈超声溶解。内脏类基质:圆底烧瓶中加入3mL甲醇+水(1+1)超声溶解,过Waters HLB柱(waters oasis HLB 6cc/200mg依次用5mL甲醇 5mL水活化),用5mL水淋洗,5mL甲醇洗脱于100mL圆底烧瓶中,40℃减压蒸干,加入1mL乙腈超声溶解。三、仪器分析条件([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]MS8050)3.1质谱参数:离子源ESI源 Nebulizing Gas Flow: 3 L/min HeatingGas Flow: 10 L/min Interface Temperature 300 ℃;DLTemperature 250 ℃;Heating Block Temperature 400℃ Drying Gas Flow: 10 L/min [table=595][tr][td=1,2]化合物名称[/td][td=1,2]Precursor m/z[/td][td]Product[/td][td]Dwell Time[/td][td]Q1 Pre[/td][td=1,2]CE[/td][td]Q3 Pre[/td][/tr][tr][td]m/z[/td][td](msec)[/td][td]Bias(V)[/td][td]Bias(V) 1[/td][/tr][tr][td=1,3]莫能菌素[/td][td]688.6[/td][td]635.50*[/td][td]100[/td][td]-26[/td][td]-18[/td][td]-28[/td][/tr][tr][td]688.6[/td][td]461.35[/td][td]100[/td][td]-26[/td][td]-26[/td][td]-30[/td][/tr][tr][td]688.6[/td][td]617.5[/td][td]100[/td][td]-26[/td][td]-24[/td][td]-28[/td][/tr][tr][td=1,3]盐霉素[/td][td]773.1[/td][td]431.20*[/td][td]100[/td][td]-28[/td][td]-53[/td][td]-28[/td][/tr][tr][td]773.1[/td][td]531.35[/td][td]100[/td][td]-28[/td][td]-46[/td][td]-36[/td][/tr][tr][td]773.1[/td][td]413.2[/td][td]100[/td][td]-28[/td][td]-53[/td][td]-27[/td][/tr][/table]3.2液相参数: 流动相组成:A: 0.1%甲酸 B: 乙腈;流速:0.35Ml/min;A -10% B -90%恒流分析;进样量:2uL;色谱柱型号:ODS-III 1.6μm四、实验结果及分析4.1线性配制盐霉素、莫能菌素混标(稀释溶剂:乙腈),0.1ug/kg、1ug/kg、5ug/kg、10ug/kg、20ug/kg五个浓度点,仪器分析线性如下:[img=,490,157]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141016_02_3081717_3.png[/img][img=,490,173]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141017_01_3081717_3.png[/img]以上实验中,盐霉素、莫能菌素标准曲线R[sup]2[/sup]均大于0.99,各浓度点精密度良好;仪器分析标准品线性、稳定性符合实验要求。4.2选择性选取牛肉样品进行空白、添加回收实验,实验谱图如下:[img=,490,173]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141019_01_3081717_3.png[/img][img=,490,173]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141019_02_3081717_3.png[/img]4.3真度对空白牛肉进行前处理,采用空白样品萃取液与溶剂稀释统一标准品标准品,同一浓度下两者峰面积比值的百分比作为真度评价参数,实验结果及谱图如下: [table=386][tr][td]基质类型[/td][td]化合物名称[/td][td]基质稀释标准品[/td][td]溶剂稀释标准品[/td][td]真度(%)[/td][/tr][tr][td=1,2]牛肉[/td][td]盐霉素[/td][td]116,440[/td][td]107,537[/td][td]106.4%[/td][/tr][tr][td]莫能菌素[/td][td]9,845[/td][td]13,312[/td][td]74.0%[/td][/tr][/table]以上实验中牛肉基质对盐霉素无明显基质效应,对莫能菌素产生一定的基质效应,基质效应在70%左右,在可接受范围之内,日常分析准确定量可以做spiked校正。6实验总结本次试验,从前处理、仪器分析、实验分析的真度、精密度、准确度等多项参数验证了此方法的适用性及准确性,可初步满足试验要求,后续继续多基体验证。

  • 水稻环境中古维菌素残留量的分析方法

    使用 QuEChERS 预处理结合 Agilent 1260 第二代高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]建立了测定水稻水、土壤和大米中古维菌素残留的分析方法。样品用丙酮萃取,用C18吸收剂纯化,并通过0.2-μm有机滤膜过滤。稻田水、稻田和水稻中古维菌素的检测限(LODs)和定量限(LOQs)分别为0.0022、0.0041和0.0068 mg/kg和0.0073、0.0138和0.0227 mg/kg。在0.01~5 mg/L范围内线性关系良好,线性相关系数( R 2) 大于 0.9990。三个加标浓度(0.1、0.5 和 1.0 mg/kg)的平均回收率范围为 87.32% 至 112.53%,相对标准偏差 (RSD) 范围为 1.07% 至 2.48%。在 k = 2 的覆盖水平和大约 95% 的置信水平下,扩展的不确定性为 3.74-3.87%。结果表明,该方法简便、快速、准确、灵敏,能够满足稻田环境中古维菌素残留量的测定要求。这个方法的新颖处在于QuEChERS法粗净化的情况下,用紫外检测器能将稻田环境的古维菌素的定量限做到0.02 mg/kg以下,比较难得。详细信息见[url]https://doi.org/10.1016/j.jfca.2022.104644[/url]

  • 甲氨基阿维菌素苯甲酸盐

    甲氨基阿维菌素苯甲酸盐

    为什么甲氨基阿维菌素苯甲酸盐标准品会有这么多杂质峰?[img]http://ng1.17img.cn/bbsfiles/images/2018/04/201804231728132335_5892_3399169_3.jpg[/img]

