当前位置: 仪器信息网 > 行业主题 > >

快速响应直流变送器

仪器信息网快速响应直流变送器专题为您提供2024年最新快速响应直流变送器价格报价、厂家品牌的相关信息, 包括快速响应直流变送器参数、型号等,不管是国产,还是进口品牌的快速响应直流变送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速响应直流变送器相关的耗材配件、试剂标物,还有快速响应直流变送器相关的最新资讯、资料,以及快速响应直流变送器相关的解决方案。

快速响应直流变送器相关的资讯

  • GC-9560-HD变压器专用色谱仪成功应用国内首台正负800KV直流变压器验收
    日前,由上海华爱色谱分析技术有限公司生产的GC-9560-HD变压器油专用色谱仪成功应用到特变电工沈阳变压器集团有限公司正负800KV直流变压器的验收试验中,正负800KV直流变压器是沈变集团的研究成果,也是国内大电压等级的直流变压器,变压器的色谱分析在该变压器的验收试验起着至关重要的作用,GC-9560-HD变压器油专用色谱仪经受住了考验,成功完成了该项目的变压器油中溶解气体组份含量分析。
  • 川仪股份研制的1E级安全壳淹没液位变送器(JE61)顺利发运
    近日,川仪股份为国家228工程自主研制的1E级安全壳淹没液位变送器(JE61)顺利发运。注册仪表网,马上发布/获取信息   1E级安全壳淹没液位变送器用于事故后安全壳内液位的长期监测,是保障电站安全停堆及后续监测电站状态的重要设备。该设备工况复杂,需满足在高温、高辐照、地震、LOCA、水淹、严重事故等恶劣工况下的正常运行要求,此前该设备长期依赖进口。   川仪股份联合上海核工院于2018年开始立项研究,在国家科技重大专项支持下,通过持续技术攻关,顺利完成了国产化1E级安全壳淹没液位变送器的产品研发、样机制造、鉴定试验等工作。经鉴定,公司所研制的1E级安全壳淹没液位变送器满足各项指标要求,达到国际先进水平。   依托国家重大专项课题成果转换,公司迅速启动民核取证工作,通过与上海核工院、上海成套院、国核示范精诚合作、快速响应,短短半年便通过设备鉴定试验,成功取得民用核安全设备设计制造许可证。进入设备制造阶段以来,在公司党委书记、董事长吴朋,党委副书记、总经理吴正国精心安排下,川仪流量仪表、四联测控、川仪速达等所属单位按照“坚守核安全底线、严控产品质量、科学策划、严格要求、高效执行”的指导思想全力投入到1E级安全壳淹没液位表的生产制造工作中,精益求精、一丝不苟,争分夺秒,全力以赴,按期实现1E级安全壳淹没液位变送器的顺利交货,有力保障了228工程关键节点,用实际行动践行“两个维护”。   川仪股份始终坚持以川仪所长服务国家所需,1E级安全壳淹没液位变送器(JE61)的顺利发运,实现了国产化设备首台套应用,是228工程1E级设备国产化的又一次重要突破,为核电站关键设备全面实现国产化贡献了川仪力量。
  • 安东帕推出第三代MCR系列流变仪
    奥地利安东帕先进流变测量技术研讨会在京召开   仪器信息网讯 2011年11月3日,“奥地利安东帕先进流变测量技术研讨会”在北京和平里大酒店彩虹厅顺利召开;此次研讨会主题为“创新科技,引领未来”,来自食品、化妆品、高分子材料、石油和石化等领域的50余位专家学者出席了会议,仪器信息网作为特邀媒体参会。 研讨会现场   作为流变测量技术的全球领先者,安东帕(Anton Paar)公司拥有80多年的精密机械和电子制造领域的历史和传统,每年至少将销售额的20%用于研发,不断推进流变测量技术的创新,是一家极具创新精神和快速增长率的流变仪公司,也是当前市场上唯一一家由自己工厂生产流变仪的供应商。目前,安东帕已成为欧洲市场第一品牌,其流变仪产品的年销售量已位居全球第一。 奥地利安东帕(中国)有限公司流变部经理陈飞跃先生   陈飞跃先生首先介绍到,一直以来,流变仪的测量原理上分为的应力控制型和控制应变型。应力控制型流变仪的技术发展方向之一是流变仪要有很好的应变和速率控制。而安东帕公司在流变仪的研发也正是从这一理念着手,如1995年推出的UDS 200、1999年推出第一代MCR流变仪、2004年推出的第二代MCR流变仪都不同程度地引领了流变仪技术的创新。随着电子电路技术和通讯技术的发展,为了进一步扩大技术的领先优势,更好地贯彻新想法和功能附件,安东帕公司经过长达3年的研发和半年多不断的测试,在2011年7月隆重推出第三代MCR 系列模块化智能型高级流变仪——MCRxx2 系列,包括MCR52、MCR102、MCR302、MCR502四个型号,覆盖了从质量控制到顶级流变学基础研究的所有领域。 第三代MCR系列流变仪之MCR302   对于MCRxx2的技术创新点,陈飞跃先生说到,MCRxx2的创新之处在于卓越技术、模块化、操作更加舒适高效。MCRxx2配备了全面升级的的无刷同步直流马达、高精度空气轴承,专利的法向力传感器,使测试精度和测试范围提升到前所未有的水平;Toolmaster、TruGap、T-Ready、TruStrain、TruRate五项技术全面领先于竞争对手。随后,陈飞跃先生分别从仪器原理与研究热点2个角度出发,进一步展示了MCRxx2的技术特点与应用优势。 奥地利安东帕(中国)有限公司流变仪产品经理郑炳林先生   郑炳林先生谈到,第三代MCR流变仪专注于最新应用的前瞻性流变仪设计,是目前最先进的流变测试系统,其完全模块化、智能化的设计,使其既有最强大的扩展功能,又具有简单方面的操作性,可满足目前和将来的应用需求,将再一次引领流变测量技术的发展方向。   MCRxx2可提供各种模块化控温系统,温度范围可从-150到1000℃,样品可从低粘度液体到高弹性固体,而测量模式可从传统流变测试到DMTA测量。对于这一技术优势,郑炳林先生着重介绍了MCRxx2在高分子聚合物领域的应用实例。通过这一系列的实验结果,与会人员可以看出,MCRxx2非常适用于测量高分子聚合物的流变性能、粘弹行为、玻璃化转变、形态变化等参数性质。   最后,郑炳林先生特别强调,MCRxx2具有20多种扩展系统,包括界面流变系统、动态机械热分析系统、高压密闭系统、UV反应测试系统、可视显微流变系统、激光散射SALS系统等。用户在获取样品结构信息的同时,也可增加额外的参数或利用流变仪的功能进一步分析材料特性,而这些特殊的应用附件均可轻松集成到MCRxx2中。同时,郑炳林先生还将MCRxx2的拓展功能与同种功能的其它产品相对比,再次证明了MCRxx2强大的拓展功能与更加舒适、高效的操作功能。 陈飞跃先生接受仪器信息网编辑采访   Instrument:与第二代MCR流变仪相比,第三代MCR流变仪在技术与应用方面有何独特优势?   陈飞跃先生:第三代MCR流变仪,即MCRxx2系列,首先实现了完全自适应的真正的应变控制,真正的速率控制,样品扭矩控制和高精度的法向应力控制,即在同一台仪器内实现了流变学意义上的的所有测量和控制,并进一步拓展到大振幅振荡剪切(LAOS)的范畴;其次,进一步强化了在组合流变测量技术(结构分析,额外参数和拓展材料表征等三类)上的优势,推出了第二代流变光学测量系统(显微或小角激光光散射);此外,MCRxx2采用最新的电子电路和机械设计,其更为全新的高端研发平台、更多的功能和应用值得用户期待。   Instrument:伴随着第三代MCR流变仪的推出,贵公司对全球及中国的流变仪市场是否有了不一样的期待?   陈飞跃先生:是的。新一代的MCR流变仪将秉承Anton Paar对质量的承诺,开放的测量平台紧扣客户的应用需求。从上市几个月来全球和中国的反馈来看,新一代的MCR流变仪确实获得了用户的好评,同时市场份额也得到了进一步的提升。 MCR302新型流变仪获得众多与会用户关注
  • 安东帕MCR 702流变仪新品发布会成功举办
    2013年6月28日, 安东帕公司于上海举办了MCR 702流变仪新品发布会,并进行了专题的应用讲座。来自复旦大学、华东理工大学、联合利华、巴斯夫等高校和企业的五十多位专家和高工,共同见证了这款安东帕开创性的顶级流变仪的面世。   安东帕中国总经理王德滨先生亲临现场,为本次活动致欢迎辞。他介绍了安东帕的发展历程,并阐述了公司未来在中国的发展战略。同时,本次讲座特别邀请了MCR 702仪器的专利发明人&mdash 安东帕(德国)流变仪技术专家Jö rg Lä uger博士作为主讲人,为大家详细讲解国际流变学的最新进展及通过MCR 702 革命性创所能给大家带来的巨大收益。   安东帕作为世界高品质的顶级分析仪器制造商,已经走过91年的历史。我们始终以&ldquo 满足客户需要&rdquo 为核心责任,每年20%以上的销售额均用于新产品的研发。流变测量仪器也是安东帕非常重要的一个分支,在2011年我们就发布了第三代模块化高级流变仪 ,而这次的MCR 702 Twindrive流变仪测量的范围更广,是流变仪发展史中的一次创举。   Jö rg Lä uger博士通过视频和翔实的科研报告,介绍了MCR 702流变仪的各项革命性技术指标及创新功能。 它所采用 的TwinDriveTM 专利技术,由两套功能强大的模块化同步直流(EC Motor)马达组成,标志着流变测量规则的改变。这种创新设计为流变仪的控制精度、扭矩等指标带来了革命性的突破,并开创了无数的流变测量选择。例如,当两个马达设置为反方向旋转,能够在测量样品中形成固定的凝滞面,因而更容易通过显微镜进行检测 还可以随意调整两个马达的旋转速度,来移动停滞面的水平位置。   针对MCR702流变仪对现有流变测量应用所带来的改善和提升,及其在各类创新型应用中的表现,Jö rg Lä uger博士以严谨的科研数据和翔实的测试报告,向与会专家们做了精彩的说明,赢得了大家的一致好评,现场气氛非常踊跃。   MCR702 Twindrive流变仪是唯一有两个测量头的流变仪!   目前其他的流变仪都是使用步进马达系统进行间隙控制,控制精度只能达到微米级。MCR702 TwinDrive流变仪通过法兰上由Piezo元件构成的IsoLign间隙控制系统使这一指标达到了10nm,比传统方法高几个数量级。   MCR702流变仪的空气轴承技术结合先进的扭矩扫描功能,使其具有快速控制功能和从230mNm到低至1nNm的超宽扭矩 而且它采用了最先进的处理器技术,大幅提高了处理速度,并确保了1ms的测量点持续时间,进而提高了瞬态测试效率。简而言之,无论在过去、现在还是未来,采用Twindrive技术的MCR 702都是第一台单机系统就能满足所有可能的应用要求的流变学测量仪器。   MCR702的问世,将进一步巩固安东帕在流变仪市场的领导地位。我们将秉承一贯的创新思想以及对质量的承诺,满足更多的客户需求。   7月2日,安东帕还将在北京举行第二场新产品巡回发布会和专题讲座,也欢迎更多的专家到现场与我们共同就新技术进行广泛的讨论。
  • 德图变送器在西门子温室中的应用
    在温室中,环境条件扮演着相当重要的角色,因为即便是非常微小的温度波动都可能导致严重的后果。举例来说:在夜间,温度仅降低一度,温室中的供暖系统就必须连续工作满一小时,才能将温室环境重新调节过来。对植物造成的影响暂且不提,这种温度波动所造成的成本花费及能源浪费就已经非常巨大了。所以对于温室系统中温度、湿度、灌溉的调节工作来说,精准而可靠的测量技术是必不可少的。在西门子德国的I&S部(工业系统及技术服务部),德图的在线测量技术成为温室系统专家们可靠的工作助手。   I&S部门的技术总监,Andreas Bruckerhoff先生是温室自动化方面的权威,他们的客户遍布全世界,有大型的温室、园艺公司、以及很多知名公司的研发部门。在其温室自动化这个复杂的系统中,德图testo 6651和testo 6681变送器扮演着核心的角色。   Bruckerhoff已将新变送器的购买计划推迟了好几个月,因为他在等待德图2007下半年投放市场的最新版仪器。“有了testo,问题就简单多了” Bruckerhoff如是说,“完美的技术,一流的服务,同时德图还负责帮你校准。最重要的是,产品的性价比很好,而且只要带上适当的工具,现场就可以对仪器进行校准”。   温室自动化系统中变送器的使用绝非易事,这位自动化专家解释道“温室中的高湿环境以及植物保护所使用的多种活跃媒介使得变送器的使用环境变得恶劣,所以我们使用的变送器产品必须是坚固耐用的,3个月就瘫痪掉的,可绝对不行”。所以他们一直在努力寻找适合的温湿度测量探头,直到后来遇到了testoAG,,并与之成为了良好的合作伙伴。德图现在正和西门子合作开发一款专业用于温室环境的温室探头,现已进入测试阶段,不久将会以系列产品的形式面世。
  • 流变测试中提效提质的关键助手———连续进料系统“CONTIFEED”
