当前位置: 仪器信息网 > 行业主题 > >

底装式磁翻板液位计

仪器信息网底装式磁翻板液位计专题为您提供2024年最新底装式磁翻板液位计价格报价、厂家品牌的相关信息, 包括底装式磁翻板液位计参数、型号等,不管是国产,还是进口品牌的底装式磁翻板液位计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合底装式磁翻板液位计相关的耗材配件、试剂标物,还有底装式磁翻板液位计相关的最新资讯、资料,以及底装式磁翻板液位计相关的解决方案。

底装式磁翻板液位计相关的资讯

  • 德国科威尔进口液位开关|进口液位计2013年最后一次促销活动即将举行
    继上次“双十一”购物狂欢节科威尔推出特价优惠活动取得不错的成绩后,适逢2013年最后一个月,科威尔又推出了“双十二”特价活动,这将是科威尔在2013年的最后一次促销活动,欢迎广大客户来电咨询:全国统一服务热线:4006 021 188 电话:021-54430662  参加本次促销活动的产品有:  ●导杆型液位开关LV系列  ●侧装式磁翻柱液位计LMS系列  ●机械式温度开关TK10系列  ●电磁流量计FE20系列  ●柱塞式流量开关FP53系列  更多关于科威尔液位开关|液位计等促销信息:http://www.ywkg.cn
  • “川仪造”1E级磁浮子液位计模拟件鉴定试验顺利完成
    3月12日,由川仪自主设计制造的1E级磁浮子液位计模拟件鉴定试验顺利完成,这标志着由川仪股份牵头承担的国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题研究成果即将进入应用阶段,表明我国已拥有CAP1400 1E级磁浮子液位计自主研制能力,打破国外厂商在技术和价格上的垄断,为加快我国核电装备自主化发展和中国核电“走出去”战略提供有力支撑。1E级磁浮子液位计包含堆芯补水箱用1E级磁浮子液位计(CMT液位计)及安全壳淹没用1E级磁浮子液位计(CFU液位计)。CMT液位计用于堆芯补水箱热态液位测量及报警、控制自动卸压系统(ADS)爆破阀开启以缓解LOCA事故、事故后堆芯补水箱内液位监测等功能;CFU液位计可提供事故后监测安全壳内水位,提供安全壳内水位指示及报警等功能。两款1E级磁浮子液位计均为CAP1400非能动堆芯冷却系统中重要测点的专用仪表,对核电站的安全运行起着至关重要的作用。是核电站安全运行的关键设备。全球各大核电强国背后,均有强大的设计研发能力及装备制造业作为支撑。与核电建设速度和规模相比,衡量一国核电实力和产业竞争力的更核心指标是自主化能力。如今,三代核电自主化成果“国和一号”,即CAP1400压水堆技术,将实现100%的设备国产化能力,在这背后是600余家单位、3.1万名技术人员,历时十几年科研攻关,可以说,“国和一号”集中了中国三代核电技术和产业创新之大成。此前,通过核电重大专项及引进技术AP1000项目中,1E级磁浮子液位计从前期采购到中期调试使用再到后期的维护,均由国外厂商垄断,导致产品成本居高不下高、供货周期长,不利于核电厂稳定运行。解决“卡脖子”问题,开发出功率更大、具有自主知识产权的CAP1400已迫在眉睫,核电厂1E级磁浮子液位计国产化研制也提上了议事日程。川仪股份始终心怀国之大者,坚持锻造川仪所长、服务国家所需,以“川仪造”助力我国重大装备自立自强。2018年,川仪股份联合上海核工程研究设计院有限公司(以下简称:上海核工院)承担国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题。川仪股份作为课题责任单位,牵头组织、统筹制定项目整体方案与实施计划,并负责堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的设计、制造、鉴定工作;上海核工院作为课题联合单位,开展核电厂用1E级磁浮子液位计的功能需求及鉴定验证相关研究工作。该课题根据CAP1400堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的使用需求,提出两种1E级磁浮子液位计的研制和鉴定要求,历经四年产学研联合攻关,在鉴定方法的研究、浮子适应不同介质测量研究、密封性能研究、永磁材料的研究、使用寿命要求研究等关键核心技术上取得突破,先后攻克大型先进压水堆核电站中堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位在结构设计、制造工艺、精度测量、性能试验验证等方面的技术难题,完成堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的研制和鉴定。通过本课题研究工作的开展,全面掌握了CAP1400 1E级磁浮子液位计设计、制造和鉴定试验的核心技术,形成了一套CAP1400 1E级磁浮子液位计的设计制造流程、试验/验证方法、企业标准,满足CAP1400核电机组对1E级磁浮子液位计的抗震、耐高温、耐高压、耐辐照、高密封性、长寿命、快响应等应用要求,技术指标达到同类产品先进水平,将有力保障我国核电厂运行的安全性和可靠性。 核电厂1E级磁浮子液位计的研制成功,打破国外厂商在技术和价格上垄断,摆脱了对进口核电仪表的依赖,降低了核电站的设备成本,缩短了供货周期,后期维护稳定可靠,满足国内核电高质量发展要求,表明川仪股份具备了向CAP1400示范工程提供具有自主知识产权的民族品牌关键仪表设备的能力,为我国三代核电自主化成果“国和一号”实现全面国产化能力,加速我国核电站的海外出口贡献了力量。川仪股份勇担使命,以助力核电装备自主可控的实际行动践行“两个维护”。核电厂1E级磁浮子液位计的研制成功,是川仪股份坚持科技自立自强,持续对标赶超、攻坚克难的成果缩影,“川仪造”背后是对“中国制造”的坚守,承载了一代代川仪人产业报国的心血,也传递着“星星之火”的红色信仰。下一步,川仪股份将以习近平新时代中国特色社会主义思想为指导,认真学习贯彻党的二十大精神,心系“国之大者”,深入贯彻落实习近平总书记“四个面向”重要指示,心无旁骛聚焦主业,持续对标赶超、攻坚克难,在助力国民经济关键领域高端装备自主可控上体现更大担当!
  • 科威尔液位计|进口液位计特价促销中
    德国科威尔专业生产导杆型浮球液位计、磁翻柱液位计、超声波液位计等工业仪器仪表。在中国上海设立了总代理商&mdash 高准国际贸易(上海)有限公司,所经营的所有产品为德国原装进口的,技术领先,市场占有率高。  垂询电话:021-54430662 传真:021-54707123  更多液位计|进口液位计详细信息参考:http://www.ywkg.cn/
  • 国产超声波液位计的优胜劣汰的发展趋势
    超声波液位计是一种非接触式的液位测量仪表,实际工作时由探头发射脉冲波,达到液位表面后返回被传感器接收,通过声波发射和接收的时间差来计算被测液位计的高度,因为是非接触测量,被测介质几乎不受限制,目前超声波液位计被广泛应用于各种固体物料和液体液位的测量;  当前国内超声波液位计生产企业的数量众多,超声波液位计产业的发展也相对比较成熟,尤其是超声波液位计产品得到了很好的发展。我国超声波液位计产业发展势头正猛,但在产业形势一片大好的背景下,有些问题也是值得担忧的,尤其是国内超声波液位计生产企业主要以低层次、小规模、家庭作坊式企业为主。这对于我国超声波液位计产业未来发展是一个很大的限制和瓶颈。 近年来我国超声波液位计优越劣汰,推陈出新,是仪器产业健康发展的标志。尽管仪器仪表行业的整体水平有了很大程度的提高,但质量上仍然不够稳定,比如跑、冒、滴、漏现象在国产超声波液位计产业中经常出现。产品饱和相伴的是仪器仪表持续走高,超声波液位计走向是国际的影响。在当前的形势下,仪器仪表企业应及时对超声波液位计进行产品结构调整,控制投资规模,压缩非生产性开支,这无疑也是有积极意义的。 另外,我国超声波液位计产业与发达国家相比尚存在一定的差距。超声波液位计产业市场竞争日趋白热化,部分普通超声波液位计产品市场已经趋于饱和,出现供大于求的局面,这使得中小型企业发展越来越艰难。而即使是技术含量比较高的产品在国际市场中的竞争也十分的激烈。 我们的超声波液位计生产企业久战沙场,可谓历尽艰辛,自10年进世以来,在海外屡屡受挫,吃尽苦头,虽小有成绩,但依然无法摆脱&ldquo 消化不良&rdquo 、&ldquo 外不敌手&rdquo 的尴尬境地,关键题目是国际标准化战略。 一直以来国内的超声波液位计企业对自身的定位并不是很明确,盲目生产,缺少与主机企业之间产品配套的对接与合作。可以说国内尽大多数紧固件企业的产品都只是按照同一的标准批量生产,并不关心自身产品能否满足市场上主机产品的配套性,一味追求的是自身的出厂量,与国外仪器品牌产品相比,我们缺少的是&ldquo 专一&rdquo 的&ldquo 奉献精神&rdquo ,在仪器仪表行业发展中同样适用发展模式,可以是一对一,甚至一对多配套生产。 固然国内一些企业已经开始意识到了这一点,纷纷开发了新产品的规定,但这仅仅是前进过程中的一小步,超声波液位计国际标准有待在整个行业进行推广与完善在竞争如此残酷的今天,超声波液位计在市场独立的确不是件轻易的事情,更多是由于外部竞争的加剧和市场的变化所致。产品要在国内成功拓展,必须在发挥自己产品上风的基础上,加强营销治理体系的建设,提升营销执行力,才能使自己的优质产品为国内市场所接受。 当前中国在在超声波液位计市场中,高端超声波液位计的国产化之路就变得十分的艰难。当前基础件已经成为制约国内制造业向高端化发展的短板,十二五期间我国对高端装备零部件的国产化力度将进一步的加大。我国各子行业中的超声波液位计进口替代可行性差别十分大,高端超声波液位计产业亟待更多的政策引导及科研扶持,未来国内超声波液位计产业呈现良好的发展前景。
  • 西北油田加热炉玻璃管液位计法兰改造获成功
    p/pp  日前,西北油田采油二厂采油管理三区对加热炉玻璃管液位计法兰改造获得成功。改造后可调节法兰,在更换玻璃管液位计时,既方便快捷,又节约生产成本。/pp  该采油管理区所管理的231口生产油井均为稠油井,需要安装加热炉加温输送原油。其加热炉玻璃管液位计是便于职工观察水位,及时补水,确保加热炉正常运行。然而,原来加热炉玻璃管液位计法兰均为固定法兰,不便于更换玻璃管液位计,工序繁多麻烦,还易把液位计损坏。尤其在冬季中,玻璃管液位计非常冻裂,更换频次增多。有时,如法兰固定螺丝锈蚀,又要动用电气焊切割,更换起来更费时费力,一次还要增加1000元至2000元的生产成本。/pp  日前,该采油管理设备技术人员经过潜心研究,把法兰与加热炉结合部增加一个长度约3公分的内丝扣短接,将原来的固定法兰,改造为可以调节法兰。这样,在更换安装玻璃管液位计时可随意调节法兰,既方便快捷,又不会损坏液位计,还不用动用电气焊切割增加生产成本。截止目前,该采油管理区已在18台加热炉改用了这种可调节法兰。下步,全厂667台加热炉将全部推广应用。/ppbr//p
  • 宁夏计质院新建液位计检定装置计量标准
    近期,宁夏计质院新建的液位计检定装置通过自治区市场监管厅考核,取得《计量标准考核证书》。   液位计是物位仪表的一种,广泛应用于化工、食品加工、制药、电力、水处理等领域工业生产过程中罐、釜、塔、瓶、炉以及渠内部液位或界面的测量,其按测量原理可分为联通式、浮力式、压力式、反射式、电特性式等类型,具有调试方便、高精度、读数直观、可靠性好等特点。宁夏计质院通过新建该项检定装置,具备开展浮力式、压力式、反射式液位计的检校工作的能力,其浮力式液位计测量范围为(0~3000)mm,压力式液位计测量范围为(-100~200)kPa,反射式液位计测量范围为(0~50)m。   在工业生产过程中,准确监测和控制液位至关重要。宁夏计质院该项计量标准的新建,将为全区重点工业企业安全生产和高质量发展提供有力的技术支撑。
  • 德国科威尔开通进口液位计|进口液位开关400全国销售热线
    今日,德国科威尔中国办事处正式开通进口液位计、进口液位开关400全国销售热线:400-6021-188 ,021-54430662 仍然作为我公司总部的客服热线。  德国科威尔原装进口液位开关、液位计产品质量可靠、性能稳定,1993年通过了ISO9001国际认证,1999年发明了热传温差技术并成功运用到流量检测领域并已成为行业标准。我公司液位计、液位开关性价比高,售后服务好,公司在中国区全国范围内建立40多个售后服务站点,专业的技术团队为您第一时间解决问题。   智能型超声波液位计优点:非接触测量、免维护、高精度、长寿命;先进的检测技术,丰富的软件功能适应各种复杂环境;自动功率调整、增益控制、温度补偿;光电隔离4-20mA电流输出;故障报警输出电流22mA;大电流双继电器上下限报警输出(可选);LCD液晶显示窗,外形美观精致;灵活的支架、法兰安装(可选);双通道多点液位测量。   文章来源:德国科威尔中国办事处 更多进口液位开关信息http://www.ywkg.cn
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3 -5%MgO 的粉末混合物作为原料进行烧结实验。结果表明,碳的加入使 Si3N4 陶瓷的热导率从 102 W/(mK)提高到 128 W/(mK),提高了 25.5%。在第一步烧结过程中,碳热还原过程显著降低了氧含量,增加了晶间二次相的N/O比,在半成品 Si3N4样品中,有Y2Si4O7N2第二相出现,β-Si3N4 含量较高,棒状 β-Si3N4 晶粒较大。在第二步烧结过程中,第二相Y2Si4O7N2与碳反应生成了 YbSi3N5,极大降低了晶格氧含量,得到了较粗的棒状晶粒和更紧密的 Si3N4 -Si3N4 界面,使得 Si3N4 陶瓷的热导率有了显著的提升,所制备的Si3N4 的 SEM 图如图 5 所示。图 5 最后的Si3N4陶瓷样品抛光表面和等离子刻蚀表面的 SEM 显微照片:(a)SN 和(b)SNC 的低倍图像 (c)SN 和(d)SNC 的高倍图像在制备高导热氮化硅陶瓷中加入碳是降低晶格氧含量的有效方法,该方法对原料含氧量和烧结助剂的要求不高,降低了高导热氮化硅陶瓷的制备成本,随着技术的不断改进,有望在工业化生产中得到应用。02晶型转变、晶轴取向的影响2.1 晶型转变对热导率的影响及改进方法β-Si3N4因为结构上更加对称,其热导率要高于 α-Si3N4。在高温烧结氮化硅陶瓷的过程中,原料低温相 α-Si3N4会经过溶解-沉淀机制转变为高温相 β-Si3N4,但是在烧结过程中晶型转变并不完全,未转变的 α-Si3N4会极大地影响氮化硅陶瓷的热导率。为了促进晶型转变,得到更高的 β/(α + β)相比,目前比较常用的方法是:(1)在烧结制度上进行改变,如提高烧结温度和延长烧结时间及后续的热处理等 (2)在α-Si3N4中加入适量的 β-Si3N4棒状晶粒作为晶种。图6为加入晶种后氮化硅陶瓷的双模式组织分布。图 6 加入晶种后 β-Si3N4陶瓷的双模式组织分布Zhou 等探究了不同的烧结时间对氮化硅陶瓷热导率、弯曲强度、断裂韧性的影响。由表 3 可见,随着烧结时间的延长,氮化硅陶瓷的热导率逐渐升高。这主要是由于随着溶解沉淀过程的进行,晶粒不断长大,β-Si3N4含量不断增加,晶格氧含量降低。童文欣等研究了烧结温度对 Si3N4热导率的影响,发现经 1600℃烧结后的样品既含有 α 相又含有 β 相。在烧结温度升至 1700℃及 1800℃后,试样中只存在 β 相。随着烧结温度的升高,样品热导率呈现增加的趋势,可能是晶粒尺寸增大、液相含量降低以及液相在多晶界边缘处形成独立的“玻璃囊”现象所致。表 3 不同烧结时间下Si3N4的性能比较Zhu 等发现在烧结过程中加入 β-Si3N4作为晶种,能得到致密化程度和热导率更高的氮化硅陶瓷。为了进一步促进晶型转变,得到大尺寸的氮化硅晶粒,可以采用 β-Si3N4代替α-Si3N4为起始粉末制备高导热氮化硅陶瓷。梁振华等在原料中加入了 1%(质量分数)的棒状 β-Si3N4颗粒作为晶种,氮化硅陶瓷的热导率达到了 158 W/(mK)。刘幸丽等探究了不同配比的 β-Si3N4/α-Si3N4对氮化硅陶瓷热导率和力学性能的影响,结果表明,当原料中全是 β-Si3N4时氮化硅陶瓷有最高的热导率,达到了108 W/(mK),但是抗弯强度也降低。综合以上研究发现,适当提高烧结温度和延长烧结时间都能在一定程度上促进晶型转变 加入适量的 β-Si3N4晶种用来促进晶型转变可以在较短的时间内提高 β/(α+β)相比,使晶粒生长更加充分,得到高热导率的氮化硅陶瓷。2.2 晶轴取向对热导率的影响及改进方法由于 c 轴的生长速率大于 a 轴,各向异性生长导致了 β-Si3N4呈棒状,也导致了其物理性质的各向异性。前面叙述了氮化硅晶粒热导率具有各向异性的特征,β-Si3N4单晶体沿a 轴和c 轴的理论热导率分别为170 W/(mK)、450 W/(mK),因此在成型工艺中采取合适的方法可以实现氮化硅晶粒的定向排列,促进晶粒定向生长。目前能使晶粒定向生长的成型方法有流延成型、热压成型、注浆成型等。在外加强磁场的作用下,氮化硅晶体沿各晶轴具有比较明显的生长差异。这主要是由于氮化硅晶体沿各晶轴方向的磁化率差异,在外加强磁场的作用下,氮化硅晶体会受到力矩的作用,通过旋转一定的角度以便具有最小的磁化能,氮化硅晶粒旋转驱动能量表达式如下:Δχ = χc -χa,b (2) (3)式中:V 是粒子的体积,B 是外加磁场,μ0 是真空中的磁导率,χc 和 χa,b 分别表示氮化硅晶体沿 c 轴和 a,b 轴的磁化率,|Δχ |是晶体沿各晶轴方向的磁化率差值的绝对值。而粒子的热运动能量 U 的表达式为:U=3nN0kB (4)式中:n 是物质粒子的摩尔数,N0 是阿伏伽德罗常数,kB 是玻尔兹曼常数,T 是温度。当 ΔE 大于 U 时,粒子可以被磁场旋转。由图 7 可知,若 c 轴具有较高的磁化率,棒状粒子将与磁场平行排列 若 c 轴的磁化率较低,棒状粒子将垂直于磁场排列。图 7 磁场对晶格中六边形棒状粒子排列的影响示意图:(a)χc > χa,b (b) χc<χa,b 在弱磁性陶瓷成型过程中引入强磁场,可以制备出具有取向微结构的样品。由于氮化硅晶粒沿各轴的磁化率 χc<χa,b可以在旋转的水平磁场中通过注浆成型等技术制备具有 c 轴取向的氮化硅陶瓷,制备原理如图 8 所示。图 8 磁场中制备具有晶轴取向的陶瓷杨治刚等用凝胶注模成型取代了传统的注浆成型,在6T 纵向磁场中制备出具有沿 a 轴或 b 轴取向的织构化氮化硅陶瓷,并研究了烧结温度和保温时间对氮化硅陶瓷织构化的影响规律。结果表明,升高烧结温度促进了氮化硅陶瓷织构化,而延长烧结时间对织构化几乎没有影响。Liang 等在使用热压烧结制备氮化硅陶瓷时,发现氮化硅晶粒{0001}有沿 z 轴生长的迹象,有较强的取向性。这有利于制备高导热的氮化硅陶瓷。Zhu 等在 12T 的水平磁场中进行注浆成型,得到热导率为 170 W/(mK)的高导热氮化硅陶瓷。研究发现,在注浆成型的过程中模具以 5 r/min 的转速旋转形成一个旋转磁场,从而导致 β-Si3N4在凝结过程中具有与磁场垂直的 c 轴取向,c 轴取向系数为0.98。图9 为磁场和模具旋转对棒状氮化硅晶粒取向的影响。图 9 磁场和模具旋转对棒状氮化硅晶粒取向的影响现阶段,在大规模生产中很难实现氮化硅晶粒的取向生长,目前文献报道的定向生长的氮化硅陶瓷仅限于实验室阶段,需要通过合适的方法,在工业化生产中实现氮化硅晶粒的取向生长,这对制备高导热氮化硅陶瓷是极具应用前景的。03陶瓷基片制备工艺3.1 成型工艺由于电力电子器件的小型化,对氮化硅陶瓷基板材料的尺寸和厚度有了更加精细的要求,商业用途的氮化硅陶瓷基板的厚度范围是 0.3~0.6 mm。为了实现大规模生产氮化硅陶瓷基板材料,选择一种合适的成型方法显得尤为重要。目前制备氮化硅陶瓷的成型方法很多,如流延成型、热压成型、注浆成型、冷等静压成型等。但是为了同时满足小型化、精细化的尺寸要求和实现氮化硅晶粒的定向生长,流延成型无疑是实现这一目标的关键。图 10 是流延成型工艺的流程图,下面对流延成型制备氮化硅陶瓷基板材料进行叙述。图 10 流延成型工艺流程图流延成型的浆料是决定素坯性能最关键的因素,浆料包括粉体、溶剂、分散剂、粘结剂、增塑剂和其他添加剂,每一种成分对浆料的性能都有重要影响,并且浆料中的各个组分也会互相产生影响。虽然流延成型相比于其他成型工艺有着独特的优势,但是在实际操作中由于应力的释放机制不同,容易使流延片干燥时出现弯曲、开裂、起皱、厚薄不均匀等现象。为了制备出均匀稳定的流延浆料和干燥后光滑平整的流延片,在保持配方不变的情况下,需要注意浆料的润湿性、稳定性和坯片的厚度等因素。通过流延成型制备氮化硅流延片时,Otsuka 等和Chou 等分别提出了理论液体的流动模型,流延成型过程中流延片厚度 D 与各流延参数的关系如式(5)所示:(5)式中:α 表示湿坯干燥时厚度的收缩系数,浆料的粘度和均匀性对其影响较大 h 和 L 分别表示刮刀刀刃间隙的高度和长度 η 表示浆料的粘度 ΔF 表示料斗内压力,一般由浆料高度决定 v0 表示流延装置和支撑载体的相对速度。为了制备超薄的陶瓷基片,需要在保持浆料的粘度适中和均匀性良好的情况下,适当地调整刮刀间隙和保持浆料的液面高度不变。在有机流延成型中,一般使用共沸混合物作为溶剂,溶解效果更佳,这样就需要保证溶剂对粉体颗粒有很好的润湿性,这与溶剂的表面张力有关,可以用式(6)解释: (6)式中:θ 为润湿角 γsv、γsl、γlv 分别表示固-气、固-液、液-气的表面张力。由式(6)可知,γlv 越小,则 θ 越小,表明润湿性越好。润湿作用如图 11 所示。图 11 润湿作用示意图为了保证流延浆料均匀稳定,需要加入分散剂,其主要作用是使粉体颗粒表面易于润湿,降低粉体颗粒表面势能使之更易分散,并且使颗粒之间的势垒升高,从而使浆料稳定均匀。浆料的稳定性可以通过 DLVO 理论来描述:UT=UA+UR (7)式中:UA 为范德华引力势能 UR 为斥力势能。当 UR大于 UA时,浆料稳定。为了保证浆料的均匀稳定,分散剂的用量也要把控。若用量过多,则产生的粒子很容易粘结,不利于获得珠状颗粒 若用量过少,容易被分散成小液滴,单体不稳定,随着反应的进行,分散的液滴也可能凝结成块。Duan 等先采用流延成型工艺制备了微观结构均匀、相对密度达 56.08%的流延片,然后经过气压烧结得到了相对密度达 99%、热导率为 58 W/(mK)的氮化硅陶瓷。Zhang等采用流延成型工艺和气压烧结工艺制备了热导率为 81W/(mK)的致密氮化硅陶瓷。研究发现分散剂(PE)、粘结剂(PVB)、增塑剂/粘结剂的配比和固载量分别为 1.8%(质量分数)、8%(质量分数)、1.2、33%(体积分数)时能得到最高的热导率。张景贤等先通过流延成型制备 Si 的流延片,然后通过脱脂、氮化、烧结制备出热导率为 76 W/(mK)的氮化硅陶瓷。目前关于流延成型制备的氮化硅陶瓷热导率还不高,远低于文献报道的水平(>150 W/(mK)),通过改善工艺、优化各组分的配比,制备出均匀稳定、粘度适中、润湿性良好的浆料,是大规模制备高导热氮化硅陶瓷的关键。3.2 烧结工艺目前,制备氮化硅陶瓷的主要烧结方法有气压烧结、反应烧结重烧结、放电等离子烧结、热压烧结等,每种方法各有优劣,下面对一些常用的烧结方法进行简要概述。气压烧结(GPS)能在氮气的氛围中通过加压、加热使氮化硅迅速致密,促进 α→β 晶型的快速转变,有助于提高氮化硅陶瓷的热导率。Li 等以 α-Si3N4为原料,通过两步气压烧结法,制备了高导热的氮化硅陶瓷。先将混合粉末在1 MPa的氮气压力下加热到 1500℃ 烧结 8h,然后在 1900℃下烧结 12h,通过两步气压烧结的反应,极大促进了 α→β-Si3N4的晶型转变,氮化硅陶瓷的热导率达到了128 W/(mK)。Kim 等采用气压烧结的方法在 0.9 MPa 的氮气氛围中加热到 1900 ℃,保温 6h,最后得到的氮化硅陶瓷的热导率为 78.8 W/(mK)。Li 等用 Y2Si4N6C-MgO 为烧结助剂,采用气压烧结方法制备了热导率为 120 W/(mK)的氮化硅陶瓷。放电等离子烧结(SPS)工艺是一种实现压力场、温度场、电场共同作用的试样烧结方式,具有升温速率快、烧结温度低、烧结时间短等优点。Yang 等以 MgF2-Y2O3为烧结添加剂,采用 SPS 工艺制备了热导率为 76 W/(mK)、抗弯强度为 857.6 MPa、硬度为 14.9 GPa、断裂韧性为 7.7 MPam 1/2的Si3N4陶瓷。实验表明,由于外加电场的作用,颗粒之间容易滑动,有利于颗粒间的重排,从而得到大晶粒颗粒,使Si3N4在较低温度下达到较高的致密化。Hu 等通过 SPS工艺,以 MgF2-Y2O3和 MgO-Y2O3为烧结添加剂,制备了热导率为 82.5 W/(mK)、弯曲强度为(911±47) MPa、断裂韧性为(8.47±0.31) MPam1/2的Si3N4陶瓷材料。SPS 工艺还可以解决上文提到的以 β-Si3N4为原料制备氮化硅陶瓷难烧结致密的问题。彭萌萌等采用 SPS 工艺在 1600℃ 下烧结5 min,然后在 1900℃ 下保温 3h,获得了致密的氮化硅陶瓷,其热导率高达 105 W/(mK)。Liu 等以不同配比的β-Si3N4 /α-Si3N4粉末为起始原料,采用 SPS 和热处理工艺成功制得致密度高达 99%的高导热氮化硅陶瓷。烧结反应重烧结(SRBSN)由于是以 Si 粉为原料经过氮化得到多孔的 Si3N4 烧结体,进而再烧结形成致密的氮化硅陶瓷,比一般以商用 α-Si3N4为原料制备的氮化硅陶瓷具有更低的氧含量而受到研究者的青睐。Zhou 等采用 SRBSN工艺制备了热导率高达 177 W/(mK)的 Si3N4 陶瓷。结果表明,通过延长烧结时间,进一步降低晶格氧含量,可以获得更高的导热系数。此外,他们还研究了高导热性 Si3N4陶瓷的断裂行为,发现其具有较高的断裂韧性(11.2 MPam1/2 )。Zhou 等采用 SRBSN 工艺,以Y2O3和 MgO 为添加剂制备了Si3N4陶瓷。研究发现Y2O3 -MgO 添加剂的含量和烧结时间都会影响Si3N4的热导率。当添加剂的含量为 2%Y2O3 -4%MgO 时,在烧结 24 h 后,得到热导率为 156 W/(mK)的Si3N4陶瓷,相比于烧结时间 6h 得到的Si3N4陶瓷(128 W/(mK)),热导率提升了21%。Li 等采用 SRBSN 工艺,以Y2O3-MgO 为烧结助剂制备了热导率高达 121 W/(mK)的 Si3N4 陶瓷。采用其他烧结方式也能制备出高导热的氮化硅陶瓷。Jia 等采用超高压烧结制备出热导率为 64.6 W/(mK)的氮化硅陶瓷。Duan 等以 10%的 TiO2 -MgO 为烧结添加剂,在1780℃下低温无压烧结,制备了热导率为60 W/(mK)的氮化硅陶瓷。Lee 等采用热压烧结工艺制备出热导率为 101.5 W/(mK)的氮化硅陶瓷。综合上述研究可发现,虽然烧结方式不一样,但都可以制备出性能优异的氮化硅陶瓷。在实现氮化硅陶瓷大规模生产时,需要考虑成本、操作难易程度和生产周期等因素,因此找到一种快速、简便、低成本的烧结工艺是关键。04结语Si3N4 陶瓷由于其潜在的高导热性能和优异的力学性能,在大功率半导体器件领域越来越受欢迎,有望成为电子器件首选的陶瓷基板材料。但是有诸多限制其热导率的因素,如晶格缺陷、杂质元素、晶格氧含量、晶粒尺寸等,导致氮化硅陶瓷的实际热导率并不高。目前,就如何提高氮化硅的实际热导率从而实现大规模生产还存在一些待解决的问题:(1)原料粉体的颗粒尺寸对制备性能优异的氮化硅陶瓷有着重要影响,但是在减小粉末粒度的同时也会使颗粒表面发生氧化,引入额外的氧杂质,因此需要在减小粒度的同时避免氧杂质的渗入。(2)目前,烧结助剂的非氧化、多功能化成为研究的热点,选用合适的烧结助剂不仅能促进烧结,减少晶界相,还能降低晶格氧含量,促进晶型转变。因此,高效的、多功能的烧结助剂也是重要的研究方向。(3)为了降低晶格氧含量,在制备过程中加入具有还原性的碳能起到不错的效果。故在氮化或烧结中制造还原性的气氛或添加具有还原性的物质是将来研究的热点。(4)实现氮化硅基板的大规模生产,流延成型是一个不错的选择。可是由于有机物的影响,氮化硅基体的致密度不高,而且流延成型的氮化硅晶粒定向生长不明显,如何实现流延片中的氮化硅颗粒定向生长和提升其致密度必将成为研究热点。
  • 绝味超标行业缺标 专家呼吁规范散装熟食卫生数据