  • 阿维菌素的分析

    各位大虾!小弟在这里稽首了!我们的阿维菌素的样品,用外标校准只有97%左右的纯度,因为我们只有液相色谱,用245纳米波长检测,没有其它的杂质峰出现,我们怀疑是否杂质在245纳米没有没有吸收峰。所以希望能用液质联用进一步分析!不知道有没有哪位使用液质的大虾能帮个忙!我们现在分析的色谱条件:流动相:甲醇:乙腈:水=38:38:24流速:1.0ML/min柱子:C18 150*4.6进样量:5微升如果有哪位朋友能帮忙,我们愿意付出一部银子感谢!联系电话13933178831

  • 基因技术可实现链黑菌素类抗生素高效合成

    上海交大一项研究有望降低抗肿瘤良药成本2013年02月26日 来源: 中国科技网 作者: 王春 沈海燕 中国科技网 讯 (沈海燕 记者王春)上海交通大学微生物代谢国家重点实验室林双君研究小组通过对链黑菌素生物合成基因簇进行基因解析,阐明了链黑菌素复杂的生物合成途径。由此得到的链黑菌素类似物不仅抗癌活性高很多,其毒性上也比原始链黑菌素降低了约5倍。该研究成果近日发表在国际权威学术期刊《美国化学会会志》上。 链黑菌素是由一株绒毛链霉菌所产生的抗肿瘤抗生素,具广谱抗肿瘤活性。但在上世纪七八十年代进行二期临床实验时,因其毒性过强而被迫终止。 基因组测序技术为生物合成机制的研究提供了更多信息。林双君研究小组首先克隆了链黑菌素潜在的抗生素基因簇,定位出链黑菌素的生物合成的48个独立基因编码,再通过微生物遗传学、化学及生物化学技术和手段,获得了其中17个基因的突变菌株,从中分离鉴定了12个与链黑菌素生物合成相关化合物的化学结构,提出了链黑菌素生物合成途径的模型。 在这一过程中,还揭示了多个新颖或关键的酶催化反应的分子生物学机制。该项研究为抗生素药物新颖酶催化反应基因的挖掘,并利用合成生物学等前沿生物技术创造新的结构衍生物奠定了基础。林双君称,这是首次在基因水平实现链黑菌素的生物合成途径的解析。 课题组通过基因工程技术获得的一个链黑菌素类似物,在抗癌活性上比目前临床使用的抗癌药物高很多。这个类似物在临床应用方面,对治疗淋巴瘤、白血病、鼻咽癌等疾病将有更大的优势。林双君表示,只要将产量提高到可规模化生产,就可将链黑菌素或类似物转化为一个新型的抗癌药物,不仅有望降低药价,而且减少化疗时产生的毒副作用。 《科技日报》2013-2-26 一版

  • 【资料】高效、低毒、无残留的新型生物农药——阿维菌素

    国际通用名称叫阿维菌素,我国叫齐螨素,商品名海正灭虫灵、7051杀虫素、爱福丁、阿巴丁、农哈哈、虫螨克、阿维虫清等。性能与特点 阿维菌素是一种农用抗生素类杀虫、杀螨剂,属昆虫神经毒剂,主要干扰害虫神经生理活动,使其麻痹中毒而死亡。具触杀和胃毒作用,无内吸性,但有较强的渗透作用,并能在植物体内横向传导,杀虫(螨)活性高,比常用农药高5~50倍,用药量仅为常用农药的l%~2%。对胚胎未发育的初产卵无毒杀作用,但对胚胎已发育的后期卵有较强的杀卵活性。该药剂对抗药性害虫有较好的防效,与有机磷、拟除虫菊酯和氨基甲酸酯类农药无交互抗性,残效期10天以上,具有高效、广谱、低毒,害虫不易产生抗性,对天敌较安全等特点。乳油外观为棕褐色液体。剂型 1.8%乳油,1%乳油,0.6%乳油。防治对象和使用方法 可用来防治果树上的蚜虫、叶螨、潜叶蛾、食心虫、梨木虱等多种害虫。在害(螨)虫发生初期施药喷雾,用 1.8%乳油防治山楂叶螨、绣线菊蚜用5000~8000倍液。防治二斑叶螨用4000~6000倍液,防治金纹细蛾用3000~4000倍液,防治梨木虱用4000~5000倍液,防治桃蛀果蛾用2000~4000倍液,防治棉铃虫用1000~2000倍液。注意事项 该药剂无内吸性。喷药时应注意喷洒均匀,不能与碱性农药混用,夏季中午时间不要喷药,以避免强光、高温对药剂的不利影响。 阿维菌素是一种高效,广谱、无公害的生物农药,能有效防治园艺、林业、农作物上双翅目同翅目、鞘翅目、鳞翅目害虫及害螨,特别是对常用农药有抗性的害虫害螨如小菜蛾、菜青虫、木虱、红蜘蛛、潜叶蝇具有优异防效。一、优点:用量低,仅为常用农药的1-2%;活性高,为常用农药的5-10倍;成本低,亩用量仅为0.1-0.5克;安全、高效,广谱、稳定,一次用药可杀灭多种害虫,防效在90%以上,对作物安全,同时不杀天敌;无残留,是生产绿色食品的最佳用药。二、作用机理:干扰害虫的神经活动,可导致麻痹,停食,2-3天死亡三、防治对象及用量(以1.8%阿维菌素乳油为例)1、小菜蛾,菜青虫,3000-4000倍液喷施2、潜叶蛾,4500倍液喷施3、果树卷叶蛾,梨木虱,蚜虫,4500倍液喷施4、红蜘蛛,瘿螨,桃小食心虫9000-12000倍液喷施5、大豆蚜虫1200-1500倍液喷施6、水稻负泥虫,潜叶蝇3000倍液喷施四、施用时期及注意事项:1、宜在害虫卵孵至1龄高峰期为佳;2、喷施时要均匀、周到;在阴天或早晨、下午喷施。3、最后一次施药,蔬菜上大于7天4、不能与碱性农药混用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=63466]阿维菌素结构[/url]

  • 急急急!做过阿维菌素乳油的进来!