    德国高特福公司,在高压毛细管流变的测试技术上一直在不断地推陈出新。新上市的流变仪连续进料系统,是一个全新的理念突破和实现。它做为高压毛细管流变仪的新型选配附件,第一次让大家将焦点关注在测试加样部分。先来看一下,连续进料系统的工作动态图:高特福品牌为什么会针对“进料”这个步骤进行改造升级?这种升级又会解决流变测试中什么问题呢? 首先,这是被测材料在进行工艺加工精确模拟试验时的必要条件。目前,橡胶工业中的流变仪主要使用门尼粘度计和MDR硫化仪。这两种仪器的测量范围和测试出的结果,与实际加工中材料的真正形变状态对比,两者差异较大。由于材料的非线性行为,对胶料的加工行为的预测往往会因为缺少其他更优的仪器选择性而导致材料的加工行为无法预测,或者是预测到的加工行为是错误的。而且橡胶材料的触变效应在实验室测试时也常被技术人员忽略,而在实际加工中,橡胶料在挤出或注射成型前都是进行了充分塑化的,尤其是橡胶材料中还含有蜡和增塑剂,这导致加工过程中胶料会产生滑移行为,这些情况和现象,在实验室的测试中都是必须要考虑进去的因素,不能被忽略。而传统的橡胶测试仪器,进样后在模具中无法对胶料进行充分的塑化,也无法记录这些行为,因此测试数据不包括这些影响,所以导致测试结果与实际情况大相径庭。因此,(如果采用传统的橡胶流变测试仪器和方式来预测工艺效果)往往在产品都开始生产后才被发现实验室表征的加工状态是错误的,这就造成了生产时间和材料的浪费。在模具流动模拟中(即模流分析),忽视塑化对流动行为的贡献,特别是忽视壁滑行为,会导致模具(口模)预测设计的错误,使新产品启动生产时间长且成本高。这里要解释一下什么是材料的塑化高分子材料的塑化主要指的是材料的充分混合及充分熔融,塑化好的橡胶材料都有较好的流动性。由于橡胶材料的导热性能较差,与塑料相比,橡胶的加工温度都偏低,因此在实验室表征时,可以对橡胶提前混炼,达到较好的混合效果,但是放入加热设备中达到充分熔融较难,因此在表征的设备内会出现塞流。也就是橡胶材料有一定的触变性,即材料的流动性不仅仅受剪切速率影响,同时也与受力时间的有关。材料承受一定时间的作用力后才会流动。同时未塑化好的材料会产生平推流,因此在未塑化好的材料使用Mooney校准就结果就不正确了。而实际加工过程中,在加工设备,橡胶材料都进行了良好的塑化。如果在实验室要进行表征材料的流动性,需要尽量接近实际生产条件下材料的流动状态,因此选用Contifeed提前进行塑化,能够更加接近橡胶材料的真实状态。另一个重要的材料实例,如PVC干混料,这也需要对材料进行塑化,才能使粉状料凝胶化结。在这里,常规测试过程中,至少需要在单螺杆或双螺杆挤出机中进行一些塑化。在使用了挤出机塑化后才可能在后续测试中,测量出一条良好的流动曲线。因为,为实现流动曲线而设定的每一速度的停留时间都会发生变化。连续进料系统CONTIFEED的诞生,减少了测试工作量,直接将挤出机的塑化过程与高压毛细管流变仪的测试连成一体,并允许在测试前设定一个确定的材料塑化过程,然后被塑化好的料自动提供到流变仪中,一气呵成的完成测试。一站式测试简单、快捷、方便操作。那么连续进料系统Contifeed该如何设置? CONTIFEED连续进料系统是将一个螺杆直径20mm,长径比10D或25D的小型实验室挤出机与毛细管流变仪的料筒连接在一起(无论单料筒还是双料筒流变仪均适配)。图1 连续进料系统的结构原理示意图挤出机通过一个旁路阀与毛细管流变仪的料筒相连,连接位置在口模的上方。该装置允许通过毛细管流变仪产生的不同背压使材料塑化。自动旁通阀可以实现完全自动化的熔体挤入和测量程序。由于自动进料,停留时间可缩短50%。图1显示了该设备的结构原理,其中实验室挤出机与双料筒毛细管流变仪相匹配,用于同时填充两个料筒。每个料筒都配有毛细管口模。例如,口模可以有相同的直径,但不同的长度,以此来进行Bagley校正 (入口压力损失校正)。下面我们来进一步深入了解一下塑化对停留时间和表观粘度的影响一般来说,聚合物通过塑化改变其流变行为,这是由于聚合物链的解缠绕,特别是如PVC和弹性体这样的材料在加工前必须进行适当的塑化。图2显示了塑化对停留时间的影响。可以节省高达50%的时间。图2 通过平衡压力曲线减少停留时间通过进料挤出机进行塑化 螺杆直径和长径比:20mm / 10d图3显示了塑化对高油填充SBR胶料粘度的影响。这些数据采用Ostwald de Waele模型(幂律)近似表示。表3列出了Ostwald de Waele模型系数。塑化并不影响幂律系数,但粘度水平显示出约10%左右的差异。见下图图3 通过进料挤出机进行塑化对表观粘度的影响表1:Ostwald de Waele参数增塑对校正粘度和拉伸粘度的影响为分析CONTIFEED塑化对挤出胶料性能的影响,通过标准毛细管流变仪,在有CONTIFEED塑化和无CONTIFEED塑化两种情况下,给出挤出胶料的测试结果。这些数据经过了Bagley(入口压力损失)和Rabinowitsch-Weissenberg校正。这里介绍两个例子。图4显示了CONTIFEED塑化对轮胎胶料的影响,可以看到修正的剪切粘度的变化很大,而对拉伸粘度的影响较小。通过塑化,剪切粘度差异高达35%,拉伸粘度达18%。图4 塑化对修正的剪切粘度和拉伸粘度的影响图5显示了塑化对轮胎胶料影响的另一个例子,可以看到对修正剪切粘度的影响很小,而对拉伸粘度的影响很大。在这个例子中,塑化只产生了5%的剪切粘度变化,而拉伸粘度的变化很大有54%。图5 塑化对修正了的剪切粘度和拉伸粘度的影响这些例子表明,塑化不能仅仅考虑粘度和拉伸粘度的变化,因为剪切变稀行为也在改变。此外,对粘度和拉伸粘度的影响可能对于不同的材料来说,影响大小也完全不同。流变学数据表明,材料1在长直流道内的压力损失较小,毛细管入口区域差异较小,而材料2在长直流道内的压力损失几乎相同,毛细管入口区域差异较大。结论综上所述,通过连续进料系统CONTIFEED的进料塑化和挤出后,有以下优点:无气泡供料到毛细管流变仪通过这个系统对材料的有效的预热,可缩短流变测试50%的测量时间快速预热时间可以缩短材料的停留时间特别适用于热稳定性较差的材料可以确定注塑成型工艺的相关流变学数据经塑化粉末状材料也可以很容易的进行测量可以测量PVC干混物通过连续进料系统CONTIFEED塑化,剪切粘度和拉伸粘度都有所下降,适合在挤出收敛部分测定,最高可达约50%。因此,与忽略了预剪切历史的传统测试技术相比,连续进料系统CONTIFEED产生的数据更适合于过程模拟。
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 2022年流变仪&粘度计新品年中回顾:顺应国内市场快速增长
    流变仪是一种测量浆液或液体流动方式的设备,特别是对于无法通过单一粘度测量来描述的流体,流变仪可用于测量流体的流变性。流变仪广泛应用于食品、饮料、油漆、涂料、聚合物、医药、化妆品、石油化工等领域。预计2021-2027年间全球流变仪市场复合年增长率约为4%。中国是世界上最大的工业设备制造商和消费国之一,预计占东亚流变仪销售额的近40%。由于国内工业化加快以及国内对精密工业设备部门的投资,预计2021-2031年间,国内流变仪的市场规模将以12%的复合年增长率增长。目前,在国外工业发达国家,流变仪行业普遍处于较为先进的水平。流变仪制造商主要集中在美国、奥地利、英国和德国。领先的制造公司通过大力投资研发 (R&D) 活动来专注于产品开发和进步。他们还通过参与并购来扩大其地域影响力。在生产前后,控制和监控产品的工艺参数已成为石化、聚合物、橡胶、制药行业不可或缺的过程,对油漆和其他液体等成品一致性的日益关注迫使上述行业采用新的测量设备,如粘度计等。根据调研机构数据,2021年全球粘度计市场约为3.047亿美元,预测2021-2031年间市场将以6.9%的复合年增长率增长,预计到2031年底将达到5.873亿美元。中国作为世界上最大的工业设备生产国和消费国之一,估计占东亚粘度计销售额的50%以上。当前部分粘度计厂商受到易替代和低端产品的的冲击,部分用户不需要标准化的精度进行测量,从而选择采用低成本的粘度计,成本效益或将成为阻碍粘度计销售的重要因素。综合来看,国内流变仪&粘度计市场近年来将取得较快速的增长,各大厂商自2021年到2022年上半年也在陆续上市新品。据不完全统计,2021-2022年间,国内共上市了2台(套)流变仪新品和6台(套)粘度计新品。2021年-2022年上半年上市流变仪&粘度计新品2022年上半年上市新品流变仪瑞典百欧林KSV NIMA ISR Flip 界面剪切流变仪(上市时间:2022年4月)粘度计上海欢奥煤灰高温粘度计(上市时间:2022年1月)上海欢奥高温粘度计(上市时间:2022年1月)2021年上市新品流变仪奥地利安东帕模块化智能型高级流变仪MCR Evolution(上市时间:2021年4月)粘度计美国CANNON UltraVIS无溶剂运动黏度测定仪(上市时间:2021年10月)荷兰Omnitek 全自动运动粘度计S-Flow IV+(上市时间:2021年6月)杭州中旺微型自动粘度测量仪IVS200(上市时间:2021年3月)荷兰Omnitek公司S-Flow IV+专用CITO全自动进样系统(上市时间:2021年1月)2021-2022年上市流变仪&粘度计新品简介:流变仪1.瑞典百欧林瑞典百欧林KSV NIMA ISR Flip 界面剪切流变仪(上市时间:2022年4月)创新点:1. 不同与现有的流变仪,KSV NIMA ISR Flip界面剪切流变仪专注于界面流变。 2. KSV NIMA ISR Flip专利的磁针磁阱技术可以将探针精准定位在液液或者气液界面上,即使在长时间的实验或在单分子层薄膜扩散等实验中,磁阱也能够保证磁针的定位。磁阱的强度可以通过调整磁阱位置,靠近或者远离磁针来精确控制。这一控制模式也能够对单一探针施加更宽的模量和频率范围。 3. 动态剪切模量低至10-8,远超现有的检测精度水平,轻巧的磁性探针在测试过程中能最小化仪器与探针的相互作用,实现高灵敏度测试。 4. 搭配Langmuir技术,可以实现界面分子有序可控 5. 相机上下灵活切换,可以适应更多的测试目的。2.奥地利安东帕奥地利安东帕模块化智能型高级流变仪MCR Evolution(上市时间:2021年4月)创新点:即使在极端温度(-160°C 至 1000°C)下,也可以在短短一秒内以最快的速度单手联结和断开测量夹具:新型快速连接器 2:使用我们的入门预算型号,就可以精确测量低粘度样品:灵敏度更高(从 7.5 nNm 到 2 nNm) 3:即使在低扭矩下进行长期测量也能获得稳定结果:从 MCR 302e 开始,改进了 EC 马达内部的热管理 4:用于样品处理和更换附件的更大空间:从 MCR 302e 开始,增大了工作区高度 5:市场上唯一的一款带有刮边观察镜的流变仪,可以 360° 观察样品而不会出现盲点,避免了样品准备误差,结果具有高度可重复性。 6:即使在最短时间尺度内也能检测到任何样品行为的变化:每个测量点的取点时间低至 1 ms 7:完全符合制药标准:针对 RheoCompass软件的最佳制药软件包(21 CFR 第 11 部分,符合ALCOA+ 的全面数据完整性)粘度计1.上海欢奥上海欢奥煤灰高温粘度计(上市时间:2022年1月)创新点:国内首家做煤灰高温粘度计研发,解决一系列煤灰黏度特性问题,气体还原,样品溢出。上海欢奥高温粘度计(上市时间:2022年1月)创新点:可编程Brookfield LVDV2T+粘度计用于测量给定剪切速率下的粘度。操作原理是通过校准弹簧驱动浸没在试验液体中的转子。流体对转子的粘性阻力由弹簧变形来测量,该变形由旋转传感器检测测量范围由转子的转速、转子的尺寸和形状、转子所在的容器以及旋转弹簧的满量程来决定的。模型类型中的LV代表低粘度,这意味着粘度计的校准弹簧比其他DV-II模型更柔软。LV模型还配备了一套不同的标准转子。2.美国CANNON美国CANNON UltraVIS无溶剂运动黏度测定仪(上市时间:2021年10月)创新点:(1)无需清洗溶剂 (2)无需恒温浴液 (3)检测时间快速,仅需3分钟3.杭州中旺杭州中旺微型自动粘度测量仪IVS200(上市时间:2021年3月)创新点:(1)针对牛顿液体的流体特性,采用特制乌氏毛细粘度管,研发了由PC、电路控制板和计算粘度及衍生物理量装置等构成的微型全自动乌氏粘度仪; (2)通过WIFI对自动粘度仪发送命令和收集数据,采用图形和文字方式与用户进行信息交换; 、(3)集成半导体制冷机技术,内置制冷系统,具有体积小,温场恒定和自动化程度高的特点; (4)产品在功能设计上有创新,相关技术已获实用新型专利1件,处国内先进水平4.荷兰Omnitek 荷兰Omnitek 全自动运动粘度计S-Flow IV+(上市时间:2021年6月)创新点:较前型号和市面其他同类产品相比,升级为双浴型粘度管,同一样品可以同时检测2个温度,自动计算粘度指数,对于很多样品来说,非常方便。荷兰Omnitek公司S-Flow IV+专用CITO全自动进样系统(上市时间:2021年1月)创新点:1.该自动进样器设计打破了传统人工操作得局限,提高了产业生产使用得效率。并且可以24小时无人值守自行工作。 2.目前该自动进样器在粘度计领域属于领先位置,折管粘度计配备自动进样器也是首创。3.使用的材料环保,符合实验室IOS17025质量管理体系,并且对实验室环境没有污染。流变仪主要厂商介绍:耐驰、赛默飞、哈克、安东帕、Brookfield、莱美、TA 仪器、单尼斯科、Formulaction、OFITE、中航时代、Goettfert、英斯特朗、安田精机、凯能、艾安得、Calmetrix、高铁检测仪器、KSV NIMA、长春智能、DT、泰洛思、Rheotest粘度计主要厂商介绍:赛默飞、IKA、Brookfield、卓祥、凯能、中旺、欧米泰克、东机产业、安东帕、哈克、锐欧森、爱拓、平轩、欢奥、莱美、衡平、海默生、右一仪器、劳达、SBS、Orton、布拉本德、上海叶拓、魅宇仪器、艾安得、化仪、思尔达、兰尔荷洛基、OFITE、珀智仪器、Endecotts、OMNITEK、优莱博、京都电子、上海昌吉、夏溪电子、Techne、成仪、Fungilab、宝罗、保圣、PAC、ChemTron、GBX SCIENTIFIC、时代新维、鲁玟、博勒飞、达文波特
