当前位置: 仪器信息网 > 行业主题 > >

痕量扫描等离子射仪

仪器信息网痕量扫描等离子射仪专题为您提供2024年最新痕量扫描等离子射仪价格报价、厂家品牌的相关信息, 包括痕量扫描等离子射仪参数、型号等,不管是国产,还是进口品牌的痕量扫描等离子射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合痕量扫描等离子射仪相关的耗材配件、试剂标物,还有痕量扫描等离子射仪相关的最新资讯、资料,以及痕量扫描等离子射仪相关的解决方案。

痕量扫描等离子射仪相关的论坛

  • 【原创大赛】ICP-MS准确测定痕量稀土元素

    ICP-MS准确测定痕量稀土元素摘要:本文采用微波消解电感耦合等离子体质谱法(ICP-MS)准确测定水系沉积物中的痕量稀土元素,通过校正方程法排除干扰,使测量准确性进一步提高,回收率达92%~109%。关键词:微波消解,电感耦合等离子体质谱法,稀土传统采用ICP-AES法测定稀土元素,具有多元素同时分析和灵敏度高的优点,但也存在一些问题,其检出限高,测定低含量稀土元素时误差较大。本文采用电感耦合等离子体质谱(ICP-MS)测量技术,在保持扫描速度快、多元素同时测量优势的同时,大大降低了氧化物离子干扰,通过优化操作参数和选择无干扰同位素及其校准方程检测,使测量准确性进一步提高。1实验部分1.1主要仪器和试剂Milli-Q超纯水机(美国Millipore 公司);NexION 300D型电感耦合等离子体质谱仪(美国PerkinElmer 公司);Mars6微波消解仪(美国培安公司);18种稀土混标溶液(美国百灵威公司);硝酸(UP纯,苏州晶瑞化学有限公司);氢氟酸(UP纯,苏州晶瑞化学有限公司);高氯酸(GR纯,国药集团试剂有限公司);仪器调谐液(1μg/L Li、Be、Mg、In、Ce、U);GBW 07301a和GBW 07365(中国地质科学院地球物理地球化学勘查研究所)1.2仪器操作参数使用调谐液调整仪器各项指标。使仪器灵敏度、氧化物、双电荷、分辨率等各项指标达到测定要求。调谐后参数列于表1。表1 ICP-MS主要工作参数 工作参数工作参数RF功率1600 W分辨率(10%峰高)0.7 u等离子体气流量15 L/min测量方式跳峰辅助气流量1.20 L/min扫描次数[align=cen

  • 【资料】-色谱联用技术在环境和生物样品中痕量超痕量元素形态分析研究进展

    摘 要:随着分析科学的不断发展,常用的元素分析方法,如光谱技术AES ,AFS) 和质谱等已不能满足环境和生物样品中痕量、超痕量元素的赋存形态分析。以色谱联用技术为代表的元素形态分析测试技术(如:液相色谱- 原子光谱联用、色谱- 电感耦合等离子质谱联用、毛细管电泳- 电喷雾离子化质谱联用技术等) 已成为国内外研究的热点。本文扼要的介绍了近年来国内外在环境和生物样品中痕量、超痕量元素砷、硒、汞形态分析的色谱联用技术研究进展,并侧重于样品前处理方法、痕量或超痕量元素的形态分析技术。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31681]色谱联用技术在环境和生物样品中痕量超痕量元素形态分析研究进展[/url]

  • 【转帖】痕量尼莫地平测定的紫外薄层色谱扫描法

    以V氯仿∶V甲醇∶V二氯甲烷∶V正己烷=2.6∶1.2∶1∶5为展开剂, 建立了薄层色谱扫描法测定痕量药物尼莫地平的新方法。 其Rf值为0.48。 扫描波长为365 nm, 该法的最低检出限为0.005 μg,相对标准偏差为2.94%, 工作曲线的线性范围为0.005~1 μg。 用该法测定了加有尼莫地平的血清和尿样, 尼莫地平的平均回收率为96.7%~103%。关键词 尼莫地平, 紫外薄层色谱法  尼莫地平(nimodipine)为一钙离子拮抗剂, 能有效地调节细胞内钙的水平, 具有抗缺血和抗血管收缩作用[1], 是近年来治疗高血压和脑血管疾病的一种新药, 其结构式如右所示。   有关该药的测定方法, 曾报道过的有高效液相色谱法[2]、 分光光度法[3], 但用紫外薄层色谱扫描法测定尼莫地平至今未见文献报道。 本文首次采用紫外薄层色谱法, 以氯仿-甲醇-二氯甲烷-正己烷为展开剂, 对尼莫地平的测定进行了研究。 该法具有简单、 快速、 灵敏、 准确的特点, 我们成功地做了血清和尿样中不同浓度的加标回收实验, 结果令人满意。 该法可用于临床作为测定尼莫地平血药及尿药浓度的一种简单、 有效的新方法。1 实验部分1.1 仪器与材料  CS-9000双波长薄层色谱扫描仪(日本岛津); 毛细管定量点样器(美国Drummond); UV-1型紫外分析仪(上海顾村电光分析仪器厂); 硅胶GF254 板(青岛海洋化工厂); 尼莫地平(山东新华制药厂提供)。  其它试剂均为分析纯以上规格。1.2 实验方法  用1 μL定量毛细管点样, 标样与试样点于同一板上 待溶剂挥发后, 放入盛有展开剂的层析缸中, 用蒸汽预吸附3~5 min, 然后用展开剂展开, 展开剂为V氯仿∶V甲醇∶V二氯甲烷∶V正己烷=2.6∶1.2∶1∶5, 展开到距板上端1 cm处, 展距9 cm 取出板, 待溶剂挥发干净, 置于紫外分析仪, 在254 nm波长下可观察到样品暗红色斑点, 尼莫地平的Rf值为0.48 然后用薄层色谱扫描仪扫描, 以外标两点法定量。  紫外薄层扫描条件: 以尼莫地平光谱λmax=365 nm为测定波长,锯齿扫描, 数据累加4, 数据平滑11,高灵敏度。2 结果与讨论2.1 展开剂的选择  我们根据Glajch三角形最优化法[4]及参照Snyder溶剂参数法[4]对展开剂的组成及配比进行了选择,确定了以氯仿-甲醇-二氯甲烷-正己烷作为四元混和展开剂,其配比为V氯仿∶V甲醇∶V二氯甲烷∶V正己烷=2.6∶1.2∶1∶5 。

  • 【转帖】食品中“痕量元素”分析技术的新进展

    食品中“痕量元素”分析技术的新进展 对食品研究来说.测定痕量元素是很重要的.研究各个元素的毒理学性质和其营养性质.控制食品或生产、包装过程中的元素污染.都需要广泛调查各种食品中微量元素的含量水平以及元素在食品中的存在形态。 在人们对食品中各种元素对人体健康影响的研究中.痕量元素分析技术有了长足的发展.所使用的仪器主要是微波消解装置、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url](AAS)、电感耦合等离子体原子发射光谱仪(ICP-OES)、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])等.本文结合食品中痕量元素分析的需求重点介绍这些技术自90年代至今的发展现状。

  • 痕量离子检测

    大家MS方法设置[font=Arial, sans-serif][size=13px]痕量离子检测勾不[/size][/font]

