被动红外探测器:采用被动红外方式,已达到安保报警功能的探测器。被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。 被动红外探测器越来越多的被应用于安防领域,能够探测到当前区域内有没有移动的人等目标。 与其他红外探测器不同的时,被动红外探测器采取被动的方式,即自身不附加红外辐射光源,本身也不发射任何能量。目标在探测渔区内移动,会引起某一个立体防范空间内的热辐射的变化,而红外热辐射能量的变化能够灵敏的被被动红外探测器感应到,从而发出报警。 被动红外探测器一般由光学系统、红外传感器、报警控制器等构成。被动红外探测器安装好后,某一区域内的热辐射量量对于探测器来说基本上是不变的。尽管背景物体(如墙、家具等)也会散发出红外辐射能量,但由于能量很小不会触发报警。可当有人等移动目标进入该区域后,红外热辐射值会产生显著的变化。红外传感器的探测波长范围是8~14m,包括人体的红外辐射波长。探测器接收到这些信号后,将信号处理并送往报警控制器,最终触发报警,达到安防的目的。
主动红外探测器由红外发射机、红外接收机和报警控制器组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。主动式红外探测器遇到小动物、树叶、沙尘、雨、雪、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。由于光束较窄,收发端安装要牢固可靠,不应受地面震动影响,而发生位移引起误报,光学系统要保持清洁,注意维护保养。因此主动式探测器所探测的是点到点,而不是一个面的范围。其特点是探测可靠性非常高。但若对一个空间进行布防,则需有多个主动式探测器,价格昂贵。主动式探测器常用于博物馆中单体贵重文物展品的布防以及工厂仓库的门窗封锁、购物中心的通道封锁、停车场的出口封锁、家居的阳台封锁等等。
[size=16px][color=#333333] [/color][/size][b]管道火花检测装置火花探测器系 统[/b][size=16px][color=#333333][/color][/size][b]还在担心管道内的火花抑制问题吗?火花探测器用于监控与储铂接的除尘管道并且在引发储仓火灾之前熄灭每一个火花,即使火花隐藏在稠密的物料中,探头也能灵敏地探测到。 火花探测系 统是由一台或多台探测器、自动灭火组件或者监控站构成。更多咨询江西世纪行安装工程刘工(1-8-9 --7-9-9-3 --7-3-8-1) [/b]工业生产过程中,在可能产生火花的场合,安装火花探测及灭火装置是保证安 全生产的重要措施.西德GreCon公司生产火花探测器及灭火系 统已有十多年的经验,产品三千多套,欧美各国的刨花板,制糖,烟 草等工厂中都有广泛应用. 我国与西德合作制造的年产五万立方米刨花板生产线中,也引进了GreCon公司的火花探测及灭火技术,用于干燥,砂光,打磨筛选等工段的干刨花和粉尘等输送管道内的火花探测及灭火.本产品作为火花探测器配套设备,集变频控制器和泵集成于一体,可根据管路用水量的变化实现无人值守的全自动变频无极调节运行。设备具有恒压变频、方便随时改变运行参数(中文液晶汉显菜单式设置)、功能齐 全(带缺水保护、缺相保护、过流过载保护等)、操作方便简单(一次人工操作以后全自动运行)、安装方便(设备购买后直接对接进出水口和接好电源线即可)、经济实惠等典型优点。[b](各 种小型建筑自来水给水增压、工业生产流程增压、小型办公楼/写字楼供水增压、工地临时供水增压等场合理 想的智能型二次增压设备)[/b][color=#333333][b]火花探测器熄灭装置(火花报警器)[/b][/color][b]技术参数:[/b]1.反应时间 :<0.1秒2.输出 :特定频率信号3.工作温度 :-80度~+80度4.工作电压 :5~36VDC5.工作电流 :<10MADC6.防护等级 :IP657.防 爆等级 :EXTDA21IP65T808.材质 :T6061航空铝+304不锈钢配置:2个探测+控制+报警+熄灭+联动功能:安装于除尘系 统管道,用于探测报警,熄灭和联动停风机。用途: 木业,板业,塑化,家具行业车间,切割,开料,砂光等环节生产过程中央吸尘管道适用。[b]产品优点:[/b]控制箱是火花探测系 统的核心。它负责熄灭任务、自检任务、人机交互、和记录分析所 有的事件。1、 ARM芯片,火花响应速度在纳秒(ns)级别。软件采用 EeOS实时操作系 统,零死机风险,确保火花即刻反应。系 统具备多任务的处理能力,为监控和处理每个区域的火灾隐情提供了并发的技术保障,同时节约您的投 资成本。2、 熄灭作业自动终止。系 统一旦探测不到火花,就自动停止熄灭作业;生产线可以继续运行,不需要停止,也无须人工干预,zui大程度地提高了生产效率;这种特殊功能正是该系 统区别于一般安防系 统的地方。3、 高品质人机交互体验;8寸超大液晶显示屏,LED背光;图形化操作界面,简单易用;表面强化电阻触摸屏,、耐脏、耐磨。4、 详细的事件记录。可存储多达 2000条的数据,不但为事后分析提供了可 靠的依据,更为今后更好的生产提供了有效的参考。详细记录了火花发现的时间、地点、数量、持续时间,熄灭作业的开始时间、停止时间、作业地点,系 统周期性自检的结果,各个子系 统的运行状况。所 有这些记录掉电依然可以保存,不会丢失您的任 何信息。5、 完善可 靠的自检系 统。在检测管道内火灾隐患的同时,不断地定期检测所 有模块的健康状况,保证整套系 统的良好运行;如发现损坏、断线、水压不足、漏水、系 统 断电等故障,可快速告警,通知用户。6、 可配置的联动措施。系 统配有继电器,用户可以根据实际需求配置联动继电器输出;继电器可以配合用户的除尘设备或生产线,采取进一步措施。7、 可选配的后备电源模块。该模块附带一蓄电池,可以在外接电源停电或意外断电的情况下满负荷工作 24小时,确保系 统不间断地保障您的生产安 全。8、 每个输出点均有保险丝,确保无短路风险。我们在每个保险丝槽内附带备用保险丝,贴 心备用。