    因卤制散装熟食店面极多,消费者甚众, 9 月 7 日某电视台栏目一则“久久丫、绝味鸭脖等品牌散装熟食大肠菌群超标甚至爆表”的报道一经播出,立即引起众多媒体和消费者关注。该行业的情况究竟怎样?  专家解说大肠菌群  记者日前也在知名科普网站“果壳网上”看到,资料为“国家食品安全风险评估中心风险交流部食品安全博士“ CFSA_ 钟凯”就是此事从专业的角度作出了分析。  “ CFSA_ 钟凯”在博文中表示:“大肠菌群作为重要的卫生学指示菌,表明食物的生产加工过程存在隐患,操作可能不规范,但大肠菌群本身未必致病,没有人能回答,有多少大肠菌群可能吃出毛病。人体肠道中有大量的大肠菌群,我们也活的好好的,甚至人体需要的一些维生素(比如 Vb )还是由这些微生物产生的呢。但大肠杆菌里也可能有坏分子(致病性大肠杆菌),比如导致德国数十人死亡的“肠出血性大肠杆菌”。更重要的是大肠菌群污染意味着食物被致病菌污染的可能性增加,包括沙门氏菌、金黄色葡萄球菌、空肠弯曲菌、李斯特氏菌、副溶血性弧菌等等。所以大肠菌群不是‘致病菌’而是‘指示菌’”。  而对于所谓“超标 160 倍”的说法,“ CFSA_ 钟凯”更是认为:超出标准适用范围进行这样的比较毫无意义,而且具有强烈的误导性,是为了找新闻爆点的“莫须有”罪名。预包装熟食的标准之所以定的比较严格,主要是这些食品很可能有储存过程,细菌容易生长繁殖。  尚无国家标准,成卤制散装熟食行业难题  中国食品工业协会专门负责食品标准的丁绍辉女士在采访中表示,卤味熟食是我国的传统食品,深得广大民众喜爱,原来一直都是农贸市场、零售摊贩等零散售卖,从食品卫生学角度,厂家集中加工和专卖店销售的方式,对产品的安全有了较大程度的提高。  加工食品中的微生物污染分为致病菌污染、非致病菌污染和相对致病菌污染。对于致病菌污染和相对致病菌污染,我国正在制订中的食品安全国家标准《食品中致病菌限量》有严格的规定。而大肠杆菌是广泛存在于自然界和人类活动场所的细菌,属于卫生指示菌,主要用于评价食品生产操作环境的卫生状况 , 加工、贮存和销售过程中保持清洁卫生,防止细菌污染的程度,与食品安全不直接相关。不久前颁布的食品安全国家标准《食品生产通用卫生规范》( GB 14881 - 2013 )中的附录 A “食品加工过程的微生物监控程序指南” 针对食品生产过程中较难控制的微生物污染因素,向食品生产企业提供了指导性较强的监控程序建立指南,就很好地说明了这一点。  同时,我国以往制订的卫生标准还兼顾了生产操作环境卫生状况监控的职能,过多地强化了菌落总数和大肠菌群的作用 同时,在标准制订过程中也过多地依赖了产品的出厂检验数据而没有客观地看待和考虑货架期问题,个别指标限值设置过低。因此,虽然检测结果超标,但食品很可能并不存在安全性问题,大可不必谈大肠杆菌而色变,尤其是食用前还需要再进行餐厨加工的食品,加热更是能够杀灭绝大多数细菌。  另一方面,目前卤制熟食中的大肠菌群指标是参考 GB2726-2005 熟肉制品卫生标准中对酱卤肉相关产品的规定,即小于等于 150MPN 每 100 克。但这个标准主要针对预包装食品,现制现售的食品由于没有包装作为食品与外界的阻隔,是难以达到的 而工业化的产品,由于指标设置值过低,虽然生产环境控制较为严格,甚至在无菌环境中生产,并且通过全程冷链运输,但终端门店销售的过程中,稍有不慎即有可能造成超标的后果,很多业内人士也反映因为这个业态的特殊性,在这个行业内的知名企业如绝味、周黑鸭、煌上煌、久久鸭等都面临标准缺失给企业带来困扰的问题。  企业希望积极规范卤制散装熟食卫生标准数据  事实上,与我国饮食文化同源的香港、新加坡等地区都有该行业的卫生标准。按这些地区的标准来看,菌落总数 10 万以内是满意的, 100 万以内都是可以接受的。  丁绍辉女士同时表示,目前已经有绝味鸭脖等企业希望由中国食协牵头,制订卤制熟食行业的国家标准,并且已经进行了部分基础性工作、积累了一些数据。她希望能有更多的业内人士关注、参与,能够共同促进行业健康发展:“我们不对企业护短,但我们也希望企业有一个规范、不受损害的发展环境。”  而据湖南省食品行业联合会相关人士介绍,该项标准的地方标准制定已经立项,今年年底可望提交卫生部门审定。  全程冷链,今年将加强门店管理  而处于本次事件中心的绝味鸭脖则表示,作为鸭脖连锁行业领导品牌,公司有一整套严格的质量控制体系,并已采用了全程冷链等确保产品在送到门店之时是完全合格的,而从本次事件来看,问题也是出在销售终端,但不论问题在哪,毕竟是公司的产品。
  • 光刻机公司芯碁微装拟科创板IPO,2020上半年营收7590万元
    日前,合肥芯碁微电子装备股份有限公司(以下简称“芯碁微装”)发布了《首次公开发行股票并在科创板上市招股意向书》。拟公开发行3020.2448万股,发行后总股本约为1.21亿股。芯碁微装主要从事以微纳直写光刻为技术核心的直接成像设备及直写光刻设备的研发和生产,主要产品包括PCB直接成像设备及自动线系统、泛半导体直写光刻设备及自动线系统、其他激光直接成像设备等。芯碁微装董事长程卓,女,55岁,中国国籍,无境外永久居留权,安徽工商管理学院工商管理硕士。总经理方林,男,42岁,中国国籍,无境外永久居留权,合肥工业大学硕士。财务数据显示,2017年、2018年、2019年和2020年1-6月,芯碁微装营业收入分别为2,218.04万元、8,729.53万元、20,226.12万元和7,590.22万元,净利润分别为-684.67万元、1,729.27万元、4,762.51万元和991.31万元。芯碁微装主要营业收入来源为PCB直接成像设备的销售。2017年、 2018年、2019年和2020年1-6月,PCB直接成像设备的销售收入分别占各期主营业务收入的比例分别为82.21%、60.11%、95.14%和87.17%。据芯碁微装董事长程卓介绍,本次上市主要是想借助资本市场大力发展半导体光刻机、FPD光刻机。招股意向书中披露,芯碁微装本次发行拟募集资金4.73亿元,投入到高端PCB激光直接成像(LDI)设备升级迭代项目、晶圆级封装(WLP)直写光刻设备产业化项目、平板显示(FPD)光刻设备研发项目、微纳制造技术研发中心建设项目,拟投入募集资金分别为20,770万元、9,380万元、10,836万元、6,355万元。
  • 工业化应用,让低场核磁技术未来可期——访华东师范大学姚叶锋教授
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "位于上海市普陀区的华东师范大学校园里,有一间创立于上世纪50年代的磁共振重点实验室。它由我国波谱学事业创始人之一、前华东师范大学副校长邬学文先生创建。从这里走出了国内核磁共振研究领域无数人才,也诞生了国产低场核磁第一品牌“纽迈分析”的前身,上海纽迈电子科技有限公司。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  2017年8月,上海市磁共振重点实验室携手苏州纽迈分析仪器股份有限公司成立“华师大-纽迈核磁共振技术联合实验室”,延续此前产学研合作的基因,共同推进低场核磁共振技术的研发和成果转化。近日,仪器信息网特别采访了上海市磁共振重点实验室姚叶锋教授,请他就高校的产学研转化、低场核磁技术前景等内容展开介绍。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/7e3bbda4-e1d2-41b9-be44-1a4bd7aaa666.jpg" title="姚叶锋教授照片_副本.jpg" alt="姚叶锋教授照片_副本.jpg"//pp style="text-align: center "strong华东师范大学姚叶锋教授/strong/pp style="margin-bottom: 10px margin-top: 10px "span style="color: rgb(255, 0, 0) font-size: 18px "strong  低场核磁:上海市磁共振重点实验室的一张名片/strong/span/pp  姚叶锋,华东师范大学教授,上海市磁共振重点实验室主任。研究生就读于华东师范大学,由知名固体核磁专家陈群教授“领进门”,毕业后赴德国马普高分子研究所攻读博士学位,师从著名固体核磁专家H. W. Spiess教授,继续从事固体核磁和高分子物理方面的研究。2008年学成归国,正式进入上海市磁共振重点实验室。/pp  回国后,姚叶锋教授一直从事核磁技术的开放和应用研究,核磁方法的应用体系包括:高性能聚烯烃材料的结构和性能、固态电解质与全固态电池、钙钛矿结构材料与性能。在核磁设备研发方面,姚叶锋教授开发了一套基于仲氢的超极化设备,并研发出一系列用于仲氢超极化信号寿命增长的长寿命自旋单态制备技术。2013年迄今共发表SCI文章49篇,其中影响因子5以上的文章26篇。由于在高性能聚乙烯材料方面的特色研究工作,曾被荷兰Teijin Aramid公司聘为技术顾问指导超高强度聚乙烯纤维研发。因在固体核磁研究和应用方面的特色工作,获得国内波谱学最高奖-王天眷波谱学奖。/pp  回国十年,姚叶锋教授说起重点实验室的发展历程如数家珍。“实验室成立于1952年,当时的名称叫‘华师大波谱教研室’。创始人邬学文先生在核磁共振领域有很深造诣,早在1958年就利用自己搭建的仪器在国内首次观测到核磁共振现象,上世纪80年代更凭借自主研发的核磁共振仪器荣获上海市科技奖项。秉承创始人在仪器研发和工程化方面打下的基础,实验室形成了磁共振医学成像和低场核磁仪器系统开发两大特色,先后孵化了从事医学和成像核磁研发的上海卡勒幅磁共振技术有限公司,以及主打低场核磁仪器研发的上海纽迈电子科技有限公司(现为苏州纽迈分析仪器股份有限公司)。”/pp  重点实验室目前拥有Siemens 3T磁共振成像仪、500MHz液体/600MHz固体宽腔/700MHz液体核磁共振波谱仪,以及来自纽迈分析的VTMR核磁共振变温分析仪等核磁共振仪器。姚叶锋教授表示:“看到低场核磁今后在工业和科研领域的巨大前景,我们和纽迈合作共建了磁共振技术联合实验室,目的是要打造一个国内领先、国际一流,以低场核磁研发与应用为导向的实验室。”/pp style="margin-top: 10px margin-bottom: 10px " span style="color: rgb(255, 0, 0) "strong span style="color: rgb(255, 0, 0) font-size: 18px "让“科研语言”和“企业语言”实现互通/span/strong/span/pp  共建实验室落成后,华东师范大学与纽迈分析开展了多种尝试,希望把企业需求和高校的技术实力有机结合,集成到低场磁共振系统技术的深入研发和成果转化中。姚叶锋教授介绍了几个成功案例,包括双量子(DQ)法测定交联密度方法开发和基于低场核磁共振技术的食用油高通量智能化品质分析系统的研制。/pp  日常生活中,我们随处可见橡胶、胶水、果冻、洗涤剂、化妆品等一类“软物质”。这是一种处于固体和理想流体之间的软凝聚态物质,一般由大分子或基团组成,由于具备对外界微小作用敏感、非线性响应、自组织行为、性能与网络结构密切相关等特性,使得常规的分析手段难以对其进行有效观测,基于固体核磁的双量子研究方法成了研究“软物质”的最佳策略。双量子研究方法过去是由国外厂商独有,经过实验室与纽迈的联合攻关,目前已在纽迈生产的变温核磁共振设备(0.5特斯拉)上初步实现双量子法的序列、测试条件和数据处理方法,并应用到天然橡胶交联密度的测量表征中,且“性能和指标已经接近进口仪器。”/pp  第二个案例是食用油品质的真伪鉴别。市面上一些不法商贩为牟取暴利,通常会把低价油掺到高价油中进行出售,以达到迷惑消费者的目的。类似的掺油情况很难通过常规手段进行检测,实验室利用建立数据处理算法模型,在纽迈提供的低场核磁共振设备上开发了适用于测试食用油的磁共振指纹谱序列,实现市面上各类油品的真伪鉴别。在上海市科委仪器专项的支持下,纽迈基于低场核磁共振技术的食用油高通量智能化品质分析系统已研制成功,下一步有望实现车载乃至便携式,为工商、质检机构的执法人员提供现场快速检测依据。/pp  与纽迈合作多年,让姚叶锋教授印象最深刻的是纽迈整个公司对于技术的执着追求。他举了个例子:“我们曾采购过纽迈一台用于弛豫测量的低场核磁设备,弛豫测量本身对仪器的要求并不高,但纽迈为了让仪器能有更好的应用,对它进行了持续不断的技术升级,并将我们的使用反馈进一步整合到仪器的改进优化中,整个过程体现出纽迈对于技术的极致追求。”/pp  每到周末,纽迈的技术人员还会到华东师范大学聆听核磁共振相关的课程,姚叶锋教授说这是双方在合作中慢慢摸索出的经验。“合作过程中我们发现企业语言和高校语言有时并不互通,虽然我们都处在核磁这个小众的领域里,但并不能说对方的意思你就能马上听懂。要想使沟通达到水乳交融的状态,就必须要学校的老师走出去,让企业的技术人员走进来,这也是我们举办技术交流会,以及纽迈工程师到学校上课的原因。”/pp  要想让高校和企业的语言实现互通,其中还涉及到许多产学研转化的问题,姚叶锋教授对此深有感触。“通过这么多年跟不同企业的交流,我们总结出来,第一,企业和科研人员应该明确自己的定位,科研着眼于研究,企业做好市场开发和技术推广,二者的角色不能混淆,搅合到一起对双方都是灾难。第二,要加强沟通,所有不成功的案例归结起来都是沟通不良造成的,这也是我们和纽迈建立长期交流机制的原因。第三是互惠互利,要营造双方能够获利的空间,这并不仅仅指金钱方面,企业给科研人员一定的回馈,科研人员也愿意把技术奉献给企业,形成双方共赢的态势。”姚叶锋教授补充说:“如果能做到这三点,企业和科研院所的合作就有前景了。”/pp style="margin-top: 10px margin-bottom: 10px "  span style="color: rgb(255, 0, 0) font-size: 18px "strong低场核磁最好的应用在于工业化/strong/span/pp  2018年末北大售后维权事件爆发,引发行业对核磁共振仪器的高度关注。国产核磁共振仪器该如何发展,怎样追赶进口设备,姚叶锋教授认为关键在于评价体系和工匠精神。姚叶锋教授指出:“核磁从连续波向傅里叶变换发展的时候,正好处于文化大革命的特殊阶段,国内原有技术积累缺失,国产核磁错过了发展的黄金时期。然而在追赶的过程中,原有科研评价体系过于重视SCI文章,导致科研体系内的工程技术人才严重匮乏,再加上整个行业缺乏工匠精神的培养,国内的核磁共振仪器制造水平远不敌国外。”/pp  不过上述现象也在逐渐扭转。仪器的研发和工程化本身是一项枯燥且周期长的工作,姚叶锋教授希望高校和科研院所在制定工程技术人才的考核体系时,能根据工程研制自身的发展规律制定更有针对性的考核指标,在评价和激励上给予仪器研发人员一定支持。未来如果高温超导、超极化等颠覆性技术能成熟地应用于核磁共振设备上,国内核磁共振仪器,尤其国产高场核磁将有望实现对进口品牌的“弯道超车”。/pp  当然,比起主攻科研市场、曲高和寡的高场核磁共振设备,姚叶锋教授更看好低场核磁技术的发展前景。“高场核磁仪器太娇嫩,并且受到很多空间和成本的限制,你无法想象将它应用于某些工业化的场景。而低场核磁技术最好的应用就在于工业化。”/pp  “举个例子,基于低场核磁技术开发的食用油真伪鉴别方法经改进之后,同样可以应用到酸奶、坚果、粮食、玉米、大豆等行业。”此外,低场核磁技术可以通过测定单倍体与多倍体在含油量上的差异,实现玉米种子的有效筛选 可以开发适合于岩心分析的脉冲序列和多弛豫反演技术,实现孔隙度、渗透率等岩石参数的快速无损检测,提升油气资源勘探的效率。姚叶锋教授表示:“目前开发的低场核磁共振的应用还只是冰山一角,有更多的应用领域有待于发掘,可以说低场核磁共振无论是在以纤维、食品、材料、能源为代表的传统行业,还是在以纳米材料、新能源、智能制造、基因医学为代表的新型行业,都大有可为。”/pp  下一步,实验室将与纽迈继续就双量子(DQ)法测定交联密度方法进行开发,提供给纽迈一套完整的天然橡胶交联密度DQ法分析测试、解释方法、流程等相关文档。同时,将对低场核磁指纹谱序列进行开发,推进低场核磁技术在食品领域相关标准的建立,为食品安全保驾护航。/pp  姚叶锋教授表示:“当前,国产核磁共振发展基础薄弱、企业小、散和低水平竞争现象没有得到根本性转变,加速提高磁共振仪器产业的技术创新能力、加强核磁仪器研发的产、学、研联合,已经成为每一位核磁人的当务之急。”/pp  向工业市场迈进的同时,姚叶锋教授也看到低场核磁与其他技术联用的可能,在课题组的光催化研究中已开展尝试。据介绍,这也是实验室下一步有望和纽迈或其他企业开展合作的方向,为国产核磁共振仪器产业的发展“添砖加瓦” 。/p
  • 太原市人民医院165.00万元采购辐射仪
    详细信息 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 山西省-太原市-晋源区 状态:公告 更新时间: 2022-10-01 招标文件: 附件1 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 发布时间:2022100109 1.招标条件 本招标项目太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购(项目编号:2022WHG101),招标人为太原市人民医院,招标项目资金来自财政资金,出资比例为100%。该项目已具备招标条件,现进行公开招标。 2.项目概况与招标范围 项目概况:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统 招标范围:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统采购项目相关材料货物的供货、运输装卸、与总包及其他施工单位协调配合安装、运行调试、验收、培训、售后服务及其他相关服务等工作。 预算金额:1650000元 设备清单: 序号 名称 技术规格及要求 数量 单位 单价(元) 合计金额(元) 1 废液处理控制终端系统 1、显示:≥7寸触摸屏。2、实时显示:液位高度,存放时间,及报警信息提示。3、参数设置:池体液位高度上限和下限阈值,废水存放时间阈值,取样测量活度阈值等参数。4、信息查询:报警记录,排放记录,取样记录。5、操作模式:具有手动和自动操作选择功能。6、权限管理:涉及参数修改等操作,需输入授权密码才可进入。7、报警提示:提供现场预警信息的声音和灯光报警信号。8、供电输入:DC24V 2A。9、安装方式:可以壁挂安装,也可以至于桌面。10、通讯方式:TCP/IP。11、工作环境:-30℃~50℃。 1 套 110000 110000 2 远程托管维保系统 1、访问终端:通过互联网访,可在电脑和手机端访问托管系统;2、系统功能:通过互联网,在任何时间,任何地点,实时查看放射性废液处理系统运行过程,历史预警信息记录,以及可以远程进行系统参数设置,系统程序升级维护。并可通过短信或微信消息形式,自动推送系统运行异常信息。3、通讯方式:以太网或4G无线网络;4、设备监控:提供组态图形化界面,实时监控放射性废液处理系统运行过程;5、数据监控:提供实时监测数据显示,数据动态曲线以及历史数据曲线查询;6、预警监控:可提供实时报警信息弹窗显示,历史报警信息的查询,以及报警信息的手机推送;7、远程维保:通过托管维保系统,可在系统实现维护申请,维保计划制定,维保记录查询。 1 套 65000 65000 3 放射性废液控制柜 1、PLC控制器。2、控制面板:电源指示,手动/自动模式切换开关,各水泵及电动阀控制开关。3、连接系统:液位监测预警系统,自动取样测量系统,阀组 泵组系统,给排水控制系统。4、输出信号:电动阀门的控制信号,水泵回路继电器的控制信号,机械排放装置的控制信号。5、供电要求:3项五芯,380V ≥15KW。6、网络要求:医院内网和外围端口网线或物联网。7、通讯方式: TCP/IP。8、工作环境:-30℃~50℃。9、工作环境:温度:-40℃~50℃,湿度:≤98%。 1 套 88000 88000 4 溢流监测预警系统 1、衰变池池体具有溢流管道设计,废水溢流进入缓冲池(集水坑)。2、系统可自动识别是否发生废水溢流事故,并在可视终端显示预警信息。 1 套 39000 39000 5 液位监测及预警系统 1、每个池体安装双连续液位计,实时显示衰变池,集水坑液位高度。2、池体安装极限液位计,保障连续液位计故障失效,触发预警系统。3、连续液位计:DC 24V ,0~5米量程;4、带正反逻辑信号,连续液位计数量:不少于8个。输出信号:RS485,接液材质SUS316,膜片材质,316L,防护等级:IP68,连接方式:法兰连接。5、带正反逻辑信号,极限液位计数量:不少于8个。输出信号:SPDT(一组常开常闭),接液材质UPVC。防护等级:IP65,连接方式:法兰连接。6、介质:放射性医用废水/生活污水。7、信号输入PLC控制系统,系统自动识别并执行指定动作并发出报警提示。 8 套 9000 72000 6 废液辐射剂量监测系统 1、探测器:闪烁体探测器。2、相对误差:≤±15%。3、能量范围:20keV-3MeV 4、测量范围:0.01uSv/h-1000uSv/h。5、探测器具有探测效率自动校正功能,可自适应温差环境变化。6、配置数量:1套。长衰变跟短衰出水共用一套。7、防水等级:可在水下 5 米以内工作;8、连续监测,实时显示,全程智能化。9、具有耐酸碱抗腐蚀性,良好的防水抗压能力,性能稳定使用寿命长。10、系统控制:可在可视终端系显示测量结果.11、测量方式:直接感应读数。12、工作电压:AC220V13、数据通讯:RS485 6 套 13000 78000 7 环境辐射监测系统 在环境辐射监测系统由固定式辐射报警仪构成。用于实现区域环境环辐射,监测。固定式辐射报警仪实时监测环境场所辐射水平,就地显示测量数据,并提供超阈值报警提示。1、安装位置:在衰变池室内区域辐射监测仪。2、探测器:集成式探测器。3、配置数量:不少于1套。4、测量范围:0.01uSv/h~500uSv/h。5、能量范围:40keV~3MeV。6、相对误差:≤x15%。7、能量响应:≤±15%(相对Cs-137)。8、工作电压:DC12V 1A。 9、报警功能:可设置报警阈值,超阈值可提供声光报警提示。10、可手动关闭报警蜂鸣器。11、工作环境:-30℃~50℃,湿度<90%。 1 套 15000 15000 8 给排水管道工程系统 1、进水管1.1材质:upvc。1.2管径:DN50;或根据现场情况配置。长度约50m。2、出水管2.1材质:upvc。2.2管径:DN50;或根据现场情况配置。长度约200m。3、其余辅助管道3.1材质:upvc。3.2管径:DN50或DN25;或根据现场情况配置。长度50m。4、切割潜污泵:4.1规格:DN50,扬程≥10米,流量≥ 10m3/h,工作电压:380V。4.2自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。4.3数量4台,2备2用。5、自吸式排污泵:5.1、规格:DN50,扬程≥15米,流量≥10m3/h,工作电压:380V。5.2、自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。5.3、数量4台,2备2用。6、 电动阀: 6.1、工作电压:AC 220V。6.2、 材质:铸钢材质带执行器。6.3、 DN50,PI16等级,法兰连接,四氟乙烯垫片,485信号发聩。7、旋启式止回阀:7.1、功能:控制水流方向。7.2、配置数量: 4个。7.3、材质:upvc。7.4、PI16等级,法兰连接,四氟乙烯垫片.8、手动阀:8.1、功能:手动控制管道流通和关闭,用于系统检修。8.2、配置数量: 14台。8.3、材质:upvc8.4、PI16等级,法兰连接,四氟乙烯垫片.9、橡胶软管:9.1、材质:三元乙丙烯。长度≥20m。9.2、污水 DN100,DN50 常温 压力 1.6mpa;9.3、pvc法兰连接9.4、配置数量: 4台。10、其余配件:10.1、材质:upvc。10.2、弯头、三通、法兰、变径等;10.3、pvc连接,长度50m。 1 套 230000 230000 9 控制电路及线路 1、按照PLC原理图,控制线路图,进行现场接线,桥架,整理布线。2、将动力电源(380V,15KW)接入衰变池设备间各个元器件;3、电器柜与控制终端直接与连接6类网线,控制终端建议放置在护士站。4、控制终端须有220V电源插座以及网线,方便用电与连接网路。5、所有潜污泵的动力线与信号线缆连接。6、所有带电动阀的电源线与信号线线缆连接。7、所有带压力传感器电源线与信号线线缆连接。8、所有元器件电源与信号线缆接入电器柜。9、所有线缆走线布线,桥架架设。10、控制终端电源与网线或物联网连接。11、各种类型控制电线长度约500m。12、桥架,长度约50m。13、控制终端电脑 1 套 65000 65000 10 衰变池池体 1、材质:SUS304不锈钢,模压成型板块,含槽钢底座,含爬梯,含人行孔。内置自耦装置。2、标准:材料满足ASTM2403、承压2000kg/㎡,试漏检测。4、规格:6000x2000x3500mm=42m3,1个。 内分3个14m3池体。5、规格:3000x1000x1000mm=3m3,1个。内分3个1m3池体。6、呼吸阀:不锈钢材质,衰变池内部调节气压使用,数量6个。 1 套 260000 260000 11 除臭系统 1、除臭装置设备1台。1.1、排风口均需用高效过滤风口。1.2、配置标准:UV灯分解废气功能、双重活性炭过滤、漏电保护功能、能量回收、压力传感功能。1.3、风机风量:≥3000 m3。1.4、尺寸:1100x1300x1500。1.5、功率:1.8KW。2、排风装置2.1、排风管:pvc材质,直径250mm,长度≥20m。含弯头、三通、法兰、变径等辅助材料。2.2、所有线缆走线布线,桥架,开关控制器。 1 套 98000 98000 12 废水处理间放射防护 1、 防护门1套,规格厚度。2、 材质:6mm纯铅板防护层、新型覆膜钢板面层。3、废水处理间及废水管道防护当量≥6mmpb。 1 项 530000 530000 交货期:合同签订后90日历天内完成 交货地点:太原市人民医院(晋源区人民医院)迁建项目,晋源区晋祠镇花塔村 3.投标人资格要求 3.1本次招标要求投标人须具备独立法人资格、环保工程专业承包叁级及以上资质,并具有与本招标项目相应的供货能力。 3.2本次招标不接受)联合体投标。 3.3一个制造商对同一品牌同一型号的设备,仅能委托一个代理商参加投标。 4.招标文件的获取 4.1凡有意参加投标者,请于2022年10月1日9时00分至2022年10月12日17时00分登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),凭机构数字证书通过【政府采购】-【投标人/供应商】入口下载招标文件及相关资料。 4.2招标文件免费获取。 5.投标文件的递交、开标时间、地点、方式 5.1 投标文件递交截止时间、开标时间:2022年10月21日9时30分。 5.2 地点:太原市公共资源交易中心开标厅 5.3方式:登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),通过【政府采购】-【投标人/供应商】入口上传投标文件并打印“网上提交投标文件回执”。投标截止时间前未完成提交的,将拒收投标文件。 开标时登录“网上开标大厅”在规定时间内解密电子投标文件,解密设备(具备IE11及以上的浏览器和数字证书驱动)及网络环境由投标人自行准备。 6、发布公告的媒介 本次招标公告同时在山西省招标投标公共服务平台、全国公共资源交易平台(山西省﹒太原市)上发布。 7.联系方式 招标人:太原市人民医院 地址:太原市杏花岭街6号 联系人:柴红霞 电话:13994299290 招标代理机构:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:刘勇、才贺涛 联系电话:0351-2377118/2377108 采购文件(此文件仅用于查看,如参与该项目,请及时通过 【投标人/供应商】入口登录系统后下载招标(采购)文件(文件格式:*.ZCZBJ)) 附件: 序号 文件名 创建时间 1 招标文件.pdf 2022-09-30 10:09:38 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:辐射仪 开标时间:2022-10-21 09:30 预算金额:165.00万元 采购单位:太原市人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:太原市公共资源交易中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 山西省-太原市-晋源区 状态:公告 更新时间: 2022-10-01 招标文件: 附件1 太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购招标公告 发布时间:2022100109 1.招标条件 本招标项目太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统公开招标采购(项目编号:2022WHG101),招标人为太原市人民医院,招标项目资金来自财政资金,出资比例为100%。该项目已具备招标条件,现进行公开招标。 2.项目概况与招标范围 项目概况:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统 招标范围:太原市人民医院(晋源区人民医院)迁建项目核医学科放射性液态废弃物处理系统采购项目相关材料货物的供货、运输装卸、与总包及其他施工单位协调配合安装、运行调试、验收、培训、售后服务及其他相关服务等工作。 