当前位置: 仪器信息网 > 行业主题 > >

全谱发射仪

仪器信息网全谱发射仪专题为您提供2024年最新全谱发射仪价格报价、厂家品牌的相关信息, 包括全谱发射仪参数、型号等,不管是国产,还是进口品牌的全谱发射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全谱发射仪相关的耗材配件、试剂标物,还有全谱发射仪相关的最新资讯、资料,以及全谱发射仪相关的解决方案。

全谱发射仪相关的论坛

  • 等离子体发射光谱仪分类与“全谱直读”一词

    等离子体发射光谱仪分类与“全谱直读”一词陆文伟上海交通大学分析测试中心, 上海 200030摘 要 本文从仪器结构原理上讨论了当前国内在新型等离子体发射光谱仪分类命名上的问题。指出“全谱直读”一词用于仪器分类的不严谨性。提仪使用固态检测器等离子体发射光谱仪作为分类词。主题词 等离子体发射光谱仪 中阶梯光栅 固态检测器 全谱直读中图分类号:O657131   文献标识码:B   文章编号:100020593 (2002) 0220348202 收稿日期:2000208205 ,修订日期:2000212212 作者简介:陆文伟,1951 年生,上海交通大学分析测试中心高级工程师  早期国外把等离子体发射光谱仪( ICP2OES) 仪器分成同时型(Simultanous) 和顺序型(Sequential) 二类。国内把色散系统区分为多色器(Polychromator) 、单色器(Monochromator) ,仪器则从检测器来区分,命名为多通道型(多道) ,顺序型(单道扫描) 仪器[ 1 ,2 ] 。其仪器的分类命名与仪器功能,仪器结构基本一致,与国外的仪器分类也一致。ICP2OES 仪器在其发展期间,又有N + 1 的单道与多道结合型仪器出现,以及有入射狭逢能沿罗兰圈光学平面移动,完成1~2 nm 内扫描,能获得谱图的多道仪器出现,但总体上仍没动摇仪器的原始分类。1991 年新的中阶梯光栅固态检测器ICP2OES 仪器问世,新的仪器把中阶梯光栅等光学元件形成的二维谱图投影到平面固态检测器的感光点上,使仪器同时具有同时型和顺序型仪器的功能,这样形成了新一类的仪器。从它的信号检出来看,它与同时型仪器很接近,故有的国外文献仍把它简单归为同时型(Simultaneous) 仪器。但更多的是从仪器的硬件结构上出发,采用中阶梯光栅固态检测器等离子体发射光谱仪“Echelle grating solid state detector ICP2OES”的命名。1993 年该类仪器进入中国市场,国内仪器广告上出现“全谱直读”一新名词。随着该类仪器的推广使用,该名词逐渐渗入期刊杂志,教科书,学术界,甚至作为仪器分类词出现在《现代分析仪器分析方法通则及计量检定规程》[ 3 ]中。纵观国外涉及到中阶梯光栅固态检测器等离子体发射光谱仪的期刊杂志,书籍和文献均未使用到该词或与之意思相近的词。甚至各仪器厂家的英文样本中也无该词出现。实际上“全谱直读”是中文广告词,它不严谨,并含糊地影射二方面意思:11 光谱谱线的全部覆盖性和全部可利用性 21 全部谱线的总体信号同时采集读出。从中阶梯光栅固态检测器等离子体发射光谱仪的光谱范围(英文常采用Wavelength coverage range) 来看,一般仪器都在160~800 nm 左右。如有的仪器在167~782 nm ,有的在165~800 nm ,有的在175~900 nm ,有的在165~1 000 nm ,有的是在122~466 nm 基础上另加590 ,670 ,766 nm 的额外单个检测器。