  • 电感耦合等离子体质谱仪ICP-MS 2000

    电感耦合等离子体质谱仪 (简称ICP-MS),是20世纪80年代发展起来的一种新的微量(10-6)、痕量(10-9)和超痕量(10-12)元素分析技术。可测定元素周期表中大部分元素,极低的检出限、极宽的动态线性范围、谱线简单、干扰少、精密度高、分析速度快、可提供同位素分析。性能优势1、分析速度快、操作简单、灵敏度高、背景噪音低、消除干扰效果更佳、维护方便。 2、一键式等离子体设置使得等离子体的优化更为简便具有极好的重现性。 3、先进等离子体屏蔽技术,极大地提高仪器的灵敏度,改善低质量数元素的检出限,达到ppt水平。 4、具有独特的活动接口门结构,可在真空下替换和装卸采样锥与截取锥,便于日常维护。 5、全新六级杆碰撞反应池,提高离子传输效率和消除多原子离子干扰能力。 6、无需数/模切换,由计算机全自动设定和控制,实现9个数量级的浓度动态范围。7、新型真空腔体结构,无任何导线连接,各个组件采用不对称安装和插入式安装。软件优势ICP-MS2000提供最便捷的操作软件,非常直观,全面。软件囊括了目前所有分析方法,包括特殊的同位素比值和同位素稀释法。 智能选择方法、智能仪器调谐、QC质量控制、多种分析方法组合功能、序列分析、自动监测功能、自定义报告格式。仪器配置进样系统:敞开式进样系统结构,使用外部安装的雾化器,自我定位,无需调整。 蠕动泵:计算机控制3通道12滚轴低脉冲蠕动进样泵,转速可调。 雾化器:石英玻璃同心雾化器(0.8 mL/min)。 雾化室:小体积,低记忆效应,采用半导体制冷装置高纯石英雾化室,单通道梨型带撞击球。 炬管:整体型石英炬管,1.5 mm口径喷射。 ICP源:27.12 MHz固态技术,水冷,最大功率1600 W。计算机控制功率,自动点火与熄火。 炬位调整系统:计算机全面控制x、y、z三维炬管精确位置,所有调整参数存入分析方法内。 气体控制系统:3个计算机控制的质量流量计,用于雾化气,辅助气,等离子体气的全部气流量控制。 断电保护系统:在意外停电发生时,安全自行关机,而不损坏仪器系统。 接口:镍锥,具有独特的活动接口门结构,易于替换和装卸采样锥与截取锥。 活动阀门:计算机控制阀门,保护仪器真空,便于在真空系统工作时拆装和清洗采样锥和截取锥。 离子透镜系统:配有高效率六极杆离子导向系统,在全质量范围内获得最佳的离子传输效率,全自动的离子聚焦调谐过程,真空室内的透镜使用非对称安装,方便拆装定位。 四极杆特征:钼四极杆,主极杆180 mm×12 mm,预四级杆20 mm×12 mm,开盖即可安装,拆装。 四极杆RF发生器:风冷2.0 MHz,质量轴稳定性108多通道信号分析器:65000道多通道信号分析器,适应瞬间信号分析要求。 信号采集模式:跳峰,扫描,分段扫描,同时跳峰和扫描混合型。 软件:提供自动控制仪器及其附件的能力,Windows 2000/XP/vista/win7(32位或64位)专业操作系统。 水循环系统:温度控制:10~40℃;最小流速:5升/分钟,压力控制:0~600 kPa。技术参数质量数量范围:2~255 amu测量范围:≥108 灵敏度: Be≥2×106 ; In≥35×106 ; U≥30×106 单位(cps/mg/L) 检出限: Be≤10;In ≤2;U≤2 单位(ng/L) 分辨率:0.6~0.8 amu信噪比:≥50×106 背景噪音:≤2 cps(全质量范围) 质量轴稳定性:≤0.05 amu/24 h稳定性RSD: 短期≤3%;长期≤4%氧化物离子:CeO+/Ce+≤3%双价离子:69Ba2+/138Ba+ ≤3% 同位素比:(107Ag/109Ag)≤0.3%丰度灵敏度:≤1×10-6低质量端;≤5×10-7高质量端应用领域1、环境领域:饮用水、海水、环境水资源食品、卫生防疫、商检等。 2、半导体领域:高纯金属,高纯试剂,Si 晶片的超痕量杂质,光刻胶等。 3、医药及生理分析领域:头发、全血、血清、尿样、生物组织等医药研究,特别是全血铅的测定。 4、核工业领域:核燃料的放射性同位素的分析,初级冷却水的污染分析等。5、其他领域:如化工,石化、地质等。

  • 【原创大赛】天瑞ICPMS2000B测试高纯硝酸中的痕量超痕量元素含量

    【原创大赛】天瑞ICPMS2000B测试高纯硝酸中的痕量超痕量元素含量

    前阵子作为项目,做了高纯硝酸当中的23种杂质元素含量,主要是验证同一方法中运行多种模式以及“碰撞聚焦”的实际效果。 实验结果表明,对于机器背景较高的元素如Na、Mg等以及受Ar基干扰较为严重的元素如K、Ca、Fe等,碰撞聚焦-冷等离子体模式下的“灵敏度/背景”要比单纯地使用“冷等离子体”模式来得更佳。 电感耦合等离子体质谱仪测试高纯硝酸中痕量超痕量元素杂质含量摘要: 采用超纯水稀释高纯硝酸的处理方法,直接测试了高纯硝酸当中的锂、铍、钠、镁、铝、钾、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、砷、银、镉、钡、铅、铋等 23种元素的含量。实验结果表明,各元素 BEC 值在 0.2~40ng/L 之间,加标回收率在 80~120%,长期稳定性5%。 作为工业和实验室分析当中最为常用的硝酸,其重要作用毋庸置疑。对于光伏、半导体工业来说,这是常见的清洗、反应用酸。其中所含杂质的含量对于产品有着十分重要的影响——例如金属元素过高会导致器件被击穿、P\B 含量则决定着光伏电池的 P/N 型。另外,在ICP-MS 分析当中,由于仪器高灵敏度、样品中目标元素一般为痕量超痕量级别,故样品前处理中最常使用的硝酸也需要做一定程度的杂质管控。 本文参照光伏对于硝酸的标准——SEMI PV16-0611,以标准加入法、“一次进样运行四种模式”测试了高纯硝酸当中的 23 种元素。实验结果表明,对于硝酸中各杂质的背景等效浓度 BEC 值在 0.2~40ng/L 之间,加标回收率均在 80%~120%,2 小时的长期稳定性均在 5%以下。1、 材料与方法:1.1 材料与仪器: 质量分数为 68%的高纯硝酸,随带检测报告表明每种杂质元素含量均不超过1μ g/L;实验用水:Millipore-A20 所制得的超纯水,其电阻率≧18.2MΩ ·cm;ICP-MS2000B:带碰撞反应池和 2 路碰撞反应气,可分别通(He+H2)和(He+NH3),也可根据实际需求配置纯氦气或者其他纯碰撞/反应气;1.2 标准溶液的配置: 锂、铍、钠、镁、铝、钾、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、砷、银、镉、钡、铅、铋混合标准溶液均由对应的 10mg/L 单标配置而成,各标液购自于 Inorganic Ventures 公司;以重量法经一步稀释成 230.97μ g/L;1.3 前处理方法: 由于 ICP-MS 的离子源 ICP 部分是和大气直接接触的,故等离子体中也有大量的N、O、H,因此硝酸的基体除了酸度影响灵敏度之外,其他的和超纯水并无差别,故前处理上以超纯水直接稀释 10~20 倍即可;考虑到本次样品的纯度仅大致为每元素含量 1ppb 且该样品已多次启封使用,含量已较未开封样品高,故以稀释 20 倍处理。1.4 仪器工作参数: 由于使用了 4 种工作模式,各模式的参数罗列如下:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669011_1638867_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016081010231588_01_1638867_3.png2、 结果和讨论2.1 分析模式的选择 由于测试的元素总共有 Li、Be、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Ag、Cd、Ba、Pb、Bi 等 23 个元素。在这些元素当中,可大致分为以下四类:a、 受背景干扰较强但本身并无多原子离子干扰的元素:Li、Na、Mg;这类元素在冷等离子体或者冷等离子体-碰撞反应模式中,背景可以被有效地压制,具体情况如 1.4 的表 2;b、 受多原子离子干扰较为强烈且电离能较低的元素:K(ArH)、Ca(Ar)、Cr(ArC)、Mn(ArN)、Fe(ArO);这类元素在冷等离子体条件下,多原子离子的干扰可以被有效地压制,但本身的灵敏度也比较低。另外,在冷等离子体调谐条件下加入碰撞反应气,除了可以有效提高目标元素灵敏度之外,(He+H2)混合气当中的 H2还可以有效地消除多原子离子的干扰。故这些元素十分适合“碰撞聚焦-冷等离子体”模式;c、 受多原子离子干扰强烈且电离有高有低的元素:Al(CNH、CN)、K(ArH)、Ca(Ar)、Ti(SO、SiOH)、Cr(ArC)、Mn(ArN、ArNH)、Fe(ArO、CaO)、Co(ArF、ArOH)、Cu(NaAr)、Zn(SO2、S2)。这类元素既适合上述的“碰撞聚焦-冷等离子体”,也适合“碰撞-反应模式”。在仔细地比较了“灵敏度-背景”之后,Al、Ti、V、Fe、Zn、Cu 元素选用碰撞反应模式来解决多原子离子的干扰。d、 其他元素:由于并无多原子离子的干扰或者干扰影响很小,同时考虑到灵敏度的问题,故 Be、Ga、Ag、Cd、Ba、Pb、Bi 等元素采用常规模式。综合上述原则,各元素采用的分析模式如表 3:http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010242298_01_1638867_3.png2.2 各分析模式切换的时间和分析总时间 在这四种模式当中,低功率运行的状态一般来说,要比高功率更加不耐受基体。因此如果从高功率向低功率转换,稳定时间要更长一些;另外,通入碰撞反应器和没通碰撞反应气又需要一定的稳定时间。综合以上的因素,实际测试过程中将“碰撞聚焦-冷等离子体”模式放在第一位,其他的依次是“冷等离子体”、“碰撞反应”、“常规”。模式之间切换的稳定时间为:45s、30s、30s、30s。 23 个元素的总分析时间大约为 6 分钟。2.3 内标元素的选择、样品处理方法及分析方法: 任何的动态型分析检测设备,都存在信号的漂移,样品基体也会导致这种情况的发生,因此测试过程当中一般都会采用内标加以校正。但是对于高纯酸而言,由于其待测元素的含量都处于超痕量的水平。如果添加内标,那么无论是内标溶液本身还是添加这个操作,都存在引入污染的风险。另外,实际测试过程中,硝酸样品除了酸度之外其他情况和超纯水十分类似。因此,综合以上因素,测试过程中不用任何的内标。 在前处理的选择上,由于无论是硝酸还是盐酸,如果进行赶酸富集的话,对前处理的环境有较高的要求。考虑到 ICP-MS 的高灵敏度并且这两种类型样品基体和超纯水十分类似,故前处理上以“体积比”的方式用超纯水将待测样品稀释20 倍。测试过程当中,以标准加入法分析各元素含量。2.4 背景等效浓度 BEC 值、加标回收率和 2 小时的长期稳定性: 2.4.1 背景等效浓度 BEC 值为 5%的硝酸信号所对应的浓度值,具体如表 4;另外为验证检测能力,还以标准加入法测试了超纯水中的各个元素http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010260305_01_1638867_3.png 超纯水中各元素 BEC 值测试中,标准曲线为超纯水添加 2.0、5.0、10.0、50.0ng/L。 结果如表 5:http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010263344_01_1638867_3.png 扣除上述超纯水中各元素的浓度值,并乘以稀释倍数,得出硝酸中各元素含量元素 背景等效浓度 BECng/L元素 背景等效浓度 BECng/L7Li 12.22 58Ni 32.7923Na 58.76 59Co 16.2324Mg 164.85 63Cu 11.9127Al* 3545 64Zn* 918.939K 216.0 69Ga 3.8440Ca* 1309 75As 93.9348Ti 128.6 107Ag 7.9251V 35.03 114Cd 2.5652Cr 32.22 138Ba 10.8655Mn 21.13 208Pb 8.6256Fe 244.6 209Bi 6.51值如表 6:http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010290113_01_1638867_3.png2.4.2 加标回收率和长期稳定性: 硝酸的加标回收率以 5%(V/V)硝酸中添加 500ng/L 的混合标准溶液进行测试;同时以 2 小时内测试 21 次的方式测试了长期稳定性。结果分别如表 7 和图 1:http://ng1.17img.cn/bbsfiles/images/2016/