  • 安东帕在上海北京举办流变仪新品发布会
    仪器信息网讯 2013年6月28日,安东帕于7月2日分别在上海、北京举办了MCR 702流变仪新品发布会。MCR 702流变仪采用TwinDriveTM 专利技术,第一次实现在一台仪器中同时使用两套扭矩传感器和驱动单元进行流变测量,将两套同步直流(EC Motor)马达以模块化方式整合为一体,使得测量变得更加灵活、精确。 MCR702 TwinDriveTM流变仪   MCR 702仪器的专利发明人&mdash 安东帕(德国)流变仪技术专家Jö rg Lä uger博士详细讲解国际流变学的最新进展及通过MCR 702革命性创所能给大家带来的巨大收益。   MCR 702流变仪特点在于为用户提供了更多流变测量选择,如具有三种测量模式,模式一:当两个马达设置为反方向旋转,能够在测量样品中形成固定的凝滞面,因而更容易通过显微镜进行检测,还可以随意调整两个马达的旋转速度,来移动停滞面的水平位置 模式二:一个马达在固定位置作为扭矩传感器独立运行,另一个马达则仅作为驱动装置,MCR 702就成为了用于旋转和震荡测试最佳的SMT(马达与传感器分离)流变仪 模式三:将下部的EC马达拆除,MCR 702就成为了标准的CMT(马达与传感器一体)流变仪。   MCR 702流变仪的多元选择还体现在多个方面,如提供多样的控温系统、测量夹具、以及联用技术等。 安东帕(德国)流变仪技术专家Jö rg Lä uger博士   安东帕中国董事总经理王德滨介绍了安东帕的发展历程,并阐述了公司未来在中国的发展战略。安东帕1922年成立,至今已经走过91年的历史。在全球拥有3家加工厂、17家子公司、1600名员工。2012年公司的销售额达1.9亿欧元,20%以上的销售额用于新产品的研发,而2013年公司的销售额预计达2.1亿欧元。 安东帕中国董事总经理王德滨   目前安东帕具有密度计、流变仪、微波消解仪、旋光仪等8条产品线,流变仪是安东帕非常重要的一个分支。安东帕的流变仪产品技术来自于公司于1996年收购的位于德国Stuttgar的Physica Messtechnik GmbH。在2011年安东帕发布了第三代模块化流变仪,2013年再次推出了高端集成化的MCR 702 Twindrive流变仪。 安东帕中国流变学产品经理陈飞跃 上海发布会现场 北京发布会现场 撰稿:刘丰秋
  • 梅特勒托利多M800多参数智能彩屏变送器全新上市
    梅特勒托利多始终致力于技术变革和产品创新。最新推出的 M800 系列多参数智能变送器,结合了梅特勒托利多新一代的智能传感器技术(ISM,彩色触摸屏操作,让分析测量更简单、更快捷、更准确!) - 新一代iMonitor传感器诊断功能 配合梅特勒托利多的ISM智能传感器,持续监测传感器健康状况,提供连续的实时智能诊断。iMonitor技术可以提前告诉您何时需要对传感器进行维护、校准或替换,大大降低您的维护工作量并最大程度降低故障出现的几率。 - 多参数多通道技术 M800变送器可以同时进行四个过程参数的测量,这些参数可以是电导率/电阻率、TOC、pH、ORP、溶氧、溶解臭氧与流量的任意组合。多通道多参数技术使用户选型更加便捷,同时降低用户库存成本。 - 大屏幕、高精度LCD彩色触摸屏 大屏幕、高分辨率彩色触摸屏,操作界面更简单。 - 数字智能传感器技术 领先的数字传感器技术消除传感器与变送器之间易于出错的模拟信号传输,提升过程测量的速度和精确度。 了解详情,请致电:4008-878-788
  • 山东仁科测控:建大仁科NB型温湿度变送器的具体应用
    NB-IoT窄带物联网是IoT领域一个新兴的技术,具备超低功耗、超强覆盖、超低成本、超大链接、大容量等优势,可以广泛应用于多种行业,如通讯机房、远程抄表、智慧农业、档案馆、厂矿、暖通空调、楼宇自控等个方面领域。山东仁科测控技术有限公司在现有NB网络基础上,自主开发研制了建大仁科NB型温湿度变送器,自成一个独立的体系,相较于传统的物联网传感器具有明显的部署优势与维护优势,壁挂式安装,施工简单,无需布线,真正做到即装即用。一、建大仁科NB型温湿度变送器参数:默认: 温度±3%RH(5%RH~95%RH,25℃),湿度±0.5℃(25℃)电路工作温湿度:-40℃~+60℃,0%RH~80%RH探头工作温度:40℃~+120℃ ,-40℃~+80℃(默认)探头工作湿度:0%RH-99%RH安装方式:壁挂式二、产品特点:1、产品采用高灵敏探头,具有信号稳定,精度高的特点;2、设备采样超低功耗微处理器,内置超大容量的锂电池,可支持连续使用3年;3、安装使用方便,外壳整体尺寸:110×85×44mm,拧上黑色保险管安装成功后,设备自动连接开始工作,安装黑色保险管见下图;4、天线内置,设备出厂之前内部安装卡,现场无需接线,采用NB-IOT无线通讯技术将数据上传至山东仁科测控云平台;5、覆盖广且深,海量的连接能力,一个基站可建成6个扇区,一个扇区可建立5万个节点的温湿度数据;6、用户无需自建服务器,设备默认连接到山东仁科测控云平台,安装成功后登录云平台即可查看现场温湿度状况,设备默认1小时定时上传/更新一次数据。三、云平台简介山东仁科测控云平台(www.0531yun.cn)部署于公网服务器,可接入机房监控解决方案中所有网络型设备。云平台用户可通过电脑网页端,手机app,微信公众号等各种方式登录,进行远程监控,可随时随地查看所有NB型温湿度变送器的位置以及实时数值。云平台具有报警功能,报警方式有短信报警、邮件报警、声光报警等,如有情况,给监管人员发告警,及时采取措施解决情况。平台上还可以查询实时数据及历史数据,进行数据统计,同时将数据的导出,下载打印等,还可以多级权限访问。山东仁科测控为NB型温湿度变送器用户更提供配套的管理系统,方便监管人员随时查看、查询、管理所有在线监测设备和数据,为城市环境网格化监测部署好每一步。
  • 流变和拉曼光谱的再次碰撞——UV胶的固化
    流变和拉曼光谱的再次碰撞UV胶的固化流变学已成为UV固化动力学研究中较为常用的表征方法。流变学中的参数—动态弹性模量G'对形态结构极其敏感,能够很好的反映体系在辐射固化交联过程中双键密度和内部结构发生的变化,因此实时监测G'的变化可以从体系结构的角度反映固化程度。UV固化本质是一种化学反应,材料暴露在特定的UV辐射下会引发自由基反应,导致机械结构发生明显变化。因此UV固化还可以通过拉曼光谱进一步监测,这些化学变化将会通过特征峰的生成或降低(缓慢或快速变化)反映在拉曼光谱中。流变仪与拉曼光谱相结合,可以同时获得材料的化学结构和物理性质的信息,将这些信息关联起来以获得在材料加工、反应机理方面更加深入的洞悉。UV固化系统和拉曼光谱仪均可通过安东帕MCR系列流变仪软件进行触发,从而能够同步监测整个UV固化过程中的粘弹性力学行为和光谱数据。流变&拉曼联用Omnicure S1500紫外固化系统,配备5mm光纤。Cora5001拉曼光谱仪,配备特制的联用拉曼探头——HT fiber probe 785。MCR流变仪,使用帕尔贴罩(H-PTD)和25mm石英玻璃平板。UV固化系统和拉曼仪均连接至MCR流仪中,从而UV辐射源和拉曼光谱仪都可以通过流变仪进行自动触发,保障原位测量的同步性。独特接口设计UV源与特制的联用拉曼探头实验结果图1:UV胶固化反应过程中的损耗模量(红色)和储能模量(黑色)变化曲线流变测量的结果如图1所示。从测量结果可以看出,样品最初表现出粘弹性流体响应,其损耗模量(G')大于储能模量(G')。随后,在UV辐射下激发了固化反应,从而可以观察到模量的快速变化。两个模量的变化曲线的交叉点意味着样品从液体主导状态转变为固体主导状态。然而,在5s的UV辐射时间结束后,固化反应继续进行,这可以从模量的持续增加中观测到。图2:950cm-1和1150cm-1的峰强随固化时间的变化图2为两个拉曼特征峰(950 cm-1和1050 cm-1)的峰强变化曲线。所选的这两个特征峰具备一定代表性,因为大多数其他特征峰的行为与其中一个相似。在5s的UV辐射下,两个特征峰都出现了峰强的骤降。在UV辐射结束后,950 cm-1的峰强迅速达到稳定水平,标志着相应基团化学变化的结束;而1050 cm-1的峰强是逐渐下降的,这与之前图1所示的模量逐渐增大相呼应;其余特征峰强度的变化率都处于上述两个特征峰之间。拉曼光谱中的整体化学信号变化与流变性能变化趋势相吻合,两种技术可以相互印证。然而,拉曼光谱中展示的信息非常丰富,不同特征峰的强度变化曲线代表不同化学基团的反应特性,因此,可以获得每一个感兴趣的化学基团的变化信息。拉曼光谱的这一特性,不仅是样品整体流变特性的补充,还为深入了解不同反应基团的特性提供了可能性。实验结论安东帕的流变-拉曼联用设备已被证明对监测复杂的反应机理非常有益。MCR系列流变仪还可以与不同激发波长的Cora5001拉曼光谱仪,以及不同的UV固化系统(不同波长、汞灯、LED光源)相结合,且流变仪可使用多种型号(如珀耳帖或电加热),为各种应用提供最大的灵活性。想要了解完整的本次应用报告,请点击下载。
  • 锐欧森发布多功能拉伸流变仪 VADER 1000新品
    多功能拉伸流变仪 VADER 1000单剪切和单轴延伸之间存在根本区别。 然而,在剪切中,材料的横截面积在流动的存在下是固定的,典型的是拉伸流动引起材料的横截面积随时间的变化。 因此,应变和应力的定义需要精确测量力和横截面积。 对于VADER 1000的工作原理,称为长丝拉伸流变学,应变和应力由下式给出:产品规格:仪器功能最小应力(取决于称重传感器范围)15Pa最大应力(取决于称重传感器范围)1×1010Pa最大Hencky应变力(计算)9最小应变率(假设理想的轴向变形计算。根据样品属性可能降低速率。)0.0001s-1最大应变率(考虑闭环控制。想获得更高的速率,请咨询。)5s-1建议最小的样品粘度(这是为了尽量减少表面张力的影响。根据施加的速率,可能的粘度较小。)1000Pa.s最小直径0.1mm最大直径10.0mm最小温度周围环境温度最大温度250℃气流(可选燃气加热器)5L/min最小轴向速度0.001mm/s最大轴向速度600mm/s温度控制温度传导箱可选温度传导箱 VADER 1000配有三区导气箱,可确保温度均匀性,稳定性和响应时间。 传导箱采用陶瓷绝缘,可以以避免过多的热量损失。专利待定烤箱安装在特殊的滑动系统上,可以在不降低温度的情况下快速更换样品。传导箱可以达到-250°C的环境温度。 VADER 1000具有可选的温度对流箱附件,可减少加热时间,确保整个烤箱腔内的温度均匀,并使用惰性气体防止样品在测试过程中降解。对流式温度箱配有安全开关,当导热炉处于向上位置时,它会自动关闭气流。 所有连接均为不锈钢,可使用各种气体。底部对流板允许插入气体进入样品室,防止氧化并确保温度均匀。创新点:ADER 1000配有三区导气箱,可确保温度均匀性,稳定性和响应时间。 传导箱采用陶瓷绝缘,可以以避免过多的热量损失。 专利待定烤箱安装在特殊的滑动系统上,可以在不降低温度的情况下快速更换样品。 传导箱可以达到-250° C的环境温度。 多功能拉伸流变仪 VADER 1000
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性
  • 赛默飞发布赛默飞HAAKE™ MARS ™ iQ 旋转流变仪新品