在发生短路后,可立刻换上备用保险丝。[align=center][img]http://www.daxuecidian.com/file/upload/202103/26/1452288241657.jpg[/img][/align][b]火花探测器熄灭装置(火花报警器)[/b][color=#333333][b][/b][/color][b]产品设计理念 火花探测系 统与增压水熄灭系 统为两个独立体,两者配合使用,前者探测到火花,后者负责熄灭,从而消 除粉尘火灾与尘暴的风险。火花探头平行对称安装在吸尘管道壁上,监测在风力输送过程中由火花产生的红外辐射,系 统监测到火花时,熄灭系 统瞬间启动,特制的喷水装置喷出的水雾填充整个管道截面,使火花整个被笼罩在水雾之间,火花瞬间熄灭,喷头为特制,熄灭用水量很少,不必担心因水量过大造成粉尘过滤装置堵塞。系 统分一级/二级报警设置,火花数量触发一级报警后,设备自动熄灭并做日志记录,系 统闪灯告知工作人员,不停机。火花数量触发二级报警后,系 统自动熄灭,喇叭声光报警,并连锁停机(可控),等工作人员检查完毕复位后,方能重新开机。本产品定位适用于灾前预防,不能代替消防产品。 产品优势 [/b]一级火花报警喷水熄灭并发出声光提示,二级火花报警输出连锁信号到外部做停机等动作,并将熄灭喷头处理结果反馈到显示屏幕上,一、二级报警火花数量可任意设置,储存火花报警记录数量无 限制(外插卡),可任意查询,并提供火花报警记录曲线图、趋势图供客户分析。远程信息模块,可将火花报警信息推送到客户指 定的短信或微 信上(包含报警发生位置、时间、火花数量、熄灭结果等),以便值班人员及时处理。 标配10寸大屏,可显示系 统工作状态、火花报警数量、时间、处理结果,以及多达上百种故障检测内容(例如探头在线、断线、接触不良、数量检测、水压检测、喷头在线检测、水流动、电磁阀开闭检测等等),有效避免发生火花报警时才发现设备无法使用造成的损失。标配德国魏德米勒UPS后备电源,即使断电也能正常工作。[b] 产品特点: 1、 探测灵敏。在研究各类火花的特征光谱曲线的基础上,选择对应的高速光敏原件,匹配探测波长范围。探头能够探测到小的火花和炽热颗粒,具有高度的灵敏性;同时,探测系 统能够穿过高密度的物料、尘埃进行探测。2、 采用光电检测技术。非接触检测,不对被检测对象有任 何的干扰,不会影响正常的生产流程;同时具备灵敏度高、稳定性好、功耗低、寿命长等优点,适合工业级的不间断工作。3、 广角探测设计,用两个探头就能完 全覆盖管道。4、 外壳坚固。探头外壳采用航空铝材料和不锈钢,轻巧坚固,耐氧化、耐腐蚀。配合专门设计的防水槽和密封圈,使得外壳整体达到了 IP67防护等级,可用于户外的严苛环境。醒目的外层黄色涂装,使您一看便知探测点的所在。5、 安装快速。探头安装采用专门的连接件,使得安装非 常容易,一个人需数分钟就能完成一个探头的安装。[/b][align=center][img]http://www.daxuecidian.com/file/upload/202103/26/1452282241657.jpg[/img][/align][align=center][img]http://www.daxuecidian.com/file/upload/202103/26/1452284241657.jpg[/img][/align][align=center][img]http://www.daxuecidian.com/file/upload/202103/26/1452284341657.jpg[/img][/align][align=center][img]http://www.daxuecidian.com/file/upload/202103/26/1452281441657.jpg[/img][/align][b]应用领域:●人造板、木材和家具等生产车间。●金属和砂石等物体在运动中产生的纤维、刨花和粉尘等环境。●大负荷的设备在运转过程中产生的火花环境。●烟 草、化工、纺织、食品、饲料、冶金、皮革、橡胶加工等产生高粉尘环境的企业。系 统主要作用●探测火花并熄灭。●干燥设备的保护。●研磨设备的保护。注意事项:1. 安装材料:a, 电缆线采用RVVP0.75*5芯,4芯和3芯(不同型号有区别)带屏蔽电缆线,接入时屏蔽线同时须接通接线器。b, 水管采用镀锌DN50管,开牙并采用液态生料带进行密封性连接。c, 电源采用AC 220V 10A ,对于供电异常的用户,须增加相应的备用电源。2. 安装标 准:a,电路布置时须独立线管,尽量不与其它动力线路并线布置。电路接头处安装保证稳固。探头安装于管道左右侧,保持正对。喷头安装于管道顶部即可。b, 水路安装是以就近原则为准,确信信号及水源的即速响应。若供水源水压不足时,如低于2公斤,和水量不足时,须增加500L储水箱以备用。公司成立已通过ISO9001质量管理体系认证,取得防 爆电气合格证、产品检验报告、防 爆电气生产许可证等,可放心购买。[/b]
最近单位采购,一直纠结于某款热场电镜和冷场电镜。热场电镜的景深十分出色,但分辨率较为一般,除二次电子探测器(低位和高位)外,还配了单独的背散射电子探测器、主流能谱仪、五轴马达台、红外CCD相机。。。冷场电镜的景深也不错,分辨率十分出色,出二次电子探测器外,背散射电子的探测功能通过高位探测器改变偏压实现,不是那么主流的能谱仪、三轴马达台。。。价格估计两家都做得蛮拼的。各位前辈有没有什么建议?