预算金额:1650000元 设备清单: 序号 名称 技术规格及要求 数量 单位 单价(元) 合计金额(元) 1 废液处理控制终端系统 1、显示:≥7寸触摸屏。2、实时显示:液位高度,存放时间,及报警信息提示。3、参数设置:池体液位高度上限和下限阈值,废水存放时间阈值,取样测量活度阈值等参数。4、信息查询:报警记录,排放记录,取样记录。5、操作模式:具有手动和自动操作选择功能。6、权限管理:涉及参数修改等操作,需输入授权密码才可进入。7、报警提示:提供现场预警信息的声音和灯光报警信号。8、供电输入:DC24V 2A。9、安装方式:可以壁挂安装,也可以至于桌面。10、通讯方式:TCP/IP。11、工作环境:-30℃~50℃。 1 套 110000 110000 2 远程托管维保系统 1、访问终端:通过互联网访,可在电脑和手机端访问托管系统;2、系统功能:通过互联网,在任何时间,任何地点,实时查看放射性废液处理系统运行过程,历史预警信息记录,以及可以远程进行系统参数设置,系统程序升级维护。并可通过短信或微信消息形式,自动推送系统运行异常信息。3、通讯方式:以太网或4G无线网络;4、设备监控:提供组态图形化界面,实时监控放射性废液处理系统运行过程;5、数据监控:提供实时监测数据显示,数据动态曲线以及历史数据曲线查询;6、预警监控:可提供实时报警信息弹窗显示,历史报警信息的查询,以及报警信息的手机推送;7、远程维保:通过托管维保系统,可在系统实现维护申请,维保计划制定,维保记录查询。 1 套 65000 65000 3 放射性废液控制柜 1、PLC控制器。2、控制面板:电源指示,手动/自动模式切换开关,各水泵及电动阀控制开关。3、连接系统:液位监测预警系统,自动取样测量系统,阀组 泵组系统,给排水控制系统。4、输出信号:电动阀门的控制信号,水泵回路继电器的控制信号,机械排放装置的控制信号。5、供电要求:3项五芯,380V ≥15KW。6、网络要求:医院内网和外围端口网线或物联网。7、通讯方式: TCP/IP。8、工作环境:-30℃~50℃。9、工作环境:温度:-40℃~50℃,湿度:≤98%。 1 套 88000 88000 4 溢流监测预警系统 1、衰变池池体具有溢流管道设计,废水溢流进入缓冲池(集水坑)。2、系统可自动识别是否发生废水溢流事故,并在可视终端显示预警信息。 1 套 39000 39000 5 液位监测及预警系统 1、每个池体安装双连续液位计,实时显示衰变池,集水坑液位高度。2、池体安装极限液位计,保障连续液位计故障失效,触发预警系统。3、连续液位计:DC 24V ,0~5米量程;4、带正反逻辑信号,连续液位计数量:不少于8个。输出信号:RS485,接液材质SUS316,膜片材质,316L,防护等级:IP68,连接方式:法兰连接。5、带正反逻辑信号,极限液位计数量:不少于8个。输出信号:SPDT(一组常开常闭),接液材质UPVC。防护等级:IP65,连接方式:法兰连接。6、介质:放射性医用废水/生活污水。7、信号输入PLC控制系统,系统自动识别并执行指定动作并发出报警提示。 8 套 9000 72000 6 废液辐射剂量监测系统 1、探测器:闪烁体探测器。2、相对误差:≤±15%。3、能量范围:20keV-3MeV 4、测量范围:0.01uSv/h-1000uSv/h。5、探测器具有探测效率自动校正功能,可自适应温差环境变化。6、配置数量:1套。长衰变跟短衰出水共用一套。7、防水等级:可在水下 5 米以内工作;8、连续监测,实时显示,全程智能化。9、具有耐酸碱抗腐蚀性,良好的防水抗压能力,性能稳定使用寿命长。10、系统控制:可在可视终端系显示测量结果.11、测量方式:直接感应读数。12、工作电压:AC220V13、数据通讯:RS485 6 套 13000 78000 7 环境辐射监测系统 在环境辐射监测系统由固定式辐射报警仪构成。用于实现区域环境环辐射,监测。固定式辐射报警仪实时监测环境场所辐射水平,就地显示测量数据,并提供超阈值报警提示。1、安装位置:在衰变池室内区域辐射监测仪。2、探测器:集成式探测器。3、配置数量:不少于1套。4、测量范围:0.01uSv/h~500uSv/h。5、能量范围:40keV~3MeV。6、相对误差:≤x15%。7、能量响应:≤±15%(相对Cs-137)。8、工作电压:DC12V 1A。 9、报警功能:可设置报警阈值,超阈值可提供声光报警提示。10、可手动关闭报警蜂鸣器。11、工作环境:-30℃~50℃,湿度<90%。 1 套 15000 15000 8 给排水管道工程系统 1、进水管1.1材质:upvc。1.2管径:DN50;或根据现场情况配置。长度约50m。2、出水管2.1材质:upvc。2.2管径:DN50;或根据现场情况配置。长度约200m。3、其余辅助管道3.1材质:upvc。3.2管径:DN50或DN25;或根据现场情况配置。长度50m。4、切割潜污泵:4.1规格:DN50,扬程≥10米,流量≥ 10m3/h,工作电压:380V。4.2自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。4.3数量4台,2备2用。5、自吸式排污泵:5.1、规格:DN50,扬程≥15米,流量≥10m3/h,工作电压:380V。5.2、自耦装置 铸铁材质,方便后续泵维修更换,法兰连接。5.3、数量4台,2备2用。6、 电动阀: 6.1、工作电压:AC 220V。6.2、 材质:铸钢材质带执行器。6.3、 DN50,PI16等级,法兰连接,四氟乙烯垫片,485信号发聩。7、旋启式止回阀:7.1、功能:控制水流方向。7.2、配置数量: 4个。7.3、材质:upvc。7.4、PI16等级,法兰连接,四氟乙烯垫片.8、手动阀:8.1、功能:手动控制管道流通和关闭,用于系统检修。8.2、配置数量: 14台。8.3、材质:upvc8.4、PI16等级,法兰连接,四氟乙烯垫片.9、橡胶软管:9.1、材质:三元乙丙烯。长度≥20m。9.2、污水 DN100,DN50 常温 压力 1.6mpa;9.3、pvc法兰连接9.4、配置数量: 4台。10、其余配件:10.1、材质:upvc。10.2、弯头、三通、法兰、变径等;10.3、pvc连接,长度50m。 1 套 230000 230000 9 控制电路及线路 1、按照PLC原理图,控制线路图,进行现场接线,桥架,整理布线。2、将动力电源(380V,15KW)接入衰变池设备间各个元器件;3、电器柜与控制终端直接与连接6类网线,控制终端建议放置在护士站。4、控制终端须有220V电源插座以及网线,方便用电与连接网路。5、所有潜污泵的动力线与信号线缆连接。6、所有带电动阀的电源线与信号线线缆连接。7、所有带压力传感器电源线与信号线线缆连接。8、所有元器件电源与信号线缆接入电器柜。9、所有线缆走线布线,桥架架设。10、控制终端电源与网线或物联网连接。11、各种类型控制电线长度约500m。12、桥架,长度约50m。13、控制终端电脑 1 套 65000 65000 10 衰变池池体 1、材质:SUS304不锈钢,模压成型板块,含槽钢底座,含爬梯,含人行孔。内置自耦装置。2、标准:材料满足ASTM2403、承压2000kg/㎡,试漏检测。4、规格:6000x2000x3500mm=42m3,1个。 内分3个14m3池体。5、规格:3000x1000x1000mm=3m3,1个。内分3个1m3池体。6、呼吸阀:不锈钢材质,衰变池内部调节气压使用,数量6个。 1 套 260000 260000 11 除臭系统 1、除臭装置设备1台。1.1、排风口均需用高效过滤风口。1.2、配置标准:UV灯分解废气功能、双重活性炭过滤、漏电保护功能、能量回收、压力传感功能。1.3、风机风量:≥3000 m3。1.4、尺寸:1100x1300x1500。1.5、功率:1.8KW。2、排风装置2.1、排风管:pvc材质,直径250mm,长度≥20m。含弯头、三通、法兰、变径等辅助材料。2.2、所有线缆走线布线,桥架,开关控制器。 1 套 98000 98000 12 废水处理间放射防护 1、 防护门1套,规格厚度。2、 材质:6mm纯铅板防护层、新型覆膜钢板面层。3、废水处理间及废水管道防护当量≥6mmpb。 1 项 530000 530000 交货期:合同签订后90日历天内完成 交货地点:太原市人民医院(晋源区人民医院)迁建项目,晋源区晋祠镇花塔村 3.投标人资格要求 3.1本次招标要求投标人须具备独立法人资格、环保工程专业承包叁级及以上资质,并具有与本招标项目相应的供货能力。 3.2本次招标不接受)联合体投标。 3.3一个制造商对同一品牌同一型号的设备,仅能委托一个代理商参加投标。 4.招标文件的获取 4.1凡有意参加投标者,请于2022年10月1日9时00分至2022年10月12日17时00分登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),凭机构数字证书通过【政府采购】-【投标人/供应商】入口下载招标文件及相关资料。 4.2招标文件免费获取。 5.投标文件的递交、开标时间、地点、方式 5.1 投标文件递交截止时间、开标时间:2022年10月21日9时30分。 5.2 地点:太原市公共资源交易中心开标厅 5.3方式:登录全国公共资源交易平台(山西省﹒太原市)(ggzy.xzspglj.taiyuan.gov.cn),通过【政府采购】-【投标人/供应商】入口上传投标文件并打印“网上提交投标文件回执”。投标截止时间前未完成提交的,将拒收投标文件。 开标时登录“网上开标大厅”在规定时间内解密电子投标文件,解密设备(具备IE11及以上的浏览器和数字证书驱动)及网络环境由投标人自行准备。 6、发布公告的媒介 本次招标公告同时在山西省招标投标公共服务平台、全国公共资源交易平台(山西省﹒太原市)上发布。 7.联系方式 招标人:太原市人民医院 地址:太原市杏花岭街6号 联系人:柴红霞 电话:13994299290 招标代理机构:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:刘勇、才贺涛 联系电话:0351-2377118/2377108 采购文件(此文件仅用于查看,如参与该项目,请及时通过 【投标人/供应商】入口登录系统后下载招标(采购)文件(文件格式:*.ZCZBJ)) 附件: 序号 文件名 创建时间 1 招标文件.pdf 2022-09-30 10:09:38
  • 核电审批重启 仪器行业受益几何?
    10月24日,国务院总理温家宝主持召开国务院常务会议,再次讨论并通过《核电安全规划(2011-2020年)》和《核电中长期发展规划(2011-2020年)》。国务院常务会议称,在建设节奏上要“合理把握”、“稳步推进”,“稳妥恢复正常建设” 在准入门槛上按照全球最高安全要求新建核电项目”。这些信号释放表明,日本福岛核电事故之后,冻结近20个月的中国核电审批闸门再度开启。  核电审核开闸  中国是目前全球第一大核电在建国,在建核电占到了全球的40%左右。但在2011年3月16日,即日本福岛核事故发生后的第五天,国务院总理温家宝主持召开国务院常务会议时要求,调整完善核电发展中长期规划,核安全规划批准前,暂停审批核电项目包括开展前期工作的项目。此次政策松动,无疑给核电行业发展打了一阵强心剂。作为与核电行业密切相关的仪器仪表行业,又有哪些受益?  核电与仪器行业密切相关  从上世纪50年代第一座商用核电站问世以来,核电站的仪表和控制系统就是核电站的重要组成部分,核电站机组的安全、可靠,经济运行很大程度上取决于I&C(仪表与控制)系统的性能水平。在《国家中长期科学与技术发展规划纲要(2006-2020年)》和《“十一五”国家经济发展规划纲要》制定过程中,核仪器仪表行业都被列入重点领域的优先主题。  核电站最常规测量使用的仪表有温度、流量、压力、液体等四大仪表。比如核电使用的标准热电偶温度计是镍铬-镍铝(镍铬-镍硅)EU-2K以及镍铬-考铜(EA-2)(XK),同时,铠装热电偶、薄膜热电偶等也被广泛使用。压力作为一个物理量描述,能掌控限定核电场地设备的工况,液柱式、应变式等压力表和差压计都是其中常用的。此外,液位仪表中的浮子式液位计、差压式液位计、液体静力液位计、雷达液位计,流量仪表中的差压式流量计、转子流量计、电磁流量计都被广泛应用。  常规测量的四大仪表以外,核电站还需要振动测量、位移测量等机械量参数测量仪表,氧计、密度测量传感器、PH值测量传感器等分析测量仪表,硼浓度的测量与硼表。此外,为了监控和保护核电站的运行,大型的仪表控制系统更是必不可少。由此可见,核电的建设与仪表仪表行业密不可分。  福岛核泄漏事故前的核电仪器市场  截止2010年,中国有14台在建机组,装机容量达到14.28GW,另外还有35个项目将要开工,两部分合计达到了51.72GW,约为目前装机容量的6倍。这些在建项目都给仪器仪表行业带来巨大的商机。 随着国家对核电设备国产化率要求的目标越来越高,国内很多民营仪器仪表企业也逐渐投入到这个领域中去,尤其是一些核电辅助设备。  从市场趋势分析,仪器仪表各分行业的订货和需求状况逐年上升。一些企业在核电建设中为核电站生产研制了数万台(套)的仪器仪表和设备,初步形成了综合研发能力,建立了较完整的制造体系和质量保证体系。  比如2006年通过验收的秦山二期,300多个系统、20多万台设备、上百万张设计图纸,科技人员和建设者们反复验证、反复剖析、反复实践,最终使秦山二期取得了反应堆堆芯设计、反应堆厂房及安全壳设计、延长压力容器寿命等300多项核心技术创新和改进 两台机组的设备国产化率达到55%,55项关键设备中有47项实现了国产化,其中包括高技术含量的压力容器、蒸汽发生器等,这些都极大带动了国产仪器仪表的研发应用。  但是,我国核电站用很多原材料还需要依赖进口,如果关键材料都依赖进口,将受制于国外。中国核电仪器仪表的自主创新能力仍世界三流水平,70%的行业利润被进口的零部件吃掉,对外技术依存度达到了50%。  核电用仪器市场发展仍任重道远  作为工业生产的“倍增器”、科学研究的“先行官”、国防建设的“战斗力”,核仪器仪表行业是体现国家科技、经济发展水平的高精尖行业。要想在信息化时代实现产业结构快速、有序、高效地合理化发展,仪器仪表行业担负着艰巨的历史使命。  核电仪器仪表被广泛用于核电、核工业中,核电的加快发展和提高核电设备国产化率的要求为设备制造企业创造了良好的外部环境。据悉,在核电建设中,设备费用占工程总费用的50%左右。因而,把握机遇、拓展能力、适应新的核电建设模式、使核仪器仪表设备制造形成产业化成为重要的内容。  我国核仪器仪表生产行业还处于成长阶段,其表现特征也与成长期行业的市场变现相同。起步初期行业一般仅限于几家企业,产品市场集中度高竞争程度低,成熟行业则表现出集中度中等偏下,竞争十分激烈的特点。核用仪器仪表生产行业显然处于低集中度、低竞争程度的成长阶段。  另一方面,新核电审核开闸,核电在安全标准升级至三代,这将会导致国产率降低,仪器仪表本土厂商分食蛋糕缩小。而且核电项目建设进程严重依赖外企供货进度,为项目进程带来巨大不确定性,同时本土企业能够参与的核电设备市场份额也会有所减少,可谓双重打击。
  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。图 1 滴中滴液-液微萃取( Anal Chem 1996,68:1817-1882)  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。图 2 &ldquo 溶剂微萃取&rdquo 示意图( Anal Chem 1996,68:2236)  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图(M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)  进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示图4 顶空溶剂微萃取示意图  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。1、SDME 的模式  到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相直接浸入 (DI)连续流动(CF)液滴-液滴 (DD)直接悬浮(DSD)顶空(HS)液-液-液(LLL)液-液-液+直接悬浮(LLL + DSD)图 5 SDME的7种模式  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。图 6 SDME各种模式的使用频率  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。  为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。  静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。  动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。  两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。  除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。  在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。图 7 把液滴温度降低的设备图1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口(Anal Chim Acta,2010,661:161)  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。图8 用热电冷却器冷却萃取溶剂(J Chromatogr A,2010,1217:5883)2、SDME 与分析仪器的配合  与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。  各种模式SDME 的配合所占比例见图 8图 8 SDME 与分析仪器的配合的比例  国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1SDME 结合GC-FPD分析水中6种有机磷农药在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学)2通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20minChen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所)3用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%,Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学)4动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13minYang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学)5新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学)6单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学)7用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量&Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学)8单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学)10用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3minCabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学)11以单滴微萃取GC-MS分析细辛中的挥发物正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学)12微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学)13表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析Ebrahimzadeh H,Mollazadeh N,Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 379014用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806(东北林业大学)15农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 768116用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素)10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 mindos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 12617动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ Jiang C, Wei S , Li X,et al, Talanta, 2013,106:237&ndash 242(吉林大学)18用顶空单滴液体微萃取光度法自动分析混凝土中的氨用0.1 М H3PO4作液滴吸收样品释放出来的人氨气,自动进行光度测定。Timofeeva I, Khubaibullin I, Kamencev M,et al, Talanta,2015,133:34&ndash 3719高效单滴液体微萃取-气相色谱新策略毛细管上安装一个漏斗状顶盖,用以悬挂有机萃取液滴,液滴中引入一定体积的空气泡,用1 &mu L氯苯液滴和1 &mu L空气进行萃取,以700 rpm进行搅拌,在3.4 min时间里可浓缩农药70 到 135倍Xie H Y, Yan J, Jahan S,et al,Analyst, 2014, 139: 2545&ndash 255020用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析连翘精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴Jiao J ,Ma D H,Gai Q Y, et al, Anal Chim Acta,2013, 804:143&ndash 150(东北林业大学) 21自动顶空单滴液体微萃取和顶空固相微萃取进行快速分析食用油中No. 6溶剂残留的比较用2&mu L正十一烷作萃取溶剂,30 ℃萃取3 min Ke Y, Li W, Wang Y,et al, Microchem J, 2014, 117:187&ndash 193(贵阳医学院)22用离子对单滴液体微萃取分析水中化学战剂降解产物分析物在水相形成离子对,萃取液滴中含有N-(特丁基二甲基硅烷基)-N-甲基三氟乙酰胺衍生化试剂Park Y K , Chung W Y, Kim B,Chromatographia,2013,76:679&ndash 68523液相微萃取-气质联用法测定水中硝基苯的含量l&mu L甲苯作萃取剂,,萃取15min,进行GC-MS中分析耿飞,青年科学,2014,(6):20824离子液体顶空单滴微萃取分析中药中的高沸点挥发性成分采用微量进样器下端的塑料套管烧制成一端凸起的圆饼状(3.5mm o.d),以增大悬挂的离子液体与套管的接触面积,用2 5&mu L微量进样器精密吸取12&mu L离子液体轻轻推出,使其在距液面1cm处形成液滴,顶空萃取30min,萃取后直接将液滴吸回,进样HPLC分析检测。李梅,科学与财富,2013,(12):26525顶空单滴液相微萃取与GC&mdash MS联用测定易挥发溶剂 了十二烷和正癸烷 作萃取溶剂,0.5&mu L萃取溶剂,萃取10 min徐庆娟, 冯宇辉, 吴学,延边大学学报(自然科学版),2011,37(2):144-14726单液滴微萃取一气相色谱/质谱法检测水中多环芳烃萃取溶剂1.0&mu L、萃取时间20 min,萃取温度室温常薇,郁翠华,周娟,环境污染与防治,2009,31(5)-:54-56,8227单滴液相微萃取-气质联用在香精分析中的运用正戊醇作萃取溶剂2.0&mu L ,萃取温度 30 ℃,萃取时间35 min徐青,何洛强,梁健林等,2013中国上海第三届全国香料香精化妆品专题学术论坛,163页28单滴微萃取.气相色谱-质谱联用测定水中的硝基咪唑类药物。用5&mu L迸样器吸取有机溶剂,将针尖浸入到待测溶液中,挤出进样器中的有机溶剂,在针尖形成一个小液滴。在50℃,600 rpm搅拌速度下,萃取20 min王金玲,李义坤,赵京杨等,分析试验室,2010,29(1):107-11029单滴微萃取.气相色谱法分析海水中的四种苯胺推荐一个环保的综合化学实验 将微量进样器吸 0.7O uL的甲苯使之在针尖形成稳定的液滴。在500 r/min 搅拌下,萃取l 5 min曾景斌,崔炳文,冯锡兰等,广东化工,2011,38(10): 215-21630单滴微萃取-气相色谱法测定塑料食品包装浸出液中邻苯二甲酸酯类物质1.4&mu L二甲苯为萃取剂,萃取时间为20 min,萃取温度为40℃,搅拌速度为200 r/min张聪敏,食品与生物技术学报,2011,30 (6):863-86731单滴微萃取技术测定饲料中硝基咪唑类药物残留研究 溶剂为2.5 &mu L正辛醇,温度为50℃,搅拌速度为600 r/min。时间为20rain。萃取后,微液滴于70℃衍生45min刘登才,赵京杨,王金玲等,湖北农业科学2010,49 (7):1703-170632超声雾化一顶空单滴微萃取气相色谱质谱联用检测八角茴香中挥发油成分 3&mu L 悬滴溶剂正十六烷悬在提取液的顶空,富集15 mim。富集后将正十六烷抽回微量进样器进入GC-MS系统分析王璐,张慧慧,李雪源等,分析化学学,2009,37(增刊)D07133不同品种荔枝对荔枝蒂蛀虫引诱活性成分的研究 将摘取的荔枝幼果,马上放进顶空样品瓶中(样品体积占顶空体积的一半),盖紧。室温下平衡l h后,插人已吸取3止正丁醇的微量进样针直至针尖距样品上表面约l cm,顶空萃取30 min进行分析郭育晖,叶慧娟,方炜等,天然产物研究与开发, 2013.25:1218-122134TG-SDME-GC/MS 联用法研究叶黄素在空气氛围中的热解行为 乙醇作为萃取溶剂,液滴体积保持约为10 &mu L吴亿勤,杨柳,秦云华等,烟草化学 ,2014 (10):61-663、SDME 参数对萃取的影响 (1) 萃取溶剂的影响(J. Sep. Sci. 2013, 36:3758&ndash 3768)  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:  【1】 它应该能完全萃取所要分析的对象。  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。  【3】 它应该有较高的粘度,以便形成较大稳定的液滴。  【4】 它应该不能与水混溶。  【5】 它应该与以后分析仪器所用溶剂相适应。  如果需要,一滴溶剂中应该含有内标物、衍生化试剂或螯合试剂。  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做&ldquo 顶空水基液相微萃取&rdquo ,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上进行分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54&ndash 66)。  (2) 萃取温度的影响  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和气相(液相)之间的平衡,提高温度可以让分析物更多地蒸发到空间,增加气相中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。  (3)萃取时间的影响  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。  (4)样品溶液离子强度的影响  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。  (5)搅拌萃取溶液速度的影响  在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。  小结:  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。  下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 金国藩院士80寿辰暨金国藩奖学金颁奖仪式在京举行