    本人最近在做阿维菌素·哒螨灵乳油,哒螨灵分析没有问题,主要是阿维菌素分析困难。之前做过10%的阿维菌素乳油,用的是国标的方法,谱图效果很好,分析结果没有问题。但阿维菌素·哒螨灵复配剂中,阿维菌素的含量是0.2%,还是用国标的分析方法,但杂峰很多,分离效果不好,而且阿维菌素是出两个峰,其中一个峰很小,基本上看不出来。所以想请教各位,有谁做过这个农药的分析,有没有什么好的方法介绍下,不胜感激!(曾想过可能是阿维菌素是0.2%的含量太低,就试过在样品中加入标准品的方法,但分析出的结果跟理论值差好多)

  • 粘菌素酶联检测试剂盒

    1.概述REAGEN™粘菌素类药物的原理是竞争ELISA方法,用于检测肉类(牛、猪和鸡肉)和鸡蛋中粘菌素类药物的残留量。这个试剂盒有以下特点:Ø 高回收率75-115%.,高效益提取法Ø 高灵敏度 (0.5 ng/g or ppb)Ø 高重复性。Ø 快速检测,酶联检测过程只需要不到2小时。2.试剂盒原理REAGEN™粘菌素类药物试剂盒采用间接竞争ELISA方法,在酶标板微孔条上预包被偶联抗原,样本中残留的粘菌素类药物与微孔条上预包被的偶联抗原竞争抗粘菌素类药物的抗体,加入酶标二抗后,用TMB底物显色,样本吸光值与残留物粘菌素类药物的含量成负相关。

  • 【分享北分资料】阿维菌素的高效液相色谱测定

    采用北分SY-8000型高效液相色谱仪,C18色谱柱对阿维菌素乳油进行检测,获得良好的分离,定量准确,重复性高。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25636]阿维菌素的高效液相色谱测定[/url]