火焰探测器又称感光式火灾探测器,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。下面工采网小编给大家介绍一下火焰探测器工作原理。火焰燃烧过程释放紫外线、可见光、红外线,在特定波长、特定闪烁频率(0.5HZ-20HZ)具有典型特征,有别于其他干扰辐射,阳光、热物体、电灯等辐射出的紫外线、红外线没有闪烁特征。火焰探测器工作原理是通过检测火焰辐射出的特殊波长的紫外线、红外线及可见光等,同时配合对火焰特征闪烁频率来识别,来探测火焰。一般选用紫外光电二极管、紫外线探测器、紫外线传感器等作为探测元件。[img=,446,450]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011704_01_3332482_3.jpg!w446x450.jpg[/img]紫外线探测器是将一种形式的电磁辐射信号转换成另一种易被接收处理信号形式的传感器,光电探测器利用光电效应,把光学辐射转化成电学信号。光电效应可分为外光电效应和内光电效应。外光电效应器件通常指光敏电真空器件,主要用于紫外、红外和近红外等波段。具有内增益的外光电效应器件包括光电敏倍增管、像增强器等光敏电真空器件,它们具有极高灵敏度,能将极微弱的光信号转换成电信号,可进行单光子检测,其灵敏度比内电光效应的半导体器件高几个量级。内光电效应分为光导效应和光伏效应。光导效应中,半导体吸收足够能量的光子后,把其中的一些电子或空穴从原来不导电的束缚状态激活到能导电的自由状态,导致半导体电导率增加、电路中电阻下降。光伏效应中,光生电荷在半导体内产生跨越结的P-N小势差。产生的光电压通过光电器件放大并可直接进行测量。根据光导效应和光伏效应制成的器件分别称为半导体光导探测器和光伏探测器。最后给大家介绍三款性能非常优秀的紫外线探测器和紫外线二极管,都是应用在火焰检测和防紫外辐射源等领域的顶尖产品。[b]德国SGLUX 紫外光电探测器 - TOCON_ABC1[img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]基于碳化硅的宽频紫外光电探测器,带有集成放大器TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射和火焰检测领域。[b]紫外光电探测器TOCON_ABC1特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有集中器镜头盖0…5 V电压输出峰值波长是280 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 pW/cm2[b]德国SGLUX 紫外光电探测器 - TOCON_ABC10[/b][img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射、淬火控制和火焰检测领域。[b]紫外光电探测器TOCON_ABC10特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有衰减器0…5 V 电压输出峰值波长是290 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 mW/cm2[b]德国SGLUX 紫外光电二极管 - SG01D-5LENS[img=,394,291]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_01_3332482_3.jpg!w394x291.jpg[/img]SiC 具有独特的特性,能承受高强度的辐射,对可见光几乎不敏感,产生的暗电流低,响应速度快和噪音低。这 些特性使SiC成为可见盲区半导体紫外探测器的最佳使用材料。SiC探测器可以一直工作于高达170°C(338°F)的温度中。信号(响应率)的温度系数也很低, 0,1%/K。由于噪音低(fA级的暗电流), 能够有效地检测到极低的紫外辐射强度。请注意这个装置需要配置相应的放大器。(参见第3页中的典型电路)。SiC光电二极管有七个不同的有效敏感面积可供选择,从0.06 mm2 到36 mm2。标准版本是宽频UVA-UVB-UVC。四个滤波版本导致更严格的感光范围。所有光电二极管都有密封的金属外壳(TO型),直径为5.5mm的TO18 外壳或9.2mm 的TO5外壳。进一步的选项是2只引脚(1绝缘,1接地)或3只引脚(2绝缘,1接地)。[b]德国SGLUX 紫外光电二极管 SG01D-5LENS 特点[/b]宽频UVA+UVB+UVC, PTB报道的芯片高稳定性, 用于火焰检测辐射敏感面积 A = 11,0 mm2TO5密封金属外壳和聚光镜, 1绝缘引脚和1接地引脚10μW/cm2 峰值辐射约产生350 nA电流[b]德国SGLUX 紫外光电二极管 SG01D-5LENS参数:[/b][b][img=,690,365]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_02_3332482_3.jpg!w690x365.jpg[/img][/b][/b][/b]
高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XB?n势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。[align=center][size=18px][back=#ffff00][b]材料生长、器件制备和测试[/b][/back][/size][/align]通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(101? cm?3)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(101? cm?3)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(101? cm?3)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm2的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。