    Thermo Scientific™ HAAKE™ MARS™ iQ 旋转流变仪能够确保直观、可靠和灵活的流变学测量。这款 QC 流变仪的设计旨在提供直观的操作和快速、可靠的结果,让您的质量控制更加智能! Thermo Scientific™ HAAKE™ MARS™ iQ 旋转流变仪能够确保直观、可靠和灵活的流变学测量。 这款 QC 流变仪的设计旨在提供直观的操作和快速、可靠的结果。此流变仪采用先进的触摸屏界面执行标准操作程序。“连接辅助”功能指导用户实现无错测量。 无论您的实验室选择滚珠轴承或空气轴承系统的 HAAKE MARS iQ 流变仪,我们均可提供广泛的附件选择,完全满足您QC 实验室日益增长的检测需求。 HAAKE MARS iQ 流变仪具有许多优点。 1.直观的操作 • 多功能的 7 寸触摸屏仪器操作伴随您指尖上的SOP 执行 • “辅助”功能简化操作,防止出错 • “连接辅助”功能采用自动识别,快速识别测量转子和温控模块 • “颜色辅助”功能具有颜色编码插头,快速、准确地选择温度模块 • HAAKE™ RheoWin™ 流变学软件具有广泛的测量灵活性,可免费更新(选配符合 21 CFR part 11 的模块)2.智能设计 • 折叠 H 型框架的设计理念使仪器具有更大的刚度和超精确的升降控制以及较宽的调节范围 • 耐用材料:采用高性能矿物复合材料铸造,具有高振动阻尼、最小温度膨胀和高耐化学性 • 带机械或空气轴承的新一代高动态、功能强大的 EC 马达。 3.个性化配置 • 广泛的温控模块、测量转子和面向应用的测量单元选择,例如压力单元、建筑材料测量单元或摩擦学测量单元 • 灵敏的法向力传感器可以测量质构分析等应用中两个方向的轴向力 • 横向和底层访问可满足自定义测试要求 应用解决方案 HAAKE MARS iQ 流变仪适用于在以下应用中测量从流体到半固体的样品,如: • 涂料/油漆/油墨 • 食品和粮食 • 制药 • 化妆品 • 聚合物和粘合剂 • 石化材料和沥青 • 结构与建筑材料 创新点:• 最先进的用户界面,带有多功能 7 英寸触摸屏,仪器操作和标准操作程序 (SOP) 执行触手可及。 • “辅助”功能可简化操作,防止用户出错: –“连接辅助”功能采用自动识别,快速识别测量转子和温控模块 – 温控模块带有“颜色辅助”功能的彩色编码插头 • 折叠 H 型框架的设计理念使仪器具有更大的刚度和超精确的升降控制以及较 宽的调节范围 • 耐用流变仪框架材料选择:采用高性能矿物复合材料铸造,具有高振动阻尼、 最小温度膨胀和高耐化学性 • 具有机械或空气轴承的下一代高动态、功能强大的 EC 马达 • 广泛的模块化设计,包括广泛的温控模块、测量转子 和面向应用的测量单元,适用于 QC 应用 • 灵敏的法向力传感器,可测量两个方向的轴向力,为 您的日常 QC 流程带来之前仅在研发分析中才有的测 量能力 • 横向和底层访问可满足自定义测试要求 赛默飞HAAKE™ MARS ™ iQ 旋转流变仪
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双 1,2 ,曹晓 1,2 ,张嘉琪 1,2 ,韩迎春 1,2 ,赵欣悦 1,2 ,陈全 1,2 1.中国科学院机构长春应用化学研究所 高分子物理与化学国家重点实验室 长春 1300222.中国科学技术大学应用化学与工程学院 合肥 230026作者简介: 陈全,男,1981年生. 中国科学院长春应用化学研究所研究员. 本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造. 于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的Distinguished Young Rheologist Award (2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《Nihon Reoroji Gakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者: 陈全, E-mail: qchen@ciac.ac.cn摘要: 流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工. 本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词: 流变学 / 剪切流场 / 剪切流变测试 目录1. 流场分类2. 剪切旋转流变仪概述2.1 测试原理2.2 测试模式3. 旋转流变仪测试中的常见问题3.1 测试过程的基本假设和常见问题概述3.1.1 输入(输出)应变为施加在样品上的应变3.1.2 流场为简单的剪切流场3.1.3 输入(输出)应力为样品的黏弹响应3.2 测试中常见问题I:仪器和夹具柔量3.3 测试中常见问题II:仪器和夹具惯量的影响3.4 测试中常见问题III:样品自身惯量的影响3.5 测试中常见问题IV:二次流的影响3.5.1 同轴圆筒夹具二次流边界条件3.5.2 锥板和平板夹具二次流边界条件3.6 测试中常见问题V:样品表面张力3.6.1 样品的各向对称性3.6.2 样品本身表面张力大小3.6.3 大分子聚集3.7 测试中常见问题VI: 测试习惯3.7.1 样品的制备:干燥和挥发问题3.7.2 确定样品的热稳定性3.7.3 样品体系是否达到平衡态3.7.4 夹具热膨胀对测试的影响3.7.5 夹具不平行和不同轴对测试的影响4. 结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可. 流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况. 最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯. 笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1. 流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场. 更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”). 流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应. 虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如Sentmanat Extensional Rheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因. 图1中分别展示了剪切和拉伸2种形变[14]. 施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动. 剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直. 而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变. 同样,连续的拉伸形变称为拉伸流动. 拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行. 施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离. 在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场. 然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度. 在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场. 假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图 1Figure 1. Illustration of two representative modes of deformation: the simple shear for which the direction of velocity gradient is perpendicular to that of velocity, and the uniaxial elongation for which the direction of velocity gradient is parallel to that of velocity. (Reprinted with permission from Ref.[14] Copyright (2012) Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数. 为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的. 即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17]. 该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18]. 然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2. 剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧). 目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪. 本小节主要围绕旋转流变仪展开介绍. 旋转流变仪主要分为应力控制型和应变控制型2种. 应力控制型旋转流变仪一般使用组合式马达传感器(combined motor transducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separate motor transducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用. 之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别. 对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1 测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T (T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数. 因此, 可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图 2Figure 2. Geometry and parameters Kγ and Kσ of parallel-plate, cone-and-plate and Couette fixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试. 但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性. 例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20]. (2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择. 此外,需要注意的是, 为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度. (3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2 测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应. 在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应. 根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图 3Figure 3. The different responses of Newtonian fluid, Hookean solid, and viscoelastic materials to the imposed steady flow (stress growth, transient or steady mode that depends on the focus), step strain (stress relaxation, transient mode), step stress (creep and recovery, transient mode) and small amplitude oscillatory shear (SAOS, dynamic mode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应. 通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式. 通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力. 剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动. (2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等. 