  • 超高效液相色谱-串联质谱检测农产品中阿维菌素残留方法研究

    超高效液相色谱-串联质谱检测农产品中阿维菌素残留方法研究

    [align=center][size=24px]超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱检测农产品中阿维菌素残留方法研究[/size][/align][align=center][size=18px]鹤壁市农产品检验检测中心 张艳丽[font=宋体] 王丽娟[/font][/size][/align][align=left] 阿维菌素是一种新型类广谱性杀虫杀螨剂,由阿维链霉素经液体发酵加工而成,具有高效、广谱、有效期长、不易产生抗药性等特点,已经作为高毒有机磷农药的替代品而广泛应用。目前阿维菌素已广泛用于要水果样品中果树(苹果、梨、桃)、蔬菜(黄瓜、番茄)有害生物的防治,GB 2763-2021《食品安全国家标准 食品中农药最大残留限量》中阿维菌素的残留限量(MRL)要求很高,规定其在柑桔、梨和黄瓜中的MRL为0.02mg/kg,叶菜和豆中为0.05mg/kg。目前阿维菌素的检测方法主要有高效液相色谱法(HPLC)[sup][1-5][/sup]、酶联免疫法(ELISA)、液质联用仪法(LC-MS)[sup][6-10][/sup]等。近几年液相色谱质谱法应用日益广泛,它可以提高目标物质的灵敏度以及回收率,缩短进样时间,提高检测效率。但在实际工作中,阿维菌素的响应值低、灵敏度低、标准曲线线性差等问题一直存在,本文应用超高效液相色谱-串联质谱仪(UPLC-MS/MS),对阿维菌素的检测条件进行色谱、质谱条件的优化,可以在检测农产品中阿维菌素时,得到快速、准确的检测方法。[/align]1 实验部分1.1 仪器与试剂AB Sciex4500高效液相色谱-串联质谱仪(配有电喷雾电离(ESI)源,美国AB SCIEX公司);GL-21M高速冷冻离心机(湖南湘仪);混匀器(德国heidolph公司);涡旋混匀器(德国IKA公司)。阿维菌素(100ug/mL)甲醇作为溶剂,购于农业部环境保护科研监测所;乙腈(HPLC级,上海安谱公司);甲醇(HPLC级,美国Merck公司)。甲酸(LCMS,美国Fisher公司);甲酸铵(LCMS,美国Fisher公司);十八烷基键合硅胶(C18)、N-丙基乙二胺(PSA)、无水MgSO[sub]4 [/sub][font=calibri]、[/font]NaCL均为分析纯(深圳逗点生物)。1.2 标准溶液的配置精确称取一定量的阿维菌素标液,用甲醇溶解后定容,配制成2.0ug/mL贮备溶液,于-20℃避光储存。1.3前处理方法称取10g(精确至0.01g)试样于50mL塑料离心管中,加人10mL乙腈及1颗陶瓷均质子,剧烈振荡1min.加人4g无水硫酸镁、1g氯化钠、1g柠檬酸钠二水合物、0.5g柠檬酸二钠盐倍半水合物,剧烈振荡1min后4200r/min离心5min。吸取8mL上清液至内含除水剂和净化材料的塑料离心管中 对于颜色较深的试样,离心管中另加人GCB,涡旋混匀1min。4200r/min离心5min,吸取上清液过0.22μm有机微孔滤膜后上机测定。1.4 仪器条件条件1.4.1色谱条件色谱柱:Altantis T3柱(150mm×2.1mm,3.0μm);柱温:40℃;流动相:A相为水(含0.01%甲酸(v/v)和1mM/L甲酸铵),B相为甲醇(含0.005%甲酸(v/v)和2mM/L甲酸铵)。柱流速为0.40mL/min。梯度洗脱程序:0~2.0min,90%A;5.0~12min,5%A;12.1~13min,90%A;流速:0.4mL/min;进样量:1μL。1.4.2质谱条件离子源:ESI;扫描方式:正离子扫描;扫描方式:多反应监测(MRM)模式;电喷雾电压:4500V;雾化气压力:50psi;气帘气压力:30psi;辅助加热气:60psi;离子源温度:300℃;碰撞气压力:9psi。2 结果与讨论2.1样品前处理的优化本实验采用GB23200.121《食品安全国家标准植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》,以乙腈作为提取溶剂,将目标物质、色素等有机物质提出,然后采用饱和盐进行层析分层,用吸附剂进行净化。2.2色谱条件的优化2.2.1色谱柱选择分别用Shimadzu C18(75mmx2.0m,1.6μm)、Agilent EC-C18(100mmx3.0m,2.7μm)、Altlantis T3(150mm×2.1mm,3μm)等3种液相色谱柱对阿维菌素进行响应值与分离效果的比对,所有色谱柱均能出峰,但采用Altlantis T3和Shimadzu C18色谱柱时峰形对称性好,半峰宽窄、且出峰时间相同,但采用Altlantis T3色谱柱时峰面积明显高于Shimadzu C18色谱柱。因此最终选择Altlantis T3色谱柱进行分离。2.2.2流动相选择流动相条件是影响目标化合物的色谱分离和仪器响应的一个重要方面,根据阿维菌素的性质,比较了甲醇和乙腈两种有机相,结果表明,甲醇是质子性溶剂,更易离子化,[M+NH[sub]4[/sub]][sup]+[/sup]峰的响应值要高于乙腈流动相,所以在本实验中选用甲醇和水作为流动相。在水相中加入甲酸铵和甲酸等试剂,是改善色谱峰形、提高仪器响应值和离子化率的常用手段,通常采用酸性流动相有利于在正离子模式下进行质谱检测,试验考察了不同浓度的甲酸与甲酸铵溶液与甲醇组合,发现随着甲酸铵浓度含量增大,阿维菌素的响应值也在增强,若甲酸铵浓度超过2mmol/L时,响应值开始降低。因此,最终选择0.005%甲酸加2mmol/L甲酸铵作为水相。优化后的液相条件下,可得到标准图谱如图1。[align=center][img=,690,611]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011806214247_4665_1645480_3.png!w690x611.jpg[/img][/align] 图1 阿维菌素标液的MRM总离子及选择离子的离子流色谱图(10μg/L)2.3质谱条件的选择2.3.1检测离子的选择阿维菌素的分子式是C[sub]48[/sub]H[sub]72[/sub]O[sub]14[/sub],理论分子量为872.4921。采用母离子扫描(MS Scan),获得一级质谱图,通过分子质量确定阿维菌素多以加合离子[M+NH[sub]4[/sub]][sup]+[/sup]、[M+Na][sup]+[/sup]、[M+H][sup]+[/sup]形式存在,本实验选择离子丰度极强的[M+NH[sub]4[/sub]][sup]+[/sup](m/z890.5)作为母离子。然后,优化毛细管电压等参数,使母离子强度达到最高。选择母离子后,进行子离子扫描(Daughter Scan),获得二级质谱图,得到305.2、567和145.1。进行MRM多反应监测扫描,再次优化碰撞能量,使其离子化效率达到最佳。最终,本实验选择丰度最强、受干扰小的890.5/567作为定性离子对,而890.5/305.2作为定量离子对。阿维菌素检测的质谱参数见表1。 表1 阿维菌素检测的质谱条件[table][tr][td][align=center][color=black]化合物[/color][/align][/td][td][align=center][color=black]母离子/[/color][/align][align=center][color=black](m/z)[/color][/align][/td][td][align=center][color=black]保留时间/min[/color][/align][/td][td][align=center][color=black]产物离子/(m/z)[/color][/align][/td][td][align=center][color=black]碰撞能量/eV[/color][/align][/td][td][align=center][color=black]去簇电压/V[/color][/align][/td][/tr][tr][td][align=center][color=black]阿维菌素[/color][/align][/td][td][align=center][color=black]890.5[/color][/align][/td][td][align=center][color=black]7.56[/color][/align][/td][td][align=center][color=black]305.2[/color][/align][/td][td][align=center][color=black]32[/color][/align][/td][td][align=center][color=black]65[/color][/align][/td][/tr][tr][td] [/td][td] [/td][td] [/td][td][align=center][color=black]567[/color][/align][/td][td][align=center][color=black]19[/color][/align][/td][td][align=center][color=black]65[/color][/align][/td][/tr][/table]2.3.2离子源温度的选择考察了电喷雾离子源(ESI[sup]+[/sup])对阿维菌素的灵敏度影响,结果表明:ESI[sup]+[/sup]源受离子源温度影响比较明显,阿维菌素用的[M+NH4][sup]+[/sup]峰作母离子,温度过高或过低都会抑制目标物离子化,分别用300℃、350℃、400℃离子源温度作了试验,由表2可知:随着离子源温度的升高,响应值越低,当离子源温度为300℃时,灵敏度最高。表2 不同离子源温度的灵敏度[table][tr][td][align=center][color=black]化合物[/color][/align][/td][td][align=center][color=black]母离子/[/color][/align][align=center][color=black](m/z)[/color][/align][/td][td][align=center][color=black]保留时间/min[/color][/align][/td][td][align=center][color=black]产物离子/(m/z)[/color][/align][/td][td][align=center][color=black]离子源温度/℃[/color][/align][/td][td][align=center][color=black]响应强度/%[/color][/align][/td][/tr][tr][td][align=center][color=black]阿维菌素[/color][/align][/td][td][align=center][color=black]890.5[/color][/align][/td][td][align=center][color=black]7.56[/color][/align][/td][td][align=center][color=black]305.2[/color][/align][/td][td][align=center][color=black]300[/color][/align][/td][td][align=center][color=black]3.1e[/color][sup][color=black]4[/color][/sup][/align][/td][/tr][tr][td] [/td][td] [/td][td] [/td][td][align=center][color=black]567[/color][/align][/td][td] [/td][td][align=center][color=black]1.1e[/color][sup][color=black]4[/color][/sup][/align][/td][/tr][tr][td][align=center][color=black]阿维菌素[/color][/align][/td][td][align=center][color=black]890.5[/color][/align][/td][td][align=center][color=black]7.56[/color][/align][/td][td][align=center][color=black]305.2[/color][/align][/td][td][align=center][color=black]350[/color][/align][/td][td][align