有的在超纯Ar 装置下短波段区扩展至134nm ,其长波段区能扩展至1 050 nm。很明显所有此类仪器的光谱范围目前离“全谱”还是有距离的,而且仪器厂家还在扩大其光谱范围。再说此类仪器的“光谱范围”,实际上更确切的意思是指可利用的分析谱线波长跨度范围!实际上中阶梯光栅和棱镜所形成的二维光谱图在目前固态检测器芯片匹配过程中,高级次光谱区可以说是波长连续的,不同级次的光谱波长区甚至重迭。而低级次光谱区级次与级次之间的波长区并不衔接,最大可以有20 nm 以上的间隙,其间隙随着级数增大而变小,严格地说也就是仪器的光谱不连续性存在,尽管对有用谱线影响并不太大。另外中阶梯光栅多色器系统产生的二维谱图闪烁区与检测器芯片匹配的边缘效应,固态检测器的分段或分个处理,都会造成使用全部谱线的困难,甚至发生有用谱线的丢失。大面积的固态检测器芯片可望用于光谱仪,光谱级次间波长区的连续性会进一步改善,其波长区复盖也会增大。但仪器制造成本及芯片因光谱级次间波长过多重叠显得利用效率不高,都会形成其发展的阻力。从仪器可利用谱线上看,目前中阶梯光栅固态检测器等离子体发射光谱仪还只能是多谱线同时分析仪器。当然它可利用的谱线要比以前多道发射光谱仪器的谱线(最多六十多条) 多得多。如目前仪器有6 000 多条的,有2 万7 千条的,有在2 万4 千条的基础上再可由使用者在仪器波长区任意定址添加的等等。但这与“全谱”给人的含糊概念,与数十万以上的全部谱线概念相差甚远。就是从全部可利用谱线讲,该类仪器在定量分析时也不等于纪录全部谱线。有的仪器是在定性分析时能纪录所有覆盖谱线。“全谱直读”一词还常常被沿伸到一次曝光像摄谱仪一样工作。直读一词(Direct reading) 出现在摄谱仪之后、光电倍© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.增管用于发射光谱仪之时。是相对摄片2读片过程变成一步而言。多道发射光谱仪采用该词较多。目前中阶梯光栅固态检测器等离子体发射光谱仪还没有完全达到全部谱线的总体信号同时采集读出的水平。有的仪器分检测器读出,有的仪器分波长区读出,有的仪器分波长区检测器再加几个单个波长检测器读出。固态检测器的曝光与摄片又不同,固态检测器比照相底片更灵活,为了适应样品分析元素高低浓度大小信号的要求,固态检测器灵活处理,有的分区曝光,有的分级扫描曝光,有的级中分二段控制曝光,有的检测器分子阵列(Subarray) 控制曝光,有的从其检测器机理出发分每个感光点(Pixel) 控制曝光。“全谱直读”给人是含糊的印象,不能正确反映仪器的特点。当前新的仪器还在不断涌现,有分级扫描式中阶梯光栅固态检测器等离子体发射光谱仪,有新的多个固态检测器在罗兰圈排列使用的仪器,从检测器硬件结构分类,它们都能方便地归入中阶梯光栅固态检测器等离子体发射光谱仪,或固态检测器等离子体发射光谱仪类别里。而“全谱直读”则明显不能适应。新名词会受到实践和事实的考验。国外文献中名词也有变化的,如电感耦合等离子体原子发射光谱仪的ICP2AES 英文缩写名词,因AES 含义面广,易与俄歇电子光谱[ 4 ]混淆,现在逐渐被ICP2OES 取代。切入实际的名词才会在发展中生存。参考文献 [ 1 ]  化学试剂电感耦合等离子体原子发射光谱方法通则,中华人民共和国国家标准GB10725289. [ 2 ]  发射光谱仪检定规程,中华人民共和国国家计量检定规程J TG768294. [ 3 ]  感耦等离子体原子发射光谱方法通则 感耦等离子体原子发射光谱仪检定规程,1997. (第一版) 科学技术文献出版社,现代分析仪器分析方法通则及计量检定规程. [ 4 ]  英汉仪器仪表词汇,科学出版社,1987 (第一版) .