    元月6日上午10点,北京翠宫饭店三楼大宴会厅中高朋满座,主席台上花团锦簇。由清华大学精密仪器与机械学系和中国仪器仪表学会共同举办的"敬贺金国藩院士80寿辰暨金国藩奖学金颁奖仪式"在这里隆重举行。清华大学机械工程学院精密仪器与机械学系教授、中国工程院院士金国藩先生及其夫人段淑贞女士容光焕发,在大家的祝福声中步入会场。值此新年来临之际,且逢金国藩先生80岁生日在即,来自我国光学工程、仪器仪表界的同仁,金国藩先生的朋友、同事、学生,以及来自中国工程院、国家科技部、国家自然科学基金委以及兄弟院校的领导和嘉宾等欢聚一堂,共同庆贺金国藩先生的八十华诞。中国工程院院士金国藩先生  会议由机械学院院长、精密仪器与机械学系主任尤政主持,清华大学校副校长汪劲松等出席大会。汪劲松副校长发表了热情洋溢的贺辞。他说,金国藩先生1952年来到清华,对清华大学精密仪器与机械学系的发展做出了重大的贡献。汪副校长对金先生多年来的学术成就做出了积极的评价,盛赞金先生"硕果累累、桃李满园"、是"我国光学工程学科的带头人",并号召金国藩青年学子奖学金获得者学习金先生勤奋严谨的治学精神,奋发努力、积极进取,为国家和民族的强盛做出贡献。金国藩院士庆祝生日宴会大厅清华大学尤政教授致辞并介绍嘉宾清华大学副校长汪劲松先生致辞清华大学副校长汪劲松向金国藩院士赠送礼品中国仪器仪表学会吴幼华秘书长致辞中国工程院副院长刘德培院士致辞科技部条财司原副司长吴波尔女士致辞中国光学学会秘书长倪国强教授致辞北京普析通用仪器有限责任公司董事长田禾先生致辞清华大学精密仪器与机械学系党委书记郁鼎文教授致辞清华大学精密仪器与机械学系光电工程研究所所长李岩教授回顾金国藩院士工作经历  会上,精密仪器与机械学系光电工程研究所所长李岩教授系统回顾了金国藩先生的学习和工作经历,介绍了金国藩院士从教59年来的学术成就与科研贡献。中国工程院副院长刘德培院士、国家科技部条财司原副司长吴波尔女士、中国仪器仪表学会秘书长吴幼华先生、中国光学学会秘书长倪国强教授、北京普析通用仪器有限责任公司董事长田禾先生及精密仪器与机械学系党委书记郁鼎文教授等分别发表了热情洋溢的讲话,共祝金国藩先生健康长寿、学术之树常青。清华大学教职工为金国藩院士送上祝福语清华学子为金国藩院士合唱:《生日快乐》  随后,"金国藩奖学金颁奖仪式"开始。中国仪器仪表学会吴幼华秘书长介绍了“中国仪器仪表学会奖学金-金国藩青年学子奖学金”的设立过程和首届金国藩青年学子奖学金评选结果。中国仪器仪表学会理事长庄松林院士向奖学金的捐赠单位和集体颁发了感谢状,金国藩院士向获得首届金国藩青年学子奖学金的年轻教师颁发了奖状和证书。随后,获奖者代表南开大学青年教师刘海涛博士发表了获奖感言,他代表全体获奖人员表示:“一定不辜负金国藩院士的期望,刻苦学习、努力工作,以优异的成绩回报金院士的鼓励”。金国藩院士与金国藩奖学金获得者合影  之后,金国藩院士致答谢词,对中国仪器仪表学会和不同单位与个人捐赠设立金国藩奖学金基金表示了感谢。他在讲话最后感言道“正是改革开放的30年中,我国发生了翻天覆地的变化,我们才真正做了点事。我感到我们确实应珍惜这大好形势,做好我们的工作,把我国建设成为真正的大国强国。”金国藩院士还谦逊地强调“我是一个幸运者”,金国藩院士的讲话赢得了全场热烈的掌声。嘉宾向金国藩院士赠送书法作品光电所介绍贺礼——《秀冠群芳》的编辑过程  金国藩院士不仅仅做科学研究,还经常为我国仪器事业奔走,多次向国家有关部门提建议。2008年1月,仪器信息网对金国藩院士做过一次专访,针对中国仪器教育行业金国藩院士曾经一针见血地指出我国目前存在的主要问题就是重书本,轻实践,重设计,轻工艺,急于求成,基础薄弱;金国藩院士联合其科学家多次呼吁过这个问题,但效果不大。  在“2008中国科学仪器发展年会”上,金国藩院士就大声疾呼,“不要再讲科学仪器重要不重要的问题了,国家要富强,必须发展国产科学仪器。”  王大珩先生为祝贺金国藩院士八十寿辰题词:清华大学精密仪器系首创人之一,精密仪器领域界的著名科教导师。  潘云鹤院士为祝贺金国藩院士八十寿辰题词:近悦远来,博学延年。  母国光院士为祝贺金国藩院士八十寿辰题词:金国藩院士秀冠群芳。  会议结束时,会议主办方清华大学精密仪器与机械学系和中国仪器仪表学会向每一位与会嘉宾赠送了《秀冠群芳——庆贺金国藩院士80寿辰》一书。   相关报道:金国藩院士谈我国科学仪器——访我国著名光学仪器专家金国藩院士   金国藩院士简介  金国藩,中国工程院院士,光学仪器与光学信息处理专家,我国光学信息存储、信息光学和二元光学的奠基人。  1929年出生在沈阳,1950年毕业于北京大学机械系,1950至今在清华大学工作,现为清华大学精密仪器系教授,曾任国家教育部科技委常务副主任、国家自然科学基金委员会副主任、中国仪器仪表学会副理事长、中国光学学会副理事长、清华大学机械工程学院院长等职位,1994年当选为中国工程院院士,现任国际光学委员会(ICO)副主席。自上世纪60年代起,就开始从事光学仪器及应用光学的研究,侧重于精密测试技术与光学信息处理。先后主持20余项科研项目的研究,尤其在光栅测量机、光盘技术、激光陀螺、计算全息、双折射双频激光器、新型印刷网屏、舌诊自动识别系统、光计算及二元光学等科技领域取得显著成就,做出重大贡献。培养博士研究生40余名,硕士研究生60余名,发表论文300余篇,出版了国内迄今唯一的《计算机制全息图》、《二元光学》专著。
  • 中地装集团党委书记、董事长周寅伦到海光公司调研并参加企业文化揭幕活动
    6月24日,中地装集团党委书记、董事长周寅伦,党委委员、财务总监李升高,党委委员、党委工作部主任王东善来到海光公司总部进行工作调研。调研过程中,海光公司党总支书记、总经理刘海涛汇报了海光公司近期党建、疫情防控、制度建设、生产经营运行、项目进度、科技研发创新、人才队伍建设等工作情况。 中地装集团党委书记、董事长周寅伦莅临海光总部调研 听取汇报后,周寅伦书记对海光公司以党建促经营的工作思路表示肯定。周书记指出,海光公司上半年实现了“时间过半、任务过半”,成绩来之不易,要继续坚持党建经营两手抓两手硬,充分发挥党建作用,深入推进党建与业务工作;要在抓好优势板块的同时,寻找新的业务增长点;要以市场为导向,加大技术研发力度,增强自主创新能力,形成可持续性的技术创新与突破;要完善激励机制,引进人才,强化人才队伍建设,为干事创业创造条件。 海光公司党总支书记、总经理刘海涛汇报近期工作情况 当天恰逢海光公司成立32周年,周书记一行参加了海光企业文化理念揭幕活动,与海光公司职工共同见证了这个鼓舞人心的时刻。周书记向海光公司表示祝贺,鼓励海光公司全体干部职工上下一致,以此为契机,在中地装集团“和实”文化理念,坚定信心目标,聚焦核心任务,扩大经营规模、提高利润、提升品牌效应,使海光公司各方面工作再上新的台阶,在科学仪器领域取得更加骄人的成绩。
  • 关注生产安全,江苏省应急管理厅印发《化工(危险品)企业常见安全隐患警示清单》
    p style="text-indent: 2em "近年来,实验室火灾、化工厂爆炸等事故频发,造成的人员伤亡、财产损失等后果严重,引起人们对实验室安全问题的高度关注。为进一步指导化工(危险化学品)企业扎实开展隐患排查治理工作,增强企业隐患排查治理的可操作性,推动企业主动落实安全生产主体责任,有效防范和化解安全风险,近日,江苏省应急管理厅办公室印发了《化工(危险品)企业常见安全隐患警示清单》的通知。该警示清单中一共有244条,其中人的不安全行为86条,物的不安全状态102条和管理缺陷56条。通知中提到,这些清单主要是化工企业工作人员在日常工作中经常性、重复性发生的不符合安全生产要求的问题,也是日常安全生产工作中必须或避免发生的事情。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/99eee99c-0e89-43af-9e68-749b47ba8cd0.jpg" title="1_副本.png" alt="1_副本.png"//pp style="text-indent: 2em "strong附件/strong:/pp style="text-align: center text-indent: 2em "strong化工(危险化学品)企业常见安全隐患警示清单/strong/pp style="text-indent: 2em "strongspan style="color: rgb(84, 141, 212) "一、人的不安全行为(86条)/span/strong/pp style="text-indent: 2em "(一)劳动纪律(7条)/pp style="text-indent: 2em "1.酒后上岗、班中饮酒。/pp style="text-indent: 2em "2 .串岗、脱岗、睡岗,在岗期间从事与岗位工作无关的事。/pp style="text-indent: 2em "3.未经批准私自顶岗、换岗。/pp style="text-indent: 2em "4 .上班迟到、早退,未按规定履行请假手续。/pp style="text-indent: 2em "5 .未按规定着装和佩戴安全帽进入生产、施工现场。穿易产生静电的服装或穿戴铁钉的鞋进入易燃、易爆装置或罐区。/pp style="text-indent: 2em "6 .在禁烟区域内吸烟。/pp style="text-indent: 2em "7 .主要负责人长期脱岗不履职。/pp style="text-indent: 2em "span style="text-indent: 2em "(二)工艺纪律(17条)/span/pp style="text-indent: 2em "8.未按规定要求进行巡回检查,发现的隐患和问题未及时报告和处理。/pp style="text-indent: 2em "9 .未按规定要求填写操作记录和交接班记录,交接班人员未签名。/pp style="text-indent: 2em "10.对出现的工艺报警未及时处置和记录。/pp style="text-indent: 2em "11.未按操作规程进行操作;不清楚或不熟悉工艺控制指标和操作规程。/pp style="text-indent: 2em "12.改进工艺或操作程序,未进行安全评估。/pp style="text-indent: 2em "13.使用压缩空气进行易燃易爆物料的加料、压料操作。/pp style="text-indent: 2em "14.常压贮槽带压使用;带压开启反应釜、容器盖子。/pp style="text-indent: 2em "15.在可燃气体爆炸极限内进行工艺操作。/pp style="text-indent: 2em "16.采用氮封或输送物料时,氮气管道未设置止回阀,存在高压串低压的风险。/pp style="text-indent: 2em "17.离心机分离可燃有机溶剂时,未采取氮气保护措施。/pp style="text-indent: 2em "18.操作中遇到突发异常情况时不及时报告,擅自变更操作。/pp style="text-indent: 2em "19.外来人员代替本岗位人员操作。/pp style="text-indent: 2em "20.现场盲板未编号和挂牌。/pp style="text-indent: 2em "21.取样完毕未及时关闭取样阀。/pp style="text-indent: 2em "22.危险化学品装卸、罐区脱水(切水、切碱等)时操作人员离开现场。/pp style="text-indent: 2em "23.未经许可擅自修改DCS系统、安全仪表系统中相关工艺指标、报警和联锁参数。/pp style="text-indent: 2em "24.启动皮带输送机前,没有检查确认、没有启动警告铃。/pp style="text-indent: 2em "(三)其他纪律(26条)/pp style="text-indent: 2em "25.在易燃易爆区域用汽油、易挥发溶剂擦洗设备、衣物、工具及地面等。/pp style="text-indent: 2em "26.在易燃易爆区域用黑色金属等易产生火花的工具敲打、撞击和作业。/pp style="text-indent: 2em "27.在易燃易爆区域使用非防爆通讯、照明器材、非防爆工具等。?/pp style="text-indent: 2em "28.擅自停用可燃、有毒、火灾声光报警系统和安全联锁系统。/pp style="text-indent: 2em "29.擅自关闭或调整视频监控设施或关闭各类报警声音。/pp style="text-indent: 2em "30.堵塞消防通道及随意挪用或损坏消防设施。/pp style="text-indent: 2em "31.未按规定检查维护应急防护设施、器材。/pp style="text-indent: 2em "32.不能正确熟练使用应急防护装备、器材。/pp style="text-indent: 2em "33.不佩戴专用防护用品(具)从事有毒、有害、腐蚀等介质和窒息环境下的危险作业。/pp style="text-indent: 2em "34.不按规定静电接地进行危险化学品车(船)装卸作业。/pp style="text-indent: 2em "35.转动设备未停机、带电设备未停电进行检维修。/pp style="text-indent: 2em "36.车辆进入生产区域未安装阻火器或车辆进入生产区域超速行驶。/pp style="text-indent: 2em "37.管理人员违章指挥、强令冒险作业。/pp style="text-indent: 2em "38.未为从业人员配备适用有效的个体防护用品。/pp style="text-indent: 2em "39.现场未设置或者缺少禁止、警告、指令、提示等安全标志。/pp style="text-indent: 2em "40.无故不参加安全培训、班组安全活动。/pp style="text-indent: 2em "41.未按规定要求参加或组织开展安全检查。/pp style="text-indent: 2em "42.设备、工艺变更后,没有及时修订制度、规程。/pp style="text-indent: 2em "43.未按国家标准分区分类储存危险化学品,超量、超品种储存危险化学品,相互禁配物质混放混存。/pp style="text-indent: 2em "44.危险化学品灌装时超过核定装载量。/pp style="text-indent: 2em "45.危险化学品装卸作业前,车轮未固定,车钥匙未交岗位人员保管。/pp style="text-indent: 2em "46.液化石油气、液氨或液氯等的实瓶露天堆放。/pp style="text-indent: 2em "47.危险化学品仓库物品存放时,顶距、灯距、墙距、柱距、垛距“五距”不符合要求。/pp style="text-indent: 2em "48.员工“三级”安全教育低于72学时。/pp style="text-indent: 2em "49.员工“三级“安全教育、承包商员工入厂安全教育考试卷未批改或批改不认真,随意给分。/pp style="text-indent: 2em "50.未按规定参加“三级”安全教育培训或未经岗位技能培训考核合格。/pp style="text-indent: 2em "(四)特殊作业(36条)/pp style="text-indent: 2em "51.未按规定办理动火、进入受限空间等特殊作业许可证。/pp style="text-indent: 2em "52.动火、进入受限空间作业等特殊作业前未开展风险识别。/pp style="text-indent: 2em "53.特殊作业安全作业证有缺漏项,超过规定有效期,签批人不符合要求,签批时间未填写到分钟,提前审批作业许可证。/pp style="text-indent: 2em "54.动火、进入受限空间作业部位与生产系统采用关闭阀门实施隔离、隔绝,未采取加装盲板或断开一段管道的隔离措施。/pp style="text-indent: 2em "55.未进行动火安全分析或分析结果不合格进行作业。/pp style="text-indent: 2em "56.进入受限空间作业前,未分析可燃气体浓度、氧含量、有毒气体浓度。/pp style="text-indent: 2em "57.动火和进入受限空间中断作业超过1小时后未重新进行安全分析。/pp style="text-indent: 2em "58.采样分析部位与动火作业部位不一致,采样检测点没有代表性。/pp style="text-indent: 2em "59.受限空间未设置安全警示或采取硬隔离措施。/pp style="text-indent: 2em "60.同一作业涉及动火、进入受限空间、盲板抽堵、高处作业、吊装、临时用电、动土、断路中的两种或两种以上时,未按规定同时办理相应的作业审批手续。/pp style="text-indent: 2em "61.动火、进入受限空间作业安全措施未确认落实或安全措施由同一人确认签字。/pp style="text-indent: 2em "62.动火、进入受限空间作业现场未设专人监护。/pp style="text-indent: 2em "63.一级、特级动火作业未做到“一票一录像”。/pp style="text-indent: 2em "64.动火人未持有效特种作业资格证。/pp style="text-indent: 2em "65.降级办理或签批动火安全作业证。/pp style="text-indent: 2em "66.动火作业未做到“一点(处)一证一人”,未经许可,擅自变更作业范围。/pp style="text-indent: 2em "67.动火、进入受限空间等特殊作业未进行完工验收签字。/pp style="text-indent: 2em "68.动火、进入受限空间等特殊作业安全作业证上填写的作业人员与现场实际作业人员不一致。/pp style="text-indent: 2em "69.氧气、乙炔气瓶无防震圈、瓶帽等安全附件,乙炔气瓶未安装回火器。氧气、乙炔气管道老化、皲裂。/pp style="text-indent: 2em "70.受限空间照明电压大于?36V,在潮湿容器、狭小容器内作业电压大于12V。/pp style="text-indent: 2em "71.在受限空间内进行清扫和检修时,没有紧急逃生设施或措施。/pp style="text-indent: 2em "72.釜内检修时,没有切断电源并拴挂“有人检修、禁止合闸”的警示牌。/pp style="text-indent: 2em "73.高处作业未系安全带,安全带未做到“高挂低用”。/pp style="text-indent: 2em "74.使用未经验收合格的脚手架,脚手板未绑扎牢固。/pp style="text-indent: 2em "75.高处作业抛掷材料、工具及其他杂物。/pp style="text-indent: 2em "76.擅自拆改脚手架、钢格板、护栏、盖板、防护网等防护设施。/pp style="text-indent: 2em "77.使用未安装漏电保护器装置的电气设备、电动工具。/pp style="text-indent: 2em "78.火灾爆炸危险场所未使用相应防爆等级的电源及电气元件。/pp style="text-indent: 2em "79.使用不合格的绝缘工具和专用防护器具进行电气操作和作业。/pp style="text-indent: 2em "80.现场临时用电配电盘、箱没有电压标识和危险标识,没有防雨措施,盘、箱、门不能牢靠关闭或未上锁。/pp style="text-indent: 2em "81.超过安全电压的手持式、移动式电动工器具未逐个配置漏电保护器和电源开关,做到“一机一闸一保护”。/pp style="text-indent: 2em "82.起重机械吊钩缺少防钢丝绳脱落装置。/pp style="text-indent: 2em "83.起重吊装作业存在违反“十不吊”的行为。/pp style="text-indent: 2em "84.利用管道、管架、电杆、机电设备等作吊装锚点。/pp style="text-indent: 2em "85.吊装现场未设置安全警戒标志或拉设警戒绳,没有专人监护。/pp style="text-indent: 2em "86.施工、检修工机具存在缺陷或隐患,未粘贴检查合格证。/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) "strong二、物的不安全状态(108条)/strong/span/pp style="text-indent: 2em "(一)工艺专业(27条)/pp style="text-indent: 2em "87.温度、压力、液位等超控制指标运行。/pp style="text-indent: 2em "88.设定的工艺指标、报警值、联锁值等不符合工艺控制要求。/pp style="text-indent: 2em "89.内浮顶罐低液位报警或联锁设定值低于浮盘支撑的高度,存在浮盘落底的风险。/pp style="text-indent: 2em "90.重大危险源未配备温度、压力、液位、流量、组份等信息的不间断采集和监测系统,不具备信息远传、连续记录、事故预警、信息存储等功能。信息储存时间少于1个月。/pp style="text-indent: 2em "91.反应设备、储罐等未按规定要求设置温度、压力、液位现场指示。/pp style="text-indent: 2em "92.紧急切断设施的旁路没有采取管控措施,紧急切断设施未投用或使用旁路。/pp style="text-indent: 2em "93.同一可燃液体储罐未配备两种不同类别的液位检测仪表。/pp style="text-indent: 2em "94.涉及重点监管危险化工工艺的装置未实现自动化控制,系统未实现紧急停车功能,装备的自动化控制系统、紧急停车系统未投入正常使用。/pp style="text-indent: 2em "95.不同的工艺尾气或物料排入同一尾气收集或处理系统,未进行风险分析。/pp style="text-indent: 2em "96.使用多个化学品储罐尾气联通回收系统的,未经安全论证合格。/pp style="text-indent: 2em "97.使用淘汰落后安全技术工艺、设备目录列出的工艺、设备。/pp style="text-indent: 2em "98.装置可能引起火灾、爆炸等严重事故的部位未设置超温、超压等检测仪表、声光报警、泄压设施和安全联锁装置等设施。/pp style="text-indent: 2em "99.在非正常条件下,可能超压的设备或管道未设置可靠的安全泄压措施或安全泄压设施不完好。/pp style="text-indent: 2em "100.较高浓度环氧乙烷设备的安全阀前未设爆破片。爆破片入口管道未设氮封,且安全阀的出口管道未充氮。/pp style="text-indent: 2em "101.氨的安全阀排放气未经安全处理直接放空。/pp style="text-indent: 2em "102.火炬系统的能力不能满足装置事故状态下的安全泄放,未设置长明灯,没有可靠的点火系统及燃料气源,未设置可靠的防回火设施,火炬气的分液、排凝不符合要求。/pp style="text-indent: 2em "103.操作室没有工艺卡片或工艺卡片未定期修订。/pp style="text-indent: 2em "104.安全联锁不完好或未正常投用。/pp style="text-indent: 2em "105.摘除联锁没有审批手续,摘除期间未采取安全措施。/pp style="text-indent: 2em "106.因物料爆聚、分解造成超温、超压,可能引起火灾、爆炸的反应设备未设报警信号和泄压排放设施,以及自动或手动遥控的紧急切断进料设施。/pp style="text-indent: 2em "107.有氮气保护设施的储罐,氮封系统不完好或未投用,没有事故泄压设备。/pp style="text-indent: 2em "108.丙烯、丙烷、混合C4、抽余C4及液化石油气的球形储罐、全压力式液化烃储罐未设置防泄漏注水措施,注水压力、注水方式不符合要求。/pp style="text-indent: 2em "109.液体、低热值可燃气体、含氧气或卤元素及其化合物的可燃气体、毒性为极度和高度危害的可燃气体、惰性气体、酸性气体及其他腐蚀性气体未设独立的排放系统或处理排放系统。/pp style="text-indent: 2em "110.液化烃、液氨等储罐的储存系数超过0.9。/pp style="text-indent: 2em "111.生产或储存不稳定的烯烃、二烯烃等物质时未采取防止生产过氧化物、自聚物的措施。/pp style="text-indent: 2em "112.用易产生静电的塑料管道输送易燃易爆有机溶剂及物料。/pp style="text-indent: 2em "113.操作规程、应急预案等未发放到岗位。/pp style="text-indent: 2em "(二)设备专业(37条)/pp style="text-indent: 2em "114.安全阀、爆破片等安全附件未正常投用,安全阀、爆破片等手阀未常开并铅封。/pp style="text-indent: 2em "115.压力容器和压力管道的安全附件(含压力表、温度计、液面计、安全阀、爆破片)不齐全、完好、未按期校验、未在有效期内。/pp style="text-indent: 2em "116.压力容器、压力管道的本体、基础、紧固件、外观、静电接地等不完好。/pp style="text-indent: 2em "117.泄爆泄压装置、设施的出口朝向人员易到达的位置。涉及可燃或有毒介质的安全阀、爆破片出口设在室内。/pp style="text-indent: 2em "118.可燃气体直接向大气排放的排气筒、放空管的高度不符合规范要求。/pp style="text-indent: 2em "119.可燃气体、可燃液体设备的安全阀出口未连接至适宜的设施或系统。/pp style="text-indent: 2em "120.可燃气体压缩机、液化烃、可燃液体泵使用皮带传动。/pp style="text-indent: 2em "121.转动设备的转动部位没有可靠的安全防护装置。/pp style="text-indent: 2em "122.在设备和管线的排放口、采样口等排放部位,未采取加装盲板、丝堵、管帽、双阀等措施。/pp style="text-indent: 2em "123.机泵润滑不符合“五定”、“三级过滤”要求,油视镜有渗油现象,油位线不清楚、油杯缺油。/pp style="text-indent: 2em "124.生产装置、储存设施存在跑冒滴漏现象。/pp style="text-indent: 2em "125.未按国家标准规定设置泄漏物料收集装置和对泄漏物料进行妥善处置。/pp style="text-indent: 2em "126.重点防火、防爆作业区的入口处,未设置人体导除静电装置。/pp style="text-indent: 2em "127.罐区、生产装置、建筑物等防雷、防静电接地不符合要求,防雷、防静电接地未进行定期检测。/pp style="text-indent: 2em "128.用电设备和电气线路的周围没有留有足够的安全通道和工作空间,或堆放易燃、易爆和腐蚀性物品。/pp style="text-indent: 2em "129.火灾爆炸危险区域内电缆未采取阻燃措施,电缆沟防窜油汽、防腐蚀、防水措施不落实。/pp style="text-indent: 2em "130.液化烃、液氨、液氯等易燃易爆、有毒有害液化气体的充装未使用万向节管道充装系统。/pp style="text-indent: 2em "131.可燃材料仓库配电箱及开关设置在仓库内。/pp style="text-indent: 2em "132.两端阀门关闭且因外界影响可能造成介质压力升高的液化烃、甲B、乙A类液体管道未采取泄压安全措施。