=center][color=black]2.1e[/color][sup][color=black]4[/color][/sup][/align][/td][/tr][tr][td] [/td][td] [/td][td] [/td][td][align=center][color=black]567[/color][/align][/td][td] [/td][td][align=center][color=black]6000[/color][/align][/td][/tr][tr][td][align=center][color=black]阿维菌素[/color][/align][/td][td][align=center][color=black]890.5[/color][/align][/td][td][align=center][color=black]7.56[/color][/align][/td][td][align=center][color=black]305.2[/color][/align][/td][td][align=center][color=black]400[/color][/align][/td][td][align=center][color=black]2.0e[/color][sup][color=black]4[/color][/sup][/align][/td][/tr][tr][td] [/td][td] [/td][td] [/td][td][align=center][color=black]567[/color][/align][/td][td] [/td][td][align=center][color=black]5000[/color][/align][/td][/tr][/table]2.4标准曲线、线性范围及检出限分别用甲醇配制含量分别为0.005mg/L、0.01mg/L、0.05mg/L、0.1mg/L、0.2mg/L的阿维菌素标准溶液,在上述实验条件下进样1.0μL,以峰面积为纵坐标,浓度为横坐标绘制线性关系曲线,结果表明阿维菌素标准溶液与相对应峰面积呈现良好的线性关系,其线性回归方程:A=6.82989e6+11635.39890,R=0.99913。按上述样品前处理方法及液相色谱检测条件分析得出阿维菌素在农产品样品中的定量限为0.01mg/kg。2.5方法准确度及精密度选取不同的果蔬、食用菌等农产品,进行添加水平为0.01mg/kg、0.05mg/kg、0.10mg/kg等加标回收试验,添加回收率为80%[font=宋体]~[/font]102.5%,RSD1.5[font=宋体]~[/font]8.5%,见表3,其结果满足农药残留检测回收率和相对标准偏差的分析要求。表3 不同农产品样品中阿维菌素添加回收测定结果(n=3)[table][tr][td=1,2][align=center][color=black]样品名称[/color][/align][/td][td=2,1][align=center][color=black]0.01mg/kg[/color][/align][/td][td=2,1][align=center][color=black]0.05mg/kg[/color][/align][/td][td=2,1][align=center][color=black]0.10mg/kg[/color][/align][/td][/tr][tr][td][color=black]回收率/(%)[/color][/td][td][align=center][color=black]RSD/(%)[/color][/align][/td][td][align=center][color=black]回收率/(%)[/color][/align][/td][td][align=center][color=black]RSD/(%)[/color][/align][/td][td][color=black]回收率/(%)[/color][/td][td][align=center][color=black]RSD/(%)[/color][/align][/td][/tr][tr][td][align=center][color=black]西葫芦[/color][/align][/td][td][align=center][color=black]85.6[/color][/align][/td][td][align=center][color=black]5.1[/color][/align][/td][td][align=center][color=black]89.5[/color][/align][/td][td][align=center][color=black]6.0[/color][/align][/td][td][align=center][color=black]91.4[/color][/align][/td][td][align=center][color=black]1.5[/color][/align][/td][/tr][tr][td][align=center][color=black]西红柿[/color][/align][/td][td][align=center][color=black]92.5[/color][/align][/td][td][align=center][color=black]3.5[/color][/align][/td][td][align=center][color=black]94.6[/color][/align][/td][td][align=center][color=black]2.2[/color][/align][/td][td][align=center][color=black]98.1[/color][/align][/td][td][align=center][color=black]3.4[/color][/align][/td][/tr][tr][td][align=center][color=black]芹菜[/color][/align][/td][td][align=center][color=black]90.1[/color][/align][/td][td][align=center][color=black]4.3[/color][/align][/td][td][align=center][color=black]92.1[/color][/align][/td][td][align=center][color=black]5.6[/color][/align][/td][td][align=center][color=black]102.5[/color][/align][/td][td][align=center][color=black]7.8[/color][/align][/td][/tr][tr][td][align=center][color=black]桔子[/color][/align][/td][td][align=center][color=black]86.1[/color][/align][/td][td][align=center][color=black]6.5[/color][/align][/td][td][align=center][color=black]90.3[/color][/align][/td][td][align=center][color=black]7.1[/color][/align][/td][td][align=center][color=black]92.9[/color][/align][/td][td][align=center][color=black]5.9[/color][/align][/td][/tr][tr][td][align=center][color=black]苹果[/color][/align][/td][td][align=center][color=black]82.3[/color][/align][/td][td][align=center][color=black]5.8[/color][/align][/td][td][align=center][color=black]87.8[/color][/align][/td][td][align=center][color=black]4.6[/color][/align][/td][td][align=center][color=black]90.1[/color][/align][/td][td][align=center][color=black]2.2[/color][/align][/td][/tr][tr][td][align=center][color=black]葡萄[/color][/align][/td][td][align=center][color=black]95.4[/color][/align][/td][td][align=center][color=black]3.6[/color][/align][/td][td][align=center][color=black]95.8[/color][/align][/td][td][align=center][color=black]2.0[/color][/align][/td][td][align=center][color=black]91.8[/color][/align][/td][td][align=center][color=black]7.9[/color][/align][/td][/tr][/table]3结论本研究对液相质谱法检测农产品中阿维菌素残留的仪器条件,进行了优化,解决了阿维菌素检出限高、灵敏度低、标准曲线线性差等问题,优化后的仪器条件方法检出限符合标准要求,阿维菌素的灵敏度高,在浓度0.005mg/L[font=宋体]~[/font]0.20mg/L范围内有良好的线性关系;添加回收率和相对标准偏差均符合分析的要求,是比较理想的阿维菌素残留量的分析方法。参考文献:[1]李晶,董丰收,刘新刚.高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]检测梨中阿维菌素残留方法研究[J]. 农药科学与管理,2008,29(2):17-22.[2]谢显传,张少华,王冬生等.柱前行生高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法测定果蔬产品阿维菌素及其有毒代谢物的残留量[J].中国农业科学,2005,38(11):2254-2260.[3]梁振益,李嘉诚,罗盛旭,等.高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法检测水果中阿维菌素残留量[J].现代农药,2005,4(4):20-22.[4]张儒令,安凤颖,胡德禹,等.高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法检测菜豆中阿维菌素残留量[J].现代农业科技,2020(06):106-108.[5]刘桂伶,李婷婷.高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法检测8种果蔬中阿维菌素残留量的分析方法[J].新疆农业科技,2020(01):38-39.[6]李增梅,邓立刚,赵涉及.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定苹果和土壤中阿维菌素的残留量[J].分析化学,2010,(10):1505-1509.[7]林涛,邵金良,刘兴勇,等.QuEChERS-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱测定蔬菜中41种农药残留[J].色谱,2015,33(3):235-241.[8]王连珠,黄小燕,陈游,等.QuEChERS前处理-[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱测定果蔬中18种弱酸性农药残留[J].分析测试学报,2014,33(10):1102-1108.[9]李欣,孙素群,张卫锋,等.QuEChERS-[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱测定蔬菜中56种农药残留[J].现代食品科技,2017,33(10):245-253,177.[10]李瑞雪,王晶蕾,龚慧.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱测定蔬菜水果中阿维菌素残留量[J].现代食品,2020,(22):180-182,189.