  • 纯水中痕量氟离子氯离子的离子色谱法分析

    对于电子产品、核电力等行业来说,水的纯度具有极其重要的地位。痕量离子都会使产品的纯度不达标而成为废品,或对电机表面产生腐蚀作用。离子色谱是快速、灵敏测定阴阳离子的好方法,已成为精细产品制造业必备的仪器,以直接进样的方式可以测定ug/L级的离子。经浓缩富集,可以测定至ng/L级。本文使用青岛普仁仪器有限公司生产的PIC-10型离子色谱仪(配有五极电导检测器)对纯水中痕量的F-和Cl-进行分析,优化了色谱条件,以直接进样的方式可灵敏的测定几个ug/LF-和Cl-,得到了较好的结果。 色谱条件: 离子色谱仪:PIC-10型,青岛普仁仪器有限公司(配有五极电导检测器) 色谱柱:Shodex 52 4E (4.0*250mm) 淋洗液:Na2CO3+NaOH 流速:0.7mL/min 检测器:抑制电导检测 进样体积:100uL 色谱柱及检测器温度:36℃ 色谱条件的选择与优化: 为灵敏的测定ug/L级离子,需使用高效的离子交换柱,本文使用Shodex 52 4E (4.0*250mm)色谱柱,该色谱柱对SO42-离子的塔板数可达14000/m,是测定痕量离子的首选。但该色谱柱推荐使用的淋洗液为3.6mMNa2CO3,其淋洗离子仅有负二价的CO32-;由于碳酸盐淋洗液在抑制电导检测中存在水负峰,对弱保留的F-定量产生一定的干扰,淋洗液中CO32-的浓度变化也不会对负一价的F-、Cl-的保留时间、信噪比产生明显的影响,因此降低淋洗液中CO32-的浓度并添加OH-作为负一价的洗脱离子。采用大体积直接进样的方式是测定痕量离子的常用方法,可省去浓缩富集的时间,但对于4mm内径的色谱柱而言,进样体积一般不超过200uL。通过不断尝试,笔者发现在100uL进样体积时,水负峰不干扰F-定量,且F-、Cl-能够达到较高的信噪比,因此使用100 uL进样体积。 实验前期准备 使用电阻率大于18.2兆欧的水清洗容量瓶3-5遍,并注满容量瓶,盖紧瓶盖,浸泡4小时。使用优级纯的试剂配制F-、Cl-溶液,ug/L级的F-、Cl-现用现配,并在配置后6小时内使用。 实验结果 首先测定18.2兆欧去离子水的空白,色谱图如下所示。http://www.qdpr.com/uploads/161121/2_110622_1.jpg 从色谱图中可以看出,去离子水在8.3min和11.5min检出两种物质,其中11.5min的色谱峰与Cl-保留时间一致,说明去离子水中存在痕量的Cl-(信噪比为4.6)。F-(保留时间为6.2min)并未检出。 使用容量瓶配制各种溶液之前,使用去离子水反复清洗并浸泡4小时。浸泡4小时后,测定溶液的空白值,其色谱图如下所示。http://www.qdpr.com/uploads/161121/2_110650_1.jpg 从色谱图中可以看出,去离子水在浸泡容量瓶4小时后,有三种物质被检出。此样品中Cl-的信噪比为5.4,F-同样未检出。 在测定了去离子水和容量瓶的空白后,将含有2.5ug/LF-、Cl-的溶液注入离子色谱仪,得到以下色谱图。http://www.qdpr.com/uploads/161121/2_110727_1.jpg 从色谱图中可以看出,F-、Cl-在色谱图中均明显检出,此外还有三种未知组分。F-、Cl-的信噪比分别为3.4和4.0(Cl-未扣除空白)。 将含有5.0ug/LF-、Cl-的溶液注入离子色谱仪,得到以下色谱图。http://img60.chem17.com/9/20161121/636153382766497363235.jpg 从色谱图中可以看出,F-、Cl-在色谱图中均明显检出,此外还有两种未知组分。F-、Cl-的信噪比分别为6.0和8.0(Cl-未扣除空白)。结语 使用国产的PIC离子色谱仪和五极电导检测器,能够灵敏的测定ug/LF-和Cl-。去离子水和容量瓶空白样品表明,F-在该色谱条件下不存在干扰,可灵敏、准确的测定。空白样品中存在痕量的Cl-,其信噪比大于三,因此对实际样品中几个ug/LCl-只能灵敏而不能准确的测定。使用更加纯净的水作为溶剂,当去离子水和容量瓶等空白样品中Cl-低于三倍的信噪比时方能准确测定痕量的Cl-。参考文献略作者:青岛普仁仪器有限公司 王存进

  • SEM/TEM-Mapping对痕量元素含量的要求

    我想看看样品中一种痕量元素和Fe,Al的分布关系,打算用SEM或者TEM,但突然想到痕量元素本身含量很低,不知道是否能否检测到!请问大家mapping扫描痕量元素含量至少需要多少才能有效?那XRF-Map呢?