[align=center][size=18px][back=#ffff00][b]结果与讨论[/b][/back][/size][/align][b]材料质量表征[/b]图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm2的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 ?和2.1 ?。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/92230b98-4dac-4ee0-aeaa-282dcd342995.jpg[/img][/align][align=center][color=#0070c0]图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片[/color][/align][b]器件的变温暗电流特性[/b]图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R?A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R?A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/a8f8001f-cd03-42f4-a32f-8b1acc94131d.jpg[/img][/align][align=center][color=#0070c0]图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R?A随反向偏压的变化曲线;(c)R?A随温度倒数变化曲线[/color][/align][b]器件暗电流的尺寸效应[/b]由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R?A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10? Ωcm。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/e7fba8aa-eabe-40a4-a863-6ebcdd264744.jpg[/img][/align][align=center][color=#0070c0]图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R?A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R?A随台面直径的变化;(d)(R?A)?1与周长对面积(P/A)变化曲线[/color][/align][b]器件的结电容[/b]图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/c09b63df-6442-42f2-b548-df4f539db6eb.jpg[/img][/align][align=center][color=#0070c0]图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。[/color][/align][b]器件的射频响应特性[/b]通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/95acbbf7-8557-4619-b4cd-5829d636aced.jpg[/img][/align][align=center][color=#0070c0]图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/541829b0-a336-4b7e-a75b-0a15f8dfd06a.jpg[/img][/align][align=center][color=#0070c0]图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线[/color][/align]图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。[align=center][size=18px][back=#ffff00][b]结论[/b][/back][/size][/align]通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm2,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10? Ωcm,对照的nBn器件的表面电阻率为3.1×103 Ωcm,而pBn和nBn的R?A体积项的贡献分别为16.60 Ωcm2和5.27 Ωcm2。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。[b]论文链接:[/b][url]http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157[/url][来源:MEMS][align=right][/align]
处女贴,请各位多多指导。是这样,我在做一个项目,就是用红外探测器获取红外信息,然后通过串口传入电子控制单元,在电子控制单元进行红外图形处理,识别出人体。应用场景是用在汽车上,来探测哪个位置有人,来进行分区调节温度。电子控制单元现在已经调试好了,接口也都通了,但在红外探测器选型上没经验。所以请教:1.该红外探测器仅仅是可以获取人体附近的红外线就可以。不需要成品。因为成本核算的原因。2.探测器要有一定的捕获角度3.批量采购的话,成本要在百元以下。因为是要量产的。多谢!
小弟想要一个能检测波长为3.3um的热释电红外探测器,但在网上查了很久,发现都是些检测波长在5-14um的探测器。哪位大侠知道哪种型号的探测器能满足我的需求啊?劳烦告诉我型号啊,感激不尽哦!