  • 美国利曼Prodigy XP全谱直读ICP发射光谱仪

    我用的是美国利曼Prodigy XP全谱直读ICP发射光谱仪测试成分,但是今天开仪器后,打不开软件,老是停留在寻找方法的页面进不去,似乎是测试方法丢失,有没有这种情况的,求帮助啊!!

  • 美国利曼Prodigy XP全谱直读ICP发射光谱仪

    我用的是美国利曼Prodigy XP全谱直读ICP发射光谱仪测试成分,但是今天开仪器后,打不开软件,老是停留在寻找方法的页面进不去,似乎是测试方法丢失,该怎么办?????求各位高手指点,多谢!

  • Varian 710-Es全谱直读等离子发射光谱仪检测金属离子

    最近做用710-Es全谱直读等离子发射光谱仪检测电解质和电解液中的金属离子杂质含量,在检测过程中,遇到的主要问题是,钙,镁和钠的标准曲线总是校正不了,这个问题全是因为标液没有配好吗?容易污染?是否还有其他问题,或者我应该怎么去避免这些问题。还有就是我现在刚开始接触ICP,还不是很熟悉,在做ICP时,有什么要注意的,我现在有个课题,是关于方法的改进,可以提高金属离子的准确度,我应该从哪几方面着手,我应该查阅什么资料???

  • 【求助】-使用全谱等离子体发射光谱仪IRIS Intrepid Ⅱxsp做元素分析,滤膜的预处理

    使用Andersen碰撞采样器,Teflon(PTFE)滤膜采集大气种的PM2.5欲采用全谱等离子体发射光谱仪(美国热电公司的IRIS Intrepid Ⅱxsp)做阳离子分析 我们原定的预处理方案为:将滤膜剪碎于100mL塑料瓶中,加入10mL左右的蒸馏水。将塑料瓶在振荡器中振荡30min,超声萃取10min后用0.45μm滤膜抽滤,滤液定容到25mL。可是不知道直接用蒸馏水萃取的方法是否得当?还是要用HNO3和HCl提(1:1)提取呢?

  • 发射光谱仪FLASH示意图 请点光源

    为了让大家能形象的了解AES的内部情况,特把不同AES的几个FLASH奉上,需要下载的朋友到资料中心去下载PerkinElmer全谱直读等离子体发射光谱仪示意图:请点光源[flash]http://ng1.17img.cn/bbsfiles/images/2017/10/200524204648_01_0_3.swf[/flash]

  • ICP发射光谱法的特点

    ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点: 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。

  • 空心阴极灯发射的谱线是该元素的全谱线吗

    大家都知道,除了H以外的元素的光谱都有若干条谱线,我一直很迷糊的是,空心阴极灯所发射的光谱是不是包含了该元素的所有谱线?还是只有一条共振线(第一激发态--基态)?如果全部谱线都有,那么原吸的单色器是在火焰的后面,如何选择所要用的谱线如果只有一条,那他是如何控制不产生第n激发态无最佳答案!