  • 【原创大赛】两款“低运行成本”的等离子体发射光谱仪“新品”

    【原创大赛】两款“低运行成本”的等离子体发射光谱仪“新品”

    ICP发射光谱仪具有灵敏度高、多元素同时测量的优点,但是其应用中氩气消耗量很大,此问题也是一直困扰用户的问题。通常一钢瓶氩气价格在200-300元之间,ICP仪器正常开机的话能够使用4小时左右。传统ICP仪器的氩气消耗量在15-18L/min,那么一年下来,氩气成本也是一笔不菲的费用。尤其是,对于偏远地区的实验室来说,氩气的购买和使用更加具有困难。  所以,“降低运行成本理念,节能环保”理念的分析仪器成为了现今仪器公司研发的目标。2011年,发射光谱仪新品中有两款仪器的设计中体现了此理念。  一是珀金埃尔默推出的ICP发射光谱仪Optima 8000。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301148_342765_1755058_3.jpg  珀金埃尔默公司ICP-AES的工厂一直设在纽约近郊的Shelton,主要的技术研发人员在此工作了20余年,产品生产质量稳定,技术基础雄厚。自1978年推出5000型以来,先后经历了5500型、6500型、P II 型、P1000 型、P2000 型、P40 型、P400 型的不断改进。1993年推出的Optima 3000型是世界上第一台全谱直读ICP-AES,1994年推出专利的双向观测技术,使ICP-AES的性能进入了一个全新的阶段。2008年完善并推出的Optima 7000DV和Optima 7300DV是珀金埃尔默公司的第十三代产品,2011年7月推出的Optima 8000系列采用了全新的射频发生器技术,是珀金埃尔默公司的第十四代产品。  Optima 8000采用了平板等离子体技术,减少了三分之一的氩气消耗量,并且不需要冷却水,运行成本大大降低。在Optima 8x00ICP光谱仪采用了平板等离子体技术,专利的RF 发生器采用免维护的等离子感应板,取代了传统的螺旋负载线圈。由于无需冷却、减少了氩气的消耗量,运行成本也大大降低。传统仪器的氩气消耗量在15-18L/min,而采用平板等离子体技术只要8-10L/min的氩气消耗量就能达到同样的效果。对于一些样品量比较大的实验室来说,每年在氩气消耗方面大概可以节约10万元,这样每三四年节省的费用都可以买一台新的仪器。  另一是安捷伦推出的1000W微波等离子体原子发射光谱仪4100 MP-AES。http://ng1.17img.cn/bbsfiles/images/2011/12/201112301148_342766_1755058_3.jpg    微波等离子体原子发射光谱仪并不是一个新鲜的技术,很早以前就已经出现了,但是多为实验室研究用的仪器,并且功率最高不过几百瓦,因其等离子体光源的温度低、电磁辐射高、金属元素分析灵敏度弱等原因,一直没有真正的商品化。  所以,安捷伦推出的这款1000W的4100 MP-AES也可以说是全球首款大功率微波等离子体原子发射光谱仪。微波发生器采用了日用微波炉的发生器,在人们日常生活中已经普遍使用,安全无泄漏。分光系统采用的是平面光栅的扫描式单色器,532*128pixels、6万多像素的CCD检测器。其工作温度达5000K,只有原子谱线,干扰简单。  并且采用气体冷却的方式代替水冷,绿色环保。  最为重要的是,4100 MP-AES可直接使用氮气或空气作为工作气体,无需使用易燃或昂贵气体,提高了安全性,大大降低运行成本。4100 MP-AES的价格比原子吸收光谱高,但比单道扫描型ICP-AES低,更是远远低于全谱直读型ICP-AES;而4100 MP-AES在灵敏度、线性动态范围、检测限和分析速度等性能上均优于火焰原子吸收光谱,与扫描型ICP-AES的分析性能相近。据安捷伦公司自己介绍,使用4100 MP-AES取代火焰原子吸收光谱仪能够显著解决分析费用。例如,在100个样品中分析9个元素,每周工作3天,则在五个月就开始省钱,18个月将会解决运营成本40000多美元。

  • 【求助】DGS-Ⅲ型单道扫描等离子光谱仪是ICP-AES吗?

    [em09506]我是一菜鸟,以前没使用过什么仪器,最近公司买了2台仪器,一台是荧光分析仪(上海产),一台就是DGS-Ⅲ型单道扫描等离子光谱仪(武汉产),现在仪器商还没有来培训,暂时我想找点资料学习一下,可是对此不了解,请大家帮帮忙~~!!!

  • 做痕量氯离子,浓度点越大峰高峰面积越低是怎么回事?

    刚接触[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],要扩项,做电厂水汽中痕量阴离子,现在就有氯离子做样,用的ICS-1100,AS19+AG19+抑制器,4mm的,配的20mMol氢氧化钾淋洗液,等度。样品浓度5,10,15,20ug/L。。请大神解答一下,为什么浓度越高,反而峰高峰面积越小了?然后是请教一下现有的配置能不能做痕量的阴离子,如果不能需要更换什么?[img]https://ng1.17img.cn/bbsfiles/images/2022/08/202208111604365543_5297_5501758_3.png[/img]

  • 【分享】天气不错,分享13个标准:GB-T 20127.1~13-2006 钢铁及合金 痕量元素的测定

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47111]GBT 20127.1-2006 钢铁及合金 痕量元素的测定 第I部分石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定银含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47112]GBT 20127.2-2006 钢铁及合金 痕量元素的测定 第2部分氢化物发生-原子荧光光谱法测定砷含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47113]GBT 20127.3-2006 钢铁及合金 痕量元素的测定 第3部分电感藕合等离子体发射光谱法测定钙、镁和钡含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47114]GBT 20127.4-2006 钢铁及合金 痕量元素的测定 第4部分 石墨炉[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47115]GBT 20127.5-2006 钢铁及合金 痕量元素的测定 第5部分萃取分离-罗丹明B光度法测定稼含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47116]GBT 20127.6-2006 钢铁及合金 痕量元素的测定 第6部分没食子酸-示波极谱法测定锗含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47117]GBT 20127.7-2006 钢铁及合金 痕量元素的测定 第7部分示波极谱法测定铅含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47118]GBT 20127.8-2006 钢铁及合金 痕量元素的测定 第 8部分氢化物发生-原子荧光光谱法测定锑含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47119]GBT 20127.9-2006 钢铁及合金 痕量元素的测定 第9部分电感藕合等离子体发射光谱法测定钪含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47120]GBT 20127.10-2006 钢铁及合金 痕量元素的测定 第10部分 氢化物发生[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47121]GBT 20127.11-2006 钢铁及合金 痕量元素的测定 第11部分电感藕合等离子体质谱法测定铟和铊含量[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47122]GBT 20127.12-2006 钢铁及合金 痕量元素的测定 第12部分 火焰原子[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=47123]GBT 20127.13-2006 钢铁及合金 痕量元素的测定 第13部分碘化物萃取一苯基荧光酮光度法测定锡含量.[/url]

  • 【原创】应用AOTF近红外光谱仪检测烟用香料中痕量As、Pb含量 (国家专利技术)

    [center]LUMINAR 5030便携式AOTF[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]烟用香料中痕量As、Pb含量的测量( 该技术已申请国家专利,砷检测专利号:200710017124.0铅检测专利号:200710017122.1 )[/center]一. 烟草行业目前状况:烟草企业标准《YC-T 164-2003烟用香精和料液》中4.4条规定:烟用香精和料液的砷含量不应高于1.0 mg/kg;7.2条规定:按GB/T 8450测定砷含量。作为烟用香精和料液中必检和控制的一个指标,砷含量测定GB/T 8450方法为二乙氨基二硫代甲酸银比色法。其原理为:在碘化钾和氯化亚锡存在下, 将样液中的高价砷还原为三价砷, 三价砷与锌粒和酸产生的新生态氢作用, 生成砷化氢气体, 经乙酸铅棉花除去硫化氢干扰后, 将溶于三乙醇胺-三氯甲烷中或吡啶中的二乙氨基二硫代甲酸银溶液吸收并作用, 生成紫红色络和物, 与标准比较定量。 烟草企业标准《YC-T 164-2003烟用香精和料液》中4.5条规定:烟用香精和料液的铅含量不应高于5.0 mg/kg;7.3条规定:按GB/T 8449测定铅含量。作为烟用香精和料液中必检和控制的一个指标,铅含量测定GB/T 8449方法为二硫腙比色法,其原理为:样品经处理加入柠檬铵、氰化钾和盐酸羟胺等,消除铁、铜、锌等离子干扰,在pH8.5~9.0时,铅离子 与双硫腙生成红色络合物,用三氯甲烷提取,与标准系列比较做限量试验或定量试验。在砷和铅的整个分析过程中,需要消耗十多种试剂,其中有很多是强酸强碱和剧毒化合物,操作稍有不慎就会造成实验事故,严重影响化验操作人员的身体健康。还需要检测仪器和多种辅助器材,样品需要复杂的处理过程,最后才能进行测定。整个操作过程烦琐费时,技术性较强,非专业技术人员很难掌握。二. AOTF近红外检测方案:采用LUMINAR5030便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]加液体测量专用探头,对烟用香料样品进行透射扫描,几秒钟就可快速得到砷和铅的检测结果。三. 目的:实现对烟用香料中砷和铅的快速检测,快速判断烟用香料中砷和铅的含量是否合格。四. 意义: 利用AOTF[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术来分析烟用香精和料液中的砷和铅的含量,方法简单,迅速高效。该检测方法完全不需要消耗任何的化学试剂,只需扫描样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在几秒钟内即可得到精度很高的分析结果,而且不破坏被检测的样品,是一种绿色环保的分析技术。因此,不会对化验分析人员的身体健康造成任何影响。利用检测速度快的优势可以增加对砷和铅含量的检测频率,监控烟用香精和料液中的砷铅含量,提高卷烟产品的质量,减小吸烟对人体健康的危害。五. 仪器条件和样品处理:仪器:美国BRIMROSE公司产的Luminar 5030型便携式AOTF技术[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],主要部件包括:光学部分、控制部分、电源适配器、光纤探头、笔记本电脑。仪器波长范围为1100nm到2300nm,2nm的波长增量,扫描次数为100,采用InGaAs检测器,测试光程15mm。挪威CAMO公司The Unscrambler分析软件。 样品:3个厂家不同用途的香料样品,编号分别为1、2、3号,所有样品均为丙二醇溶液香料。1号样品数量为210ml,为表香香料;2号样品数量200ml,为醇香香料;3好样品数量230ml,为底料香料。三个样品均用丙二醇稀释至300ml。1号、2号样品颜色较浅,没有粘性;3号样品比较粘稠,颜色很深。 按照表1的配比将As和Pb分别用三个香料样品25ml定容,得到最终溶液中As和Pb的含量。本次实验是As和Pb同时加到一个样品中,而不是将As和Pb分别单独加到一个样品中。详细内容查看:[url=http://www.jhlaotf.com/pro/A_shownews.asp?id=299]应用AOTF[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]检测烟用香料中痕量As、Pb含量 [/url]