/pp style="text-indent: 2em "133.储罐的进出管道未采用柔性连接。罐区防火堤有孔洞。/pp style="text-indent: 2em "134.防爆电气设备设施固定螺栓未全部上齐。/pp style="text-indent: 2em "135.有可燃液体设备的多层建筑物或构筑物的楼板未采取防止可燃液体泄漏至下层的措施。/pp style="text-indent: 2em "136.散发比空气重的甲类气体、有爆炸危险性粉尘或可燃纤维的封闭厂房未采用不发生火花的地面。/pp style="text-indent: 2em "137.散发有爆炸危险性粉尘或可燃纤维的场所未采取防止粉尘、纤维扩散、飞扬和积聚的措施。/pp style="text-indent: 2em "138.甲、乙、丙类液体仓库未设置防止液体流散的设施,遇湿会发生燃烧爆炸的物品仓库未采取防止水浸渍的措施。/pp style="text-indent: 2em "139.操作室、控制室、厂房、仓库等建筑物安全疏散门未朝外开启。/pp style="text-indent: 2em "140.设备、管道高温表面没有采取防护措施。/pp style="text-indent: 2em "141.管道物料及流向、标识不清。/pp style="text-indent: 2em "142.设备、容器等未有效固定,直接浮放在地面上。/pp style="text-indent: 2em "143.带式输送机未设置紧急拉绳停机设施。/pp style="text-indent: 2em "144.电气线路的电缆或钢管在穿过墙或楼板处的孔洞,未采用非燃烧性材料封堵。/pp style="text-indent: 2em "145.盛装甲、乙类液体的容器放在室外时未设防晒降温设施。/pp style="text-indent: 2em "146.操作、巡检等平台、护栏、楼梯等有缺损或腐蚀严重。/pp style="text-indent: 2em "147.化工生产装置未按国家标准要求设置双重电源供电。/pp style="text-indent: 2em "148.爆炸危险场所未按国家标准安装使用防爆电气设备。/pp style="text-indent: 2em "149.电气设备未落实防漏电触电的安全措施,接地线敷设不规范。/pp style="text-indent: 2em "150.配电室未落实防小动物进入的措施。/pp style="text-indent: 2em "(三)仪表专业(23条)/pp style="text-indent: 2em "151.涉及可燃和有毒气体泄漏场所未按国家标准安装泄漏检测报警仪。/pp style="text-indent: 2em "152.未编制可燃、有毒气体检测器检测点分布图。/pp style="text-indent: 2em "153.可燃、有毒气体报警仪未按规定周期进行校准和检定。/pp style="text-indent: 2em "154.可燃、有毒气体检测报警仪一级、二级报警值设定错误。/pp style="text-indent: 2em "155.可燃和有毒气体检测报警仪不具有就地声光报警功能。/pp style="text-indent: 2em "156.固定式可燃和有毒气体检测报警仪检测报警信号没有发送至有操作人员常驻的控制室、现场操作室。/pp style="text-indent: 2em "157.可燃气体和有毒气体报警系统未设置UPS电源。/pp style="text-indent: 2em "158.爆炸危险场所的仪表、仪表线路的防爆等级不满足区域防爆要求。/pp style="text-indent: 2em "159.机柜间防小动物、防静电、防尘及电缆进出口防水措施不落实。/pp style="text-indent: 2em "160.联锁系统设备、开关、端子排的标识不齐全、准确、清晰。/pp style="text-indent: 2em "161.紧急停车按钮没有防误碰防护措施。/pp style="text-indent: 2em "162.可燃气体检测报警器、有毒气体报警器传感器探头不完好;声光报警不正常,故障报警不完好。/pp style="text-indent: 2em "163.安全仪表系统的现场检测元件、执行元件没有联锁标志警示牌。/pp style="text-indent: 2em "164.仪表系统维护、防冻、防凝、防水措施不落实,仪表不完好。/pp style="text-indent: 2em "165.放射性仪表现场未设置明显的警示标志。/pp style="text-indent: 2em "166.涉及毒性气体、液化气体、剧毒液体的一级、二级重大危险源的危险化学品罐区未配备独立的安全仪表系统,未投入正常使用。/pp style="text-indent: 2em "167.紧急切断阀为非故障-安全型。/pp style="text-indent: 2em "168.构成一级、二级重大危险源的危险化学品罐区未实现紧急切断功能或紧急切断设施未处于投用状态。/pp style="text-indent: 2em "169.自动化控制、安全仪表系统未设置不间断电源。/pp style="text-indent: 2em "170.气柜未设置上、下限位报警装置及进出管道自动联锁切断装置。/pp style="text-indent: 2em "171.全压力式液氨储罐未设置液位计、压力表和安全阀;低温液氨储罐未设置温度指示仪。/pp style="text-indent: 2em "172.站内无缓冲罐时,在距汽车装卸车鹤位10m以外的装卸管道上未设置便于操作的紧急切断阀。/pp style="text-indent: 2em "173.现场压力表、温度表、液位计等未标注上下限。玻璃管液位计没有防护措施。/pp style="text-indent: 2em "(四)设计专业(15条)/pp style="text-indent: 2em "174.地区架空电力线路与生产区距离不符合国家标准要求。/pp style="text-indent: 2em "175.涉及光气、氯气、硫化氢气体管道穿越除厂区(包括化工园区、工业园区)外的公共区域。/pp style="text-indent: 2em "176.甲、乙类火灾危险性装置内设有办公室、操作室、固定操作岗位或休息室。/pp style="text-indent: 2em "177.甲、乙类仓库与办公室、休息室贴邻,或库内设有办公室、休息室等。/pp style="text-indent: 2em "178.火灾危险性类别不同的储罐设在同一罐组,常压储罐与压力储罐布置在同一罐组。/pp style="text-indent: 2em "179.控制室或机柜间面向具有火灾、爆炸危险性装置一侧不满足国家标准关于防火防爆的要求。/pp style="text-indent: 2em "180.涉及“两重点一重大”的生产装置、储存设施外部安全防护距离不符合国家标准要求。/pp style="text-indent: 2em "181.企业生产及储存设施总平面布置防火间距不满足规范要求。/pp style="text-indent: 2em "182.企业设施与相邻工厂或设施的防火间距不满足规范要求。/pp style="text-indent: 2em "183.气柜没有布置在人员集中场所、明火或散发火花地点的全年最小频率风向的上风侧。/pp style="text-indent: 2em "184.生产、经营、储存、使用危险物品的车间、仓库等与员工宿舍在同一座建筑物内,与员工宿舍的安全距离不符合要求。/pp style="text-indent: 2em "185.未经正规设计或履行变更程序随意增加设备、设施、建构筑物。/pp style="text-indent: 2em "186.未按规范要求对承重钢结构采取耐火保护措施。/pp style="text-indent: 2em "187.布置在爆炸危险区的在线分析仪表间设备为非防爆型时,在线分析仪表间未采取正压通风。/pp style="text-indent: 2em "188.罐组的专用泵区未布置在防火堤外。/pp style="text-indent: 2em "strongspan style="color: rgb(84, 141, 212) "三、管理缺陷(58条)/span/strong/pp style="text-indent: 2em "(一)合法合规性(19条)/pp style="text-indent: 2em "189.危险化学品生产企业未取得安全生产许可证。安全生产许可证超过有效期内,许可范围与企业现状不一致。/pp style="text-indent: 2em "190.未取得危险化学品登记证,登记内容与企业现状不一致。/pp style="text-indent: 2em "191.未按规定组织危险化学品建设项目安全设施竣工验收。/pp style="text-indent: 2em "192. 未按规定每3年由符合国家规定资质的评价单位进行安全评价。/pp style="text-indent: 2em "193.危险化学品重大危险源未按规定评估、建档、备案。/pp style="text-indent: 2em "194.未按照国家规定提取和使用安全生产费用。/pp style="text-indent: 2em "195.应急救援预案未报应急管理部门备案。/pp style="text-indent: 2em "196.易制毒化学品未取得合法资质或备案证明。/pp style="text-indent: 2em "197.主要负责人、安全管理人员未经依法培训合格。/pp style="text-indent: 2em "198.未按规定设置安全生产管理机构,专职安全生产管理人员数量不符合要求。/pp style="text-indent: 2em "199.未配备注册安全工程师、安全总监从事安全生产管理工作。/pp style="text-indent: 2em "200.新建、改建、扩建生产、储存危险化学品的建设项目(含长输管道)未通过安全审查进行建设。/pp style="text-indent: 2em "201.在用或新增压力容器未在规定的期限内取得使用证。/pp style="text-indent: 2em "202.危险化学品安全作业等特种作业人员未持证上岗。/pp style="text-indent: 2em "203.锅炉、压力容器操作人员、厂(场)内机动车辆驾驶人员、电工、电气焊等作业人员未取得特种作业操作资格证。/pp style="text-indent: 2em "204.装运危险化学品车辆的驾驶证、危险品准运证、危险品押运证失效。/pp style="text-indent: 2em "205.未按规定编制危险化学品安全技术说明书,未在包装上粘贴、悬挂与化学品相符的安全标签。/pp style="text-indent: 2em "206.未按导则要求编制生产安全事故应急预案。/pp style="text-indent: 2em "208.工艺、设备等变更未进行风险评估和履行变更程序。/pp style="text-indent: 2em "208.化工企业主要负责人不具有3年以上化工行业从业经历并不具备大学专科以上学历。/pp style="text-indent: 2em "(二)制度、规程(16条)/pp style="text-indent: 2em "209.未制定操作规程和工艺指标。/pp style="text-indent: 2em "210.操作规程的编制及内容不符合《化工企业工艺安全管理实施导则》的要求。/pp style="text-indent: 2em "211.装置开停工未编制开停工方案。/pp style="text-indent: 2em "212.试生产方案未组织专家审查,试生产前未组织安全生产条件检查确认。/pp style="text-indent: 2em "213.未建立设备检维修、巡回检查、防腐保温、设备润滑等设备管理制度。/pp style="text-indent: 2em "214.未制定仪表自动化控制系统、安全仪表系统安全管理制度。/pp style="text-indent: 2em "215.未建立与岗位匹配的全员安全生产责任制,主要负责人的安全生产责任制不符合法定职责要求。/pp style="text-indent: 2em "216.未制定实施隐患排查治理制度。/pp style="text-indent: 2em "217.未制定实施动火、进入受限空间等特殊作业管理制度。/pp style="text-indent: 2em "218.未制定实施危险化学品重大危险源安全管理制度。/pp style="text-indent: 2em "219.未制定实施变更管理制度。/pp style="text-indent: 2em "220.未制定实施事故(未遂事故)管理制度。/pp style="text-indent: 2em "221.未制定实施承包商安全管理制度。/pp style="text-indent: 2em "222.剧毒化学品、易制爆化学品未建立“双人验收、双人保管、双人发货、双把锁、双本账”等“五双”制度。/pp style="text-indent: 2em "223.未建立实施领导干部带班值班制度。/pp style="text-indent: 2em "224.制度、规程不切实际,没有可操作性。/pp style="text-indent: 2em "(三)风险评估与隐患治理(8条)/pp style="text-indent: 2em "225.未定期对作业活动和设备设施进行危险、有害因素识别和风险评估,未建立风险清单和实行风险分级管理。/pp style="text-indent: 2em "226.主要负责人未每天实行风险研判和承诺公告。/pp style="text-indent: 2em "227.未按规定要求开展危险与可操作性分析(HAZOP),HAZOP分析提出的对策建议未落实整改。/pp style="text-indent: 2em "228.安全仪表系统未进行安全完整性等级评估,评估提出的建议措施未落实整改。/pp style="text-indent: 2em "229.精细化工企业未按规范性文件要求开展反应安全风险评估。/pp style="text-indent: 2em "230.新开发的危险化学品生产工艺未经小试、中试、工业化试验直接进行工业化生产;国内首次使用的化工工艺未按规定进行安全可靠性论证。/pp style="text-indent: 2em "231.工艺技术来源不可靠,没有合规的技术转让合同或安全可靠性论证。/pp style="text-indent: 2em "232.隐患整改未落实“五定”要求,未做到闭环管理。/pp style="text-indent: 2em "(四)计划与台账(12条)/pp style="text-indent: 2em "233.未制定实施年度安全生产教育培训计划。/pp style="text-indent: 2em "234.未制定实施年度应急预案演练计划。/pp style="text-indent: 2em "235.未制定实施年度设备检维修计划。/pp style="text-indent: 2em "236.未制定实施年度压力容器、压力管道检验计划。/pp style="text-indent: 2em "237.未建立安全生产教育和培训档案。/pp style="text-indent: 2em "238.未建立班组安全活动记录。/pp style="text-indent: 2em "239.未建立压力容器、压力管道台账和技术档案。/pp style="text-indent: 2em "240.未建立安全附件台账、爆破片更换记录。/pp style="text-indent: 2em "241.未建立仪表自动化控制系统、安全仪表系统有关安全联锁管理台账。/pp style="text-indent: 2em "242.危险化学品仓库未建立出入库登记台账,账物不符。/pp style="text-indent: 2em "243.未与承包商签订安全生产管理协议。/pp style="text-indent: 2em "244.未建立承包商安全管理档案和年度评价记录。/p
  • 低场核磁技术:让食品中水分研究可视化——访中国农业科学院农产品加工研究所魏益民教授
    pspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  中国农业科学院农产品加工研究所魏益民教授,曾任西北农林科技大学副校长,中国农业科学院农产品加工研究所所长,主要研究方向涉及谷物化学与小麦加工关键技术 植物蛋白挤压组织化理论与技术 食品产地溯源及确证、食品加工过程安全控制等,主持多项国家科技攻关计划、现代农业(小麦)产业技术体系建设专项、国家自然科学基金等项目。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  从食品水分分析技术平台,到智能物料干燥分析系统,魏益民教授开展了一系列的研究工作,不仅解了企业的“燃眉之急”,也对仪器设备开发和应用拓展起到了很大的促进作用。其中,与苏州纽迈分析仪器股份有限公司(简称:纽迈分析)以及河北金沙河面业集团有限责任公司(简称:金沙河面业)的合作就是很好的案例。日前,仪器信息网编辑特别采访了魏益民教授,听他讲一讲学术研究及其背后的精彩故事。/span/pp style="TEXT-ALIGN: center"img title="DSC05714_副本.jpg" alt="DSC05714_副本.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/211ac2bc-41e2-46d4-bc75-fab1c2b4a7e6.jpg"/br/strong中国农业科学院农产品加工研究所魏益民教授/strong/pp  span style="COLOR: rgb(255,0,0)"strong低场核磁技术:水分状态及运动轨迹研究的有效手段/strong/span/pp  水乃万物之源。在国际上水的研究是一个非常重要的领域,具体到农林产品、食品和能做成食品的所有原料,水分的研究更是必不可少。/pp  采访伊始,魏益民教授先给我们普及了食品领域与水分有关的一些学问。“在农产品的收获、安全储藏、安全运输、加工和食品制造中,都离不了水这个命题。比如,国标规定小麦安全储藏的水分含量在12.5%以下,面粉安全储藏的水分含量在14.5%以下;另外,种子发芽需要合适的水分条件;食品制作过程中的煎、炸、炒、烩、煮、蒸都离不开水分;果品、蔬菜等的保鲜与水分息息相关;挂面制作及烘干的工业过程中,水分更是一个至关重要的因素......”/pp  魏益民教授介绍说:“食品的含水量不仅和食品的口感、新鲜度、脆度等有关,而且在食品工业中,加水量的多少和生产成本和商业利润有着密切的关系,从这个角度来说,水分的研究在食品领域有着重要的商业意义。”/pp  据介绍,目前关于水分的研究课题,包括含水量、水分存在状态、运动轨迹和水分活度等。现有对食品中水分的研究主要是绝对含水量的测量,一般采用加热蒸发至恒重的方法计算得出。但是必须注意的是,蒸发过程中跑掉的除了水分之外,还可能有别的挥发物质。因此,结果往往不是很准确。/pp  “我研究的课题主要围绕水分和食品的关系。多年的研究发现,核磁分析和成像技术是研究水分存在状态和运动轨迹的有效手段。”魏益民教授介绍道,从原理上来说,根据氢原子核的弛豫时间,可以判别自由水、弱吸附水和强吸附水的比例,进而可以研究水分在食品中的存在状态。通过核磁成像,还可以把水分研究从不可视状态变成可视状态,从而可以看到水分的扩散轨迹。/pp  其实,早在进行高水分组织化植物蛋白课题研究的时候,魏益民教授课题组就曾尝试使用纽迈分析的低场核磁设备进行测试,发现高水分和低水分含量食品中水分的存在状态和分布是不同的。魏益民教授说:“也就是从那个时候开始,我们发现,食品中的水分可以用低场核磁技术来更好地表征。这个思路一直存在我的脑子里。”而在之后研究“食品水分分析技术平台”时,魏益民教授也成功地将低场核磁技术引入其中。/pp  “核磁技术在食品领域最大的意义就是区分水分存在的状态,看到水分的运移过程,以此来研究水分的运移规律。” 魏益民教授说,“核磁技术用于食品中水分的研究,能提供的不仅仅是含量,而且能够在分子水平上观察水分子的运动规律。这项研究非常有价值。”/ppspan style="COLOR: rgb(255,0,0)"strong  食品水分分析技术平台:一次突发事件的启发造就的专利成果/strong/span/pp  既然低场核磁是研究水分存在状态及运动轨迹的有效手段,那么如何介入并进行系统研究呢?其实,魏益民教授一直在关注这方面的研究,包括进行高水分组织化植物蛋白研究的时候,就已经开始了初步的尝试。而金沙河面业冬季大雪降温危机事件将这件事情正式提上了日程。其中,“食品水分分析技术平台”的建立是第一步,为之后低场核磁技术的引入奠定了基础。/pp  2004年,魏益民教授就与金沙河面业开始了接触,也曾多次被邀约去解决挂面干燥能耗的问题,迟迟未果的原因在于魏益民教授“不打无准备之仗”。魏益民教授说:“我不是学这个学科的,之前对烘房没有研究,为此做了很多准备工作,也找了很多食品干燥方面的书籍来进行基本理论的学习,并准备了在线自动温度湿度自动记录仪、微型气象工作站等进口的仪器设备。”/pp  2012年冬天,一场突如其来的大雪导致气温骤降,金沙河面业的锅炉房温度不达标准要求,金沙河面业的生产线面临严重危机。魏益民教授第一时间赶到现场,并采取了一系列的行动:首先,关好门窗,加盖布帘,减少能耗浪费 其次,挂上温湿度仪,监测现有生产线的适宜温度湿度范围 第三,安置微型气象工作站,测排风口的环境要素。“结果显示,不同车间排风口的差异达40%。这说明烘房的操作工艺是盲目的、凭经验的,没有科学依据的。” 最终,在魏益民教授的指导下,他们研究了用能最少生产线烘房的操作参数。之后,所有车间都照此参数执行。第三天中午,锅炉温度正常了,危机解除。/pp  “这次事件给了我们很大的启发:挂面干燥的理想模型是什么?有什么样的规律?基于什么样的机理?通俗来讲,挂面的水分是怎样从挂面里面跑出来的?是匀速的?还是梯度的?这是一个非常重要的课题,不仅是节约能源的问题,还可以节约成本、减少污染、绿色环保。而在此之前,对烘房气象要素变化及挂面内部水分动态变化的结果并没有一个微观描述,没有人对此进行过研究。”/pp  “但是,谁来做呢?” 魏益民教授说:“这其中涉及了热能与动力工程、环境科学、气象学、食品干燥技术等学科,这些都不是我的特长。”碰巧的是,在一次国际会议上,魏益民教授偶遇了两个合适的人才,一个是做微型传感器的,一个是做粮食干燥的,并将他们引进到研究所,开始了相关的研究。/pp  为了不造成太大的浪费,他们放弃了建造模拟烘房进行节能试验的研究,而是选择先进行微观模型研究,然后再到车间放大。基于此,该课题组为解决模拟条件,辗转寻找合适的仪器,并进行自己加工改造。具体来说,在现有的恒温恒湿箱的基础上,他们添置了风扇,配置了可以自动记录重量的天平等,最后将这些仪器组合在恒温恒湿箱里,并且集成到电脑里操作和结果显示,做成一个由电脑控制的可以自动进行水分含量在线控制的系统,取名为“食品水分分子技术平台”,并申请了发明专利。/pp  “食品水分分析技术平台”将整个干燥过程和水分检测过程自动化,实现了过程控制、在线监测、数据记录、数据输出一体化,并为其它设备的在线(或准在线)设计了接口,为深入研究和系统地观察挂面的干燥过程提供了可能和相关实验平台。基于此平台,魏益民教授研究了挂面在不同温湿度条件下的干燥曲线,最终以最短的时间研究了什么干燥条件是最节能的干燥工艺。相对于常规方法,该平台可以自动记录,自动绘图,不仅减少了工作量,还实现了动态观察。据悉,在此平台研究的基础上,金沙河面业烘房能耗节约达22%-23%。/ppspan style="COLOR: rgb(255,0,0)"strong  三方共合作,助力食品干燥模型的建立/strong/span/pp  由经验到理论,从现象到机理,魏益民教授的研究在不断深入。“解决怎么干燥最合理之后,下一步就要研究水分是怎样跑出来的过程问题。” 魏益民教授谈道,低场核磁技术是研究食品中水分存在状态及运动轨迹的有效手段,而要开展更进一步的研究,首先要解决的便是仪器的问题。/pp  讲到这儿的时候,魏益民教授给我们讲述了一个非常精彩的三方合作共赢的故事。在这个故事中,纽迈分析和金沙河面业都非常积极,给予了很大的支持。据介绍,鉴于当时研究的需要,魏益民教授需要一台100多万的低场核磁仪器,于是找到了纽迈分析的负责人杨培强。最终,魏益民教授、纽迈分析以及金沙河面业在技术、仪器及经费等方面达成合作,三方按照一定的比例共同为这台低场核磁仪器“买单”。这件事情中,令魏益民教授没想到的是,纽迈分析不仅提供了仪器,还提供了一定的研发经费。这也是他对纽迈分析特别“点赞”的地方。魏益民教授说:“我不仅筹到了仪器和科研经费,更重要的是获得了一个捷足先登的学术平台。”/pp  将低场核磁技术引入到食品水分分析技术平台后,魏益民教授开始了系统的研究。首先,根据研究的需要,魏益民教授在纽迈分析的帮助下对仪器进行了改造。“我们要做成在线仪器,称之为‘on-line’,首先要解决的就是把环境引到探头里面,同时保证遇冷空气时不结露。此外,还要在恒湿箱侧面做了微型取样洞等。”/pp  基于此,魏益民教授开展了多方面的研究:挂面在干燥过程不同阶段的水分状态 挂面干燥过程中的水分运移规律 还进一步研究了不同形状(圆和方)面条的水分迁移规律等。这其中,最令其自豪的一件事情就是硕士生在J. of Food Engineering上发表的文章《Study on the Water State and Distribution of Chinese Dried Noodles during the Drying Process.》。改论文投稿不到两周即被接受,一个月即发表,并被编辑点评具有数个亮点:方法学上创新,包括申请专利的食品水分分析技术平台以及核磁技术的应用;采用油脂包被的方法有效减少噪音、增加信号强度,利用低场核磁成像技术可以清楚地研究挂面的收缩界面;研究了直径2-3mm挂面中水分的迁移规律;将扫描灰度图的信号数字化,趋势和规律更清晰,更有利于工业应用等。/pp  通过低场核磁技术的应用,魏益民教授课题组不仅揭示了挂面干燥过程中水分的迁移规律,还探究了在工业上的应用。“工业应用的前提是寻找理想的干燥曲线,而理想的干燥曲线即是在保证质量、产量、能耗三者平衡的前提下的一种干燥模型,是工业化的科学依据,且最经济、最环保、最有效。这也是我们最终的目的。”谈到这,魏益民教授还特别强调,“只有得到数学模型才能智能化。”/pp  基于“食品中水分分析技术平台”,魏益民教授与纽迈分析的合作项目“智能物料干燥分析系统”就特别体现了智能化。据介绍,智能物料干燥分析系统由低场核磁共振成像及分析系统,温度、湿度、风速动力控制系统,自动重力测定系统,迁移观察系统,显示和运算系统组成,具有自动绘制物料干燥、挥发、吸附等过程特性曲线等功能,极大提高了研究效率。据悉,该平台也在为未来近红外监测模块开发做准备。/pp  最后,魏益民教授还特别指出,“当前,中国大多数食品制造业的工艺考控制还停留在经验层面,我们建立的这个‘食品水分技术分析平台’不仅可以对接核磁,还可以对接气质;不只是针对食品领域,还能够进行中药材、木材、挥发物、种子等多领域的研究。”/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  strong后记:/strong采访中我们得知,魏益民教授先后上过四所大学,专业涉及了农学、质量分析控制,甚至项目管理,其研究方向更是横跨了多个学科。为了专心科研,他毅然辞掉西北农林科技大学副校长职务,一手创建中国农业科学院农产品加工研究所。魏益民教授自定义为开拓者,他说,“我最大的功劳就是留下了近100个学生,建立了中国唯一一个小麦和小麦制品研究的全方位平台。”/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  对国产仪器,魏益民教授也有着自己的情怀。在研究过程中,其课题组不仅亲自进行仪器的改造和集成,而且及时地把对仪器的建议反馈给合作伙伴。魏益民教授还特别提到,外国的仪器设备往往不是某一个仪器设备企业研究出来的,很多都是某一科学家在研究过程中的成果,只是由他们及时地产业化了。这种机制值得我们学习。/span/p
  • 大龙多样品磁力搅拌加热套装促销中!
    大龙多样品磁力搅拌加热套装促销活动:欢迎来电咨询订购:021-51693889!