  • 【原创】在原子发射光谱法中谱线重叠干扰的判断和识别及分析线的选择

    随着ICP发射光谱分析应用的日益普及,现在我们国家应用ICP发射光谱进行元素分析的人已明显增多,它的应用领域也越来越广,因此从事ICP发射光谱分析的人也随之不断增多。近来曾多次看到网友发的有关分析线选择的求助帖,所以想借此和大家交流一下。  所有新的分析技术出现时,往往都会注意到它的干扰问题,因为干扰效应是分析化学中最为复杂的问题之一,或者说分析化学中90%以上的理论问题,或多或少都是与解决干扰问题相关联的。  原子发射光谱法也是一样,特别是由谱线重叠引起的光谱干扰更是如此。因为发射光谱的谱线非常之多,对于结构简单的元素来说,其谱线数量少则至少也有两位数,而对于那些结构复杂的元素来说,其谱线数量更是在5位数以上。  这也不难理解,因为气态自由原子,在获得能量后可以被激发,而每个原子都有很多的激发态。如果气态自由原子所获得的能量超过了其电离能,它还会发生电离,电离之后如果继续获得能量,同样会被激发而跃迁到离子的激发态上,所以每一种元素的原子包括其离子都会具有很多很多的能级。  现在的ICP全谱直读型仪器,大多采用中阶梯光栅的二维分光的方式,所以得到的谱图已不再象过去的一维线光谱,它是二维的或三维的(第三维是发射强度)。因此每当有人问我发射光谱有多少谱线时,我就会给他们看多元素的二维发射光谱的谱图,我就会问他们这样的谱图看上去象不象晴天无云的夜晚中天上的星星,它们有大的有小的,有亮的有暗的,如果有人让你去数星星你还想知道它们有多少吗?  正是因为原子发射光谱有如此多的谱线,所以当发射光谱的仪器其分光系统的色散能力和分辨能力不够时,一些波长相差很小的谱线就会部分地或完全地重叠在一起,形成光谱干扰。至今还没有一台仪器可以将所有原子谱线都能分开的光谱仪器。这就是为什么我们在进行原子发射光谱分析时要处理光谱干扰的原因。谱线多是坏事也是好事,因为它在容易形成干扰的同时也为我们提供了更多的选择余地,为我们提供了非常丰富的原子结构信息,这也正是为什么发射光谱定性分析准确可靠的重要原因。  好在过去的发射光谱仪器中,有一种采用光电倍增管对发射光谱的谱线强度进行检测的叫多道仪器,因为它可以进行多元素同时测定,所以对每种元素通常只提供一条固定波长的谱线,这样就不可避免地要解决由谱线重叠引起的光谱干扰问题,所以过去曾经有很多人专门从事这方面的研究,因此建立了很多比较好的和行之有效的校正方法,其中现在全谱直读仪器软件中用得比较多的一个是干扰系数法,另一个就是谱线解析法。因为关于这方面的内容比较多,所以在此不便作更多的熬述,在江祖成等编写的《现代原子发射光谱分析》有专门的一章介绍这方面的内容。  知道了谱线重叠干扰该如何校正之后,接下来的问题就是如何去判断和识别这一干扰了。现在的全谱直读型仪器采用的是固体成像检测器来记录和测量谱线的发射强度,它们一般都具有呈现谱线轮廓的功能,我们可以通过这一功能直接观察分析线的情况,尽管它们都是峰形的,但它们可能会因元素的不同或谱线的不同而呈现出各种形状,它们可能有对称的有非对称的,有宽粗的有苗条的,有俊俏的有难看的,我们可以利用这一功能非常直观地看出线翼重叠。  对于完全重叠或近乎完全重叠的谱线的情况可能会复杂一些,因为在一般情况下,仪器软件会对每一种元素提供一条以上可供选择的分析线,在进行分析测定时,可以多选几条谱线,如果由所有谱线都能得出一致的结果,就表明分析结果准确可靠,没有谱线干扰线的影响,反之的话结果明显偏高的,就很可能存在完全重叠或近乎完全重叠的干扰谱线。如果我们将基体分离并扣除空白后,之前结果明显偏高的谱线不再偏高,则一般就可以进一步确定它存在完全重叠或近乎完全重叠的谱线干扰。   http://www.instrument.com.cn/bbs/shtml/20081029/1554124/

  • ICP全谱直读测试原理

    今天根据要求改了几个测量谱线,一般都一主二辅,这是想到多加几条辅助线,ICP需要多出一些数据,是不是就增加了单个样品的测试时间?既然是全谱直读,而且发射也是无选择性、只要能量达到了且满足能级要求该发射的还是会发射,所以只是你选择出哪个谱线的数据,而不是加重了负担,因为它已经都读了???没有系统的学过光谱知识,希望板块多出些仪器内部检测光路、检测器等检测原理的帖子,真心感谢了!