  • 【原创大赛】在线富集-高效液相色谱与电感耦合等离子体质谱联用测定玩具中超痕量可迁移六价铬

    【原创大赛】在线富集-高效液相色谱与电感耦合等离子体质谱联用测定玩具中超痕量可迁移六价铬

    [align=center][b]在线富集-高效液相色谱与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用测定玩具中超痕量可迁移六价铬[/b][/align][align=center]欧阳雨,曹国樟,刘崇华[sup]*[/sup],田勇,刘欣欣[/align][align=center](广州海关技术中心,广东广州 510623)[/align][align=left][b]摘要:[/b]采用在线富集-高效液相色谱与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用技术,建立了玩具材料超痕量六价铬测定方法。以10 mmol/L硝酸铵作为流动相,样品在AgilentBIO WAX NP5阴离子交换柱中富集,再通过阀切换,用75 mmol/L硝酸铵洗脱六价铬至DionexAG7阴离子柱中分离,最后经[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]进行分析。在线富集时间为4 min,进样量为900 μL,富集路流速为0.4 ml/min,洗脱路流速为0.6ml/min。实验结果显示六价铬在2~20 ng/L范围内线性良好,检出限为1.93 ng/L,精密度RSD为3.87%。与常规进样相比,浓缩因子约为8.1倍,富集效率约为90%。对2009/48/EC玩具安全指令涉及材料的样品在5ng/L和10ng/L的浓度水平下进行加标回收,回收率在93%~111%之间。[b]关键词:[/b] 在线富集;[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url];高效液相色谱;可迁移六价铬;超痕量[b]前言[/b]铬元素在自然界中以三价铬和六价铬为主要的存在形态,六价铬化合物属于有毒致癌物质[sup][/sup],欧盟玩具标准对六价铬进行限制。2014年8月,欧委会和健康及环境风险评估科学委员会(SCHER)提议将六价铬限量在欧盟玩具安全指令2009 /48 / EC基础上降低21-25倍,对Ⅰ,Ⅱ,Ⅲ类玩具材料可迁移六价铬的限值类玩具分别定为 0.0008,0.0002,0.0094 mg / kg。目前欧盟在研究能够检测出该限值的新方法,并确定在检测方法可行的情况下将会对限量进行修订。2017年公布了修订指令(EU)2018/725[sup][/sup],考虑到当前的检测技术手段,将Ⅲ类玩具材料六价铬迁移限量降低至0.053mg/kg。2018年欧盟发布的婴幼儿安抚奶嘴标准EN 1400: 2013 + A2: 2018[sup][/sup]六价铬的限量降低至0.002mg/kg。2019年发布的EN 71-3:2019[sup][/sup]给出的方法检出限仅为0.0025mg/kg,不能满足SCHER对六价铬的建议限量的检测。未来随着对六价铬的研究加深,对玩具等儿童产品中六价铬迁移量的限制将更加严格,急需新的实用检测方法支撑标准的演进。考虑到样品迁移过程需要稀释,对限量为0.0002mg/kg样品,迁移液六价铬浓度仅为0.004μg/L。目前六价铬的主要检测方法紫外可见光分光光度法[sup][/sup]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[sup][/sup]、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用法[sup][/sup]、高效液相色谱-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用法[sup][/sup]无法对该浓度水平进行检测。目前报道检出限最低的是用生物惰性Bio-HPLC与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]联用技术,检出限为0.005μg/L[sup][/sup],且Bio-HPLC部件造价较贵,多数实验室大多配置的是不锈钢管路材质的HPLC。本文采用在线富集-高效液相色谱与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用法测定玩具材料超痕量六价铬,通过控制在线富集装置,实现对样品溶液中六价铬预先8.1倍富集再进样分析,从而达到检出限降低至2 ng/L(0.0001 mg/kg)的目的,在使用普通不锈钢管路的条件下,可实现SCHER对六价铬的建议限量的检测,能够很好地支撑玩具产品六价铬相关标准的演进和推广。[b]1 实验部分1.1 仪器、试剂与材料[/b][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url](7500cx,配有八级杆碰撞反应池,美国Agilent公司);高效液相色谱(1260,配置2个四元泵G1311A和G1311B,美国Agilent公司);阴离子柱(AG7,4×50mm,美国Dionex公司);阴离子交换柱(BIO WAX NP5,4.6×50 mm,美国Agilent公司);在线富集(SPE)系统(1290 Infinity II,美国Agilent公司);pH计(Thermo Orion);纯水机(Milli-Q Elemen,美国Millipore公司)。超纯水(电阻率18.2 MΩ• cm);Cr(Ⅲ)单元素标准储备溶液(GBW08614,1000 μg/ml,中国计量科学研究院);Cr(Ⅵ)单元素标准储备溶液(GBW(E)080257,100 μg/ml,中国计量科学研究院);浓硝酸(Fisher Scientific,质量分数≥68%,痕量金属级);氨水(Fisher Optima,质量分数20%~22%,痕量金属级);流动相为硝酸铵溶液:由硝酸和氨水混合配制,调节pH=7.0~7.1,浓度分别为10mmol/L和75mmol/L。[b]1.2 样品前处理[/b]称取约0.2g样品,加入50倍质量体积的0.07 mol/L盐酸,调节pH在1.1~1.3,放入遮光的(37±2)℃的恒温振荡水浴锅中以180 r/min的频率振荡1h,再静置1h,后取出用0.45 μm滤头过滤溶液。抽取5 ml滤液,逐滴加入氨水调节pH至7.0~7.1,混匀,待测。[b]1.3 分析条件1.3.1 [/b]在线富集与HPLC条件流动相A(G1311A):10 mmol/L硝酸铵水溶液(pH=7.1);流动相B(G1311B):75 mmol/L硝酸铵水溶液(pH=7.1);富集流速(G1311A):0.4 ml/min;洗脱流速(G1311B):0.6 ml/min;进样体积:900μL;富集时间:4 min;运行时间:12 min。[b]1.3.2 [/b][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]条件 分析模式:氦气碰撞反应池模式;射频功率:1550 W;采集深度:7.0 mm;载气流速:1.05 L/min;等离子气流速:15.0 L/min;辅助气流速:1.00 L/min;碰撞气(氦气)流速:4.0 ml/min;同位素:[sup]52[/sup]Cr;积分时间:0.3s。[b]2 结果与讨论2.1 色谱柱的选择[/b]富集柱的选择时本方法的关键技术。在pH=7.0-7.1时,六价铬主要以CrO[sub]4[/sub][sup]2-[/sup]、Cr[sub]2[/sub]O[sub]7[/sub][sup]2- [/sup]存在,Cr[sup]3+[/sup]主要以[Cr(H[sub]2[/sub]O)[sub]6[/sub]][sup]3+[/sup]形式存在。本文选用由弱阴离子交换填料填充的Agilent BIO WAX NP5作为富集柱,六价铬能在柱内的富集,由于三价铬在该pH下为阳离子,无法富集直接被洗脱,在富集步骤实现了三价铬和六价铬的分离,避免后续分析过程中三价铬对六价铬的影响。避免标准方法中采用的反相色谱柱(C8,C18等)的需要用EDTA络合样品被进一步稀释、使用离子对试剂四丁基氢氧化铵、高含量三价铬的干扰等问题。分离干扰离子并富集后的六价铬洗脱后采用Dionex AG7 做为分析柱可获得满意的效果。[b]2.2 在线富集步骤[/b]六价铬富集步骤如图1所示。富集状态:流动相A和自动进样器将样品压入富集柱,六价铬在富集柱上保留,同时分析柱则用流动B冲洗,此时流路为:样品→4→5→10→1→富集柱→8→9→废液。待样品溶液全部压入富集柱后,切换装置至进样状态:用流动相B洗脱富集柱上的六价铬,并引入分析柱进行分离,再进入[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]进行分析,同时用流动A冲洗富集柱,此时流路为:流动相B→7→8→富集柱→1 →2→分析柱→[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]。[/align][align=center][img=,690,332]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271352364531_8352_1337947_3.png!w690x332.jpg[/img][/align][align=center][b]图1 在线富集装置进样示意图[/b][/align][align=center][b]Fig.1 Injection schematic of on-line enrichment device[/b][/align][b]2.3 富集条件选择[/b]富集时间和富集路流速是影响分析物富集的重要因素,富集时间太短或流速太慢,分析物未完全富集,富集时间太长或流速太快,分析物容易被冲出。配制了10 ng/L六价铬和2 ng/L六价铬的溶液,考查了流速从0.3 ml/min至0.7 ml/min变化时,和富集时间从1 min到6 min变化时,六价铬的富集效果,最终选择选择富集路流速为0.4 ml/min,富集时间为4 min,在该条件下测量低浓度六价铬时有更高的强度,且六价铬峰形良好。[b] 2.4 进样体积的选择和最大进样浓度的确定[/b]因实验室的定量环体积所限,本文进样体积900μL,配制10 ng/L六价铬溶液,改变进样体积范围在500 μL~ 900 μL之间,观察测得六价铬溶液强度的变化。结果如图2a,随着进样体积的增大,六价铬的强度逐渐增大,基本呈线性关系,可以看出900 μL进样量时,加大进样量有望进一步提升富集效果,降低检出限。考虑富集柱的容量所限,为确定方法测试的最大浓度,配制浓度范围为0-100 μg/L的六价铬溶液,进样900 μL,观察测得六价铬溶液强度的变化,发现在0-50 μg/L浓度范围内,六价铬峰面积呈线性。浓度为100μg/L时,六价铬的峰形已发生明显变化,说明此时色谱柱已饱和。即在本文方法下,最大分析浓度为50 μg/L,超过该浓度的溶液需要稀释后再测试。[align=center][img=,684,363]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271354250549_5376_1337947_3.png!w684x363.jpg[/img][/align][align=left][b]2.5 洗脱路流速的选择[/b]改变流速对六价铬的保留时间、峰型、信噪比有明显影响,使用10 ng/L六价铬混合溶液,在富集路流速为0.4 ml/min下,改变洗脱路流速在0.3 ml/min ~ 0.7 ml/min。