  • 【求购】阿维菌素系列农药简介

    [em0802]Avermectin是一种新型抗生素类,具有结构新颖、农畜两用的特点。随着人们生活水平的提高以及对绿色食品的呼唤,生物农药在当前农药市场中倍受青睐,权威人士预测21世纪将是生物农药的世纪。据报道欧洲生物农药将从1997年1亿美元的销售额上升到2004年1.69亿美元。阿维菌素是当前生物农药市场中最受欢迎和具有激烈竞争性的新产品。。自从1991年害极灭(阿维菌素)进入我国农药市场以后,阿维菌素农药在我国的害虫防治体系中占有较重要地位。目前市售的阿维菌素系列农药、兽药有阿维菌素、伊维菌素、甲胺基阿维菌素苯甲酸盐和乙酰氨基阿维菌素。

  • 【原创大赛】伏马菌素测定方法应用研究及对粮食污染情况分析

    摘要:目的 探讨以ELISA法和液相色谱分析法检测粮食、饲料中伏马菌素的可行性以及伏马菌素污染状况调查。方法 采用液相色谱分析法和竞争酶联免疫吸附法联合分析伏马菌素,并对两种方法相互确证实验。结果 ELISA法和液相色谱分析法同时测定12份阴性样品和12份阳性样品,测定结果相符率达100%。对花生、玉米及其制品以及动物内脏样品共288份进行检测,发现花生、玉米及其制品均含有不同程度伏马菌素和霉菌霉素的污染,而动物内脏未能检出。结论 两种方法的测定结果吻合,是目前国内外测定粮食、饲料中伏马菌素的科学而理想的方法。建议日常工作中先用ELISA法快速筛选检测,阳性样品再用液相色谱分析法确证。

  • 【原创大赛】兽药之硫酸粘杆菌素高效液相色谱法检测

    【原创大赛】兽药之硫酸粘杆菌素高效液相色谱法检测

    兽药之硫酸粘杆菌素高效液相色谱法检测 硫酸粘杆菌素由多粘杆菌产生,对革兰氏阴性菌有很强的抗菌作用,治疗革兰氏阴性菌(大肠埃希菌等)引起的肠道疾病效果明显,常用作饲料添加剂。对绿脓杆菌感染(败血症、尿路感染、烧伤或外伤创面感染)也有很好的效果。用于饲料添加剂还有明显促生长作用,和磺胺嘧啶合用效果更好。 本品也有很多副作用,内服很少吸收,本品吸收后,对肾脏和神经系统均有明显毒性。使用时剂量过大或疗程过长,以及注射给药和肾功能不全时均有中毒危险。 所以这种东西对于某些症状疗效较好,但也得谨慎使用。检测某些产品中硫酸粘杆菌素的含量就显得尤为重要。下面我们就重点看看高效液相色谱法检测某饲料中硫酸粘杆菌素吧。实验部分原理 取适量该粉末样品加10%甲醇溶解超声提取,经进样器进入高效液相色谱系统,C18色谱柱分离,紫外检测器检测,保留时间定性,峰面积定量计算(外标法)。仪器及试剂1.仪器:高效液相色谱仪(紫外检测器)、分析天平、超声振荡器、溶剂过滤器2.试剂:甲醇、乙腈(均为色谱纯),纯净水,硼砂溶液样品处理 提取方法:取饲料样品适量,充分粉碎后过0.45mm孔径筛后,装入磨口瓶中备用。准确称取上一步处理过的饲料样品5g,加入150ml 10%的甲醇水溶液,超声波提取20min。将提取液全部转移到1000ml鸡心瓶中,70℃旋转蒸发器蒸至近干,用去离子水溶解并定容至1ml,0.45um有机微孔滤膜滤过,待测。色谱条件检测器:紫外检测器色谱柱:C18,4.6 X 250mm,5um检测波长:215nm流动相:乙腈:PH6.0的硼砂缓冲液=70:30(V:V)流速:1.0mL/min进样量:10ul柱温:室温目标物:硫酸粘杆菌素B,硫酸粘杆菌素A标准品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410191339_518984_2498430_3.png标准品,三次平行进样交错叠加色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410191339_518985_2498430_3.png样品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410191340_518986_2498430_3.png样品,三次平行进样交错叠加色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410191340_518987_2498430_3.png以下是定性、定量数据:序号保留时间(min)峰面积(μAu*s)标样-1113.5331262989 228.7671306312 标样-21[td=1