大家好,哪位大侠能说一下近红外光电探测器的应用有哪里?红外的光电探测器有InGaAs(铟镓砷), Ge(锗), PbS(硫化铅), PbSe(硒化铅),MCT等。铟镓砷象640*512 ,320*256,主要会用到什么上面?请大侠们指导一下,先谢谢喽tangtang:论坛规定不给留联系方式,可站短联系。
雷达式微波探测器是一种将微波收、发设备合置的探测器,工作原理基于多普勒效应。微波的波长很短,在1mm~1000mm之间,因此很容易被物体反射。微波信号遇到移动物体反射后会产生多普勒效应,即经 反射后的微波信号与发射波信号的频率会产生微小的偏移。此时可认为报警产生。 雷达式微波探测器采用多普勒雷达的原理,将微波发射天线与接收天线装在一起。使用体效应管作微波固态振荡源,通过与波导的组合,形成一个小型的发射微波信号的发射源。探头中的肖基特检波管与同一波导组成单管波导混频器作为接收机与发射源耦合回来的信号混频,从而得到一个频率差,再送到低频放大器处理后控制报警的输出。微波段的电磁波由于波长较短,穿透力强,玻璃、木板、砖墙等非金属材料都可穿透。所以在安装时不要面对室外,以免室外有人通过引起误报。金属物体对微波反射较强,在探测器防范区域内不要有大面积(或体积较大)物体存在,如铁柜等。否则在其后阴影部分会形成探测盲区,造成防范漏洞。多个微波探测器安装在一起时,发射频率应该有所差异,防止交叉干扰产生误报。另外,如日光灯、水银灯等气体放电光源产生的100Hz调制信号由于在闪烁灯内的电离气体容易成为微波的运动反射体而引起误报。使用微波入侵探测器灵敏度不要过高,调节到2/3时较为合适。过高误报会增多。与超声波一样家庭也可以使用。 雷达式微波探测器对警戒区域内活动目标的探测范围是一个立体防范空间,范围比较大,可以覆盖60°至90°的水平辐射角,控制面积可达几十到几百平方米。雷达式微波探测器的发射能图与所采用的天线结构有关,采用全向天线(如1/4波长的单极天线)可产生近乎圆球形或椭圆形的发射范围,这种能场适合保护大面积的房间或仓库等处。而采用定向天线(如喇叭天线)可以产生宽泪滴形或又窄又长的泪滴形能图,适合保护狭长的地点,如走廊或通道等。
欲买用于NDIR红外分析的探测器,推荐几款性价比好的 热释电探测器, 热电偶和热电堆也行, 碲镉汞探测器也行 发一份详细资料到信箱augustcool214@sina.com.cn,谢谢 最好有报价(大概)
大家好,哪位大侠能说一下近红外光电探测器的应用有哪里?近红外的光电探测器有InGaAs(铟镓砷), Ge(锗), PbS(硫化铅), PbSe(硒化铅)等。铟镓砷象640*512 ,320*256,主要会用到什么上面?请大侠们指导一下,先谢谢喽联系电话:13649264285邮箱:zhangwenjuan@fy-ic.com
[size=4] photoconductive detector 利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。 1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为 λc=hc/Eg=1.24/Eg (μm) 式中 c为光速。本征光电导材料的长波限受禁带宽度的限制。在60年代初以前还没有研制出适用的窄禁带宽度的半导体材料,因而人们利用非本征光电导效应。Ge、Si等材料的禁带中存在各种深度的杂质能级,照射的光子能量只要等于或大于杂质能级的离化能,就能够产生光生自由电子或自由空穴。非本征光电导体的响应长波限λ由下式求得 λc=1.24/Ei 式中Ei代表杂质能级的离化能。到60年代中后期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半导体材料研制成功,并进入实用阶段。它们的禁带宽度随组分x值而改变,例如x=0.2的HG0.8Cd0.2Te材料,可以制成响应波长为 8~14微米大气窗口的红外探测器。它与工作在同样波段的Ge:Hg探测器相比有如下优点:①工作温度高(高于77K),使用方便,而Ge:Hg工作温度为38K。②本征吸收系数大,样品尺寸小。③易于制造多元器件。表1和表2分别列出部分半导体材料的Eg、Ei和λc值。 通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实用性器件还要考虑性能、工艺、价格等因素。常用的光电导探测器材料在射线和可见光波段有:CdS、CdSe、CdTe、Si、Ge等 在近红外波段有:PbS、PbSe、InSb、Hg0.75Cd0.25Te等 在长于8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。 可见光波段的光电导探测器 CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属全密封型结构,玻璃窗口与可伐金属外壳熔封。 器件灵敏度用一定偏压下每流明辐照所产生的光电流的大小来表示。例如一种CdS光敏电阻,当偏压为70伏时,暗电流为10-6~10-8安,光照灵敏度为3~10安/流明。CdSe光敏电阻的灵敏度一般比 CdS高。光敏电阻另一个重要参数是时间常数 τ,它表示器件对光照反应速度的大小。光照突然去除以后,光电流下降到最大值的 1/e(约为37%)所需的时间为时间常数 τ。也有按光电流下降到最大值的10%计算τ的 各种光敏电阻的时间常数差别很大。CdS的时间常数比较大(毫秒量级)。 红外波段的光电导探测器 PbS、Hg1-xCdxTe 的常用响应波段在 1~3微米、3~5微米、8~14微米三个大气透过窗口。由于它们的禁带宽度很窄,因此在室温下,热激发足以使导带中有大量的自由载流子,这就大大降低了对辐射的灵敏度。响应波长越长的光,电导体这种情况越显著,其中1~3微米波段的探测器可以在室温工作(灵敏度略有下降)。3~5微米波段的探测器分三种情况:①在室温下工作,但灵敏度大大下降,探测度一般只有1~7×108厘米瓦-1赫;②热电致冷温度下工作(约-60℃),探测度约为109厘米瓦-1赫 ③77K或更低温度下工作,探测度可达1010厘米瓦-1赫以上。8~14微米波段的探测器必须在低温下工作,因此光电导体要保持在真空杜瓦瓶中,冷却方式有灌注液氮和用微型制冷器两种。 红外探测器的时间常数比光敏电阻小得多,PbS探测器的时间常数一般为50~500微秒,HgCdTe探测器的时间常数在10-6~10-8秒量级。红外探测器有时要探测非常微弱的辐射信号,例如10-14 瓦;输出的电信号也非常小,因此要有专门的前置放大器。[/size]
找本中文版的红外探测器一书【序号】:1【作者】:[color=#444444]Antoni Rogalski 著[/color]【题名】:[color=#444444]《红外探测器》原书第二版中文版[/color]【年、卷、期、起止页码】:[color=#333333]840[/color]页【全文链接】:[color=#333333][url]https://www.yqdaw.com/daw17057p11.html[/url][/color]
http://b.hiphotos.baidu.com/baike/w%3D268/sign=27a70225acaf2eddd4f14eefb5110102/2cf5e0fe9925bc310dce7dbb5edf8db1cb137005.jpg请问图中半导体探测器是在什么行业中应用的呢,这个探测器可以进行元素分析吗,这个探测器与常用的Si-Pin SDD有什么区别。另外X射线荧光用的探测器与X射线辐射剂量检测用的探测器有什么区别?