随着洗脱路流速增大,分离度逐渐下降,六价铬的信噪比先上升后下降,可能是流速过低时,色谱峰宽过大,分析时间延长导致信噪比降低,而流速过高时会加大色谱柱内部扩散,同时增加等离子体负载导致信噪比下降。经过对比,为获得最好的信噪比,选择洗脱路流速为0.6 ml/min。[b]2.6 浓缩因子[/b]常规HPLC与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]联用技术检测六价铬,检出限可达0.02μg/L[sup][/sup]。若用在线富集技术降低仪器检出限至0.004 μg/L以下,浓缩因子需为5倍以上。本文配制100 ng/L六价铬的标液溶液,分别通过两种方式分析,(1)直接进样100 μl;(2)采用在线富集进样900 μl,结果如图3所示。在相同浓度下,六价铬的强度有显著差异,计算两者的峰面积的比例,得浓缩因子约为8.1倍,大于目标浓缩因子,可满足测试要求。通过浓缩因子8.1倍和实际增大进样量9倍,可算出富集效率为90%,富集效果良好。[/align][align=center][img=,596,313]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271358134818_7713_1337947_3.png!w596x313.jpg[/img][/align][align=left][b]2.7 线性范围、检出限和精密度[/b]按照所选条件,测量六价铬标准工作溶液,浓度为0、2、5、10、20 ng/L。在给定浓度范围内,六价铬呈线性,线性回归方程六价铬y = 1293.3 x + 55.0,相关系数大于0.999,线性良好。重复测量5 ng/L六价铬混合标准溶液八次,对应的RSD 3.87%,精密度满足分析要求。根据液相色谱检出限定义,取信噪比S/N=3时的浓度,计算得到六价铬的检出限为1.93 ng/L,取2 ng/L的六价铬溶液进样分析,回收率为115%。[b]2.8 准确度[/b]分别选取EN71-3三类材料进行加标回收实验,其中Ⅰ类选取某铅笔芯,Ⅱ类选取某款墨水,Ⅲ类选取某塑胶颗粒,结果如表1所示。结果显示回收率在93%~111%,证明该方法的准确度能满足测试要求。[/align][align=center][img=,672,368]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271359248793_4119_1337947_3.png!w672x368.jpg[/img][/align][align=left][b]2.9 阳性样品的检测[/b]应用本方法对白色粉末、透明液体、黄色液体以及蓝色塑胶粒4种阳性样品进行测试,并采用EN 71-3:2019方法进行比对(表2),其中透明液体用本文方法有检出,用EN 71-3:2019方法小于检出限。以EN 71-3:2019方法的测试值为真值,计算测试偏差,偏差均小于15%,说明两种方法无显著差异。[/align][align=center][img=,676,420]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271400352670_6017_1337947_3.png!w676x420.jpg[/img][/align][align=left][b]3 结论[/b]本实验采用在线富集系统和HPLC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]技术,探索并建立了一种玩具材料超痕量六价铬分析的方法。在优化的条件下,该方法的进样量为900 μL,和常规方式进样相比,六价铬浓缩因子约为8.1倍,富集效率约为90%,检出限为1.93 ng/L,可满足SCHER提出的六价铬建议限量的要求,为欧盟进一步修改玩具材料六价铬限值做好准备。本方法仅需在实验室常规检测六价铬的HPLC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]上加入一个在线富集装置,无需将仪器的不锈钢管路换成无金属背景的生物惰性管路,成本低,在技术上具有可行性,具有巨大的开发和应用潜力。并且在实际工作中可通过进一步加大样品进样量,以进一步降低检出限。[b]参考文献:[/b]1.Mo M S, Zhong C G, Xie J Y, Zhang H X.[i]Practical Preventive Medicine[/i].(莫民帅,钟才高,谢锦尧,张洪霞. 实用预防医学), 2005, 12(1): 41-432.IARC. [i]Genva: World Health Organization[/i],1997: 17-333. Directive 2009 /48 /EC of theEuropean Parliament and of the Council of 18 June 2009 on the Safety of Toys.Official Journal of the European Union,L170.2009.4. Commission Directive (EU) 2018/725of 16 May 2018 amending, for the purpose of adaptation to technical andscientific developments, point 13 of part III of Annex II to Directive2009/48/EC of the European Parliament and of the Council on the safety of toys,as regards chromium VI. Official Journal of the European Union. L122. 2018.5.EN 1400: 2013 + A2: 2018 .Child use and care articles - Soothers for babies andyoung children - Safety requirements and test methods. European Standard.6.EN 71-3:2019. Safety of toys - Part 3: Migration of certain elements. EuropeanStandard.7.GB 7467 - 87. Water Quality - Determination of Chromium(Ⅵ) -1,5-Diphenylcarbahydrazide Spectrophotometric Method. National Standard of thePeople's Republic of China(水质六价铬的测定二苯碳酰二肼分光光度法. 中华人民共和国国家标准).8.HJ 908 - 2017. Water Quality -Determination of Chromium(Ⅵ) - Flow injection analysis(FIA) anddiphenylcarbazide spectrometric method. Environmental Protection Standard ofthe People’s Republic of China(水质六价铬的测定流动注射-二苯碳酰二肼光度法. 中华人民共和国环境保护标准)9.HJ 687 - 2014. Solid waste - Determination of Hexavalent Chromium - by Alkalinedigestion/flame atomic absorption spectrophotometric. Environmental ProtectionStandard of the People’s Republic of China(固体废物六价铬的测定碱消解/火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法. 中华人民共和国环境保护标准)10.Tian Y, Liu C H, Fang H, Li H K. [i]Journalof Instrumental Analysis.[/i](田勇,刘崇华,方晗,邹振基,李函珂. 分析测试学报),2015, 34(6): 706-710.11.LuC Q,[i] Journal of Instrumental Analysis.[/i](禄春强)分析测试学报,2016,35(12):1639-1642.12.Hu Y J, Qin Y L, Lai Y D.[i] Modern FoodScience and Technology[/i].(胡玉军,覃毅磊,赖毅东. 现代食品科技),2014, 30(4): 301-305.13.Ni Z L, Tang F B, Qu M H, Mo R H.[i]Practical Preventive Medicine.[/i](倪张林,汤富彬,屈明华,莫润宏. 色谱),2014, 32(2): 174-178.14.Guo S F, Ling Y T, Wang H, Hu D C, Wang F. [i]Cerealand Food Industry[/i].(郭少飞,凌约涛,王惠,胡德聪,王帆. 粮食与食品工业),2014, 21(5): 95-9815.Yan D, Zou Z J, Song J E, Zeng X C, Zhang Z X . [i]Environment Chemistry.[/i](严冬,邹振基,宋娟娥,曾祥程,张之旭. 环境化学), 2014, 33(6): 1048-105116.Chen L Q, Wang X, Huo J Y, Xing Y N, Chen Z Y. [i]Chinese Journal of Analysis Laborator.[/i] (陈丽琼,王欣,霍巨垣,幸苑娜,陈泽勇.分析实验室),2014, 33(8): 945-94917.Wang X, Xing Y N, Chen Z Y, Huo J Y, Chen L Q.[i]Chinese Journal of Analytical Chemistry[/i]. (王欣,幸苑娜,陈泽勇,霍巨垣,陈丽琼.分析化学研究简报),2013, 41(1): 123-12718.WuS L, Wang X M, Pan C, Yu J, Zhang K, Wang K, Zheng R,[i] Journal of Instrumental Analysis.[/i](吴思霖,王欣美,潘晨,于建,张凯,王柯.分析测试学报,2019,(6):724-727.19.Song J E, Yan D, Zeng X C,Zhang Z X[i].Environmental Chemistry[/i]. (宋娟娥,严冬,曾祥程,张之旭. 环境化学),2013, 32(8): 1590-159220.Wang X, Xing Y N, Chen Z Y, Huo J Y, Chen L Q.[i]Chinese Journal of Analytical Chemistry[/i]. (王欣,幸苑娜,陈泽勇,霍巨垣,陈丽琼.分析化学研究简报),2013, 41(1): 123-127[/align]