  • 电感耦合等离子体发射光谱仪的应用

    电感耦合等离子体发射光谱仪的应用

    [align=center][font='宋体'][size=16px]电感耦合等离子体发射光谱仪的应用[/size][/font][/align][font='宋体'][size=16px]中广测配备了电感耦合等离子体发射光谱仪(ICP-OES),配有CMOS固态检测器,具有真实同步直读式测量检测,全谱一次曝光同时读取的功能,读取速度是传统CCD检测器速度的10倍。ICP-OES作为无机分析的主要手段之一,可测定元素周期表中硫、磷、硅等73种元素金属和非金属元素,可用于医药、食品、化妆品、化工产品、肥料等各类样品中常量、微量无机元素的快速定性分析及定量分析。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271130132059_3999_2862401_3.jpeg[/img][/align][align=center][font='宋体'][size=16px][color=#000000]电感耦合等离子体发射光谱仪[/color][/size][/font][/align][font='宋体'][size=16px]一、仪器信息[/size][/font][font='宋体'][size=16px]1.仪器名称:电感耦合等离子体发射光谱仪[/size][/font][font='宋体'][size=16px]2.英文名称:Inductively Coupled Plasma Optical Emission Spectrometer[/size][/font][font='宋体'][size=16px]3.生产制造商:美国利曼公司[/size][/font][font='宋体'][size=16px]4.型号:Prodigy7[/size][/font][font='宋体'][size=16px]二、主要技术参数[/size][/font][font='宋体'][size=16px]1. 波长范围:165-900nm;[/size][/font][font='宋体'][size=16px]2.光学分辨率:≤0.007nm (@200nm);[/size][/font][font='宋体'][size=16px]3.重复性:Zn/Ni/Mn/Cr/Cu/Ba小于1.5%;[/size][/font][font='宋体'][size=16px]4.稳定性:Zn/Ni/Mn/Cr/Cu/Ba小于2.0%;[/size][/font][font='宋体'][size=16px]5.等离子体观测方式:具备水平和垂直两种观测方式;[/size][/font][font='宋体'][size=16px]6.检测器:CMOS固态检测器,具有真实同步直读式测量检测,全谱一次曝光同时读取。[/size][/font][font='宋体'][size=16px]三、应用领域[/size][/font][font='宋体'][size=16px]用于医药、食品、化妆品、化工产品、肥料等领域。[/size][/font][font='宋体'][size=16px]四、服务范围[/size][/font][font='宋体'][size=16px]1.各类样品中常量、微量无机元素分析检测[/size][/font][font='宋体'][size=16px]2.样品中常量、微量无机元素含量测定的方法开发与验证[/size][/font][font='宋体'][size=16px]五、应用案例[/size][/font][font='宋体'][size=16px]肥料中的矿物元素对植物的生长有重要的意义,根据NY 1429-2010 含氨基酸水溶肥料标准要求,采用ICP-OES测定了含氨基酸水溶肥料(微量元素型)中的微量元素,结果如下:[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271130134300_1550_2862401_3.png[/img][/align]

  • 【分享】-----ICP发射光谱法的特点!!简单精辟的!

    [color=#DC143C]ICP发射光谱法的特点ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点: 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。ICP发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面: 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。 2. 因为工作时需要消耗大量Ar气,所以运转费用高。 3. 因目前的仪器价格尚比较高,所以前期投入比较大。 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。ICP发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。  ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。   ICP发射光谱法包括了三个主要的过程,即:   由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;   将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;   用检测器检测光谱中谱线的波长和强度。   由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。 优点:1. 多元素同时检出能力。可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。 2. 分析速度快。试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。 3. 选择性好。由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。 4. 检出限低。一般可达0.1~1ugg-1,绝对值可达10-8~10-9g。用电感耦合等离子体(ICP)新光源,检出限可低至 数量级。 5. 用ICP光源时,准确度高,标准曲线的线性范围宽,可达4~6个数量级。可同时测定高、中、低含量的不同元素。因此ICP-AES已广泛应用于各个领域之中。 6. 样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。 缺点:1. 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。 2. 含量(浓度)较大时,准确度较差。 3. 只能用于元素分析,不能进行结构、形态的测定。 4. 大多数非金属元素难以得到灵敏的光谱线。 1 因为工作时需要消耗大量Ar气,所以运转费用高。2 因目前的仪器价格尚比较高,所以前期投入比较大。3 ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。  发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。特别值得一提的是现在很多的商品仪器已经采用了中阶梯光栅的二维色散方式,使光的色散率和谱线的分辨率得到了明显的提高,这无疑又为我们选择分析线创造了更好的条件。[/color]