其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stress relaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creep and recovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stress growth). 这些测试的共性是关注样品在一个特定刺激下的转变过程. 以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间. (3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应. 以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间. 通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(small amplitude oscillatory shear,简称SAOS). 对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间. 当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(large amplitude oscillatory shear,简称LAOS). 需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心. 因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3. 旋转流变仪测试中的常见问题3.1 测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力. 然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题. 需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1) 应变作用在样品上;(2) 应力为样品自身的响应;(3) 流场为简单剪切流场. 这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠. 接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff). 对于平行板样品,由于应变参数K
  • 旋转流变仪、毛细管流变仪、转矩流变仪的区别
    旋转流变仪是目前流变仪系列中科技含量最高,稳定性最好的一款流变仪,此款设备是长春智能经过转矩流变仪和毛细管流变仪成功研发后的又一科技杰作。主要用来测定液态和半液态样品的相对粘度、绝对粘度。针对每一种性能绘制出相应的温度粘度、应力、应变曲线,主要应用在纺织、食品、药物、胶粘剂、化妆品、轴承润滑、油脂、油漆、浆料、等生产、加工、制造行业。 转矩流变仪是长春市智能仪器设备有限公司专利产品,它的成功硕果,可以用来研究热塑性材料的热稳定性、剪切稳定性、流动和塑化行为,其最大特点是能在类似实际加工过程中连续准确可靠地对体系的流变性能进行测定,还可以完成热固性材料的固化特性测试。对教学、科研和新材料的开发和生产工艺条的确定有很大的价值。 毛细管流变仪可以测定高聚物的软化点、熔点、流动点、粘度粘流活化能,热固性材料的固化温度等性能指标。这些数据对研究高聚物流变性能有重要的作用。该仪器的负荷加载装置设计合理,采用计算机控制,实现负荷连续加载,控制精度高。控温系统的组成及控制方式新颖,有利于测定不同温度下材料的变化。
  • 成果:大气常压磁约束微型直流辉光放电质谱离子源
    p style=" text-align: justify "   近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室与四川大学开展联合研究,发现在大气常压环境中磁场有效约束离子传播特性,并基于此研发出一种大气常压高效痕量检测磁约束微型质谱离子源。相关研究工作以通讯的形式发表在国际期刊Chemical Communications上。 /p p style=" text-align: justify "   直流辉光放电微型等离子体源,凭借其放电的稳定性和等离子体的非平衡特性,在化学分析和环境监测等领域有着独特的技术优势和广阔的应用前景。具有高灵敏度、高选择性和快速响应等特点的质谱法,已成为分析化学领域的核心技术之一,在痕量物种定性和定量检测中发挥着巨大作用。长期以来人们一直致力于提高质谱仪的分析性能。常压离子源,作为质谱仪的核心部件,主要作用是将样品解吸和电离,产生气态样品离子。能否有效将样品离子化和把离子化的待测物传输到检测入口,在很大程度上决定了整个质谱仪分析的灵敏度。 /p p style=" text-align: justify "   在大气环境中,一般通过气流将离子化的待测物输运到质谱仪检测入口。该种传输方式使得很大一部分离子逃逸到环境大气中损失掉,导致传输效率低下。为提高离子传输效率,该研究团队基于常压磁约束离子传播特性,提出一种大气环境中纵向磁场约束离子传输的新方法,研发出一种用于痕量物种检测与分析的大气常压磁约束微型直流辉光放电质谱离子源。该方法关键在于:1)在弱电场中,气流和洛伦兹力共同作用离子,使之做螺旋运动,降低逃逸概率 2)利用离子与环境氮气和氧气等分子的集体碰撞效应,进一步减少约束半径,使得更多的离子传输到检测入口,增加离子传输效率。通过质谱分析,该方法成功地将样品质谱信号强度提高到原来的10倍,检测限可降低到原有的1/10,使得部分有机物待测样品的检测限达到几十PPt的水平。该项工作为化学分析和环境监测等领域提供了更为可靠的检测手段,为低温等离子体的应用拓展了新的研究方向。该工作受到科技部、国家自然科学基金委和中科院“西部青年学者”项目的资助。 /p p style=" text-align: justify "   近几年来,瞬态光学与光子技术国家重点实验室在等离子体基础研究领域实现了一次又一次原理上的创新和技术上的突破,取得了一系列原创科研成果。研究团队曾首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,该项工作以封面和亮点文章发表于国际应用物理类学术期刊JAP (2017)。此外,在低温等离子体领域已连续8篇论文发表于国际学术期刊APL。上述成果为西安光机所等离子体学科的发展奠定了坚实的基础。 /p p style=" text-align: center " img title=" 大气常压质谱离子源.webp.jpg" alt=" 大气常压质谱离子源.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7631dd7f-9436-45d8-b144-ba3c9e5173cc.jpg" / /p p style=" text-align: center "   大气常压磁场约束离子运动轨迹及样品阿司匹林溶液质谱检测 /p p style=" text-align: justify "  文章链接: a href=" https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract" target=" _blank" https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract /a /p p style=" text-align: justify " & nbsp /p
  • 安东帕流变仪、折光仪亮相高分子学术论文报告会
    2013年10月13日至15日,安东帕公司将携旗下流变、光学、黏度、微波等产品线参加于上海世博中心举办的全国高分子学术论文报告会。该报告会由国家自然科学基金委员会支持,中国化学会高分子学科委员会主办,是中国高分子材料界地位最高的学术会议,也是我国高分子材料届学者、科研人员和企业研发人员两年一度的融学科未来展望、学术交流、科研成果发布、产学研用相结合的盛大聚会。 对高分子材料的深入研究也离不开流变测量技术的不断革新和拓展。作为流变测量技术的全球领先者,安东帕拥有80多年的精密机械和电子制造领域的历史和传统,也是当前市场上唯一一家由自己工厂生产流变仪的供应商。目前,安东帕已成为欧洲市场第一品牌,其流变仪产品的年销售量已位居全球第一。安东帕的Phycica旋转流变仪早在2006年就独家获得为美国国家标准技术协会提供整套非牛顿高分子材料流体的流变学测试方案,为美国国家标准技术协会的标准物质SRM2490进行认证,认证平台基于安东帕的Phycica旋转流变仪。 展会期间,安东帕还将集中展出微波消解仪、落球黏度计、全自动折光仪等诸多在业内享有盛誉的产品,并为您展示并提供应用于高分子科学与材料领域前期研发、生产过程、品质管理的一系列测量/检测解决方案。届时我们的产品专家将在现场为您提供全面的产品和技术支持,安东帕展位号:No. 58,诚邀您光临我们展台! 单模微波合成 Monowave 300 Monowave 300是一款专门针对研发实验室中小型微波合成应用而设计的高性能微波反应器。现今,微波辐射不仅成功地部署用于有机合成领域,在无机合成、材料科学、高分子化学和其他学科中也可以成功实施该项技术。如果配合使用 MAS 24 自动取样器选件,还可以在无人值守的情况下连续处理 24 个实验。 Abbemat系列折光仪 Abbemat系列折光仪测量准确度高,仪器性价比好。凭借其内置的测定方法和优化的设计,Abbemat几乎覆盖了所有行业,是一款真正的万能折光仪。无需专用的行业解决方案。Abbemat应用于制药,香精香料,化学品以及饮料、食品等行业,快速精确的测量样品的折光率或浓度。Abbemat折光仪可实现快速无损的折光率测量。折光仪出厂时均已遵照德国国家计量研究院(PTB,德国联邦物理技术研究院)的标准物质执行校准。折光率测量精度达到 ± 0.0001 nD。 Lovis 2000 M/ME Lovis 2000 M/ME 是根据霍普勒落球原理而设计用于测量滚球在透明和混浊液体中的滚动时间的滚球黏度计。测量只需 100 µ L 的样品。测量结果以相对黏度、运动黏度或动态黏度表示。Lovis 2000 M/ME 结构小巧,经济实用,可以大大节省实验室的空间。Lovis 2000 M/ME 微量黏度计是安东帕 AMVn 自动化微量黏度计的接替者。 更多产品信息,请登录:www.anton-paar.com 流变学测量 流变学测量是观察高分子材料内部结构的窗口,通过高分子材料,诸如塑料、橡胶、树脂中不同尺度分子链的响应,可以表征高分子材料的分子量和分子量分布,能快速、简便、有效地进行原材料、中间产品和最终产品的质量检测和质量控制。流变测量在高聚物的分子量、分子量分布、支化度与加工性能之间构架了一座桥梁,所以它提供了一种直接的联系,帮助用户进行原料检验、加工工艺设计和预测产品性能。 关于安东帕(中国) 奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 干货 | 粉体流变仪简介