  • 液质阿维菌素检验

    Waters[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]跑阿维菌素和甲氨基阿维菌素苯甲酸盐响应值非常低,用的ESI+,流动相是乙腈+5mmol乙酸铵乙酸铵,请问有什么解决办法吗?

  • 阿维菌素在水产品中残留检测方法的建立

    阿维菌素类生物农药(avermectins, AVMs)属大环内酯类抗生素,但与一般大环内酯类抗生素不同的是阿维菌素还具有很高的杀虫活性,被誉为是近20年来抗寄生虫药物研究的重大突破。AVMs的结构新颖,作用机制独特,是一种优良的新型农畜两用抗生素,广泛用于作物种植与动物养殖中。这类药物包括爱比菌素、甲胺基阿维菌素、乙酰胺基阿维菌素、伊维菌素、多拉菌素、莫西丁克和塞拉菌素,其中塞拉菌素主要用于伴侣动物。按世界卫生组织(WHO)的5级分级标准, AVMs属于高毒化合物,在动物组织中残留时间较长,具有神经和发育毒性;2002年12月我国农业部公告第235号文规定在所用食品蔬菜、水果中的最高残留量200μg/kg;牛的脂肪、肝中的最高残留量100μg/kg,肾的最高残留量为50μg/kg;所用食品羊的肌肉、肝的最高残留限量为25μg/kg,脂肪的最高残留限量为50μg/kg,肾的最高残留限量为20μg/kg,并将检测农兽药中阿维菌素类药物的残留量列为残留监控重点: AVMs作为农药直接喷洒在各种农作物上,会随雨水进人水体中;作为兽药,大部分药物通过粪便以原型排出,进而污染水体;AVMs还可作为驱虫药物应用在水产养殖中,从而对水生生物和人类造成潜在危害,因此有必要建立水产品中AVMs的多残留检测方法。通过2009年对北京地区水产养殖中所使用的药物调查发现,含有阿维菌素的药物使用比较普遍,但用量与水产品中残留量尚不明确。因此有必要对北京地区水产养殖中的阿维菌素使用情况进行调查。我国目前还没有对该药物在水产品中的使用进行大范围的检测,但欧盟、日本等大多数国家已经规定其限量。因此该药物的残留直接影响到我国水产品的出口贸易。另外,北京作为国际化的大都市,食品安全的保障尤其重要,该项目的实施有助于对滥用该药物的控制与预防,使得北京市的水产品安全保障与国际接轨。目前我国测定阿维菌素残留的检测标准有:农业行业标准NY/T 1463-2007 “饲料中阿维菌素的测定 高效液相色谱法”检测限为1.5mg/g。在国内动物源性食品中阿维菌素残留量的检测还没有相关的检验标准。因此,开展水产品中阿维菌素残留量检测方法的研究,制定适合水产品中阿维菌素残留检测的标准具有十分重要的意义本研究利用高效液相色谱法-串联质谱法在水产品中此药物的残留检测技术上做了深入探究。

  • 【讨论】阿维菌素类检测

    大家好,我们在用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS检测阿维菌素类农药时,可能离子对选择的不是很好,有的灵敏度不是很高,大家能不能说说以下几种你们选的离子对:伊维菌素;依普菌素;多拉菌素;阿维菌素;甲氨基阿维菌素苯甲酸盐。 谢谢了!

  • 【求助】阿维菌素液相色谱图分析求救

    [em06] 做了几次了,谱图总是重复性很差,很差。[em16] 实在不知道原因是什么。用的是C18柱分析阿维菌素乳油,即使是标样都无法重复。请好心的朋友或老师帮忙看看谱图,分析下可能的原因。感谢了,哪怕只言片语。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=37550]第一次谱图[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=37551]第二次谱图[/url]

  • 【转帖】水产品中螺旋霉素、替米考星、泰乐菌素与北里霉素残留量的超高效液相色谱一紫外检测法同时测定

    建立了水产品肌肉组织中螺旋霉素、替米考星、泰乐菌素、北里霉素同时测定的超高效液相色谱一紫外检测(UPLC—TUV)方法。样品经乙腈提取后,浓缩至近干,用4% NaC1溶解残渣,正己烷除脂,经固相萃取小柱净化,乙腈洗脱;以乙腈一25 mmo~L磷酸二氢铵(pH 2.5,含10% 乙腈)为流动相,以ACQUITYUPLC BEH Cl8为分离柱,柱温为45℃,流速为0.3 mL/min,紫外检测。方法在0.100~20.0 mg/L范围内呈线性相关,螺旋霉素、替米考星、泰乐菌素和北里霉素的相关系数分别为0.998 7、0.999 3、0.999 4和0.998 0。平均回收率为70%~102%,相对标准偏差为2.9%~11.2% ,螺旋霉素、替米考星、泰乐菌素和北里霉素的检出限分别为25、25、50、75 kg。方法满足水产品肌肉组织中螺旋霉素、替米考星、泰乐菌素和北里霉素的残留量测定。