  • 【原创】原子发射光谱仪的优点和缺点

    [font=宋体]ICP[/font][font=宋体]光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点:[/font][font=宋体] 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。[/font][font=宋体] 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。[/font][font=宋体] 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。[/font][font=宋体] 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。[/font][font=宋体] 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。[/font][font=宋体] 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面:[/font][font=宋体] 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。[/font][font=宋体] 2. 因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体] 3. 因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体] 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。[/font][font=宋体]  ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80 年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl 及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。[/font][font=宋体]  ICP发射光谱法包括了三个主要的过程,即:[/font][font=宋体]  由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;[/font][font=宋体]  将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;[/font][font=宋体]  用检测器检测光谱中谱线的波长和强度。[/font][font=宋体]  由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。[/font][font=宋体]优点:[/font][font=宋体]1. [/font][font=宋体]多元素同时检出能力。[/font][font=宋体]可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。[/font][font=宋体]2. [/font][font=宋体]分析速度快。[/font][font=宋体]试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。[/font][font=宋体]3. [/font][font=宋体]选择性好。[/font][font=宋体]由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。[/font][font=宋体]4. [/font][font=宋体]检出限低。[/font][font=宋体]一般可达0.1~1ugg-1,绝对值可达10-8~10-9g。用电感耦合等离子体(ICP)新光源,检出限可低至 数量级。[/font][font=宋体]5. [/font][font=宋体]用ICP光源时,准确度高,标准曲线的线性范围宽,可达4~6个数量级。可同时测定高、中、低含量的不同元素。因此ICP-AES已广泛应用于各个领域之中。[/font][font=宋体]6. [/font][font=宋体]样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。[/font][font=宋体]缺点:[/font][font=宋体]1. [/font][font=宋体]在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。[/font][font=宋体]2. [/font][font=宋体]含量(浓度)较大时,准确度较差。[/font][font=宋体]3. [/font][font=宋体]只能用于元素分析,不能进行结构、形态的测定。[/font][font=宋体]4. [/font][font=宋体]大多数非金属元素难以得到灵敏的光谱线。[/font][font=宋体]1 [/font][font=宋体]因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体]2 [/font][font=宋体]因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体]3 ICP [/font][font=宋体]发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。[/font][font=宋体]  发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。特别值得一提的是现在很 多的商品仪器已经采用了中阶梯光栅的二维色散方式,使光的色散率和谱线的分辨率得到了明显的提高,这无疑又为我们选择分析线创造了更好的条件。[/font][size=3][font=Times New Roman] [/font][/size]

  • 【原创大赛】两款“低运行成本”的等离子体发射光谱仪“新品”

    【原创大赛】两款“低运行成本”的等离子体发射光谱仪“新品”

    ICP发射光谱仪具有灵敏度高、多元素同时测量的优点,但是其应用中氩气消耗量很大,此问题也是一直困扰用户的问题。通常一钢瓶氩气价格在200-300元之间,ICP仪器正常开机的话能够使用4小时左右。传统ICP仪器的氩气消耗量在15-18L/min,那么一年下来,氩气成本也是一笔不菲的费用。尤其是,对于偏远地区的实验室来说,氩气的购买和使用更加具有困难。  所以,“降低运行成本理念,节能环保”理念的分析仪器成为了现今仪器公司研发的目标。2011年,发射光谱仪新品中有两款仪器的设计中体现了此理念。  一是珀金埃尔默推出的ICP发射光谱仪Optima 8000。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301148_342765_1755058_3.jpg  珀金埃尔默公司ICP-AES的工厂一直设在纽约近郊的Shelton,主要的技术研发人员在此工作了20余年,产品生产质量稳定,技术基础雄厚。自1978年推出5000型以来,先后经历了5500型、6500型、P II 型、P1000 型、P2000 型、P40 型、P400 型的不断改进。1993年推出的Optima 3000型是世界上第一台全谱直读ICP-AES,1994年推出专利的双向观测技术,使ICP-AES的性能进入了一个全新的阶段。2008年完善并推出的Optima 7000DV和Optima 7300DV是珀金埃尔默公司的第十三代产品,2011年7月推出的Optima 8000系列采用了全新的射频发生器技术,是珀金埃尔默公司的第十四代产品。  Optima 8000采用了平板等离子体技术,减少了三分之一的氩气消耗量,并且不需要冷却水,运行成本大大降低。在Optima 8x00ICP光谱仪采用了平板等离子体技术,专利的RF 发生器采用免维护的等离子感应板,取代了传统的螺旋负载线圈。由于无需冷却、减少了氩气的消耗量,运行成本也大大降低。传统仪器的氩气消耗量在15-18L/min,而采用平板等离子体技术只要8-10L/min的氩气消耗量就能达到同样的效果。对于一些样品量比较大的实验室来说,每年在氩气消耗方面大概可以节约10万元,这样每三四年节省的费用都可以买一台新的仪器。  另一是安捷伦推出的1000W微波等离子体原子发射光谱仪4100 MP-AES。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301148_342766_1755058_3.jpg    微波等离子体原子发射光谱仪并不是一个新鲜的技术,很早以前就已经出现了,但是多为实验室研究用的仪器,并且功率最高不过几百瓦,因其等离子体光源的温度低、电磁辐射高、金属元素分析灵敏度弱等原因,一直没有真正的商品化。  所以,安捷伦推出的这款1000W的4100 MP-AES也可以说是全球首款大功率微波等离子体原子发射光谱仪。微波发生器采用了日用微波炉的发生器,在人们日常生活中已经普遍使用,安全无泄漏。分光系统采用的是平面光栅的扫描式单色器,532*128pixels、6万多像素的CCD检测器。其工作温度达5000K,只有原子谱线,干扰简单。  并且采用气体冷却的方式代替水冷,绿色环保。  最为重要的是,4100 MP-AES可直接使用氮气或空气作为工作气体,无需使用易燃或昂贵气体,提高了安全性,大大降低运行成本。4100 MP-AES的价格比原子吸收光谱高,但比单道扫描型ICP-AES低,更是远远低于全谱直读型ICP-AES;而4100 MP-AES在灵敏度、线性动态范围、检测限和分析速度等性能上均优于火焰原子吸收光谱,与扫描型ICP-AES的分析性能相近。据安捷伦公司自己介绍,使用4100 MP-AES取代火焰原子吸收光谱仪能够显著解决分析费用。例如,在100个样品中分析9个元素,每周工作3天,则在五个月就开始省钱,18个月将会解决运营成本40000多美元。