    粉体和颗粒介质几乎可以在任何行业都在使用,它们作为原材料、中间产品或最终产品进行使用和加工。粉体在使用过程中可能会造成一些困难,因此,有效的质量控制和顺利的粉体加工非常重要。粉体行为特性在制造过程中可以改变,特别是当条件或环境改变时,例如粉体在气动输送过程中流态化,在储存过程中固结。当粉体特性已知时,最好对工艺条件进行修改适应,以便在加工过程中不会出现问题(例如分层)。 Anton Paar公司的两个粉体测量池(粉体流动池和粉体剪切池)为此提供了一套完整的工具,可以确定各种粉体特性和加工参数。这套工具有助于描述粉体的特性,以及预测粉体在加工、处理和储存过程中的行为。软件中提供了多种专用的粉体测量方法,大多数只需几分钟即可完成。虽然这两个测量单元在应用和技术上有一定程度的重叠,但它们的专业领域可以根据所涉及的粉体的粘性来划分:粘性粉体在粉体剪切池中工作得更好,而自由流动状态的样品在粉体流动池中工作得更好。下图显示了不同状态粉体适用的测试方法和测量池。在本应用报告中,展示和讨论了表征粉体和颗粒介质的各种方法和相应的参数。可在Anton Paar粉体流动池进行的测试方法概述见表1,表2显示了粉体剪切池方法的概述。Anton Paar联合一些大学和研究实验室正在不断开发出更多的实验方法,最新进展可在我们网站上的科学出版物和其他应用报告中找到。流动池的测量功能1、动态流动测量Anton Paar模块化紧凑型流变仪系列(MCR)可配备粉体流动池和螺旋双叶测量系统,该测量系统可用于扩展粉体的动态测量和测定其运动特性。通过测量系统在粉体样品中的向上和向下运动计算动态流动特性。如基本流动能(BFE)、稳定性指数(SI)、流速指数(FRI)和比流动能(SE)。该测量方法分析了整个粉体床上粉体的动态特性。测量转子动态上下运动,从而根据粉体的阻力建立特定的流动模式。样品的流动模式取决于主要的内部和外部参数。因此,动态流动特性的测定是一种快速简便的粉体质量控制工具。动态流动测量示意图,左:测量系统在样品池中一边旋转一边上下移动,右:同时记录扭矩和法向力的数值变化总流动能通过测量扭矩的积分加上法向力(下式)计算得出,考虑了测量系统轴向和径向运动的总和,其中r为转子半径,α为螺旋桨角度,h为行程。2、压降测量了解用于输送的起始流化和全流化的气体流速对于气动输送水泥、食品粉、粉煤灰、洗衣粉、油漆粉、塑料和金属粉很有意义。样品制备所用的气体流动速率在内聚强度测量、透气性测量和流动曲线测量中非常有用。测量一般包括两个步骤。首先,空气流量从最大值持续减小到最小值,这个过程中可以研究全流化率。在第二步中,空气流量不断增加,这个过程可以测量粉体的初始流化和全流化时的空气流动速率,以及粉体的滞后行为。为了简单起见,下图中只显示了空气流量增加的部分(红色)。通过在控制单元上执行相同的测量,考虑系统(多孔烧结玻璃、过滤器等)的影响是至关重要的。该基线(上图中的灰色线)必须从样品的测量值中减去,结果图如下图所示。测量池内的压力随着体积流量的增加而增加,因为颗粒对流态化空气产生的反压力增加。一旦达到一定的体积流量(取决于颗粒特性),就可以检测到粉体流化和曲线峰值。在这种情况下,可以在0.75l/min的流速下看到初始流化的过冲峰值,在完全流化时,观察到恒定压力信号,这意味着粉体在1l/min下完全流化。此时,颗粒之间的残余张力被消除。3. 内聚强度测量内聚强度描述了粉体流动的内部阻力,从而衡量粉体的流动性。它被定义为测量粉体颗粒之间结合力的强度。粘结强度测量速度快,重复性高,有助于预测粉体行为的质量控制工具。这种测量方法可以作为一种快速简单的质量控制工具,因为它通常具有很高的重复性,有助于区分甚至非常相似的粉体。测量由两步组成:样品制备:样品完全流态化,以重置粉体并消除残余张力和结块。必要的体积流量应事先用压降法确定。样品测量:关闭气流,测量双叶搅拌器的旋转扭矩,如下图所示。默认情况下,测量在100秒后结束。内聚强度S是用测量的扭矩值和转子的特性系数(CSS系数)计算的,因此,计算的结果是相对值。计算结果显示在公式1中扭矩值是通过对过去20个数据点的线性回归得到的(见图5)。对于CSS因子,用碳酸钙(CRM116,标准物质局)进行了校准测量。4. Warren-Spring内聚强度此方法用于测量粉体的内聚强度,特别是强粘结性的粉体(如面粉或水泥)它是基于Geldart的工作,通过使用一种叫做the Warren- Spring-Bradford测试仪的扭转装置进行研究,粉体在固结状态下测量,固结也使粉体均匀化。所得结果可用于分析粘结粉体的流动性和流动函数,该方法也可用于粉体结块的研究。此方法可用于质量控制、粉体特性表征(固结状态下的弹性、内聚强度)、流动性分析(ffc)和结块行为研究。最适用于粘性粉体,如面粉、二氧化钛或碳酸钙,但通常适用于除最自由流动的粉体外的所有粉体。测试包括两步:粉体在粉体流动池中用透气活塞固结,通过消除残余张力和颗粒之间的聚集形成均匀的粉体层。Warren-Spring转子完全插入粉体样品中,然后将粉体以0.1转/分的速度剪切,同时记录扭矩,从而产生Warren-Spring内聚强度。如果Warren-Spring转子不能完全插入样品,建议降低样品固结程度,或者只将转子插入到正常深度的一半。这也是拱起行为的一个方便指示,因为粉体内部很容易形成力链,可能导致粉体堵塞漏斗或管道。粘结性粉体比不粘结性粉体表现出更高的Warren-Spring内聚强度,如果观察到尖锐的峰值,则样品破裂迅速而强烈。另一方面,较宽的峰值表明样品的断裂缓慢。峰值位置靠后表明样品具有弹性特性或可能没有充分的固结。5. 壁摩擦测量壁摩擦力是指颗粒介质与固体之间的摩擦力,它是通过在规定的法向应力下压缩样品,并在记录扭矩和剪切应力的同时旋转圆盘来测量的。所得到的壁摩擦角是漏斗设计中的一个重要参数,目的是防止堆芯流动和实现质量流动,用于测量的圆盘可以很容易地更换,从而可以分析任何壁面材料和粉体之间的摩擦。由壁面材质制成的圆盘安装在测量杆上(如上图),用于测量每种壁面材料和粉体之间的摩擦。用预定法向载荷和0.05rpm的转速压实样品,同时记录扭矩。此测量步骤在不同的法向应力(通常为3、6和9kpa)下进行,扭矩被转换成剪切应力,将剪切应力/法向应力结果值绘制成图表(下图)。图中的红色曲线显示了标准壁面摩擦角测量值,在这种情况下,数据点(壁屈服轨迹)的回归是线性的,并通过原点。壁摩擦角是该趋势线的角度,此值在所有法向力下都是相同的(与法向力无关)。上图中的灰色曲线显示了高黏性粉体的壁摩擦角测量值,趋势线不再是线性的,也不会经过原点。在这种情况下,每个法向力对应于不同的壁摩擦角。因此,有必要估算实际应用和工艺条件下的法向力,在这些值下进行测量,以便得到正确的壁摩擦角趋势线与Y轴的截距给出粘附值,这与粉体具有足够高的粘附力以粘附在垂直壁面上具有相关性。计算出的壁摩擦角可与上图中的图表一起使用,从而得到允许质量流的漏斗角,这有助于避免出现芯流、桥接、拱起、鼠洞等筒仓排放中的问题。6. 压缩性测量压缩性是测量当施加压力或改变压力时样品所产生的相对体积变化,它描述了体积密度与外加压力的关系。压缩性受许多颗粒参数的影响,如粒径和形状、弹性、含水量和温度。尽管是一个简单的测试,它可以用来识别粉体流动的性质,例如,使用堆积密度来避免筒仓和料斗中的鼠洞和拱起。结合壁摩擦角,可以对筒仓进行优化。它也被用来研究侧壁和给料器上的负荷。其他可以分析的参数是Carr压缩指数和Hausner比。使用透气圆盘进行测量下降粉体样品制备盘,直到与样品接触。记录该位置并用于计算未固结体积密度。然后进一步降低,直到达到一定的法向应力(通常为3kPa)。法向应力进一步增加到两个更高的法向应力值(如6和9 kPa)这允许计算固结后体积密度,以及Hausner比和Carr指数。卡尔指数曲线7. 流化态黏度和剪切速率曲线使用粉体流动池,可以测量粉体非流化态、亚流化态和完全流化态下的黏度,以及与剪切速率相关的黏度曲线。这可用于阐明粉体在输送过程中可能遇到的困难,具有高剪切黏度的粉体很难通过窄间隙或弯头,因为那里的剪切速率急剧增加。对于经历不同剪切速率加工步骤的粉体(例如,通过喷嘴喷射后的气动输送),表观黏度也是有意义的。流化态粉体表观黏度的计算方法与复杂流体的完全相似,这种流变特性的估计对于流化床的流体动力学建模、粉末涂料施工性能、反应器设计、气动输送、成型填充过程都很有意义,由于自由落体中的任何粉体都是流态化的,因此它也有助于描述各种排放过程。下图显示了未改性和改性(添加气相二氧化硅)涂料粉末在不同空气流量下的黏度曲线,在未流态(上方的曲线)下,通过添加气相二氧化硅来辅助流动,如改性粉体的表观黏度降低所示。然而,在全流化态粉末的情况下(下图最下方的曲线),添加气相二氧化硅的粉末显示出略高于未改性样品的表观黏度。剪切速率扫描相关测量结果如上图所示。在非流体状态下,可以观察到规则的剪切稀化行为。在亚流化状态下,在低剪切速率下也观察到剪切稀化行为,但随后被剪切速率超过50 1/s时的剪切稠化行为所取代。在全流化状态下,在低剪切速率下可以观察到类似牛顿流体的行为,在较高的剪切速率下,会发生剪切增稠效应。提高流态化和转速会导致颗粒之间的碰撞增加,同时,颗粒之间的摩擦也会减小,这种效应被称为“干扰过渡”。剪切池的测量模式1、剪切屈服测量屈服轨迹分析是剪切测量池中最基本的分析方法。一个屈服轨迹关注样品的“固体”行为与“液体”行为的分界线。它基于Mohr-Coulomb原理,测量样品的失效平面(类似于固体样品的胡克定律)。在开始测量之前,样品被填入测量池。使用专用的填样工具可以避免操作者对测量结果的影响。第一步需要对样品施加预设的预压实,这样可以提高实验的重现性,因为预压实可以消除粉体的残余张力(粉体记忆),这一步与流化测量池中的流化步骤有类似之处。预压实的应力大小可以从样品的实际工艺中计算获得。这样可以保证实验室的测量结果与实际工艺更加接近。这也是在测试中保持湿度和温度控制的重要性。然后,在不同的载荷下进行剪切屈服测试。如下图,是在9kPa压实载荷(灰色曲线),剪切屈服载荷从小到大依次用2.7kPa、4.95kPa、7.2kPa,测量屈服应力曲线(红色曲线),得到屈服应力。通过屈服应力、稳态应力,以及对应载荷,获得下图流动函数和莫尔圆,从而计算得到内聚强度τc、张应力σt、无约束屈服应力σc、主应力σ1、内摩擦角φe、体积密度ρb。进一步通过无约束屈服应力和主应力计算得到流动函数ffc,其中ffc=σ1/σc。通过ffc的数值范围可以判断样品在此载荷下的流动特性,例如ffc大于10时,样品可自由流动,在4到10之间时,样品非常容易流动;在2-4之间时,样品具有粘性;在1到2之间时,样品具有很大的粘性;ffc小于1时,样品不能流动。2、壁摩擦测量粉体剪切池也可以进行壁摩擦测量,配备了不锈钢、铝、PTFE材质的测量板,也可以订制配备其他用户需要的任何材质测量板。用于策略壁摩擦角和摩擦系数,用于筒仓、管道设计方面的参考。3. 压缩性测量粉体剪切池也可以进行压缩性测量,得到体积密度、卡尔指数、Hausner比等数据,及其与载荷的相关曲线。4. 时间固结测量粉体剪切池配备了时间固结台,可以选择不同载荷对样品进行长时间的固结处理,如几小时、几天,甚至几个月,此固结台单独使用,不影响流变仪正在进行的测试。5. 温度和湿度控制下的剪切测量如粉体剪切池配备了控温系统(如CTD180、CTD450、CTD600、CTD1000),就可以在控制样品温度的条件下,对样品进行剪切屈服和压缩等特性的测量,或进行程序升温或降温测试,最大温度范围可达-160℃至1000℃。如配备CTD180控温系统,则还可以选配湿度控制模块,实现5% - 95%范围内的相对湿度控制。为模拟更加真实的粉体生产、加工、使用环境提供可能。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 利曼中国直流电弧光谱仪技术交流会完美闭幕
    2011年1月10日,13日,利曼中国分别在北京、西安两地举行了直流电弧光谱仪的技术交流会。本次会议邀请了包括中国计量研究院、北京有色研究总院地矿、北京矿冶研究总院、中国农科院土壤所、核工业地质研究院、河北地矿中心在内的60多家地矿、有色行业重点单位参加。该次技术交流会由来自美国利曼总部的Rury博士和Dalager博士主讲,北京总部应用工程师陈应华、王飞主持了此次会议。会上主要介绍了Prodigy直流电弧光谱仪的主要技术特点以及在一些典型样品上的应用。 Prodigy直流电弧发射光谱仪由于采用了长焦距中阶梯光栅光学系统和大面积程序化CID检测器阵列,相比于传统的基于照相版技术的直流电弧光谱仪,在仪器性能和分析速度上均有一个质的飞跃。仪器的技术特点主要体现在以下方面: 分析速度快 固态检测器和计算机的使用,使得仪器分析速度有了极大的提升,所有元素一次激发60秒内即可获取结果。 大范围波长覆盖,无谱级重叠 由于采用了独有的激发台和光室设计,波长覆盖范围可达175-900nm,除了分析常规元素外,还可分析位于紫外区的P等元素。 分辨率高,谱图干扰小 源自于ICP-OES的中阶梯光栅光学系统和大面积固态检测器使得仪器具有出色的分辨能力,可以有效消除谱图间的干扰。 真正实现全谱直读功能 由于CID固态检测器的非破坏性,随机读取能力,prodigy可以实现以下诸多高级功能: 同步背景校正 出色的内标校正能力 时序分析功能可以获取每个元素的精确蒸发曲线 对每条谱线可以单独设定曝光时间 强弱谱线同步测量 对于Prodigy的应用,利曼公司在针对一些典型样品做了应用研究,这些样品包括: 金属氧化物、碳化物、硼化物以及氮化物 难溶粉末如SiC 贵金属及其它高纯金属 地质样品 核原料-氧化铀、氧化钚 土壤、淤泥、煤灰等 从应用过程和结果来看,相比于其它方法或传统的直流电弧光谱仪,Prodigy展现出了许多独有的优势: 去除样品消解过程 Prodigy直流电弧光谱仪可直接对粉末状、线状和屑状样品进行分析,无须化学消解及稀释过程,所以非常适合一些难溶样品或高纯样品的分析。具备更高灵敏度,实现高纯金属分析 Prodigy可以实现很高的灵敏度,通常对于固体材料的检出限为亚ppm级,非常适合高纯铜,镍以及贵金属等的研究。快速的定量及半定量分析能力 Prodigy具有极快的样品分析速度(每个样品少于一分钟)及极高的分析精度。从已有的应用来看,对于大部分ppm级别的样品分析精度,相对标准偏差可以控制在10%以内。 运行成本低廉,为您节省日常开支 和其它一些分析技术相比,Prodigy直流电弧具有极低的运行成本,无需化学前处理试剂,无特殊需要更换的备品备件,没有昂贵的需要维护的真空系统等。 Prodigy的技术特点和应用潜力,引发了在座嘉宾的浓厚兴趣,多位嘉宾与主持人进行了热烈的讨论,并对Prodigy直流电弧光谱仪表现出的性能做出了很高的评价,会上多家权威单位已经提出和利曼公司展开技术合作,希望进一步拓展prodigy的应用深度和广度。利曼中国也希望以此为契机更好地为国内用户提供优质的服务及实验室解决方案!