  • 川仪协办中石化重大工程仪表控制技术高峰论坛
    4月16日,由中国科协、中国机械工业联合会、重庆市政府指导,中国石油和石化工程研究会、中国仪器仪表学会主办,重庆川仪自动化股份公司协办的第五届中国石油化工重大工程仪表控制技术高峰论坛在渝开幕,中国工程院院士孙优贤,来自中石化、中石油、中海油、中国仪 器仪表学会的有关领导、主要用户和设计院约300人参加了此次论坛。川仪自动化股份公司总经理吴朋作为大会技术专家委员会副主席在开幕式上致辞,副总经理王道福在紧随开幕式之后的主论坛上作了《川仪石化行业整体解决方案》报告,总工程师王刚担任大会专家委员会委员和化工(煤化工)自动化技术专题副主席。在论坛现场参观了川仪、耐德展台后,当天下午,孙优贤和一批与会贵宾还专程莅临公司蔡家工业园产品展示厅和调节阀新工厂参观,对川仪近年来取得的可喜发展成就,以及仪器仪表及解决方案参与石化重大工程建设的实力予以充分认可,并结下了深厚友谊。  &ldquo 近年来,面对国家转变经济发展方式、安全生产和节能减排、两化融合,推动&lsquo 智能化工厂&rsquo 、&lsquo 数字油气田&rsquo 建设和产业升级等发展新要求,我国石油天然气、炼化、煤化工等化工工程正向着大型化、基地化、一体化以及智能化和清洁化方向发展,这对仪表与控制技术提出了新的、更高的要求。&rdquo 吴朋在致辞中 首先阐述了当前行业走向,并指出,&ldquo 举办此次论坛,恰逢国家处于深化改革时期,工业自动化仪表行业发展进入了转型期,为各企业和用户提供了一个良好的沟通 交流平台。论坛邀请到了石油石化等方面的专家与会,大家建言献策,为促进行业成功转型,蓬勃发展提供了有力支持。同时还促进了石油天然气、炼化、煤化工以及其它化工工程设计新理念、新思路、新标准的交流应用,将加快推动我国石油天然气、炼化、煤化工工程仪表自动化技术与世界先进水平接轨。&rdquo   王道福在主论坛发言中,深入阐述了川仪是如何做好石化行业解决方案的。近年来,经过战略转型的川仪,石化行业所占份额已替代钢铁行业,成为最大 市场版块。通过大力实施&ldquo 对标赶超,针对性加大自主研发力度,为满足煤化工、煤制油、煤制气市场需求,研制出高温高压、耐磨、耐冲刷高等级特殊工况下的高 性能调节阀,打破国外技术垄断;取得&ldquo 矢量变频执行机构&rdquo 技术突破,满足高精度调节阀需求,替代进口;PDS智能变送器实现工程应用产品系列化;以PA- 300为代表的分析仪已占据市场高度;经修造后的进口阀可恢复原有状态;携整体水平达国际领先的全系列仪器仪表,可做到全方位、专业化的一体式总包服务; 并具有对备品备件实施规范化、系统化、长周期服务的能力。同时,还推出与客户联合研制的新技术、新产品的合作新思路,以客户实际应用需求为导向,以企业为主体,以科研院所为支撑,与客户共同解决生产经营中的难题,实现共赢发展。  重庆耐德工业股份公司相关领导在主论坛上做了《储运自动化信息化--为客户创造最大价值》报告。接下来的一天半时间里,还举办了多个主题的分论 坛,重庆耐德工业股份公司相关技术负责人还在&ldquo 炼油和储运自动化专题论坛&rdquo 上做了《伺服液位计在灌区液位管理系统中的应用》报告,也获得了良好反响。
  • 大连化物所利用固体核磁共振技术揭示有机/无机模板剂调控分子筛合成中铝分布的微观机制
    近日,大连化物所固体核磁共振及催化化学创新特区研究组(05T5组)侯广进研究员、赵侦超副研究员团队与低碳烃综合利用及沸石催化材料研究组(DNL0804)李秀杰研究员合作,利用固体核磁共振技术揭示了有机/无机模板剂在分子筛选择性铝取代中作用的本质。  硅铝分子筛作为一类重要固体酸催化材料,其催化性能与酸中心分布即铝落位密切相关,因此铝位点的精确调控对其催化反应性能有至关重要影响。此外,尽管人们认为分子筛中的铝位点不是随机分布的,且通过调节有机和无机模板剂可以实现不同的铝分布的调控,但关于模板剂对铝落位调控的微观作用机制大多基于理论计算、或者Co2+离子交换的UV-Vis等,缺少直接的实验证据。  MCM-49超笼孔口处的B酸被认为是苯-乙烯液相烷基化的活性中心。对比传统环己亚胺(HMI)为模板剂,利用环己胺(CHA)合成的MCM-49分子筛超笼孔口处的T2铝含量明显较多。1H-13C二维相关谱等核磁共振结果表明,HMI在分子筛合成中主要以质子化形式存在,而CHA则存在质子化和非质子化两种状态。2D 1H-27Al相关谱发现,两种合成体系中T2铝位点与有机模板剂的1H并无相关信号,这表明T2铝位点是由Na+导向生成的,27Al MQ进一步验证了该机制。该团队还利用1H{23Na}双共振实验研究发现,只有非质子化的CHA与Na+有相关作用,这表明非质子化CHA在Na+附近形成配位,两者协同促进了分子筛孔道的形成,这同时有利于体系中容纳更多的Na+,进而实现了CHA合成体系中T2铝位点的优势落位。  相关研究成果以“The Role of Organic and Inorganic Structure-Directing Agents in Selective Al Substitution of Zeolite”为题,发表在《物理化学快报》(The Journal of Physical Chemistry Letters)上,并被选为Supplementary Cover。该工作的第一作者是大连化物所05T5组博士研究生王志利。上述工作得到国家自然科学基金、国家高层次人才计划、辽宁省“兴辽英才计划”、大连化物所创新基金等项目的资助。
  • 低场核磁与磁共振成像技术撞上科研灵感,专家这样讲成果
    低场核磁共振(LF-NMR)技术具有检测速度快、对样品无损伤、无需预处理、实时获得数据等特点,同时还能够反映样品中水分子的存在形式及分布状态,目前,该项技术在多种领域取得了广泛应用;磁共振成像(MRI)是根据有磁距的原子核在磁场作用下,能产生能级间的跃迁的原理而采用的一项新检查技术,此项技术在医学领域对于人类有着长远的帮助。在第六届磁共振网络会议(iCMR2022)中的低场核磁(LFNMR)与磁共振成像(MRI)技术,仪器信息网共邀请了六位来自不同高校及科研机构的专家,为大家深度解析低场核磁(LFNMR)与磁共振成像(MRI)技术。 (点击报名)中国科学院生物物理研究所正高级工程师 胡一南《基于光泵式原子磁力计的非接触检测方法》 (点击报名)胡一南,中科院生物物理所研究员,高级技术专家,主要从事基于高灵敏原子磁力计的非接触检测方法研究,在中科院生物物理所任工程师期间,参加了搭建SQUID脑磁系统,对脑磁图技术及其临床应用有了深入了解。并发现原子磁力计在脑磁图仪上的巨大潜在应用价值。带领团队从事基于原子磁力计的可穿戴脑磁图系统研究,研发面向脑磁图的高精度高稳定性原子磁力计,承担并完成了基于主动磁补偿线圈的稳场等科研项目。如何快速地高精度地对锂电池的电量(SoC)和健康状况(SoH)进行检测是锂离子电池大规模应用以及循环使用的瓶颈问题,胡一南工程师提出基于使用原子磁力计测量电池磁化率的检测方案,通过突破背景磁场以及环境磁场强度对原子磁力计的灵敏度限制实现了毫秒级的电池非接触检测。牛津仪器应用科学家 文祎《如果核磁有了光》 (点击报名)文祎2011年于中国科学院上海药物研究所获得药物化学专业结构生物学方向博士学位,主要工作是以异核多维核磁共振技术研究生物大分子的结构、功能、相互作用以及基于弛豫的蛋白质动力学分析。2017年加入牛津仪器任磁共振应用科学家,主要负责低场台式核磁的应用开发以及售前售后技术支持。本次文祎科学家的报告题目为《如果核磁有了光》,具体将聚焦台式核磁。牛津仪器台式核磁共振波谱仪X-Pulse,具备宽带多核、流动化学、自动进样、变温和数据库等功能特性,在现场即可完成研发、质控和教学中多样的核磁分析任务。本次研讨会文祎科学家将分享台式核磁与光相结合,在实验室中实现光催化过程的原位分子水平监测技术。西湖大学副教授 孙磊《基于金属有机框架中电子自旋的锂离子量子传感》 (点击报名)孙磊,2021年10月加入西湖大学理学院组建分子量子器件和量子信息实验室。孙磊实验室致力于设计分子材料以研究量子现象,并通过器件实现分子级别的量子操控。研究主要围绕以下三个方向展开:(1)制备单分子自旋电子学和量子信息处理器件;(2)开发基于分子电子自旋量子比特的量子传感器,探索其在能源和生物领域中的应用 (3)制备单层二维金属有机框架材料及其异质结,探索量子输运现象。孙磊实验室设计合成了含有稳定自由基的金属有机框架,利用电子顺磁共振技术实现了室温下、溶液相中的锂离子鉴定和定量检测,并验证了多种离子并行传感的可行性。青岛腾龙微波科技有限公司技术支持工程师 杜婧雯《Spinsolve台式核磁用于在线反应监测》 (点击报名)杜婧雯,硕士毕业于中国科学院上海药物研究所药物分析专业,硕士期间主要从事基于核磁共振技术的蛋白质-小分子相互作用研究。目前在青岛腾龙微波科技有限公司担任技术支持工程师,主要致力于向不同行业的核磁用户推广Spinsolve台式核磁共振波谱仪和MestreNova软件产品的多种应用,同时根据用户的不同需求提供个性化解决方案及技术服务。化学反应的实时监测便于化学家们及时了解反应动力学、反应机理和反应进程,本次杜婧雯工程师将结合台式核磁共振波谱仪的技术及应用优势,介绍Spinsolve台式核磁针对于在线反应监测的应用,包括硬件装置和软件系统,以及数据的采集、处理、导出。清华大学博士后 李文郁《低场核磁共振技术在水泥基材料中的理论模型及应用》 (点击报名)李文郁,清华大学土木工程系博士后。研究领域:水泥基材料,水泥水化机理,低场核磁,固体核磁,核磁方法。低场核磁共振技术以水为探针来表征水泥基材料。相比水泥基材料研究中的压汞、氮吸附等传统测孔方法,低场核磁具有快速、原位、无损、预处理要求低等特殊优势。除广泛认可的孔结构表征外,低场核磁还具有物相定量和水分动力学研究的能力。李文郁博士后将各应用中所用到的理论模型归纳为四种,重点指出了各理论模型中的本征限制条件,为目前应用中的问题进行归类并分别提供了有效解决方案。此外,以多项水泥水化研究为例,通过低场核磁及其与X射线衍射、热重、量热仪等技术的结合,展示了低场核磁用于缓凝机理研究的可行性。山东职业学院教授 赵晓丽《植物特有插入序列诱导膜融合机制的核磁共振研究》 (点击报名)赵晓丽,博士毕业于北京大学北京核磁共振中心,主要研究内容为利用核磁共振技术解析蛋白结构,并联合其他技术对膜融合蛋白诱导膜融合的机理进行研究。本次赵晓丽教授将就《植物特有插入序列诱导膜融合机制的核磁共振研究》进行报告。会议报名链接: https://www.instrument.com.cn/webinar/meetings/icmr2022/
  • 会展通知 | 2023第11届国际生物发酵产品与技术装备展览会(济南)
    2023第11届国际生物发酵产品与技术装备展览会(济南)2023年3月30日-4月1日 | 山东国际会展中心 支持单位:山东省工商业联合会山东省商务厅山东省工业和信息化厅主办单位:中国生物发酵产业协会承办单位:上海信世展览服务有限公司协办单位:中国贸促会济南分会山东省生物发酵产业协会山东省水处理协会院校协办:北京工商大学大连工业大学华东理工大学华南理工大学江南大学 江苏大学南京工业大学齐鲁工业大学天津科技大学天津生物工程硏究中心天津市工业微生物硏究所浙江科技大学中国科学院天津工业生物技术研究所 中国食品发酵工业研究院同期举办:2023实验室仪器与技术装备展2023生物技术与生物制药展2023制药机械与包装技术展2023玉米深加工展2023精酿啤酒展展会简介 2022年国家发展改革委发布的《“十四五”生物经济发展规划》,对生物发酵产业的发展提出了新要求,赋予了新使命,生物发酵产业前景广阔,潜力巨大。BIO CHINA 目前已成为生物发酵产业一年一度行业盛会,由中国生物发酵产业协会主办,上海信世展览服务有限公司承办,2023第11届国际生物发酵产品与技术装备展览会于2023年3月30-4月1日在山东国际会展中心召开,展会将围绕,生物工程、发酵工程、细胞工程、蛋白工程、生物医药(抗生素、疫苗等)、生物饲料、生物农药、生物肥料、生物化工、食品发酵、发酵产品(氨基酸及有机酸、淀粉及淀粉糖、酵母及衍生物、酶制剂、发酵功能制品)等产业化中的新产品、新技术、新装备、新工艺为主要展示内容,本届展会以“发挥引擎作用,实现高质量发展”为主题,推动上下游行业融合发展,开拓国际国内市场,促进产业链供应链的稳定,进一步夯实了生物发酵大国向强国迈进的基础。为生物产业创新发展助力,共创生物产业新蓝海。2023中国生物发酵产业大会及配属活动展会同期将举办35场高品质的同期论坛和活动,直击生物发酵产业大会、发酵培养基、生物医药、生物饲料、酶制剂、淀粉糖(醇)、节能环保、海洋生物工程、生物技术与基因工程、重点项目推介会等多个主题,分析市场热点、解读实践案例、前瞻产业趋势,打造行业交流分享的思想盛宴。分论坛系列2023氨基酸营养健康产业创新发展论坛2023生物活性功能糖营养健康论坛2022第八届国际发酵培养基应用发展技术论坛2023中国(山东)精酿啤酒产业发展创新论坛 2023制药企业设施设备管理专题会议2023益生制品健康产业发展论坛2023生物活性功能糖营养健康论坛2023全国生物发酵行业绿色低碳与装备创新论坛2023酶工程与生物催化论坛2023中国农林废弃物资源化发酵技术发展与应用研讨会 2023压缩空气双碳节能,助力生物发酵产业高峰论坛2023生物药下游工艺发展峰会2023玉米深加工高峰论坛2023淀粉糖、多元醇技术与装备发展高峰论坛2022现代海洋工程与生物制造论坛2023生物发酵废水新技术、新工艺、新装备发展论坛2023第七届生物发酵饲料技术创新与营养高峰论坛展品范围 一、生物发酵产品展区氨基酸及有机酸类:谷氨酸、赖氨酸、蛋氨酸、色氨酸、苏氨酸、柠檬酸、葡萄糖酸、乳酸、衣康酸等;酶制剂类:淀粉酶、糖化酶、蛋白酶、纤维素酶、异淀粉酶、异构酶、β—萄聚糖酶、植酸酶、木聚糖酶等。酵母及其衍生物类:高活性干酵母、药用酵母、饲料酵母、营养酵母、酵母抽提物等;淀粉、淀粉糖类:各类淀粉、变性淀粉、淀粉糖、多元醇等产品及其衍生物。益生产品类:益生元类(低聚糖、菊粉、寡糖类、其他益生元等)、益生菌及其延伸产品(益生菌制剂、益生菌食品、益生菌乳 粉、益生菌饮料、益生菌化妆品、其他益生菌延伸产品)、其他益生类产品(合生元、益生菌乳制品、益生菌保健品、肽与蛋白质 类、膳食补充剂、益生菌日化产品)、功能性食品(功能发酵制品、多糖、肽、膳食纤维、药食同源类产品、全营养配方食品、特 医特膳食品、增强免疫力产品、减肥食品、滋补食品、美容食品、抗衰老产品等;)天然提取物产品:植物、中草药提取物,蔬菜、水果提取物,动物提取物,菌类提取物,海洋生物提取物等;技术装备:1、发酵装备:发酵罐、糖化罐、蒸发设备、结晶设备、干燥设 备、冷却设备、换热设备、搅拌设备、压缩空气系统、工业制 冷设备、各效分离器、冷凝器、提纯蒸馋设备、等离子交换树 脂、均质机械等生产设备、蒸憎水机、蒸发站系统、结晶搅拌 装置、萃取设备;2、实验室装备:实验室发酵罐、气流/磁力搅拌、在线检测仪、细 胞培养器、摇床、培养箱、监测系统、尾气/生化分析仪、动植 物培养、离心机、电化学分析仪器、生物反应器、灭菌设备、 冷却设备、空压机、细胞破碎仪、均质机、干燥机、离心浓缩 仪等;三、自动化控制系统:色谱仪、光谱仪、气流/磁力搅拌、减速机、传动设备、冷凝器、PH电极、离子交换树脂、传感器、液位计、搅拌设备、蠕动泵、尾气处理设备、封口贴标机等。四、流体设备展区:卫生级(泵、阀、管件、软管)、卫生级连接件与集成服务商、乳化、均质、混合、分选、稠化、反应器、蒸馏、过滤与分离、过滤净化设备、脱离子设备、低温设备、吸尘设备、洁净室设备、真空等各种生产加工设备;五、分离提取装备:膜分离设备、离心分离设备、精馏及蒸发结晶分离设备、分筛设备、烘干、脱色设备、萃取设备其他提取设备等。 环保设备和技术:MVR蒸发系统、污水监测系统、分析仪器等环境监测与实验室设备 废水、废气、固废等环保治理装备。参观/参展联系上海信世展览服务有限公司地 址:上海市九新公路2888号申新商务5楼E座联系人:赵瑞 电 话:18217653398(同微信)mail:mailzhaorui@163.com网 址:www.biozl.net
  • 造纸业、天然气等行业标准发布及实施日期公布
    中华人民共和国国家标准批准发布公告(2010年第3号),公布了163项工业行业标准的发布及实施日期,其中造纸业、天然气等行业与科学仪器相关的分析检测标准共有51项,现摘录如下。序号标准号标准名称代替标准号发布日期实施日期1GB/T 11060.1-2010 天然气 含硫化合物的测定 第1部分:用碘量法测定硫化氢含量 GB/T 11060.1-19982010-8-92010-12-12GB/T 11060.3-2010 天然气 含硫化合物的测定 第3部分:用乙酸铅反应速率双光路检测法测定硫化氢含量 GB/T 18605.1-20012010-8-92010-12-13GB/T 11060.4-2010 天然气 含硫化合物的测定 第4部分:用氧化微库仑法测定总硫含量 GB/T 11061-19972010-8-92010-12-14GB/T 11060.5-2010 天然气 含硫化合物的测定 第5部分:用氢解-速率计比色法测定总硫含量 GB/T 19207-20032010-8-92010-12-15GB 12476.10-2010 可燃性粉尘环境用电气设备 第10部分:试验方法 粉尘与空气混合物最小点燃能量的测定方法 2010-8-92011-8-16GB 12476.8-2010 可燃性粉尘环境用电气设备 第8部分: 试验方法 确定粉尘最低点燃温度的方法 2010-8-92011-8-17GB 12476.9-2010 可燃性粉尘环境用电气设备 第9部分:试验方法 粉尘层电阻率的测定方法 2010-8-92011-8-18GB/T 14633-2010 灯用稀土三基色荧光粉 GB/T 14633-20022010-8-92011-5-19GB/T 14634.1-2010 灯用稀土三基色荧光粉试验方法 第1部分:相对亮度的测定 GB/T 14634.1-20022010-8-92011-5-110GB/T 14634.2-2010 灯用稀土三基色荧光粉试验方法 第2部分:发射主峰和色度性能的测定 GB/T 14634.2-20022010-8-92011-5-111GB/T 14634.3-2010 灯用稀土三基色荧光粉试验方法 第3部份:热稳定性的测定 GB/T 14634.3-20022010-8-92011-5-112GB/T 14634.5-2010 灯用稀土三基色荧光粉试验方法 第5部分:密度的测定 GB/T 14634.5-20022010-8-92011-5-113GB/T 14634.6-2010 灯用稀土三基色荧光粉试验方法 第6部分:比表面积的测定 GB/T 14634.6-20022010-8-92011-5-114GB/T 14634.7-2010 灯用稀土三基色荧光粉试验方法 第7部分:热猝灭性的测定 2010-8-92011-5-115GB/T 16716.2-2010 包装与包装废弃物 第2部分:评估方法和程序 2010-8-92011-1-116GB/T 16716.3-2010 包装与包装废弃物 第3部分:预先减少用量 2010-8-92011-1-117GB/T 16716.4-2010 包装与包装废弃物 第4部分:重复使用 2010-8-92011-1-118GB/T 16716.5-2010 包装与包装废弃物 第5部分:材料循环再生 2010-8-92011-1-119GB/T 16781.2-2010 天然气 汞含量的测定 第2部分:金-铂合金汞齐化取样法 GB/T 16781.2-19972010-8-92010-12-120GB/T 23595.7-2010 白光LED灯用稀土黄色荧光粉试验方法 第7部分:热猝灭性的测定 2010-8-92011-5-121GB/T 24916-2010 表面处理溶液 金属元素含量的测定 电感耦合等离子体原子发射光谱法 2010-8-92010-12-3122GB/Z 24978-2010 火灾自动报警系统性能评价 2010-8-92010-12-123GB/Z 24979-2010 点型感烟/感温火灾探测器性能评价 2010-8-92010-12-124GB/T 24980-2010 稀土长余辉荧光粉 2010-8-92011-5-125GB/T 24981.1-2010 稀土长余辉荧光粉试验方法 第1部分:发射主峰和色品坐标的测定 2010-8-92011-5-126GB/T 24981.2-2010 稀土长余辉荧光粉试验方法 第2部分:相对亮度的测定 2010-8-92011-5-127GB/T 24982-2010 白光LED灯用稀土黄色荧光粉 2010-8-92011-5-128GB/Z 24987-2010 纸、纸板和纸浆 测试方法不确定度的评定 2010-8-92010-12-129GB/T 24990-2010 纸、纸板和纸浆 铬含量的测定 2010-8-92010-12-130GB/T 24991-2010 纸、纸板和纸浆 铅含量的测定 石墨炉原子吸收法 2010-8-92010-12-131GB/T 24992-2010 纸、纸板和纸浆 砷含量的测定 2010-8-92010-12-132GB/T 24993-2010 造纸湿部Zeta电位的测定 2010-8-92010-12-133GB/T 24994-2010 造纸湿部溶解电荷量的测定 2010-8-92010-12-134GB/T 24995-2010 铸涂原纸 2010-8-92010-12-135GB/T 24996-2010 纸张中脱墨回用纤维的判定 2010-8-92010-12-136GB/T 24997-2010 纸、纸板和纸浆 镉含量的测定 原子吸收光谱法 2010-8-92010-12-137GB/T 24998-2010 纸和纸板 碱储量的测定 2010-8-92010-12-138GB/T 24999-2010 纸和纸板 亮度(白度)最高限量 2010-8-92010-12-139GB/T 25001-2010 纸、纸板和纸浆 7种多氯联苯(PCBs)含量的测定 2010-8-92010-12-140GB/T 25002-2010 纸、纸板和纸浆 水抽提液中五氯苯酚的测定 2010-8-92010-12-141GB/T 24957-2010 冷冻轻烃流体 船上膜式储罐和独立棱柱形储罐的校准 物理测量法 2010-8-92010-12-142GB/T 24958.1-2010 冷冻轻烃流体 船上球形储罐的校准 第1部分:立体照相测量法 2010-8-92010-12-143GB/T 24959-2010 冷冻轻烃流体 液化气储罐内温度的测量 电阻温度计和热电偶 2010-8-92010-12-144GB/T 24960-2010 冷冻轻烃流体 液化气储罐内液位的测量 电容液位计 2010-8-92010-12-145GB/T 24961-2010 冷冻轻烃流体 液化气储罐内液位的测量 浮子式液位计 2010-8-92010-12-146GB/T 24962-2010 冷冻烃类流体 静态测量 计算方法 2010-8-92010-12-147GB/T 24967-2010 钢质护栏立柱埋深冲击弹性波检测仪 2010-8-92010-12-148GB/T 3780.14-2010 炭黑 第14部分:硫含量的测定 GB/T 3780.14-19952010-8-92011-5-149GB/T 6073-2010 LT 型高弹性摩擦离合器 GB/T 6073-19852010-8-92010-12-150GB/T 9345.5-2010 塑料 灰分的测定 第5部分:聚氯乙烯 GB/T 13453.3-19922010-8-92011-5-151GB/T 10682-2010 双端荧光灯 性能要求 GB/T 10682-20022010-8-92010-12-1
  • Nature:形状变形的纳米磁性编码微型机器人
    磁性软体机器人已有多种应用,特别是在与人体密切相关的生物医学领域。如自折叠式“折纸”机器人可以在肠道中爬行、修补伤口、将吞下的物体取出来;胶囊状的机器人可以沿着胃的内表面滚动,进行活组织检查并运送药物。此外,科学家们还研制出了尺寸从几百微米到几厘米不等的更薄的线型机器人,它们有可能在大脑血管中穿行,以治疗中风或动脉瘤。磁性软体机器人的进一步小型化可能带来新的应用,如在小的血管中进行操作甚至操纵单个细胞,但制备这样的微型机器人并非易事[1]。 2019年11月,瑞士联邦理工学院的Cui Jizhai(现任职复旦大学) 、Huang Tian-Yun 及其同事在Nature发表了名为“Nanomagnetic encoding of shape-morphing micromachines”的文章[2],该工作使用电子束光刻技术,制造出了只有几微米大小的可磁重组机器人,通过对单个区域的纳米磁体进行设计,将形状变化指令通过编程的方式输入微型机器人,对纳米磁体施加特殊的磁场序列后,实现微型机器人的形状变化,如图一所示。图一 四片式变形微机械的设计 a.磁体磁态随尺寸增大的示意图:i.超顺磁性;ii.室温下稳定的单畴;iii.多畴态。b. 部,四个面板微机械,面板I上有520 nm×60 nm(I型)纳米磁体阵列,面板II上有398 nm×80 nm(II型)纳米磁体阵列;底部,纳米磁体阵列的相应SEM图像。c. 体积相同但长宽比不同的单畴纳米磁体的磁光克尔效应磁滞回线。d.根据矫顽力的不同选择两个磁场对微机械进行编码的示意图。e. 应用控制磁场B=15 mT时的磁性结构(I型和II型纳米磁体)和微机械折叠行为示意图,光学显微镜图像显示了所制造器件的四种不同结构。从左到右,上/下折叠的面板数为4/0、3/1、2/2(折叠方向不同的对面面板)和2/2(折叠方向相同的对面面板)。 这项工作构建了一个模块化单元的集合,这些模块化单元可以编程为字母表中的字母,此外还构建了一个微型的“鸟”,能够进行复杂的行为,包括“拍打”、“悬停”、“转弯”和“侧滑”,如图二所示。这为创造未来的智能微系统建立了一条路线,这些智能微系统可以重新配置和原位重新编程,可以适应复杂的情况。图二 折纸式的微型“鸟”与多种形状变形模式 文章中,作者使用了英国Durham Magneto Optics Ltd.公司的磁光克尔效应系统-NanoMOKE3对不同型的纳米磁体进行了磁滞回线测试,同时使用该设备的电磁铁产生的磁场对纳米磁体阵列进行了编程。NanoMOKE3可以进行微区的超高灵敏度测试,在本工作中,作者通过激光聚焦在不同的纳米磁体上获得对应的磁滞回线,如图一c所示,为微型机器人的磁学编码工作提供了帮助。图三 磁光克尔效应系统-NanoMOKE3 NanoMOKE3主要技术特点:超高灵敏度~10-12emu微区磁滞回线,激光光斑~2μm超快测试速度,1秒内可获得磁滞回线克尔角检测<0.5 mdeg纵向/横向/向克尔磁畴成像扩展无液氦低温MOKE图四 与Montana S50超精细多功能无液氦低温光学恒温器联用的低温MOKE 温度范围4.2K~350K磁场纵向>0.4T,向>0.3T 参考文献:[1] X H,zhao. et al. Nature 575, 58-59 (2019)[2] Cui, J. et al. Nature 575, 164–168 (2019).
  • 化工油食用油混装无异于投毒,行业标准如何规范?