  • 【“仪”起享奥运】食品复配防腐剂--纳他霉素和乳酸链球菌素

    [align=center][/align][font=宋体, SimSun][size=15px]纳他霉素和乳酸链球菌素的复配可以同时抑制真菌和细菌的生长,延长食品的货架期,在食品工业中具有很高的研究价值。[/size][/font][font=宋体, SimSun][size=15px]纳他霉素,简称Natamycin,主要是由纳塔尔链霉菌和褐黄孢链霉菌等链霉菌发酵得到的一种多烯大环内酯类[i][/i]抗菌剂;通常以烯醇式结构存在,是一种无臭无味的结晶粉末。纳他霉素能够有效抑制和杀死酵母菌和霉菌,抑制食品腐败以及真菌毒素给人体带来的损害。[/size][/font][font=宋体, SimSun][size=15px][back=#0eb0c9][b]纳他霉素的理化性质[/b][/back][/size][/font][font=宋体, SimSun][size=15px]纳他霉素是一种两性物质[i][/i],分子中有1个酸性基团和1个碱性基团,几乎不溶于水和大部分有机溶剂,较易溶于冰醋酸[i][/i]和二甲基亚砜等稀酸稀碱溶液。由于环状的分子结构,纳他霉素的稳定性受光照、温度、重金属、PH等因素影响。在使用时应保持PH在4~7范围内,同时避免高温和光照。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]纳他霉素的抑菌机理[/size][/b][/back][/font][font=宋体, SimSun][size=15px]纳他霉素是一种专一且高效的抗真菌剂,几乎对所有的酵母菌、霉菌都有很好的抑制效果。纳他霉素的抑菌机理是其与细胞膜上的麦角固醇结合,形成复合体从而改变细胞膜结构和渗透性,引起胞内电解质、氨基酸等物质泄漏,进一步使细胞死亡。李东等研究表明,纳他霉素对曲霉菌的最小抑制浓度为0.63mg/kg,对黑曲霉菌的最小抑制浓度为1.80mg/kg,对岛状青霉菌的最小抑制浓度为1.10mg/kg。张旋等研究表明,纳他霉素对真菌具有显著的抑制能力,最小抑菌浓度大致为1mg/L。[/size][/font][font=宋体, SimSun][size=15px]乳酸链球菌素,简称Nisin,是由乳酸链球菌在代谢过程中产生的具有杀菌作用的多肽物质[i][/i],其由34个氨基酸残基组成,是一种高效且无毒副作用的天然防腐剂。乳酸链球菌素的抗菌谱较窄,只能够有效抑制由细菌引起的食品腐败。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]乳酸链球菌素的理化性质[/size][/b][/back][/font][font=宋体, SimSun][size=15px]乳酸链球菌素在酸性条件下非常稳定,尤其当PH<2.0时可耐受121℃灭菌而不失活;当PH在中性和碱性时,灭菌后乳酸链球菌素活力基本丧失。PH与乳酸链球菌素的溶解度也密切相关,随着PH的下降,其溶解度增加。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]乳酸链球菌素的抑菌机理[/size][/b][/back][/font][font=宋体, SimSun][size=15px]乳酸链球菌素对大多数革兰氏阳性菌的抑菌效果很好,特别是对金黄色葡萄球菌、芽孢杆菌作用明显。其可以作用于细菌细胞膜,形成孔状结构,打破细胞内外平衡,导致细胞死亡;也可以抑制肽聚糖的合成,使细胞壁合成受阻,从而抑制细胞生长。姜爱丽等研究表明当PH在酸性时,乳酸链球菌素浓度高于10μg/mL,对单增李斯特菌有一定的抑菌效果。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]复合防腐剂在食品工业中的应用[/size][/b][/back][/font][font=宋体, SimSun][size=15px]易建华等发现乳酸链球菌素和纳他霉素复合防腐剂对低盐酱菜的抑菌能力最佳。乳酸链球菌素与纳他霉素复合防腐剂在3个月内对酱菜酸度和感官影响很小,且抑菌效果非常好。[/size][/font][font=宋体, SimSun][size=15px]顾佳莹等研究发现,将蛋黄馅中添加15g/kg的乳酸链球菌素和100mg/kg的纳他霉素复配溶液可达到内部防腐的目的,且用300mg/kg的纳他霉素溶液喷洒蛋黄月饼表皮能达到外部防腐的目的。[/size][/font][font=宋体, SimSun][size=15px]李清秀等将乳酸链球菌素和纳他霉素复配应用于鸡肉中,很好地抑制了鸡肉中腐败微生物的生长,且对鸡肉的口感无影响。[/size][/font][font=宋体, SimSun][size=15px]丁培峰等通过实验研究了纳他霉素、乳酸链球菌素和茶多酚在酱油防腐中的应用,发现单一的防腐剂不能起到良好的抑菌效果,而3种防腐剂按比例复配,可以使酱油货架期达到1年。[/size][/font][font=宋体, SimSun][size=15px]张玉鑫研究表明乳酸链球菌素与纳他霉素的比例为0.02:0.0065时,其抑菌效果与山梨酸钾相当,可有效地抑制方便面料包中的腐败菌生长。[/size][/font]

  • 液质阿维菌素响应低怎么办

    Waters[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]跑阿维菌素和甲氨基阿维菌素苯甲酸盐响应值非常低,用的ESI+,流动相是乙腈+5mmol乙酸铵乙酸铵,请问有什么解决办法吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制