  • “聚”先锋 | 用热分析和流变学优化3D打印
    3D打印也称为增材制造,许多行业都将其视为一种多功能制造技术。3D打印可以实现快速成型和按需打印服务,以避免批量运行带来的潜在浪费。3D打印拥有创造复杂形状的独特能力,被广泛应用于制造业。3D打印目前已扩展到一系列材料,包括生物相容性聚合物和各类金属,甚至被用于医疗保健等领域,用于定制打印医疗设备。许多标准制造方法无法在结构中产生空腔和底切,这就需要通过其他方法来优化3D打印材料。。01 通过热分析优化3D打印材料为了优化3D打印材料,制造商需要仔细考虑最终材料的机械和热性能。虽然3D打印部件往往很轻,而且聚合物部件的正确组合可以拥有与金属相似的抗拉强度,但克服增材制造部件较低的机械和热性能是最大的挑战之一。1.1 3D打印产品性能的工艺优化了解挤压过程如何影响打印材料的最终性能是一个非常热门的研究领域。其中汽车应用对材料的拉伸和热性能要求最高。幸好,目前有许多含有碳纤维、玻璃纤维和凯夫拉纤维的热塑性聚合物基质可用于3D打印部件,并能够在汽车应用中充分实现高性能。在3D打印过程中,要打印的基材被熔化,然后分层沉积以创建最终对象。在此过程中有多个参数可以优化,例如聚合物床层和喷嘴温度以及层间固化时间。3D打印有多种方法,包括选择性激光烧结、生物打印和熔融沉积建模。熔融沉积建模是最常用的方法。玻璃化转变温度是选择正确温度挤压非晶态聚合物的必要信息。对于半结晶聚合物,其熔化温度是应重点关注的数值。结晶度强烈影响聚合物的机械性能。许多聚合物用紫外线固化,紫外线在聚合物材料中产生自由基,作为最终聚合物生产中交联过程的引发剂。交联程度越高,材料的硬度和强度就越高。通过改变样品暴露在紫外线下的时间长度可以影响交联的材料强度。温度和固化时间都会影响聚合物在材料中的分子结构及其性能。因此,为了优化这些参数并探索其对最终材料的影响,材料设计师使用对聚合物性能细节敏感的测试技术。1.2 3D打印材料的热分析用于研究挤压过程对最终材料性能影响的主要热分析工具包括热重分析(TGA)、差示扫描量热分析(DSC)、热机械分析(TMA)和动态机械分析(DMA)。每种技术都提供一些互补信息,可以将这些信息结合起来,以便人们对打印材料的性能有更深的了解。热重分析(TGA)测量材料重量随温度或时间变化的幅度和变化率。TGA对于了解表征挤压的影响非常重要,因为许多材料在加热时会发生氧化或分解,从而导致重量变化。热重分析是确定样品在挤压过程中是否发生降解的最佳方法之一。差示扫描量热分析(DSC)可用于测量材料放热和吸热转变与温度的函数关系。挤压过程的常见关注点包括玻璃态转化温度、熔化温度和材料的比热容。差示扫描量热分析和热重分析是用于了解挤压影响的强大而互补的技术组合。这些技术可用于分析聚合物在挤出温度下的热性能。测量热膨胀系数(CTE)和玻璃化转变温度的热机械分析(TMA)是另一种配套工艺。由于玻璃化转变温度取决于材料的热历史,热机械分析可以用于检查挤压过程不会给成品带来任何不必要的力学行为。此外,增强材料在CTE中可能显示出各向异性,这取决于相对于纤维方向的测量方向。动态热机械分析(DMA)也被广泛用于材料工程,用于分析聚合物复合材料,因为其可以揭示材料在动态负载条件下的行为信息。 DMA对于表征3D打印成品部件特别重要,反映了不同的配方和加工方法如何影响最终使用性能。02 利用流变改进3D打印技术聚合物产品无处不在,从包装薄膜、酸奶杯到复杂的汽车零件均使用聚合物产品。尽管应用广泛,但塑料产品通常均通过相同的简单步骤进行制造:1. 制造的起始步骤是应用聚合物基材料(通常为颗粒或粉末形式)2. 加热材料以形成自由流动的熔体3. 通过吹膜、注塑成型、挤出或增材制造(3D打印)等工艺实现熔化材料的成型4. 冷却并凝固产品最终产品的特性和物理形态在很大程度上取决于其加工过程。制造商需要深入了解其材料和应用,以使最终产品的质量达到预期。在加工过程中了解材料是可能的,但这会导致更大的材料损失和更高的生产成本。但如果在加工前就以实验室规模进行材料表征则可有效解决这一顾虑。然后,制造商可根据材料的测量特性设计加工条件。3D打印和其他增材制造工艺可通过流变分析进行优化。流变学也适用于许多其他制造工艺2.1 质量控制挑战在3D打印过程中,聚合物被熔化到熔融状态并通过3D打印机的管线和喷嘴挤出。因此,聚合物必须能够自由流动,并且需要具有尽可能低的黏度。同时,聚合物必须在挤出后立即保持其形状,并且在冷却过程中不能出现变形。将回收材料用于打印产品对聚合物制造商提出了另一个挑战。废旧塑料通常含有残留添加剂、颜色和填料,它们会影响熔体的质量、可加工性及其在制造过程中的行为。因此,再生塑料的加工及其终产品可能难以预测。因此,需要对生物塑料进行详细的分析。2.2 预先质量控制尽管存在这些潜在的干扰和不确定性,制造商仍然可以执行强有力的预先品控和质量保证。其中的关键是分析性思考的两个角度:1. 产品中使用的所有材料成分的相互作用2. 必要的工艺参数,包括温度、压力和流量2.3 轻松表征材料使用相应的功能强大的高精度流变仪可确定流变特性,这是材料表征的重要组成部分。Waters的应用专家表示:“特别是在应用聚合物熔体等液态物质的情况下,如果没有足够的仪器,了解和预测流变特性可能会非常耗时。” 样品行为通常会根据作用于样品上的力的大小而发生变化,这意味着“样品的流动和变形行为只能通过实验模糊地预测,或通过流变进行更为精确的测量。”制造商和研究人员都利用流变来研究材料的变形和流动。流变可提供有关液体和固体材料的关键、精确的见解,为成功的3D打印提供信息。
  • 美国TA仪器高分子流变学课程通知
    时间:2009.06.21-25 地点:中国科学院长春应用化学研究所 课程名称:“高分子流变学”课程 主讲人:Prof. 王十庆(Shi-Qing Wang)美国Akron大学高分子科学系教授 该课程分为二个部分,第一部分是高分子流变学的一般性介绍,第二部分是现代高分子流变学进展。王十庆教授采用汉语授课,具体授课时间为每天上午8:30-10:30,下午:15:00-17:00。 课程内容: 高分子流体的非线性流变学 简介 高分子流变学的任务 第一部分:线性响应 第二部分:非线性现象和表征 第三部分:屈服、非线性响应的主要现象 第四部分:缠结流体的内聚力和弹性屈服 第五部分:流变学在加工中的应用 第六部分:结论-高分子流变学的未来发展目标 本次课程不收取任何讲课费用,但旅费及食宿费需自理! 诚挚地邀请各位及课题组同学前来参加! 若对此课程感兴趣,请与美国TA仪器市场部王冬妮联系 Tel:021-54263957 Email: vwang@tainstruments.com
  • 快速部队的快速响应 ——浙江某客户体验三思纵横的强大生产能力
    8月1日,钱正国总工程师刚刚宣布深圳公司的生产系统完成整合调整工作,生产系统立刻接受了一次考验。 事件回放: 12:30分:钱总宣布生产系统一切进入良性轨道,欢迎营销中心插单发货。 13:30分:运营部通过微信系统向营销中心发出钱总的欢迎插单的信息。 14:38分:营销中心送来一个浙江地区某客户的合同,要求马上进行评审,合同上标注着“急急急”,合同要求一台5吨的电子万能试验机在6日必须到达客户现场。最为重要的是合同还未获得我们公司的审核批准,客户的全款已经到达公司账上。 18:30分,生产系统在雷总的领导下完成了没有遗留的全部发货。 19:00分,三思纵横羽毛球队在钱总的带领下继续进行当天的训练活动。 这就是一个快速部队的快速响应。 三思纵横深圳公司的生产系统用实际行动接受了一次实时的检验,浙江地区的某客户亲身体验了一次三思纵横的快速响应。 强大的生产能力不是自吹自擂的,是要真刀实枪能够实现生产出货的;让客户获得良好的体验也不是挂在嘴上的,而是要通过实际行动让客户能够亲身获得感受的。 8月1日,这是一个极好的开始。
  • 马尔文Kinexus流变仪新品发布暨流变分析技术研讨会北京站成功召开
    为期一天的“马尔文新一代Kinexus流变仪新品发布暨流变分析技术研讨会”日前在北京中环假日酒店成功召开。此次发布会汇集了科研学者、用户代表等50多名业内人士。 发布会暨技术研讨会现场   马尔文仪器有限公司全球总裁Paul Walker先生亲赴现场助阵,对各位嘉宾的到来诚表欢迎及感谢,并在发布会结束后接受了本网工作人员的专访。 马尔文仪器有限公司全球总裁Paul Walker致欢迎辞   本次发布会由马尔文中国区市场经理王珏女士主持,马尔文中国区总经理秦和义先生致欢迎辞并就马尔文总部背景及马尔文产品概况进行了简要介绍,上海交通大学流变学研究所、高分子科学与工程系周持兴教授、上海交通大学流变学研究所副所长余炜博士分别做了“聚合物实验流变学研究进展”及“动态流变测量技术:从线性到非线性”的学术报告,马尔文流变技术专家Rob Marsh博士全面介绍了马尔文新一代Kinexus流变仪的研制背景、名称来源及技术背景,发布会压场内容——马尔文流变产品专家杨凯先生在发布会现场实样演示了Kinexus pro系列流变仪的分析检测。   马尔文历时5年、在广泛的全球市场调研基础上推出了这款流变测试分析系统——Kinexus,与马尔文此前同类产品比较,其在软硬件技术及设计外观上皆有重大创新和突破:软件功能强大而人性化,通过多套预载的完整解决方案,用户可以轻松面对样品的分析检测;扭矩范围、响应速度等性能指标均迈上新的台阶,还能方便地更换或添加夹具、温控单元等部件。仪器精密、灵活、智能化。 马尔文新一代流变仪Kinexus pro 现场演示 新品吸引了与会嘉宾的强烈关注   “马尔文新一代Kinexus流变仪新品发布暨流变分析技术研讨会”接下来将抵达成都及广州,详情内容可关注:   http://malvern.instrument.com.cn   http://www.malvern.com.cn   http://www.malvern.com
  • “十四五”规划开局,康宁反应器技术如何快速响应市场新需求?