    7月8日,中储粮因“罐车运输油罐混用”的问题冲上微博热搜。近日,媒体曝光罐车化工油食用油混装,一些油罐车既承接糖浆、大豆油等可食用液体,也运送煤制油等化工类液体,引发关注。两家龙头企业中储粮油脂(天津)有限公司和汇福粮油集团陷入此次舆论旋涡。涉事企业食用油产品中储粮金鼎食用油下架,客服回应据某新闻报道:7月8日下午,有网友发现中储粮旗下食用油品牌金鼎淘宝旗舰店系列食用油如葵花籽油、玉米胚芽油、橄榄油、芝麻油等均已下架。客服回应称,仓库最近休息,过一阵会重新上架。当问及金鼎下架食用油是否与近期中储粮罐车运输油罐混用事件有关,客服称具体原因不清楚。当记者再次追问,客服回复称,“尊敬的顾客您好,金鼎食用油所有产品均符合国家有关食品安全标准”“支持您去检测”。涉事公司之一汇福粮油:相关部门调查已结束针对运输罐车运完煤制油后未清洗直接混运食用油事件,7月8日,记者致电涉事公司之一的汇福粮油官网电话,相关工作人员称公司积极配合调查,目前相关监管部门对公司的调查已经结束,一切以之后的官方通报为准。该工作人员对记者称,公司没有罐装车,报道涉及的罐车是“客户自备”,从汇福粮油拉走相关食用油。至于相关合作客户,公司会等待相关部门的进一步调查结果再去商议后续是否还合作。另据媒体报道,河北省三河市市场监督管理局近期表示,针对汇福粮油集团卷入油罐车运输乱象一事,相关部门已完成调查,并已将调查结果报给廊坊市市场监督管理局。资料显示,三河汇福粮油集团有限公司始建于1999年10月,为国家农业产业化重点龙头企业,主要产品为汇福食用油、汇福豆粕,业务涉及粮油加工、国际贸易等板块,目前汇福粮油集团拥有河北燕郊、江苏泰州、辽宁盘锦三个加工基地,总加工能力达到1000万吨。据全国工商联《2023中国民营企业500强榜单》,三河汇福粮油集团有限公司以667.19亿元营业收入位列榜单159位。新京报近期的调查报道显示,罐车运输行业存在食品类液体和化工类液体运输混用且不清洗的情况,有食用油运输罐车运完了煤制油等类物品再装运食用油的情况,调查涉及汇福粮油集团和中储粮油脂(天津)有限公司。其中,中储粮集团7月6日在官方微博发布声明称,从7月5日开始在全系统开展专项大排查,对违反相关规定的运输单位和承运车辆依法终止运输合作,并列入集团公司服务采购“黑名单”,对发现的重大问题,主动向有关监管部门报告,对于直属企业及员工违反操作规程和工作纪律的,从严从快严肃处理。食用油“接触”燃油可能并非首例一位不愿具名的业内人士对21世纪经济报道记者说道:“这种情况一般都是燃油罐车运输卸货完回程,为了覆盖油费、人力成本顺带运输的。如果中间还要进行清洗的话,至少增加三五百块费用,多一些还要八九百。这笔钱司机没能力承担、公司更不会承担。专程运输和回程捎带的运费差距很大,所以这种运输方式基本也不挣钱。”上述人士进一步指出,“事实上,现在许多大型食品企业的生产基地应该都能覆盖全国主要城市区域,不会出现超长途运输的情况。而且部分公司为了降本增效,旗下都设有运输公司,也不会交给第三方来做。”此前老干妈、海天卷入油辣椒矿物油超标!早在2017年,便有公开报道称在对国内市场上包括海天、老干妈等多10款畅销的油辣椒产品测评过程中,均发现不同程度的成分问题,包括矿物油超标、含有谷氨酸钠、含有多环芳烃化合物、增塑剂及增味剂等。矿物油指的是由石油所得精炼液态烃的混合物,原油经常压和减压分馏、溶剂抽提和脱蜡,加氢精制而得。该类油包括轻质、重质燃料油,润滑油,冷却油等矿物性碳氢化合物。生活中常见的燃油便是其中一类。食品用油中检测出矿物油超标成分,上述检测结果也被质疑为是否出现过食用油与燃油接触的情况。化工油食用油混装无异于投毒,专家解读危害罐车运输油罐混用对人体有何危害?行业有何规范标准?据中国新闻周刊,食品安全博士、上海市食品安全研究会专家组成员刘少伟介绍,煤制油属于化工产品,含有重金属和苯等化工原料,“装化工原料再装食用油不可避免会有残留”,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害,但消费者很难分辨出来。央视网评中储粮罐车运输油罐混用:这样的草台班子是要消费者的命央视网评7月8日发文,谁也想不到街边加油站的油罐车里面可能也装过我们炒菜的食用油。近日媒体曝光罐车化工油食用油混装,一些油罐车既承接糖浆、大豆油等可食用液体,也运送煤制油等化工类液体,引发舆论哗然。让人意外的是,中储粮这样的央企下属天津分公司居然是涉事主角之一。近日中储粮集团公开回应,称要在全系统深入开展专项大排查。对于检查发现存在违反规定的运输单位和承运车辆,立即依法终止运输合作,并列入集团公司服务采购“黑名单”。该集团要求直属企业按照有关法律法规及规定全面排查出入库等环节使用的运输工具是否符合要求,相关运输承运单位运输工具是否符合食品安全规定,运输过程中的操作是否规范。中储粮亡羊补牢的同时,消费者仍有不少困惑与错愕。因为这件事的性质完全不同于一般的地沟油。通常来说,我们只要不贪图便宜,选大品牌,选知名厂家,就能避开劣质食用油。但大品牌也会在运输环节出现化工油食用油混装的漏洞,这显然超出了大多数人的认知。这不仅仅是做饭烧菜的问题,还有面包、薯条、烘焙、蛋糕,几乎囊括所有的零食等领域。而食品类液体和化工液体运输混用且不清洗,居然已经是较长时间以来罐车运输行业里公开的秘密。这说明我们的“食品安全大于天”还只是一种愿景。容量动辄大几十吨的罐车,残留个几十斤化工液体很正常。但混装食用液体后,这就不是一般的食品事故,形同投毒。这种混装行为不仅是对《食品安全法》的公然挑衅,更是对消费者生命健康的极端漠视。一切不合理的商业行为背后都有经济利益作祟。对于运输方来说,最终还是钱的问题,不少罐车在换货运输过程中不清洗罐体,为的是可以省下数百元的清洗费用,成本下来了竞争力上去了,别的运输车辆只有跟着“卷”。但对于食用液体出入库的管理方,尤其是中字头这样的接收方,坚称“不验罐是因为没办法分辨”,则完全令人咋舌。相信这不是因为无能,而是因为无德、无责任心导致助纣为虐。舞台上的草台班子,无非演出效果差一点,出不了大事,这样的草台班子会要了消费者的命。要说《食品安全法》及相关监管部门对食品运输没有规范也不符合现实,运输管得严、销售环节管得严,食用油没问题,运输车辆本身也没有问题,但到了衔接的关键节点则出现没人管、不愿管的真空,造成食用油进了消费者嘴里,就是严重的食品安全问题,这说明法律手段尚有空子可以钻。据悉,食用油运输方面迄今尚无强制性国家标准,只有推荐性的某项规范当中提到运输散装食用植物油应使用专用车辆,约束率相当有限。能否多部门协同以及技术手段此刻能否补足短板,成为很多外行人的疑问,亟须行业内专家给予解惑。————————————————————————————————点击图片 免费报名为了促进粮油行业分析检测技术交流,研讨国内外最新研究应用进展,仪器信息网将举办第三届“粮油食品质量安全及品质检测新技术”主题网络研讨会。届时,我们将特别邀请行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。
  • 济南市计量检定测试院120.01万元采购核酸提取仪,硬度计,大分子作用仪
    详细信息 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 山东省-济南市 状态:公告 更新时间: 2022-07-29 招标文件: 附件1 附件2 附件3 附件4 附件5 附件6 附件7 附件8 附件9 附件10 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 发布时间:2022年7月29日15时41分 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 项目概况: 济南市计量检定测试院仪器设备采购招标项目的潜在投标人应在相应公告界面获取招标文件,并于2022-08-23 13:30 (北京时间)前递交投标文件。 一、采购项目基本情况: 采购项目编号(建议书编号):SDGP370100000202202001027 采购项目名称:济南市计量检定测试院仪器设备采购 采购需求: 济南市计量检定测试院实验仪器设备采购,具体要求详见招标文件第四章。 预算金额: 本项目预算金额为 1200100.00 元,其中:A包 液位计检定装置 341500.00 元, B包 核酸提取仪校准装置、数字压力计 355000.00 元, C包 0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计 503600.00 元。 合同履行期限: 签订合同后30日内交货(交付)且检测验收合格。 本项目(是/否)接受联合体投标:否 二、申请人的资格要求: 1、具备《中华人民共和国政府采购法》第二十二条规定的条件,并按《政府采购法实施条例》第十七条的规定提供相关证明材料;2、通过“信用中国”网(www.creditchina.gov.cn)、“信用山东”网(www.creditsd.gov.cn)(非山东企业请提供所属省或市的信用查询)、中国政府采购网(www.ccgp.gov.cn)查询,未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单;3、单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一包号的项目投标;4、本项目执行具体政府采购政策详见招标文件;5、本项目各包均不接受联合体投标;6、本项目可兼投兼中。 三、获取招标文件: 时间2022-08-01 09:00至2022-08-06 17:00 地点:济南公共资源交易中心网站(http://jnggzy.jinan.gov.cn/) 方式:①招标公告下方的招标文件仅供查看,投标人须在济南市公共资源交易中心网站(http://jnggzy.jinan.gov.cn)本项目招标公告页面下载电子招标文件。②本项目全流程执行济南公共资源电子招投标系统,请参与本项目单位及时办理新 CA 证书。具体办理、咨询方式详见济南公共资源交易网。电子投标咨询电话:13306426582、15335322953、0532—55572211、0532-85871505 客服 QQ: 103755480,1374539720。 售价:0元 四、投标截止时间、开标时间及地点: 投标截止时间、开标时间:2022-08-23 13:30 开标地点:济南公共资源交易中心 五、公告期限: 招标公告发出之日起5个工作日。 六、其他补充事宜: 无 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 联系人(采购人):济南市计量检定测试院 地址:龙奥北路1311号 联系方式:0531-89738291 2.采购代理机构信息 联系人(代理机构):石拓项目管理有限公司 地址:济南市高新区舜华路2000号舜泰广场2号楼4-C2 联系方式:0531-88257927 3.项目联系方式 项目联系人(代理机构):丁莉 联系方式:0531-88257927 附件 PDF版招标文件(液位计检定装置) PDF版招标文件(核酸提取仪校准装置、数字压力计) PDF版招标文件(0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计) 请登录“济南公共资源交易中心”个人空间,通过“政府采购入口”进行招标文件下载。 链接地址:http://jnggzy.jinan.gov.cn/jnggzyztb/new_flogin/login.do 发 布 人:石拓项目管理有限公司 发布时间:2022-07-29 15:36 请点击此处下载供应商下载采购文件的操作说明 CA证书服务电话:68967522,68967524,18661977312 电子投标咨询电话:13306426582、15335322953、 客服QQ: 2881295775 附件: A包对应的采购文件一册: A包对应的采购文件二册: B包对应的采购文件一册: B包对应的采购文件二册: C包对应的采购文件一册: C包对应的采购文件二册: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:核酸提取仪,硬度计,大分子作用仪 开标时间:2022-08-23 13:30 预算金额:120.01万元 采购单位:济南市计量检定测试院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:石拓项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 山东省-济南市 状态:公告 更新时间: 2022-07-29 招标文件: 附件1 附件2 附件3 附件4 附件5 附件6 附件7 附件8 附件9 附件10 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 发布时间:2022年7月29日15时41分 济南市计量检定测试院济南市计量检定测试院仪器设备采购公开招标公告 项目概况: 济南市计量检定测试院仪器设备采购招标项目的潜在投标人应在相应公告界面获取招标文件,并于2022-08-23 13:30 (北京时间)前递交投标文件。 一、采购项目基本情况: 采购项目编号(建议书编号):SDGP370100000202202001027 采购项目名称:济南市计量检定测试院仪器设备采购 采购需求: 济南市计量检定测试院实验仪器设备采购,具体要求详见招标文件第四章。 预算金额: 本项目预算金额为 1200100.00 元,其中:A包 液位计检定装置 341500.00 元, B包 核酸提取仪校准装置、数字压力计 355000.00 元, C包 0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计 503600.00 元。 合同履行期限: 签订合同后30日内交货(交付)且检测验收合格。 本项目(是/否)接受联合体投标:否 二、申请人的资格要求: 1、具备《中华人民共和国政府采购法》第二十二条规定的条件,并按《政府采购法实施条例》第十七条的规定提供相关证明材料;2、通过“信用中国”网(www.creditchina.gov.cn)、“信用山东”网(www.creditsd.gov.cn)(非山东企业请提供所属省或市的信用查询)、中国政府采购网(www.ccgp.gov.cn)查询,未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单;3、单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一包号的项目投标;4、本项目执行具体政府采购政策详见招标文件;5、本项目各包均不接受联合体投标;6、本项目可兼投兼中。 三、获取招标文件: 时间2022-08-01 09:00至2022-08-06 17:00 地点:济南公共资源交易中心网站(http://jnggzy.jinan.gov.cn/) 方式:①招标公告下方的招标文件仅供查看,投标人须在济南市公共资源交易中心网站(http://jnggzy.jinan.gov.cn)本项目招标公告页面下载电子招标文件。②本项目全流程执行济南公共资源电子招投标系统,请参与本项目单位及时办理新 CA 证书。具体办理、咨询方式详见济南公共资源交易网。电子投标咨询电话:13306426582、15335322953、0532—55572211、0532-85871505 客服 QQ: 103755480,1374539720。 售价:0元 四、投标截止时间、开标时间及地点: 投标截止时间、开标时间:2022-08-23 13:30 开标地点:济南公共资源交易中心 五、公告期限: 招标公告发出之日起5个工作日。 六、其他补充事宜: 无 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 联系人(采购人):济南市计量检定测试院 地址:龙奥北路1311号 联系方式:0531-89738291 2.采购代理机构信息 联系人(代理机构):石拓项目管理有限公司 地址:济南市高新区舜华路2000号舜泰广场2号楼4-C2 联系方式:0531-88257927 3.项目联系方式 项目联系人(代理机构):丁莉 联系方式:0531-88257927 附件 PDF版招标文件(液位计检定装置) PDF版招标文件(核酸提取仪校准装置、数字压力计) PDF版招标文件(0.02级数字压力计标准装置(含电动压力校验器)、邵氏硬度计检定仪、显微硬度计) 请登录“济南公共资源交易中心”个人空间,通过“政府采购入口”进行招标文件下载。 链接地址:http://jnggzy.jinan.gov.cn/jnggzyztb/new_flogin/login.do 发 布 人:石拓项目管理有限公司 发布时间:2022-07-29 15:36 请点击此处下载供应商下载采购文件的操作说明 CA证书服务电话:68967522,68967524,18661977312 电子投标咨询电话:13306426582、15335322953、 客服QQ: 2881295775 附件: A包对应的采购文件一册: A包对应的采购文件二册: B包对应的采购文件一册: B包对应的采购文件二册: C包对应的采购文件一册: C包对应的采购文件二册:
  • 关于公开征集《北京重点新材料首批次应用示范指导目录(2023版)》的通知
    各区经济和信息化主管部门、北京经济技术开发区营商合作局:为进一步发挥首批次应用示范奖励政策对北京新材料产业及其他高精尖产业的支持和带动作用,我局拟在今年工作的基础上,组织开展《北京重点新材料首批次应用示范指导目录(2023版)》(以下简称《北京目录2023版》)的公开征集工作。现将有关工作要求通知如下:一、征集范围本次目录征集的产品应是已完成产业化开发建设,尚处于市场验证或初期应用阶段的新材料产品及器件。产品应在品种、规格、性能或技术参数等方面有重大突破,技术含量及附加值高,具有自主知识产权等。1.本次目录产品征集主要面向以下主要领域和方向:一是北京重点发展的未来材料,包括石墨烯材料、超导材料、超宽禁带半导体材料、量子材料、纳米材料以及智能、仿生和超材料等;二是为北京高精尖产业配套的新材料,包括电子信息材料、生物材料、新能源材料、航空航天材料等关键战略材料和先进基础材料;三是突破“卡脖子”技术、实现国产替代和对北京高精尖产业强链、补链有重大意义的材料等。2.本次目录征集的新材料产品包括《前沿材料产业化重点发展指导目录》(第一批)、《战略性新兴产业分类(2018)》中的新材料细分领域和重点产品。3.已入选2022年目录的产品实现迭代升级、性能指标有明显提升的,可以再次申报。二、具体要求1.《北京目录2023版》是我市开展新材料首批次应用示范奖励的主要依据。请各区工信主管部门高度重视《北京目录2023版》的征集工作,积极动员属地企业申报并做好推荐工作。2.请申报企业按要求填报《北京重点新材料首批次应用示范指导目录(2023版)产品征集表》(见附件),报送至区工信主管部门。请各区工信主管部门将符合要求的企业产品汇总,并于11月30日前上报我局。纸质版材料需加盖推荐单位公章,快递至北京市朝阳区工体北路6号凯富大厦616室(北京市经济和信息化局产业发展促进中心材料产业促进部),电子版材料请同步发送至mmip2021@163.com。北京市经济和信息化局2023年11月3日(联系人:魏媛媛/刘兵/李直蔓;联系电话:85235079/55578313)附件文件:附件:《北京重点新材料首批次应用示范指导目录(2023版)产品征集表》.xls
  • 5万亿设备更新:高等职业学校化工生物技术专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。在教育领域,明确“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。”其中强调,“严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。”以下为仪器信息网整理高等职业学校化工生物技术专业仪器设备装备规范,包含气相色谱、液相色谱、分光光度计等设备,详情如下:目录表 1 实训教学场所分类、面积与主要功能表 2 基础化学实训室设备要求表 3 天平实训室表 4 有机化学实训室设备要求表 5 化工制图实训室表 6 仪表实训室表 7 电工实训室表 8 管路设备拆装实训室设备要求表 9 安全技术实训室表 10 微生物基本技能实训室设备要求表 11 无菌操作实训室设备要求表 12 微生物培养实训室设备要求表 13 菌种保藏实训室设备要求表 14 生化分离制备实训室设备要求表 15 生化分析检测实训室设备要求表 16 气相色谱实训室设备要求表 17 液相色谱实训室设备要求表 18 分光光度实训室设备要求表 19 生物工艺实训室设备要求表 20 单元操作技术实训中心(蒸发技术)设备要求表 21 单元操作技术实训中心(干燥技术)设备要求表 22 单元操作技术实训中心(流体输送技术)设备要求表 23 单元操作技术实训中心(精馏技术)设备要求表 24 单元操作技术实训中心(吸收技术)设备要求表 25 单元操作技术实训中心(膜分离技术) 设备要求表 26 单元操作技术实训中心(离子交换技术)设备要求表 27 仿真技术实训室表 28 单元操作技术实训中心(结晶技术实训室) 设备要求表 29 单元操作技术实训中心(传热技术实训室) 设备要求表 30 单元操作技术实训中心(过滤技术实训室) 设备要求表 31 单元操作技术实训中心(萃取技术实训室) 设备要求表 1 实训教学场所分类、面积与主要功能实训教学类别实训场所名称实训场所面积/m2功 能主要实训项目对应的主要课程专业基础技能实训基础化学实训室1101.玻璃仪器的清洗、读数、干燥;2.药品的称量与液体的量取;3.溶液的配制;4.酸、碱溶液的标定;5.物质含量的测定;6.固液分离;7.溶液 pH 测定;8.金属离子浓度测定无机及分析化学天平实训室301.物质直接称量法训练;2.物质减量称量法训练;3.物质增量称量法训练无机及分析化学有机化学实训室1101.物理常数的测定;2.溶液中指定组分的分离;3.有机物质的精制;4.固态物料中有机化合物的提取;5.有机化合物的制备有机化学化工制图实训室100~2001.几何体、零部件投影图绘制;2.工艺流程图的绘制;3.设备平面图的绘制化工制图仪表实训室100~2001.压力表的认识及使用;2.液位计的认识及校验;3.气动调节阀的认识及校验; 4.流量计的认识和使用;5.温度测量系统的认识和使用;6.简单控制系统的认识及投运;7.复杂控制系统的认识及投运;8.DCS 系统的认识和使用工业仪表及自动化电工实训室100~2001.万用表的认识及使用;2.基尔霍夫定律;3.荧光灯电路的连接及测量; 4.三相负载的星形连接;5.三相负载的三角形连接;6.变压器的认识;7.三相异步电动机的启动及验收;8.常用低压电器的认识及使用;9.基本继电接触控制电路的连接及应用电工基础管路设备拆装实训室100~2001.管路拆装;2.设备拆装化工单元操作技术安全技术实训室100~2001.逃生演练;2.心肺复苏术;3.创伤急救;4.劳动保护用品的使用;5.灼伤急救;6.灭火器的使用化工安全技术专业核心技能实训微生物基本技能实训室1201.显微镜使用及微生物细胞形态 观察;2.器皿包扎、灭菌及接种器具制 作;3.培养基制备;4.微生物的培养及保藏;5.菌种选育、分离;6.微生物生长参数的测定;7.微生物鉴别与检测工业微生物及育种技术无菌操作实训室70微生物培养实训室30菌种保藏实训室16生化分离制备实训室1101.生物大分子物质的提取;2.生物大分子物质、氨基酸的分离;3.质粒的制备生物化学单元操作技术实训中心8001.溶液的精馏;2.流体输送操作;3.物料干燥;4.气体吸收;5.离子交换法制备产品;6.物料的蒸发浓缩;7.物料过滤分离;8.物料的膜分离浓缩生化分离技术化工单元操作技术生化工艺实训室1101.无菌空气制备;2.实罐、空罐灭菌;3.接种及种子培养;4.发酵产品的生产发酵生产技术专业综合实训仿真操作实训室110典型产品或生产单元过程等的仿 真操作专业综合实训等生化分析实训室1101.酶活性、等电点、旋光度等参数 的测定;2.凯氏定氮仪测定蛋白质氮含量;3.折光仪测定可溶性固形物含量;4.电位滴定法、酸碱滴定法测定生 物制品中某种组分的含量生物分析、生物化学分光光度实训室301.可见分光光度法测定物质含量; 2.紫外分光光度法测定物质含量生物分析气相色谱实训室40气相色谱法测定物质含量生物分析液相色谱实训室30液相色谱法测定物质含量生物分析专业拓展技能实训单元操作技术 实训中心(传热 技术实训室)40冷空气加热,测对流传热系数化工单元操作技术单元操作技术 实训中心(结晶技术实训室)401.产物的冷却结晶;2.产物的真空蒸发结晶生化分离技术单元操作技术 实训中心(萃取技术实训室)40料液萃取, 测传质单元高度生化分离技术单元操作技术 实训中心(过滤技术实训室)40物料的板框过滤,测过滤常数及滤 饼压缩性指数化工单元操作技术表 2 基础化学实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:实验操作平台。技术要求:1.台面材质耐腐蚀、耐酸碱要 求;上带试剂架,两端带水池, 带电源插座;2.台面可承重大于 300 kg/m2, 可调脚;3.水龙头、水槽为实验室专用 产品;4.带洗眼喷淋头;5. 中央实验台的尺寸一般为 长×宽×高=7200mm×1500mm× 800mm套4GB/T 21747—2008可根据实训室结 构确定中央实验台的 尺寸,但应保障至少 20 组学生(每组2 人) 使用,每套实验台 2 组学生使用时,台面 尺 寸 长 ×宽 不少 于 2400mm×1500mm; 另外实训室应设置 必要边台, 边台的 尺寸一般为宽×高= 750mm×800mm,长 度结合使用空间进 行确定2通风橱主要功能:使用有毒有害易挥发物质时 的专门空间。技术要求:1.外壳:表面耐腐蚀性强;2.内壳:采用耐酸碱、有机溶 剂之实训室专用抗蚀材质;设有 可拆卸维修孔, 便于维修电路、 水路、气路;3. 日光灯: 日光灯隐藏于面板 上, 不与通风柜内气流接触,易 更换;4.窗口:采用安全玻璃。5.调整脚:防震、防潮、耐腐 蚀;6.导流板:采用耐酸碱、有机 溶剂之实训室专用抗蚀材质, 通 风效率高, 以不低于操作表面风 速 0.5 m/s 的速度将空气排出;7.工艺说明:所有水、电、气 路要求安全、适用套1JB/T 6412— 1999根据实训室大小 确定通风橱长度3托盘天平主要功能:称量试样。技术要求:1.量程 0~200g;2.精度 0.1g架20GB/T 4168—19924称量瓶主要功能:差减法称量固体试样。技术要求:40mm×25mm只80JY/T 0453—20115烧杯主要功能:称量、溶解试样。技术要求:50mL、100mL、250mL、500mL只各80GB/T 15724—20086试管主要功能:盛装液体试样。技术要求:18mm×180mm支160GB/T 21298—20077试管架主要功能:存放试管。技术要求:12 孔台208干燥器主要功能:存放干燥试样。技术要求:400mm台4GB/T 15723—19959酸、碱滴 定管主要功能:滴加和计量液体试样。技术要求:25mL 、50mL支各40GB/T 12805—201110滴定台架主要功能:固定滴定管。技术要求:153mm×198 mm台4011pH 计主要功能:测量 pH 值。技术要求:1.温度测量范围:0~60℃ 2.mV 精度:1mV , pH 精度 : 0.01pH ; 3.mV 测 量 范 围:-1999 ~ +1999mV , pH 测量范围:0.00~ 14.00台4GB/T 11165—200512移液管主要功能:定量移取液体。技术要求:25 mL 、50 mL支各40ISO 648—200813移液管架主要功能:存放移液管。技术要求:10 孔个2014刻度吸管主要功能:定量移取液体。技术要求:1mL 、2mL、5mL、10mL支各80ISO 835—200715调温电炉主要功能:加热。技术要求:1000W台20JB/T 8307— 199516量筒主要功能:定量移取液体。技术要求:25mL 、50mL、100mL只各80GB/T 12804—201117容量瓶主要功能:定量配制溶液。技术要求:100mL、250mL只各80GB/T 12806—201118锥形瓶主要功能:盛放液体用于滴定分析。 技术要求:100mL、250mL只各120GB/T 15724—200819碘量瓶主要功能:盛放液体用于碘量分析。 技术要求:100mL、250mL只各8020试剂瓶主要功能:盛放液体。技术要求:250mL 、500mL 无色和棕色个各40GB/T 11414—200721滴瓶主要功能:盛装实验时需按滴数加入的 液体。技术要求:30 mL 无色和棕色个各40ISO 11418-1 —200522洗瓶主要功能:盛装蒸馏水用于洗涤。技术要求:500mL个4023研钵主要功能:研磨固体。技术要求:9cm套4024比色管主要功能:液体显色对比。技术要求:50mL 、25mL支各8025漏斗主要功能:过滤。技术要求:φ9cm 长颈、短径支各40GB/T 28211—201126下口瓶主要功能:盛装溶液。技术要求:10000mL、20000mL个各 227玻璃仪器 烘干器主要功能:烘干玻璃仪器。技术要求:1.调温范围:40~120℃ 2.调温精度:±2℃ 3.适用数量:30 孔台4ISO 13130—2011表 3 天平实训室序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:1.放置天平的平台;2.称量操作的平台。技术要求:1.台面应水平而光滑,牢固防 震, 实验台承重大于 300kg/m², 可调脚;2.实验台的尺寸一般为长×宽 ×高=5000mm×1200mm×750mm;3.三级减震,即:台身、台面、 台面与仪器;减震级别为十万分 之一套2GB/T 21747—2008可根据实训室结 构确定中央实验台 的具体尺寸,但应保 障至少 20 组学生 (每组 2 人)使用, 每组的桌面尺寸长× 宽不少于 1000mm× 600mm2电子分析 天平主要功能:精确称量试样。技术要求:1.量程:0~220 g;2.可读性: 0.0001g;3.重复性: 0.0001g;4.线性误差:0.0002g台20GB/T 26497—2011表 4 有机化学实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:实验操作平台。技术要求:1.台面材质耐腐蚀、耐酸碱要 求;上带试剂架,两端带水池, 带电源插座;2.台面可承重大于 300 kg/m2, 可调脚;3.水龙头、水槽为实验室专用 产品;4.带洗眼喷淋头;5. 中央实验台的尺寸一般为 长×宽×高=7200mm×1500mm× 800mm;6.台面上方设有通风装置套4GB/T 21747—2008可根据实训室结 构确定中央实验台 的尺寸,但应保障至 少 20 组学生(每组 2 人) 使用, 每套 实验台 2 组学生使 用时,台面尺寸长× 宽不少于 2400mm× 1500mm;另外实训 室应设置必要边台, 边 台 的 尺 寸 一 般 为宽×高=750 mm× 800mm,长度结合使 用空间进行确定2通风橱主要功能:使用有毒有害易挥发物质时 的专门空间。技术要求:1.外壳:表面耐腐蚀性强;2.内壳:采用耐酸碱、有机溶 剂之实训室专用抗蚀材质;设有 可拆卸维修孔, 便于维修电路、 水路、气路;3. 日光灯: 日光灯隐藏于面板 上, 不与通风柜内气流接触, 易 更换;4.窗口:采用安全玻璃;5.调整脚: 防震、防潮、耐腐 蚀;6.导流板: 采用耐酸碱、有机 溶剂之实训室专用抗蚀材质, 通 风效率高, 以不低于操作表面风 速 0.5m/s 的速度将空气排出;7.工艺说明:所有水、电、气 路要求安全、适用套2JB/T 6412— 1999根据实训室大小 确定通风橱长度3标准磨口 玻璃仪器主要功能:用于蒸馏、冷凝、接收液体等 实验操作。技术要求:1.蒸馏烧瓶 ① 圆底烧瓶 (100mm 、 250mL);② 三口烧瓶(250mL);③ 四口烧瓶(250mL);④ 三角烧瓶(50mm、100mm、 250mL);⑤ 梨形烧瓶(100mL)2.抽滤瓶(500mL、1000mL)3.冷凝管① 直形冷凝 管(300mm 、 600mm);② 空气冷凝 管(300mm 、 500mm);③ 球形冷凝 管(300mm 、 600mm);④ 蛇形冷凝 管(300mm 、 600mm);⑤ 蛇行回流冷凝管(300mm、 500mm);⑥ 直形回流冷凝管(200mm、 300mm)4.蒸馏弯头 75 °(300mm)5.分馏头 75 °6.接受管① 真空接受管;② 直形接受管;③ 弯形接受管;④ 抽气接管;⑤ 真空接收器7.接头① 空心塞;② 接头具活塞;③ 大小接头8.套管① 温度计套管;② 真空搅拌器套管;③ 搅拌器套管;④ U 形干燥管;⑤ 直形干燥管9.分液漏斗① 球形分液漏斗(250 mL、 500mL);② 漏斗 60 °(40~60mm);③ 恒 压 式 筒 形 分 液 漏 斗 (250mL);④ 砂芯漏斗10.分馏柱(柱直径 14mm,有 效长度 400mm)11.连接管① 三口连接管;② 二口连接管12.恒压滴液漏斗(210mm× 210mm)13.