X射线荧光探测器与质谱探测器有什么异同?
用途及特点 RB-TZ型红外CO2气体探测器采用英国进口红外CO2气体传感器,可用于连续检测工业生产、尾气排放等环境下的CO2气体,也可以用于检测生产运行中的管道、设备等的CO2气体泄露检测。 本产品可广泛用于轻工、化工、造纸、食品、冶金、焦化、生物制药、化肥、石油化工、公用事业等行业的CO2气体的检测与报警。RB-TZ型气体探测器主要由红外CO2气体传感器、变送电路、防爆外壳以及其他安装配件组成。其中气体传感器采用英国原装进口红外CO2气体传感器,具有精度高、响应快、选择性好、重量轻、体积小、性能稳定可靠、使用寿命长等特点。 技术指标 型号规格:RB-TZ 检测气体:CO2 检测范围:0 to5000ppm,5%,10%,20%,65%,100% 输出信号:4-20mA DC 防爆等级:EXdIICT6 工作温度:-20℃―+50℃ 重 复 性:≤2%F.S 示值误差:±5%F.S 响应时间:T90≤30s 工作湿度:15%RH-95%RH 检测原理:单波非色散红外原理(NDIR LED),具有厂家专利的自校准技术 检测方式:扩散式 显示方式:现场数显 工作时间:连续 电源电压:21-27V DC 接线方式:三线制 电源损耗:最大工作电流≤200mA 传感器寿命:≥5年(正常使用下) 外形尺寸:(179×147×120)mm 重 量:1.90kg http://ng1.17img.cn/bbsfiles/images/2012/04/201204261100_363465_2522805_3.jpg土豆:不要在资料分享贴里放联系方式,广告贴会被处理的。
[color=#000000]近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。[/color][color=#000000]仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/d9f98d30-33d3-4a5f-ae64-7284b6ef766d.jpg[/img][/align][color=#000000]光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作([/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]Adv. [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]M [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b][color=#0070c0]ater. [/color][color=#0070c0][/color][/b][/i][/url][color=#000000],2022;[/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902044][i][b]Adv. Mater [/b][/i][/url][color=#0070c0][i][b].[/b][/i][/color][color=#000000],2019;[/color][url=https://www.nature.com/articles/s41467-018-07860-0][i][b]Nat. Commun. [/b][/i][/url][color=#000000],2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。[/color][color=#000000]在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。[/color][color=#000000]相关研究成果以“[b]Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”[/b]为题,发表在[b]《先进材料》[/b][i](Advanced Materials)[/i]上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)[/color][color=#000000]文章链接:[/color][url=https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911][b]https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911[/b][/url][来源: 中国科学院大连化物所][align=right][/align]
半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,晶体管电子学的发展促进了半导体技术的发展。半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型(下图由左至右)。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291643_192752_1615922_3.jpg[/img]
想自己搭一个简单的近红外分光光度装置,我该选用什么探测器比较好呢?