  • ICP发射光谱法的特点

    [b][size=18px][color=black] ICP光谱[/color][/size][/b][size=18px][color=black]法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点: 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。 3. 因为[b]ICP发射光谱[/b]法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。 ICP发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面: 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。 2. 因为工作时需要消耗大量Ar气,所以运转费用高。 3. 因目前的仪器价格尚比较高,所以前期投入比较大。 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。 ICP发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。 ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80年 代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl及 元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。 ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。 ICP发射光谱法包括了三个主要的过程,即: 由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射; 将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱; 用检测器检测光谱中谱线的波长和强度。 由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。 优点: 1. 多元素同时检出能力。 [/color][/size][color=black] [/color][size=18px][color=black] 可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。 2. 分析速度快。 [/color][font=宋体][color=black] 试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。 3. 选择性好。 由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。 4. 检出限低[/color][/font][/size][font=宋体][size=18px][color=black]一般可达0.1~1ug?g-1,绝对值可达10-8~10-9g。用电感耦合等离子体(ICP)新光源,检出限可低至 数量级。 5. 用ICP光源时,准确度高,[/color][/size][/font][font=宋体][size=18px][color=black]标准曲线的线性范围宽,可达4~6个数量级。可同时测定高、中、低含量的不同元素。因此ICP-AES已广泛应用于各个领域之中。 6. 样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。 缺点: 1. 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。 2. 含量(浓度)较大时,准确度较差。 3. 只能用于元素分析,不能进行结构、形态的测定。 4. 大多数非金属元素难以得到灵敏的光谱线。 5、 因为工作时需要消耗Ar气,所以运转费用高。 。 ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。 原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。 发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。[/color][/size][/font]

  • 原子发射光谱仪的构成

    [url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]是测定每种化学元素的气态原子或离子受激后所发射的特征光谱的波长及强度来确定物质中元素组成和含量。  原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。  原子发射光谱仪,是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。这一类仪器一般包括:光源、单色器、检测器和独处器件。原子发射光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别。原子发射光谱仪有火花原子发射光谱仪,光电原子发射光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空原子发射光谱仪等多种品种。原子发射光谱仪广泛应用于铸造、钢铁、金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检、质检等部门。

  • 荧光光谱仪发射谱的测量原理?

    发射谱,通常称为荧光谱。在特定激发波长情况下,一段发射波长和该波长荧光强度对应曲线。如果是扫描光谱仪,激发波长选择后,发射侧光栅扫描,发射单色仪的波长对应检测器强度的曲线;如果是CCD检测器,就是对应像素的波长和强度的关系。光栅可能也需要扫描来侧高分辨率的宽范围的图谱。测量时为了提高信噪比,可以在激发侧加带通滤光片来最大限度抑制杂散光,在发射侧添加高通滤光片(低通,上转换时候)来消除二次散射光。通常设定激发波长后,发射范围设定不要包括激发波长,当然,PLQY特殊测试要求除外。要考虑检测器的响应线性区间。

  • 什么是全谱直读?