分水器套20GB/T 15725.6—1995; GB/T 28212—2011; GB/T212974索氏提取器主要功能:从固体物质中萃取有机化合物。 技术要求:250 mL套405酒精灯主要功能:加热。技术要求:250mL台40JY/T 0424—20116干燥器主要功能:存放干燥试样。技术要求:400mm台2GB/T 15723—19957托盘天平主要功能:称量试样。技术要求:1.量程 0~200g;2.精度 0.1g架20GB/T 4168—19928称量瓶主要功能:差减法称量固 体试样。技术要求:40mm×25mm只40JY/T 0453—20119烧杯主要功能:称量、溶解试样。技术要求:50mL、100mL、250mL、500mL只各80GB/T 15724—200810试管主要功能:盛装液体试样。技术要求:18mm×180mm支120GB/T 21298—200711试管架主要功能:存放试管。技术要求:12 孔台2012量筒主要功能:定量配制溶液。技术要求:100mL、250mL只各80GB/T 12804—201113铁架台主要功能:1.用于固定和支持各种仪器;2.用于过滤、加热、滴定等实 验操作。技术要求:153mm×198mm台4014玻璃仪器 烘干器主要功能:烘干玻璃仪器。技术要求:1.调温范围:40~120℃ 2.调温精度:±2℃ 3.适用数量:30 孔台4ISO 13130—201115台式循环水 多用真空泵主要功能:提供真空度,用于真空过滤 等。技术要求:1.最大真空度 0.098 MPa;2.抽气头 2 个, 单头抽气量不 小于 10L/min台10JB/T 7255—200716电热鼓风 干燥箱主要功能:干燥固体试样。技术要求:1.控温范围:80~200℃ 2.容积:35L台1GB/T 30435—201317真空干燥箱主要功能:用于热敏性物料干燥。技术要求:1.控温范围:室温 +10~250℃ 2.可到达真空度:200Pa 以下 (绝对压力);3.容积:35L台1GB/T 29251—201218电热套主要功能:用于烧瓶加热。技术要求:250mL台4019电动搅拌器主要功能:用于物料混合、传热。技术要求:1.功率 40W;2.转速 0~3000r/min ,无级调 速台4020集热式磁力 搅拌器主要功能:用于物料混合、固体物料溶解 并实现升温加热。技术要求:1.搅拌容量 100~1000mL;2.加热功率 600W台4021熔点仪主要功能:测定化合物熔点。技术要求:1.熔点测量范围:20~320℃ 2. 测 量 重 复 性 : ±1 ℃ (在 200℃时),±2℃(在 200~300℃ 时);3.显最小示值:0.1℃台4JB/T6177— 199222旋光仪主要功能:测定物料旋光度。技术要求:1.工作波长:589nm (钠 D 光 谱);2.测量范围:±45°(旋光度);3.最小读数:0.001°(旋光度);4.准确度: 0.05 级;5.示值误差:±0.02 °(-15 °≤ 旋光度≤+15 °时), ±0.05°(旋 光度+15 °时);6.重复性(标准偏差 δ): ≤0.01 °台4JJG 536—201523阿贝折光仪主要功能:测定物质折光率。技术要求:1.折射率测定范围:1.3000~ 1.7000;2.准确度: ±0.0002;3.溶液质量分散(Brix):0~ 95%台20JB/T 6782—201324冰柜主要功能:制冰和低温储藏。技术要求:217L台1UL 250— 1993表 5 化工制图实训室略表 6 仪表实训室序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1弹簧管压力 表校验台主要功能:测试压力。技术要求:1.活塞式压力计;2.标准压力表(0.4 级)台4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人2气动调节 阀装置主要功能:调节流量。技术要求:控制阀、阀门定位器套4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人3液位测量 系统主要功能:测量液位。技术要求:差压变送器,液位对象套4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人4流量测量 系统主要功能:测量流量。技术要求:电磁流量计:测量范围 0 ~ 1.2m3/h套4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人5温度测量 系统管式炉、热电偶及显示仪表套4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人6简单控制 系统主要功能:实现液位调节控制。技术要求:由液位对象,差压液位计,控 制器和调节阀组成的液位控制 系统套4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人7复杂控制 系统主要功能:实现液位和流量的串级控制。技术要求:由液位对象,差压液位计,流 量对象,电磁流量计,主控制器, 副控制器和调节阀组成的液位 流量串级控制系统套4安全执行GB21746—2008 和 GB 21748—2008分组实训,每组 4 人8DCS 控制 系统主要功能:实现液位、压力、流量、温度 的 DCS 操作控制。技术要求:液位对象、压力对象、流量对 象、温度对象、各种一次元件、 测量变送环节、控制柜、DCS 操 作平台、通信网络、组态软件及 系统软件组成。能进行自动化系 统的投运和操作,能进行控制系 统的参数整定套4SHS 07008—2004分组实训,每组 4 人表 7 电工实训室略表 8 管路设备拆装实训室设备要求略表 9 安全技术实训室略表 10 微生物基本技能实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:实验操作平台。技术要求:1.台面材质耐腐蚀、耐酸碱要 求;上带试剂架,两端带水池, 带电源插座;2.台面可承重大于 300kg/m2, 可调脚;3.水龙头、水槽为实验室专用 产品;4.带洗眼喷淋头;5. 中央实验台的尺寸一般为 长×宽×高=7200mm×1500mm× 800 mm套4GB/T 21747—2008可根据实训室结 构确定中央实验台 的尺寸,但应保障 至少 20 组学生(每 组 2 人)使用,每 套实验台 2 组学生 使用时,台面尺寸 长 × 宽 不 少 于 2400mm×1500mm; 另外实训室应设置 必要边台, 边台的 尺寸一般为宽×高 =750mm×800mm,长度结合使用空间 进行确定。2托盘天平主要功能:称量试样。技术要求:1.量程 0~200g;2.精度 0.1g架20GB/T 4168— 19923电子称主要功能:粗称物料。技术要求:最大 3kg,精确至 0.1g台1GB/T 7722—20054量筒主要功能:定量移取液体。技术要求:1.100 mL、250mL、500mL; 2.1000mL只1.40; 2.10GB/T 12804—20115烧杯主要功能:称量、溶解试样。技术要求:1.100mL、250mL;2.500mL、1000mL只1.40; 2.10GB/T 15724—20086移液管主要功能:定量移取液体。技术要求:1mL 、10mL支各120ISO 648—20087锥形瓶主要功能:盛放液体用于滴定分析。 技术要求:100mL、250mL只各120GB/T 15724—20088试管主要功能:盛装液体试样。技术要求:18mm×180mm,配硅胶塞支200GB/T 21298—20079玻璃仪器 烘干器主要功能:烘干玻璃仪器。技术要求:1.调温范围:40~120℃ 2.调温精度:±2℃ 3.适用数量:30 孔台4ISO 13130—201110电炉主要功能:加热。技术要求:1000W个20JB/T 8307— 199511酒精灯主要功能:加热灭菌、提供无菌氛围。 技术要求:250mL台40JY/T 0424—201112培养皿主要功能:微生物培养。技术要求:玻璃, 直径 90mm套200GB/T 28213—201113酒精喷灯主要功能:加热。技术要求:台式台2014载玻片主要功能:微生物固定,用于显微观察。 技术要求:76mm×26mm张120JB/T 8230.3— 199515盖玻片主要功能:盖在载玻片上的材料上,避免液 体和物镜相接触, 以免污染物镜。技术要求:10mm×10mm块24016接种棒+环主要功能:接种或移种。技术要求:全铜接种棒 220mm;镍铬合金 接种环,环内径 2.9mm支4017细胞计数板主要功能:细胞计数。技术要求:79mm×39mm×13mm块4018集热式磁力 搅拌器主要功能:用于物料混合、固体物料溶解 并实现升温加热。技术要求:1.搅拌容量 100~1000mL;2.加热功率 600W台2019旋涡混匀器主要功能:混合和分散。技术要求:1.适用于离心管、试管、烧瓶 等容积内标本的混匀;2.振荡频率:2600 次/分钟; 3.输出转矩:2800 次/分钟台820生物显微镜主要功能:微生物放大观察。技术要求:1.放大倍数:100X~1600X;2.观察镜筒:双目;3. 目镜 10X 、16X;4.物镜:消色差物镜 10X、40X (弹) 、100X;5.电光源;6.配 40 个接目测微计, 40 片 镜台测微计台40GB/T 2985—200821恒温水浴锅主要功能:恒温加热。技术要求:温控范围:室温+5~99.9℃, 控 温精度≤±0.5℃,四孔智能控制台10YY 91037— 199922高压蒸汽 灭菌锅主要功能:高温湿热灭菌。技术要求:1.工作温度:室温+5~126℃ 2.温度超过设定值 2℃, 自动停 止加热,同时声光报警;控温精度 达到±0.5℃以内; 器内温差:1℃ 3.超压到0.17MPa 安全阀自动 泄放蒸汽, 保护设备;4.容积: ≥50L台2YY 1007—201023电热鼓风 干燥箱主要功能:干燥灭菌。技术要求:1.控温范围:室温+10~300℃ 2.容积: ≥35L台1GB/T 30435—201324台式低速 离心机主要功能:离心分离。技术要求:1.最高转速:6000r/min;2.最大相对离心力: 5120g; 3.最大容量:24×5mL;4.定时范围:1~99min; 5.常温、液晶显示台4YY/T 0657—200825高速离心机主要功能:离心分离。技术要求:1.最高转速:16000r/min;2.最大相对离心力: 17800g; 3.最大容量:12×5mL;4.定时范围:1~99min; 5.常温、液晶显示台4GB 19815—2005表 11 无菌操作实训室设备要求略表 12 微生物培养实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1生化培养箱主要功能:微生物恒温固体培养。技术要求:1.容量:≥35L ; 2.控温范围:室温 +5 ~ 65 ℃ 3.温度分辨率:0.1 ℃ 4.温度波动:±0.3 ℃ 台2GB/T 28851—20122恒温培养 摇床主要功能:微生物恒温液体培养。技术要求:1.温度控制范围:4~60℃ 2.温度分辨精度:±0.1℃ 3. 温度波动度: ≤ ±0.1 ℃ (37℃时);4.温度均匀度:≤±1℃(37℃ 时);5.定时范围:0~200 h;6.容积: ≥173L;7.转速:40~300rpm,转速数 显;8.偏心距:15mm,振幅:30mm台2YY 0027— 1990表 13 菌种保藏实训室设备要求略表 14 生化分离制备实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:实验操作平台。技术要求:1.台面材质耐腐蚀、耐酸碱要 求;上带试剂架,两端带水池, 带电源插座;2.台面可承重大于 300kg/m2, 可调脚;3.水龙头、水槽为实验室专用 产品;4.带洗眼喷淋头;5. 中央实验台的尺寸一般为 长×宽×高=7200mm×1500mm× 800mm;套4GB/T 21747—2008可根据实训室结 构确定中央实验台 的尺寸,但应保障 至少 20 组学生(每 组 2 人)使用, 每 套实验台 2 组学生 使用时,台面尺寸 长 × 宽 不 少 于 2400mm×1500mm; 另外实训室应设置 必要边台,边台的尺 寸 一 般 为 宽 ×高 =750mm×800mm ,长度结合使用空间 进行确定2PCR 基因 扩增仪主要功能:基因扩增。技术要求:1.具有梯度功能,同时可以摸 索≥12 个温度梯度。范围最大可 达 30℃ 2.样品升降温速率: 3℃/秒;3.样 品基座升 降温速率: 3℃/秒;4.热盖温控范围:30~110℃ 可调;5.温度范围:4~99.9℃ 6.温度准确性: ±0.3℃ 7.程序储存≥4950 个;8.配置主机台23台式低速自 动平衡离心机主要功能:离心分离。技术要求:1.最高转速:6000r/min;2.最大相对离心力: 5120g; 3.最大容量:24×5mL;4.定时范围:1~99min; 5.常温、液晶显示台4YY/T 0657—20084冷冻离心机主要功能:热敏性物质离心分离。技术要求:1.最高转速:16000r/min;2.最大相对离心力: 17800g; 3.最大容量:12×5mL;4.定时范围:1~99min;5. 温 度 设 置 范 围 : -20 ~ +40℃ 6.液晶显示台4JB/T 5519— 19915高速离心机主要功能:离心分离。技术要求:1.最高转速:16000r/min;2.最大相对离心力: 17800g; 3.最大容量:12×5mL;4.定时范围:1~99min; 5.常温、液晶显示台4GB 19815—20056托盘天平主要功能:称量试样。技术要求:1.量程 0~200g;2.精度 0.1g架20GB/T 4168— 19927柱式层析 装置主要功能:层析分离。技术要求:1. 恒 流 泵 : 流 速 0.8 ~ 1.0mL/min;2.层析柱: 内径 10mm,柱长 300 mm套208脱色摇床主要功能:电泳凝胶分离谱带的固定,考 马斯亮蓝染色和脱色时的振荡 晃动,硝酸银染色的固定、染色、 显影等,电泳转移后纤维素膜的 进一步处理,抗原体的反应和染 色,分子杂交, 细胞培养等。技术要求:1.控制方式:PLD;2.显示方式:LCD(液晶显示 屏);3.回旋频率范围:30~250r/min;4.摇板振荡(倾斜角)幅度 (mm): φ30;5.最大承载(含夹具)(kg)≥ 7.5;6.温控范围:室温+5~80℃ 7.定时范围:0~500h台19冰箱主要功能:低温冷藏。技术要求:总容积≥250 L台1UL 250— 199310制冰机主要功能:制作冰块。技术要求:微小颗粒状冰, 日产 20kg台1ANSI/UL 563—200111微波炉主要功能:加热。技术要求:1.容量:20L;2.有效腔体容积 16L台2CNS 12518— 199312pH 计主要功能:测定 pH 值。技术要求:1.温度测量范围:0 ~ 60℃ 2.mV 精度:1mV , pH 精度: 0.01pH ; 3.mV 测量范围: -1999 ~ 1999mV , pH 测量范围:0.00~ 14.00台8GB/T 11165—200513超声破碎仪主要功能:细胞破碎。技术要求:1.破碎容量:0.5~600mL; 2.占空比:0.1%~99.9%; 3.温度报警:0~99℃ 4.定时:0~999min台214匀浆机主要功能:将动植物组织打散并研磨成 均匀的糊状物。技术要求:1.处理量(H2O):0.5~100mL;2.最大粘度:5000mPas;3.转速调节:无级调速;4.转速范围:8000~30000rpm台215凝胶成像 系统主要功能:实现电泳凝胶的成像分析。技术要求:1.全自动化控制,对蛋白电泳 凝胶、 DNA/RNA 凝胶、免染色 凝胶等样品进行全自动图像采 集并进行定性和定量分析;2.应用范围:可见染料染色的 凝胶,紫外激发和蓝光激发荧光 染料染色的凝胶,免染色凝胶;3.自动完成从样品聚焦、图像 采集、条带检测、定量分析到输 出报告;4.样品盘:紫外样品盘,白光 样品盘, 蓝光样品盘,免染样品 盘。具有特异性激发和检测功能;5.曝光时间:最短 0.001s,每 0.001s 步进;6. 图像分辨率:大于 8Mega pixel;图片可无限放大,无马赛克;7.图像输出格式:.tif、.bmp、 .png 、.jpg;8.数据输出方式:剪贴板输 出、数据库输出、Excel 表格式 输出、 PDF 输出台116水平电泳槽主要功能:为电泳分离提供分离环境。技术要求:1. 凝 胶 板 规 格 (L×W ): 60×60mm; 120×60mm;60× 120mm;120×120mm;2.试样格: 11+25 齿(1.0mm 厚)、6+13 齿,8+18 齿(1.5mm 厚)、2+3 齿(2.0mm 厚);3.缓冲液总容量:约 650mL台20YY/T 0087—200417电泳仪电源主要功能:为电泳操作提供高压直流电 源。技术要求:1.并联输出:2 组,输出范围 (显示分辨率):5~1600V(2V) 2~100mA(1mA);2.微电脑智能控制,液晶显 示, 同时显示电压、电流和定时 时间, 连续可调;3.具有过压、过流、过载、变 载、空载等多项报警保护功能台10YY/T 0087—200418层析缸及 层析板主要功能:实现层析分离。技术要求:200mm×200mm 层析缸;层析 板 50mm×100mm 玻璃板套2019加样器主要功能:加样。技术要求:0.1~2.5μL,20~100μL,100~ 1000μL支各2020恒温水浴锅主要功能:恒温加热。技术要求:温控范围:室温+5~99.9℃ , 控温精度≤±0.5℃, 四孔智能控 制台10YY 91037— 199921电炉主要功能:加热。技术要求:1000W台20JB/T 8307— 1995表 15 生化分析检测实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:实验操作平台。技术要求:1.台面材质耐腐蚀、耐酸碱要 求;上带试剂架,两端带水池, 带电源插座;2.台面可承重大于 300 kg/m2, 可调脚;3.水龙头、水槽为实验室专用 产品;4.带洗眼喷淋头;5. 中央实验台的尺寸一般为 长×宽×高=7200mm×1500mm× 800 mm套4GB/T 21747—2008可根据实训室结 构确定中央实验台 的具体尺寸,但应 保障至少20 组学生 (每组 2 人)使用, 每套实验台 2 组学 生使用,台面尺寸 长 × 宽 不 少 于 2400mm×1500mm; 另外实训室应设置 必要边台,边台的 尺寸一般为宽×高 =750mm×800mm , 长度结合使用空间 进行确定2通风橱主要功能:使用有毒有害易挥发物质时 的专门空间。技术要求:1.外壳:表面耐腐蚀性强;2.内壳:采用耐酸碱、有机溶 剂之实训室专用抗蚀材质;设有 可拆卸维修孔, 便于维修电路、 水路、气路;3. 日光灯: 日光灯隐藏于面板 上, 不与通风柜内气流接触,易 更换;4.窗口:采用安全玻璃。5.调整脚:防震、防潮、耐腐 蚀;6.导流板:采用耐酸碱、有机 溶剂之实训室专用抗蚀材质, 通 风效率高, 以不低于操作表面风 速 0.5m/s 的速度将空气排出;7.工艺说明:所有水、电、气 路要求安全、适用套2JB/T 6412— 1999根据实训室大小 确定通风橱长度3量筒主要功能:定量移取液体。技术要求:10mL 、50mL、100mL只各40GB/T 12804—20114容量瓶主要功能:定量配制溶液。技术要求:100 mL 、250 mL个40GB/T 12806—20115烧杯主要功能:称量、溶解试样、水浴等。 技术要求:1.50mL 、100mL、250mL; 2.500 mL只1.各 40; 2.10GB/T 15724—20086移液管主要功能:定量移取液体。技术要求:25 mL支40ISO 648—20087刻度吸管主要功能:定量移取液体。技术要求:1mL 、2mL、5mL、10mL支各40ISO 835—20078酸式滴定管主要功能:滴加和计量液体试样。技术要求:25mL 、50mL支各40GB/T 12805—20119碱式滴定管主要功能:滴加和计量液体试样。技术要求:25mL 、50mL支各40GB/T 12805—201110滴定台架主要功能:固定滴定管。技术要求:153mm×198 mm台4011玻璃仪器 烘干器主要功能:烘干玻璃仪器。技术要求:1.调温范围:40~120℃ 2.调温精度:±2℃ 3.适用数量:30 孔台4ISO 13130—201112恒温水浴锅主要功能:恒温加热。技术要求:温控范围:室温+5~99.9℃ , 控温精度≤±0.5℃, 四孔智能控 制台20YY 91037— 199913马弗炉主要功能:高温煅烧。技术要求:容积≥1.9L,极限温度 1200℃台1GB/T 28849—201214电热鼓风 干燥箱主要功能:干燥灭菌。技术要求:1. 控 温 范 围 : 室 温 +10 ~ 300℃ 2.容积: ≥35L。台2GB/T 30435—201315集热式磁力 搅拌器主要功能:用于物料混合、固体物料溶解 并实现升温加热。技术要求:搅拌容量 100~1000mL,加热 功率 600W台2016恒温水浴锅主要功能:恒温加热。技术要求:温控范围:室温+5~99.9℃ , 控温精度≤±0.5℃, 四孔智能控 制台10YY 91037— 199917电炉主要功能:加热。技术要求:1000W台20JB/T 8307— 199518台式循环水 多用真空泵主要功能:提供真空度, 用于真空过滤 等。技术要求:1.最大真空度 0.098MPa;2.抽气头 2 个, 单头抽气量不 小于 10L/min台4JB/T 7255—200719阿贝折射仪主要功能:测定折光率。技术要求:1.折射率测定范围:1.3000~ 1.7000;2.准确度: ±0.0002;3.溶液质量分散(Brix):0~ 95%台20JB/T 6782—201320旋转蒸发仪主要功能:蒸发分离。技术要求:1. 转 速 调 节 范 围 : 10 ~ 180rpm;2.温度调节范围:常温~100℃ 3.冷凝管: 直立式双重蛇形管;4.旋转瓶: 0.5~2L;5.水浴锅容量:6~8L; 6.蒸发能力:20mL/min;7.可到达真空度:200Pa 以下台4GB 21746—2008 JY/T 0423—201121超声波清洗器主要功能:清洗、混合或分散。技术要求:1.全不锈钢、单频、盖子、恒 温加热、智能数控、定时、电脑 显示屏操作,有排水阀;2.频率:40kHz,容量 6L;3. 功 率 :240W ,加 热 功 率 400W;4.温度范围:25~80℃台222超纯水系统主要功能:制备纯化水。技术要求:1.超纯水电导率≤0.055μS/cm @25℃ 电阻率:18.25ΜΩcm@ 25℃ 2.TOC 含量30 ppb;3. 微 生 物 0.2μm)1/mL;4.热源/内毒素0.001 Eu/mL; 5.产水量 10~30L/h套123全自动凯氏 定氮仪主要功能:试样的定氮分析。技术要求:1.仪器参数设置后, 全自动定 氮仪自动完成加酸、加碱、蒸馏、 吸收、滴定、结果计算及结果打印, 无须人为干预。仪器内置滴定仪, 滴定方法采用颜色滴定法,通过颜 色变化判读滴定终点;2.测定范围:0.1~200mgN(毫 克氮);3.测定速度:8 分钟/样品;4.重复精度:±0.5%(CV);5.滴定精度:2.4μL/步;6.可测样品量:固体5g,液 体 15mL;7.控温范围:室温+5~450℃ 8.控温精度:±1℃ 9.配置要求:全自动凯氏定氮 仪 1 台;石墨消解仪 1 台;280mL 消化管 20 只; 密封消化管 20 只台8DB37/T 2485—201424全自动电位 滴定仪主要功能:测定电位进行滴定分析。技术要求:1. 测量范围: Ph (0.00 ~ 14.00),mV(0~±1400)mV;2.分辨率: pH:0.01 ,mV: 1mV;3.稳定性:±0.01pH/3h;4.输入阻抗:不小于 3×1011Ω台20JJG 814—2015表 16 气相色谱实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:存放仪器和实验操作平台。技术要求:1.台面材质完全符合实训室耐 腐蚀、耐酸碱要求;带电源插座;2.台面可承重大于 300 kg/m2, 可调脚;3.实验台的尺寸一般为长×宽× 高=2000mm×750mm×800 mm套10GB/T 21747—2008可根据实训室结 构确定台面具体长 度,但实验台面总 长 度 不 应 少 于 20000mm,宽度不 应小于 750mm2气相色谱仪主要功能:对可气化物料进行定量和定 性分析。技术要求:1.控温范围:室温+15~399℃ (增量 1℃) 2. 控温精度:优于 ±0.1 ℃ (200℃时测);3.火焰离子化检测器(FID) 检测限: DFID≤1×10-10g/s(样品: 苯),基线漂移:≤2×10-12A/h;4.热导检测器(TCD)灵敏度 S≥1500mv . mL/mg(苯),基线 漂移: ≤50μV/h台10GB/T 30431—2013每台 2 人,分批 实训3高压氮气 钢瓶主要功能:提供载气。技术要求:1.瓶体采用优质锰钢、铬钼钢 或其他合金钢制造;2.筒体内外表面光滑圆整,不 得有肉眼可见的裂纹、折叠、波 浪等影响强度的缺陷只3GB 5099—20114高压空气 钢瓶主要功能:提供助燃气。技术要求:1.瓶体采用优质锰钢、铬钼钢 或其他合金钢制造;2.筒体内外表面光滑圆整,不 得有肉眼可见的裂纹、折叠、波 浪等影响强度的缺陷只3GB 5099—20115高压氢气 钢瓶主要功能:提供燃气。技术要求:1.瓶体采用优质锰钢、铬钼钢 或其他合金钢制造;2.筒体内外表面光滑圆整,不 得有肉眼可见的裂纹、折叠、波 浪等影响强度的缺陷只3GB 5099—20116氢气发生器主要功能:提供燃气。技术要求:1.输出流量:0~500mL/min; 2.输出压力:0~0.4MPa;3.压力稳定性: 0.2%;4.纯度:99.999%台3与高压氢气钢瓶 任选一7空气发生器主要功能:提供燃气。技术要求:1.输出流量:0~3000mL/min; 2.输出压力:0~0.3MPa台3与高压空气钢瓶 任选一8微量进样器 (尖头)主要功能:将样品注入气相色谱仪。技术要求:1. 应 能 在 常 温 下 垂 直 穿 刺 5mm 厚的硅橡胶,将针尖刃口紧 贴在丝绢上,在旋转中作顺方向 拖拉, 不得有纤维物勾出;2.规格:1μL、5μL、10μL支各10YY 0088— 1992表 17 液相色谱实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:存放仪器和实验操作平台。技术要求:1.台面材质完全符合实训室耐 腐蚀、耐酸碱要求;带电源插座;2.台面可承重大于 300kg/m2, 可调脚;3.实验台的尺寸一般为长 × 宽×高=2000mm×750mm×800mm套10GB/T 21747—2008可根据实训室结 构确定台面具体长 度,但实验台面总 长 度 不 应 少 于 20000mm,宽度不 应小于 750mm2液相色谱仪主要功能:对液体物料进行定量分析。技术要求:1.串联双柱塞往复泵,整个系 统耐压不小于 400bar;2.手动或自动柱后清洗, 集成 在线真空脱气机;3.手动或自动进样,进样范 围: 0.1~100μL;4.操作压力不小于 600bar;5.半导体控温模式, 控温范围: 室温下 10~80℃,带降温功能;6.控温精度:±0.15℃ 7.控温准确度:±0.5℃ 8.符合GMP要求的色谱工作站台10GB/T 26792—2011每台 2 人,分批 实训3真空泵主要功能:过滤流动相。技术要求:1.真空压力:0.05MPa; 2.流量:20L/min台5GB 22360—20084超声波清洗仪主要功能:流动相脱气。技术要求:1.功率输出达 120W 以上; 2.时间可以连续调节台25全玻璃过滤器主要功能:过滤流动相。技术要求:玻璃滤器所有的接触溶剂的 部件均采用化学惰性的玻璃或 PTFE 材料套56微量进样器 (平头)主要功能:将样品注入液相色谱仪。 技术要求:10μL、25μL支各10表 18 分光光度实训室设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1实验台主要功能:存放仪器和实验操作平台。技术要求:1.台面材质完全符合实训室 耐腐蚀、耐酸碱要求; 带电源 插座;2.台面可承重大于 300kg/m2, 可调脚;3.实验台的尺寸一般为长× 宽×高=1200mm×750mm×800mm套10GB/T 21747—2008根据实训室结构 确定台面具体长 度,但实验台面总 长 度 不 应 少 于 12000mm,宽度不 应小于 750mm2可见分光 光度计主要功能:对液体物料进行定量分析。技术要求:1.波长范围:325~1000nm;2.波长误差:±1nm;3.波长重复性: ≤0.5nm;4. 杂 散 光 : ≤ 0.1%(T) (在 360nm 处以 NaNO2 测定);5.透射比范围:0~200.0%; 6.透射比准确度:±0.5%;7.透射比重复性:≤0.2%台10GB/T 26810—2011分批实训, 每台 2 人3紫外可见分 光光度计主要功能:对液体物料进行定量分析。技术要求:1.波长范围:190~900nm;2.波长准确度: ±0.3nm;3.波长重复性: ≤0.1nm;4.光度方式:透过率、吸光度、 能量;5.光源转换:自动切换(可在 320~380nm波段范围内任意设定)台10GB/T 26798—2011表 19 生物工艺实训室设备要求略表 20 单元操作技术实训中心(蒸发技术)设备要求略表 21 单元操作技术实训中心(干燥技术)设备要求略表 22 单元操作技术实训中心(流体输送技术)设备要求略表 23 单元操作技术实训中心(精馏技术)设备要求略表 24 单元操作技术实训中心(吸收技术)设备要求略表 25 单元操作技术实训中心(膜分离技术) 设备要求略表 26 单元操作技术实训中心(离子交换技术)设备要求略表 27 仿真技术实训室略表 28 单元操作技术实训中心(结晶技术实训室) 设备要求序号设备名称主要功能和技术要求单位数量执行标准或质量要求备注1冷却结晶 装置主要功能:1.能进行料液的冷却 结晶操作;2.能研究料液浓度、温 度、冷却速度、搅拌速度、 晶种、结晶时间等对晶体 质量及产量的影响。技术要求:1.能观察结晶过程中 晶浆变化情况;2.具备取样点;3. 采 用 现 场 控 制 和 DCS 控制相结合的方式;4.装置主要组成:带搅 拌的原料罐、夹套式冷却 搅拌结晶罐、加料泵、结 晶母液储槽、制冷装 置、 阀门、管件、仪表 及电气设备等,结晶罐 体积≥50L,其他设备及 管线配套设计套2安全执行GB 21746—2008 和 GB 21748—20081.可用虚拟仿真 实训装置替换(包 括现场装置、控制 柜、计算机及仿真 操作软件)。虚拟仿 真实训装置要实现 真实生产工艺再 现,要通过现场及 控制室的模拟操作 来再现一个真实的 生产过程。整个系 统通过电信号的传 递来反映生产相关 参数的变化;2. 每 套 装 置 5 人,分批实训2真空蒸发 结晶装置主要功能:1.能进行料液的真空 蒸发结晶操作;2.能研究真空度、温 度、蒸发速度、搅拌速度、 晶种、结晶时间等对晶体 质量及产量的影响。技术要求:1.能观察结晶过程中 晶浆变化情况;2.具备取样点;3. 采 用 现 场 控 制 和 DCS 控制相结合的方式;4.装置主要组成:带搅 拌的原料罐、浓缩式搅拌 结晶罐(夹套加热)、汽 液分离器、 冷凝器、冷凝 液储罐、真空泵、结晶母 液储槽、加热装置、阀 门、管件、仪表及电气 设 备 , 结 晶 罐 体 积 ≥ 50L,其他设备及管线配套设计套2安全执行GB 21746—2008 和 GB 21748—20081.可用虚拟仿真 实训装置替换(包 括现场装置、控制 柜、计算机及仿真 操作软件)。虚拟仿 真实训装置要实现 真实生产工艺再 现,要通过现场及 控制室的模拟操作 来再现一个真实的 生产过程。整个系 统通过电信号的传 递来反映生产相关 参数的变化;2. 每 套 装 置 5 人,分批实训3离心机主要功能:物料的离心过滤。技术要求:立式吊袋上卸料离心机,转速 2000 转/分钟,分离因数1000以上,最 大装料量30kg,最大容积20L台1安全执行GB 21746—2008 和 GB 21748—2008表 29 单元操作技术实训中心(传热技术实训室) 设备要求略表 30 单元操作技术实训中心(过滤技术实训室) 设备要求略表 31 单元操作技术实训中心(萃取技术实训室) 设备要求略注:1.表 2~表 31 中实训设备数是满足 40 人/班进行实训教学的配备要求。对于大型实训装置不能满足 40 人同时进行实训时, 可安排学生分组分批进行实训或安排与其他大型实训装置一起轮换实训项目。各学校在保 证实训教学目标要求的前提下, 可根据本专业的实际班级人数和教学组织模式对实训课程进行合理安排, 配备 相应的仪器设备数量。2.各学校可根据地域特点和行业/企业对从业人员的具体要求, 优先选择具有 ISO 标准管理体系认证等国 家质量监督管理部门认可的企业所生产的相应规格、型号的仪器设备, 优先选择企业所用真实设备, 当真实设备很难适应实训教学要求时,可选择虚拟仿真实训资源等。
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制