  • 求教如何测量痕量C、O

    各位专家,我有一种高纯气体(6N)需测量其中痕量C、O(1ppm)离子,但不知其中含C、O的确切组分,如何定量?感谢!

  • 大体积直接进样离子色谱法测定饮用水中痕量溴酸盐

    大体积直接进样[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定饮用水中痕量溴酸盐史亚利1,2,蔡亚岐1,刘京生1,牟世芬1*,温美娟2(1.中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室,北京 100085;2.北京科技大学化学系,北京 100083)摘要:本文建立了一种无需样品前处理,直接大体积进样,电导检测饮用水中痕量溴酸盐的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]新方法。分析柱为容量高、亲水性强的Dionex IonPac AS19阴离子交换柱,EG40在线产生KOH淋洗液,等浓度泵作梯度淋洗。该方法对溴酸盐的检出限为0.2µ g/L,在1~100µ g/L范围内具有良好的线性(r=0.9996)。将该方法用于北京市自来水和市售瓶装水样品中痕量溴酸盐的检测,实际样品的加标回收率在90%~106%之间,1µ g/L溴酸盐连续进样10次,相对标准偏差(RSD)为5.7%。关键词:溴酸盐,大体积直接进样,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],饮用水请到以下地址下载PDF全文阅览:http://www.instrument.com.cn/netshow/SH100244/paperDetail.asp?ID=12003[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=7547]相关附件[/url]

  • 【dwbsemail原创】离子色谱使用实例(三)-痕量分析逆向进样

    【dwbsemail原创】离子色谱使用实例(三)-痕量分析逆向进样

    本文转帖自色谱博客网 几年前(可能是2005年,记不清了)有客户要分析痕量的氯离子,浓度在10ppb以下,当时发现进样重现性很差,有时是5ppb,有时是50几ppb,有时是10几ppb,很是头痛。最头痛的是以注射器吸上机用的淋洗液进样,仍然有氯离子,且重现性也差,同一种溶液居然也会出峰,怪啊。接下来又以去离子水进样,仍然有氯离子出峰。 无耐总要找到原因啊。1、如果阀(9725i)的进样口没洗干净可能会残留氯离子,下次进样有可能带进定量环里。为了排除这个原因,我在阀配件找出针位清洗器(Needle port cleaner),装在注射器上,以去离子水冲洗多次后,吸取5mL去离子水清洗针位及定量环,如下图所示:[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807271101_100234_1608336_3.jpg[/img]然后取去离子水进样3次,结果氯离子仍然出峰且重现性在百分之三十左右。又进淋洗液(直接从淋洗液瓶中取样),氯离子还是出峰。通过以上实验可以看出不是因为阀污染造成的氯离子重现性差。2、如果注射器污染,污染物慢慢溶出也会使结果重现性差。于是将注射清洗多次后进样,氯离子仍然出峰。更换新的注射器进样,仍是如此。说明并非是注射器带来的污染。3、能引入污染的两点都排除了,会是什么原因呢?后来想到是否会是环境因素呢,青岛在海边,经常有雾,其中含有氯离子较多,是否会是注射器在清洗进样过程中吸附了空气中的氯离子造成的。是否可以找到一种方法可以解决空气污染的问题成了确认我的怀疑的关键。此时我想起了9725i进样阀的说明书,上面提到可以通过进样口吸取样品。马上找出说明书,我确如此,方法是将阀进样的废液管放放样品瓶中,将注射器插入进样口,不是推入样品而是吸取样品,如下图所示:[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807271101_100235_1608336_3.jpg[/img]这样进样的优点是:(1)样品无需接触注射器,不会因注射器带入污染(2)废液管冲洗干净后,直接插入样品瓶中,进样过程中废液管的管口一直在样品中,不与空气接触,不会因空气带来污染。(3)无需清洗针位及注射器,减少工作量(4)污染少可用于痕量分析用此方法可分析痕量离子,重现性可有效保证。在实验条件有限,没有洁净室的实验室,可做为有效的补充。[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807271100_100233_1608336_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807271100_100232_1608336_3.jpg[/img]

  • 【求助】痕量硫酸盐的检测

    各位好,最近我们用万[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]做痕量硫酸根,不知为什么,一旦浓度低于50 ppb,就会在硫酸根位置出负峰。后来咨询了仪器公司的工程师,他们开始说是我们实验室的水不好,后来借了其它实验室的饿Millipore的水,还是不行,后来他们又告诉我们不要用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]做痕量硫酸根,而应该用电位滴定,可是当时购买的时候明明说可以做到0.5 ppb的啊。我们用的是MIC,据说这是最好的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]了,为什么连硫酸盐都做不了啊?难道是我们实验室的水的问题吗?还是我们的水平问题?我们确实没有做过[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],不过以前做过液相的,应该差不多吧?做痕量硫酸盐需要注意什么呢?求各位大侠指点迷津!

  • 关于痕量的疑惑

    岛津GC-2014C的仪器上,在SPL进样口的进样模式里面有不分流进样模式,不分流进样模式是针对于痕量化合物组分的分析,这个痕量有没有标准呢?多少个ppm才算是痕量呢?