    我看有些ICP-AES都写着全谱直读,是指同时能测试出所有谱线的发射强度吗?(即不会因增加测试谱线而增加测试时间)

  • 【原创大赛】从“单道扫描与全谱值读”看未来ICP发展方向

    【原创大赛】从“单道扫描与全谱值读”看未来ICP发展方向

    ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法, 由于仪器检出限低、测试范围广、动态线性范围宽等优点,越来越广泛应用于含量范围宽、精度要求高的技术领域,如食品、卫生、医药、化妆品、土壤、钢铁等精密分析及基础研究中。 想具体了解ICP仪器在检测方式:单道(多道)扫描与全谱直读的区别,首先先来看看各自的检测器在工作原理上的不同之处吧---- 单道扫描型光谱仪:从光源发出的光穿过入射狭缝后,反射到一个可以转动的光栅上,该光栅将光色散后,经反射使某一条特定波长的光通过出射狭缝投射到光电倍增管上进行检测。光栅转动至某一固定角度时只允许一条特定波长的光线通过该出射狭缝,随光栅角度的变化,谱线从该狭缝中依次通过并进入检测器检测,完成一次全谱扫描,和多道光谱仪相比,单道扫描光谱仪波长选择更为灵活方便,分析样品的范围更广,适用于较宽的波长范围。但由于完成一次扫描需要一定时间,因此分析速度受到一定限制。http://ng1.17img.cn/bbsfiles/images/2015/08/201508201530_561708_3025342_3.png 全谱直读型光谱仪:光源发出的光通过两个曲面反光镜聚焦于入射狭缝,入射光经抛物面准直镜反射成平行光,照射到中阶梯光栅上使光在X向上色散,再经另一个光栅在Y向上进行二次色散,使光谱分析线全部色散在一个平面上,并经反射镜反射进入面阵型CCD检测器检测。由于该CCD是一个紫外型检测器,对可见区的光谱不敏感,因此,在光栅的中央开一个孔洞,部分光线穿过孔洞后经棱镜进行Y向二次色散,然后经反射镜反射进入另一个CCD检测器对可见区的光谱(400~780nm)进行检测。这种全谱直读光谱仪不仅克服了多道直读光谱仪谱线少和单道扫描光谱仪速度慢的缺点,而且所有的元件都牢固地安置在机座上成为一个整体,没有任何活动的光学器件,因此具有较好的波长稳定性。http://ng1.17img.cn/bbsfiles/images/2015/08/201508201530_561709_3025342_3.png 近年来,由于全谱直读型仪器能更大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布的同时测量,有利于多谱图校正技术的采用,有效消除光谱干扰,提高选择性和灵敏度,越来越多的科研和工业企业选择全谱直读的仪器,来获取最快,最精确的测量分析结果。 德国派克最新款的ARCOS光谱仪,以独一无二的全新MultiView等离子体接口,第一次在同一台仪器上实现了真正的轴向和径向直接观测,拥有真正全谱记录同时测量的性能,将电感耦合等离子体发射光谱仪(ICP-OES)的效率和性能推向了新的高度。

  • 你选择的谱线是原子发射线还是离子发射线?

    [font=SimSun][color=black]先看看基本谱线的定义[/color][/font][font=SimSun][color=black]1.原子发射线([/color][/font][color=black]Atom line[/color][font=SimSun][color=black]):从原子的激发态跃迁回到基态所产生的发射光谱,一般在元素后标[/color][/font][color=black] "I"[/color][font=SimSun][color=black],如[/color][/font][color=black]Ba I 553.5[/color][font=SimSun][color=black]2.离子线([/color][/font][color=black]ion line[/color][font=SimSun][color=black]):从原子的离子态跃迁回到基态所产生的发射光谱,一般在元素后标[/color][/font][color=black] "II"[/color][font=SimSun][color=black],“[/color][/font][color=black]III[/color][font=SimSun][color=black]”,表示一次电离,二次电离原子的离子谱线,如[/color][/font][color=black] Ba II 455.4 nm[/color][font=SimSun][color=black]。[/color][/font][font=SimSun][color=black]你选择的谱线是原子发射线还是离子发射线?[/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制