[color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]
[color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]
红外测温仪光电仪器的核心部件之一 —— 红外探测器红外线探测器是把入射红外辐射能量转变为其他形式能量(一般为电能)的一种转换器或传感器.它是各种红外仪器最重要的关键元件,可分为热敏探测器和光子探测器两大类.1.热敏探测器1,1:热敏电阻探测器热敏电阻器是电阻值对温度极为敏感的一种电阻器,也叫半导体热敏电阻器。它可由单晶、多晶以及玻璃、塑料等半导体材料制成。这种电阻器具有一系2列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化,以及伏安曲线呈非线性。 热敏电阻器种类繁多,一般按阻值温度系数可分为负电阻温度系数(以下简称负温系数)和正电阻温度系数(以下简称正温系数)热敏电阻器;按其阻值随温度变化的大小可分为缓变和突变型;红外测温仪按其受热方式可分为直热式和旁热式;按其工作温度范围可分为常温、高温和超低温热敏电阻器;按其结构分类有棒状、圆片、方片、垫圈状、球状、线管状、薄膜以及厚膜等热敏电阻器。热敏电阻器的主要特点是对温度灵敏度高,热惰性小,寿命长,体积小,结构简单,以及可制成各种不同的外形结构。因此,随着工农业生产以及科学技术的发展,这种元件已获得了广泛的应用,如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探空、开关电路、过荷保护、脉动电压抑制、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等等。随着近代军事技术、特别是空间技术的发展,对热敏电阻器除了要求高可靠、长寿命、超高温和超低温外,还需要灵敏度更高、不需致冷、性能优良的测辐射功率的热敏器件
大家好!我是新人,昨天通过同学推荐才知道这个网站的,我非常喜爱这个网站,希望它能在大家的努力下变得更加出色^_^. 我现在跟随导师做一个项目,是通过FTIR测量MEMS器件的沟槽深度。在选购红外探测器时,有两样选择,一个是MCT,一个是DTGS。两种探测器的光谱相应范围基本上都符合要求(当然DTGS的要稍大一些),但MCT的灵敏度和响应速度要更快一些,不过需要氮冷。从实验经费考虑,导师比较倾向于选购DTGS。但是我查阅国外相关实验的资料时,发现他们用的基本上都是MCT,所以很犯难。如果大家有这方面的相关经验和资料的话,请不吝赐教,谢谢! 另外,不知道有没有人有AMS公司的IR3000的资料,我这里搜集到的只有比较简单的一些数据,如果可以告知一二的话,小弟不胜感激。 希望能和大家成为好朋友!^_^
一根燃烧的蜡烛1秒钟可以发射出100亿亿个以上的光子,要探测到能量如此小的单个紫外光子一直是世界技术难题。记者昨天获悉,南京大学电子科学与工程学院长江特聘教授陆海为首的研究团队近来获得突破,在国内首先研制出超灵敏度的固体紫外单光子探测器,从而使中国成为继美国之后第二个掌握这一核心技术的国家。 “自然界中波长小于280纳米的紫外光几乎为零,所以我们探测它相当于在暗室中探测光,只要发现一个小光点就一定是目标。”陆海介绍说,可探测400纳米以下紫外辐射的紫外光探测器,是火焰探测、环境监测、生物医药、空间科学等领域所急需的关键部件,也是关系到国家安全的关键技术,可以用来检测海上油污、卫星遥感监测雾霾等。 光子是光的最小能量量子,也是光作为信息载体的最小传输单位。一根蜡烛1秒钟释放出的超100亿亿个光子中,假设紫外光子只占万分之一,那么在完全不考虑飞行损耗的情况下,1公里以外,面积为1平方厘米的镜头1秒钟只能接收到1000个紫外光子。专门用来捕捉这些“小家伙”的单光子探测器一直是世界各国研究和竞争的焦点。 陆海举例说,导弹的飞行尾焰中存在像指纹一样的特殊紫外光谱成分,但距离越远能够传输过来的紫外光就越微弱。利用超灵敏度紫外单光子探测器就有可能在上千公里以外探测和分辨出来袭飞弹,为反制或者规避提供宝贵时间。之前,国际上只有美国罗格斯大学、弗吉尼亚大学、通用电气研发中心三家美国单位成功研制碳化硅单光子探测器。而南大研究团队此次获得突破后,跻身成为第四家。 南大研究团队研制出的紫外单光子探测器,基于碳化硅半导体芯片技术,能灵敏捕捉到紫外单光子,并且打破了过去依赖于超低温条件的瓶颈。“我们的探测器在150℃下仍能正常工作,这是原来任何单光子探测技术都无法达到的。”陆海说。这一突破也引起了国际关注,欧洲的《今日半导体》杂志专门长文报道了南大的这一研究成果。 同时,该探测器有显著的成本优势,有望向民用领域大规模推广,比如高压输电线和高铁供电线路上出现电晕、污闪时,可用其远程检测和定位。“目前,紫外火灾报警器用的真空紫外光敏管,综合成本很高。”陆海拿出一枚耳钉大小的器件介绍说,未来用如此小的单光子探测器件,不仅造价更便宜,而且防爆、使用寿命更长。 眼下,南大研究团队在该领域的部分研究成果已开始进入产业化阶段。过量的紫外线照射易诱发皮肤癌,韩国三星公司日前发布的Note4手机就装备了微型紫外线传感器,受到消费者欢迎。而南大研究团队正在和华为合作的贴片封装紫外探测器,尺寸比米粒还小,也将安装到手机或智能手环中,藉由它,用户可随时随地检测所处环境的紫外线强度,以及时防护。