  • 电感耦合等离子体发射光谱(ICP-AES)在金属元素含量测定中的运用

    1引言金属元素普遍存在于原油中,含量虽然少,一般在百万分级至十亿分级的范围内,但在原油炼制工艺和石油产品的质量方面有着不可忽视的作用,直接影响企业的经济效益。据相关研究报道,原油中含有的微量元素有59中,其中金属元素有45种,这些元素大致可分为三种类型。包括如V,Ni,Fe,Mo等变价金属, Ca,Na,K等碱性金属,以及Cl,I,Ag等其他金属。金属元素在原油中的存在形式主要有无机盐、环烷酸盐和金属卟啉化合物等形式,这些不同的存在形式对于石油加工及产品的使用等方面存在这巨大的危害。不同金属元素对原油加工的危害表现可概括为以下几个方面:(1)使催化剂失活。一些原油中的金属物质由于化学反应,在高温条件下迅速分裂并附着在催化剂上导致催化剂失活。如Ni导致催化剂选择性降低等。(2)影响重油加氢处理过程。加氢反应中脱出的金属一般以硫化物的形式结合到催化剂上,堵塞催化剂的孔道或者是结合到催化剂的活性部位,导致原料无法接近活性中心。(3)腐蚀设备。原油中的金属氧化物会在设备内壁内沉积、结垢,堵塞腐蚀管壁。例如钒在燃烧过程中形成V2O5,并与其中的Na2O在金属表面形成低共熔物,从而溶解掉金属表面的氧化层保护物,加速金属表面的腐蚀。不仅在原油加工方面,同时成品在燃烧后易生成氧化物或低熔点的化合物,附着在汽车发动机的气缸壁和排气阀表面,与金属发生氧化还原反应腐蚀金属,严重影响使用效率。由于金属元素在原油加工及产品质量方面有着很大的危害,因此检测原油中金属的含量,对于研究金属的形态及脱除方法,起着重要的作用。测定原油中金属的含量,本实验室采用电感耦合等离子体发射光谱(简称ICP-AES)来进行测定。ICP发射光谱分析法在物理学、化学、生物学和天文学等基础学科的研究中,以及冶金、地矿、建材、机械、化工、农业、环保、食品和医药等国民经济重要部门,都有广泛的用途。包括:(1)在冶金工业和金属合金分析上的应用。这是ICP发射光谱仪分析法传统的应用领域之一。主要包括坯料和半成品快速半定量分析(用于金属材料分类),机械零部件的不破坏分析,金属和合金中少量元素和痕量元素的测定,金属中微量夹杂物分析,金属的局部、薄层和逐层分析,金属合金中气体分析,炉渣分析,炉前快速分析,以及纯金属中杂质分析等。(2)在地质勘探工作中的应用。这是ICP发射光谱仪分析法又一传统应用领域。主要包括根据全国储量委员会的要求,研究矿样的成分;初步定性与半定量分析,弄清元素的大概含量,以便选择进一步分析的化学分析方法。(3)在环保、农业和生物等样品分析方面的应用。ICP发射光谱仪分析法在环境保护、农业和生物等样品分析方面的应用,主要包括空气、大气漂尘及颗粒物分析、土壤和肥料分析、植物、动物和有机灰分分析,以及天然水和污水分析等。ICP-AES分析法是测定这些痕量元素十分有效的方法之一。等离子体发射光谱(ICP-AES)有着如此广泛的运用,与其他测定金属元素的方法比较,有着以下几个特点,包括:(1)具有多元素同时测定,有文献报道分析元素可达到78种之多;(2)线性动态范围宽、灵敏度高、精密度好,快速准确等特点;(3)样品消耗少,标准曲线的线性范围宽; (4)技术发展成熟,技术不成熟的人员也可根据制定好的方法操作。(5)自吸现象小,且无电极放电,无电极污染。这些优势都让当然,无可避免的,ICP-AES同样也存在着一些无可避免的缺点,包括:(1)进样之前一般都需要进行繁复的预处理,以消除有机基质;(2)含量(浓度)较大时,准确度较差,甚至无法检测,需进行适量稀释;(3)大多数非金属元素难以得到灵敏的光谱线用氩气,分析费用高;(4)仪器也比较贵,有机物分解时吸收较大能量,从而改变等离子体的组成,影响ICP放电的稳定,甚至会使ICP炬焰熄灭。有机物分解的碳粒可能淀积在矩管内,使矩管全部或部分堵塞。尽管有着一些不可避免的缺点,但对于原油中金属含量的测定,ICP技术依然是最方便的方法之一。2 实验部分2.1仪器与试剂仪器:CCD-simultaneous ICP-AES试剂:Ca、Cu、Fe、Na、Ni、V等元素的标准储备溶液;盐酸、浓硫酸(纯度为GR);试验用水为二次蒸馏水;氩气(纯度不小于99.99%)。2.2标准溶液的配备根据样品中各元素的含量,配制一套适合样品分析的检测使用的混合标准溶液。2.3分析谱线及仪器参数的选择(1)确保矩管和RF线圈的位置正确,进样器、雾化器正常工作。(2)多效吹扫器至少用高纯氩气吹扫3 h以上,等离子体点火之前高纯氩气的吹扫时间不小于30 min,冷却线圈的温度应维持在-35℃左右。(3)每隔一段时间应用波长矫正液(Mn257.6 = 5 ppm)进行矩管的水平及垂着扫描。,若是有所偏差,需对仪器进行适当调整。2.4样品处理2.4.1样品预处理。原油样品的处理采用酸进行预处理。准确称取5.0 g左右的样品于50 ml的石英烧杯内,加入5 ml浓硫酸(纯度为GR),放置于电炉上低温蒸干,放置于600℃的马弗炉内高温灰化。最后用1:1(v / v)硫酸溶液于电炉上蒸发,蒸干后再用1:1(v / v)处理一次,最后用10 ml的稀盐酸(v / v :9:1)定容,待测。2.4.2样品测定确保标准溶液正常的情况下进行标准曲线的绘制,随后测试样品。3实验结果分析本文以岗位上常规样品(生产处800 W装置采集)三脱后测定元素Ca、Fe为例,简单对实验结果进行分析。预处理的质量m =5.1101 g用v / v :9:1的稀盐酸定容后v =10 ml空白(blank)C a =2.1013 ug / ml空白(blank)Fe =0.3720 ug / mlICP-AES测定值C a =3.4146ug / mlICP-AES测定值Fe =4.2128ug / ml仪器检测的数值是g原油稀释至10 ml后的值,因此真实的元素含量=(测定值-空白值)×10/m。所以,此三脱后所含C a 、Fe的含量为:C a =2.57 ug / gFe =7.52 ug / g当然,这是本岗位上常做的样品,其方法已经建立且成熟使用。在实际的工作中,对于具体的问题,还需具体分析。4讨论采用ICP-AES测定原油中金属含量对于炼油工艺中脱金属剂等其他课题的研究发挥着很大的作用。因而在对样品进行测定的过程中保证样品处理准确、标样配制恰当、仪器运行正常高效是非常重要的。为了保证原油中金属元素的含量测定准确,以下几个方面是需要注意的。(1)样品的处理。不同的样品含有的元素不同,所需测定的元素要求也不相同。有机物对于ICP的危害是巨大的,因此在样品的预处理时,需尽量消除有机基质。而各种酸溶液的使用,可以很好的消解有机基质。(2)标准样品的配制。标准样品浓度不管是逐级递增或递减,目的是建立标准曲线。意思是:建立方程,y=ax+b。y相当于强度,x相当于所配制的标准浓度,配制一系列标准后,进样通过计算机测得的y的值,从而得出a、b的值。仪器自动建立标准曲线,曲线建立后,进任何一个样,也即给任何一个y值,计算机通过方程y=ax+b推算出一个x值,即物质含量或浓度值。(3)分析线的选择。应该根据样品含量来定,接近检出限的话当然要选最灵敏线,浓度较高的话可以考虑选第二、第三灵敏线。每个仪器都有推荐的线,最好在做的时候全选上,然后根据表现的线性来看,在绘制好标准线后用标准溶液当样品测测,看结果偏差的大小来确定分析线。(4)光谱干扰的克服。光谱干扰是ICP-AES法测定金属元素过程中会遇到的一个问题。可以直观的从光谱图上看出,出现光谱干扰,一般会使结果偏高。在日常测定中,改变波长的选择,选择干扰较小的波长来克服这个问题。(5)基体干扰的克服。除待测元素以为的物质,都称为基体。基体会给待测元素的信号产生不同程度的增强或者是抑制作用。然而基体干扰并不能直观的从图谱上看出,所以消除基体干扰,常规的处理方法是进行基体匹配,包括设置空白对照和配制适量的多元素混标,以此来消除基体干扰。当然,最有效的方法是标准加入法,即以待测样品作为溶剂,通过加入标准溶液来反推出待测溶液的浓度。以上几个问题是ICP-AES法测定样品中金属元素必需注意的问题。在实际工作中,只有不断的认真学习分析,具体问题具体分析,才能够确保数据的真实准确。除了在处理及测试方法上需要注意,在日常的使用过程中,还需要对定时对于仪器进行维护保养,确保仪器正常高效使用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制