在过去的一年,传感器和探测技术得到广泛发展的同时,也呈现出许多新特点和趋势。探测技术逐渐由室内向室外转移,而电子脉冲围栏、电缆泄漏探测器等周界设备崭露头角,逐渐取代传统红外对射等室外探测设备。 电子围栏是由脉冲发生器(主机)和前端围栏组成的智能型周界系统。现代公共安全用电子围栏经过演变和改进,成为一种新型的周界报警产品,它一改以前周界防范中单纯的事后报警的传统模式,强调了以阻挡(有形围栏,制造入侵障碍)为主,报警(声光报警并可与其他安防系统联动)为辅兼有威慑(降低作案欲望)作用的国际周界安防新概念。 电子脉冲围栏克服了交流电网致命、影响美观的缺点,与传统的红外、微波、静电感应等周界安防系统相比,具有误报率低、不受地形和环境限制、安全性高等明显优点。脉冲电子围栏在起到阻挡作用的同时,对人体无伤害,能够真正实现阻挡、威慑和报警。而传统的红外对射对外来入侵者起不到阻挡作用,而高压电网虽然能起到强力阻挡作用,但由于强大的交流电作用会导致人的伤害甚至死亡,十分危险。这也是电子脉冲围栏逐渐受到欢迎的原因。 室内探测器目前则仍然以被动红外探测器为主,但是其误报率依然是困扰用户的主要问题,也成为个厂家不断攻克的问题。目前很多厂商都通过不同的技术来实现降低误报率的目的,包括采用特殊的透镜和双红外传感器检测相结合、采用双红外的对称原理、采用万向穿线型支架等,并取得了不断的效果。
各位大侠 小妹有一个困惑 X射线探测器的铍窗很容易就破损了 为了更好的保护他 我想应该用一种高透明 机械性能好的薄膜吧 大侠们能告推荐一下吗 或者有什么更好的办法
[b]SANTIS 0804双能、多能混合光子计数X射线探测器[/b]目前市场有极少数量的双能X射线探测器,多能X射线探测器刚刚进入中国市场,下面是我推荐的一款多能探测器,请同行们指导,多提宝贵建议。[b][img]http://img1.17img.cn/17img/images/201801/uepic/6f25d67a-b728-49cd-88e9-f0780582d383.jpg[/img][/b] SANTIS 0804多能X射线探测器是由DECTRIS公司设计和生产的双能、多能混合光子计数(HPC)探测器。该探测器的无噪声、无暗电流和高计数能力给一切用户提供无与伦比的的成像效果 SANTIS 0804多能X射线探测器和传统探测器相比,SANTIS 0804图像质量更高、帧速率更高、探测能力更强。同时,SANTIS 0804可以实现双能和多能状态下的优质图像信息。 [b]测器技术参数:[/b][table=578][tr][td=1,1,125][b]版本[/b][/td][td=1,1,217][b]高分辨率(HR)[/b][/td][td=1,1,236][b]多能量(ME)[/b][/td][/tr][tr][td=1,1,125]传感器[/td][td=1,1,217]碘化铬 0.75 mm[/td][td=1,1,236]碘化铬 1.0 mm[/td][/tr][tr][td=1,1,125]有效面积[/td][td=1,1,217]8 x 4 cm[sup]2[/sup][/td][td=1,1,236]8 x 4 cm[sup]2[/sup][/td][/tr][tr][td=1,1,125]像素矩阵[/td][td=1,1,217]1030 x 514[/td][td=1,1,236]515 x 257[/td][/tr][tr][td=1,1,125]像素尺寸[/td][td=1,1,217]75 μ㎡[/td][td=1,1,236]150 μ㎡[/td][/tr][tr][td=1,1,125]MTF在1 IP /毫米[/td][td=1,1,217] 90%[/td][td=1,1,236] 90%[/td][/tr][tr][td=1,1,125]能量范围[/td][td=1,1,217]最大至 120 kVp[/td][td=1,1,236]最大至160 kVp[/td][/tr][tr][td=1,1,125]阈值能量的数量[/td][td=1,1,217]2[/td][td=1,1,236]4[/td][/tr][tr][td=1,1,125]能量分辨率[/td][td=1,1,217]1.9 at 22 keV (FWHM)[/td][td=1,1,236]1.9 at 22 keV (FWHM)[/td][/tr][tr][td=1,1,125]填充因子[/td][td=1,1,217]100%[/td][td=1,1,236]100%[/td][/tr][tr][td=1,1,125]动态范围[/td][td=1,1,217]32 bit[/td][td=1,1,236]32 bit[/td][/tr][tr][td=1,1,125]帧速率[/td][td=1,1,217]up to 40 Hz[/td][td=1,1,236]up to 40 Hz[/td][/tr][tr][td=1,1,125]最大输入计数率[/td][td=1,1,217]1.5 * 10[sup]9[/sup] photons/s/mm2[/td][td=1,1,236]0.4 * 10[sup]9[/sup] photons/s/ mm2[/td][/tr][tr][td=3,1,578]所有规格如有变更,恕不另行通知。[/td][/tr][/table]
鲁滨逊背散射探测器是什么原理?和传统的半导体固体探测器有什么不同?和闪烁体材质的环形背散射探测器有什么不同?
D*=(A*f)^0.5/NEP,其中A是探测器光敏元面积,f是电子学带宽,NEP是噪声等效功率。相信大家都知道,光谱成像在探测器光敏元上不可能只占一个像元,而是有一定面积的,请问此时计算D*,A 是用一个像元的面积还是光谱所占的面积?