    ——专访康宁反应器技术有限公司技术中心主任伍辛军博士【制药网 人物访谈】2021年是“十四五”开局之年,也是全面建设社会主义现代化国家新征程开启之年。在新的起点以及新的发展格局下,制药企业普遍面临高成本、产能扩张的挑战,对于设备需求也发生了明显的改变。那么,与医药研发及生产息息相关的反应器行业企业是如何应对变化的?又是如何帮助药企解决实际难题的呢?对此,制药网专访了康宁反应器技术有限公司技术中心(中国)主任、区域商务总监伍辛军博士。谈变化:康宁公司积极快速响应市场需求 随着市场的发展,制药领域需求也在不断变化,康宁公司是如何快速适应市场发展带来的变化的?为此公司做出了哪些努力? 伍辛军博士表示,过去几年尤其是2020年疫情以来,整个制药行业发展非常快,其背后是因为行业对药物有更多的呼唤,尤其是药物的生产包括疫苗的生产,能够快速研发或生产这些社会需要的药品变得越来越关键。从2002年到现在,康宁公司在制药领域耕耘已有十几年,随着时间的沉淀,公司在反应器技术领域积累的经验不断增多,在响应市场这方面也具备明显的优势。伍辛军博士回忆道,2020年年初疫情刚爆发的时候,有一家中国客户为了驰援武汉需要利用反应器来合成消毒剂过氧乙酸(PAA)的。康宁的反应器是在法国生产的,面对特殊情况,公司迅速应对,全球团队紧密合作,仅用不到三个礼拜时间就完成了康宁反应器的交付,而这些平常需要花费数周甚至数月才能实现。该项目的交付,展现了康宁技术和服务体系能够助力客户快速响应市场需求。 另外针对制药市场快速发展,例如快速获得药物分子、快速合成、快速生产等方面的需求,康宁公司也推出了多功能制药的平台,快速响应市场。“现在我们国内很多制药企业,还有一些做CDMO的企业,都建有这样一个多功能的CDMO生产平台,可以快速响应客户的需求,以及社会的需求,快速合成这些成品。”伍辛军博士说道。谈突破:康宁近两年来在制药领域取得诸多成果基于170年的发展,康宁公司创造出很多关键技术,其中在中国市场,康宁反应器技术更是以突破性创新快速进入市场。被问及在制药领域的突破,伍辛军博士表示,近两年来,在市场、尤其是广大客户给予公司广大的信任和支持下,康宁在制药领域也取得了很多突破。例如,在浙江医药集团,康宁公司帮助其建立了一个万吨级的医药中间体生产工厂,该工厂于2017年开设,到现在已经连续稳定运行了三年多的时间,截止到今年三月份,已经实现了三万多个小时的连续稳定运行。“对于药品的生产来讲,长时间的稳定运行也是非常有里程碑意义的。”伍辛军博士表示。据介绍,2020年6月18号,康宁公司又宣布推出单台年通量万吨的G5反应器。“在微反应器领域,单台通量可以做到1万吨是一大突破。”伍辛军博士介绍,“这个装置在2019年11月份就已经开设,到今年3月份也达到了1万个小时的连续运行。”要实现智能化就需要先实现连续化。伍辛军博士表示,现在制药企业、精细化工企业都在使用连续流技术,而且应用越来越多。但值得一提的是,当下连续流技术方面的人才仍比较短缺。“企业的用户越来越多,但人才这方面在市场上还是比较缺的,因为学校也没有开连续流技术这门课,所以对于人才这方面也有很多的需求。”据介绍,为快速响应市场需求,康宁公司在2019年开发出Corning Nebula™ Education Kits康宁星云教学平台,这个平台主要帮助学校来进行学生的实训实验,让学生来了解连续流技术并进行操作,帮助企业培养更多连续流方面的人才。“这对于企业在十四五规划做高质量发展方面来说,是非常有意义的,因为我们解决了人才需求问题。”伍辛军博士说。 谈技术:连续流技术帮助药企实现成果转化高效连续化生产已经成为药品生产技术发展的趋势和方向,而连续流技术是实现连续化生产的有效途径。那么,康宁公司是如何利用连续流技术帮助药企实现成果转化的?伍辛军博士提到了两种合作模式。其中通常的做法是,针对有研发实力的制药企业,康宁公司教会企业怎么使用,使其快速地把传统工艺转化成连续化生产的工艺,从而实现产品的连续化;另外一种合作模式则是针对研发实力比较弱的企业,客户告诉公司要做什么东西,由康宁技术团队来帮助其实现连续流的生产工艺的转化,助力企业快速的把技术用在药物的生产过程中。不过,伍辛军博士也指出,连续流技术在制药企业的应用过程中会遇到一些挑战。一方面,因为制药行业不像IT、汽车行业,这些行业发展速度快,新的技术导入相对也比较快,而制药行业对质量、品质的要求非常高,因为药物直接作用于人体,所以相对来说走得会比较慢一点;另一方面,药物品种非常多,比如治疗慢性病的、癌症的、感染的,同时药品的质量要求高,所以对重金属含量、单杂的控制要求非常高,因此品种非常多也是连续流技术在应用过程中遇到的一个非常大的挑战。 那么,康宁公司的连续流技术具有哪些优势?其一,无缝放大。康宁公司在连续流技术领域耕耘了很多年,也非常重视这方面的技术创新。其中在反应器设计这块,康宁公司也充分考虑到药物制造过程中需要解决的问题。如康宁反应器有一个很典型的特点,就是它可以做到无缝放大,从实验室规模到生产规模,可以实现无缝对接。“在实验室开发好了工艺以后,我们可以快速走向工艺化生产。这是通过我们的技术手段来帮助企业实现快速的切换。”伍辛军博士介绍说。其二,快速合成。基于品种非常多,康宁反应器平台本身也有普适性。其平台不是针对哪个反应或者哪个药物品种设计的,而是一个多功能平台,可以进行各个分子的快速合成。其三,降低杂质含量。由于康宁是做材料的公司,在材料领域有着170多年的技术积累,其材料可以耐受很多种物料的腐蚀,包括强酸、强碱的腐蚀,所以可以避免药物制造过程中出现金属离子残留等问题,康宁公司正是通过技术的手段,大大降低杂质的含量,提高药品的质量的。谈挑战:从三个方面帮助药企解决高成本难题 2021年是十四五规划开局之年,但药企普遍面临成本攀升、品种繁多等问题,对此,企业应该怎么应对呢?伍辛军博士指出,制药企业这几年经历带量采购,药物的成本问题越来越突出,尤其是随着药物的发展,人类基因测序已经完成,所以很多药物越来越往多品种方向发展。“我们不可能说建一个很大的工厂只生产一个药物分子,加上量不大,它给企业带来的回报是相对有限的。”针对上述挑战,康宁公司主要做了以下几个方面的工作: 其一,通过技术创新,推出万吨级的生产平台,帮助品种量比较大的企业,降低他们的生产、运营成本。 其二,通过多功能生产平台,生产很多药物分子。在同样一个平台下,可以实现品种之间的快速切换,平摊下来,制药企业的生产成本也会降低。伍辛军博士表示,成本是企业的生命线,康宁便是从这个角度帮助企业进行成本的节约。其三,从实验室规模到生产规模,大大节约制药项目的开发周期。伍辛军博主指出,原来传统的间歇生产模式,从小试到中试再到生产是个非常漫长的过程,尤其是中试过程,本身生产不了很多东西,这个过程中伴随的成本也是非常高的,而康宁可以解决从实验室到生产的放大,帮助企业节约生产的成本。谈前景:康宁公司非常重视中国反应器市场谈及国内反应器市场的前景,伍辛军博士表示:“我们非常看好这个前景,康宁公司也非常重视中国市场,我们在中国的投资已经超过40年,在大陆的投资额超过70亿美金,康宁一直非常重视这个产业。”值得一提的是,反应器产业作为刚起步的产业,市场还不成熟,对此,康宁公司也积极做了很多年的市场培育,高度重视产业的发展。2019年,康宁公司在常州开始计划建立康宁反应器公司全球业务总部,同时把康宁反应器的生产基地、技术中心也建在了常州。另据伍辛军博士透露,在今年6月17号,康宁公司也会建立康宁连续流技术培训中心,“这个培训中心主要帮助企业解决人才的问题。我们不仅会培养企业的人才,还会培养老师,把连续流领域专业人士请过来,给我们的老师做培训,让学校有更多的老师懂这个技术,让更多的学生学习这个技术,这样可以帮助整个行业建立很好的生态链,能够健康地往前发展。” 对于康宁公司而言,今年的第86届API China也是一场非常重要的展会,可以帮助公司进一步拓展市场。伍博士着重介绍了现场带来的以下反应器产品其一,康宁G1连续分离和检测一体化平台。该平台的特点在于能够把连续反应、连续分离、在线检测集成在一起,可以进行药物的研发,快速工艺的开发,同时也可以进行药物公斤级的合成,而且还符合GMP、FDA认证的要求。其二,康宁G4反应器。该平台仍然延续了流动化学核心原理,目前也可以做成一个多功能的生产平台,其特点是占地面积非常小,只需四五十平的建地面积,就可以做两千吨甚至三千吨的年通量的工厂,有了这个平台可以快速合成产品,满足客户的需求,快速给社会提供急需的要求。其三,康宁星云教学平台,该集成化平台于2019年11月推出,此次也亮相于展会上。在康宁展台现场,还有专人对该平台进行演示的实验。据介绍,康宁星云平台是专门针对新时代学生的需求而设计的,“现在很多学生都不愿意学化学化工,我们也在反思这个问题,我们这个平台是针对00后设计的,符合他们使用的习惯,比如我们配备的是10.5寸的大触摸屏,学生在上面点点手指,就可以进行实验操作训练。”伍辛军博士表示,另外,该平台都是集成化的,非常小巧。聚焦本质安全绿色低碳,赋能产学研用创新融合,康宁反应技术中心欢迎制药行业企业咨询交流,一起深入探讨技术,帮助解决社会急需的问题,同时实现制药企业的转型升级,以及制药行业的高质量发展!同时诚挚邀请您关注康宁公司有关6月17日“康宁本质安全智能装备产学研用成果全球发布”大会的新报道!
  • 赛默飞世尔科技发布流变计平台的新型拉伸流变系统
    赛默飞世尔科技大力拓展面向高端流变计平台的聚合物系列产品——新型拉伸流变系统现已面世   德国卡尔斯鲁厄(2008年7月22日)--服务科学,世界领先的赛默飞世尔科技公司发布了一款面向Thermo Scientific HAAKE MARS流变仪平台的新型附件-SER(Sentmanat 拉伸流变仪)系统。该系统可使普通的固态旋转流变仪扩展为具备拉伸熔融和半固态材料功能的强大拉伸流变仪。      SER系统适用于HAAKE MARS流变仪,由Martin Sentmanat博士开发,Xpansion Instruments公司独家生产。测量方法是把样品夹在两个对旋的卷筒之间。SER系统支持两种测量模式:可控拉伸速率模式和可控拉伸应力模式。除了单轴拉伸外,该系统还支持固态拉伸测试、剥离撕裂测试及摩擦测试。新型SER系统的操作温度范围在0°C到250°C。与HAAKE MARS控制测试炉(CTC)组合使用,可保证样品温度快速变化、均匀分布。SER平台能完全集成到Thermo Scientific粘度仪和流变仪的Thermo Scientific HAAKE RheoWin测试和评估软件中。   新近发布的RheoScope HT(高温型)模块能同时记录高温时被测样品微观结构中的各流变特性和变化。流变测量与光学分析相结合可直观地对微观结构进行更详尽地分析,因而能获得更多的样品机械特性相关信息,如聚合物熔融或结晶情况。   Thermo Scientific HAAKE RheoScope HT高温型模块的主要特点:    可完全集成到HAAKE MARS流变仪平台中    温度范围在-5 °C到300 °C    物镜、偏振镜和摄像头通过HAAKE RheoWin软件进行控制    在线显示数据、视频序列,及存储数据供日后分析    图像分析软件,可用于确定颗粒大小、分布情况并对其进行结构分析。   热固化在行业中的应用非常广泛,范围包括粉末涂料、胶粘剂、密封剂、焊接材料、油墨等等。近来,呈现出用支持UV的热固化来取代热固化的发展趋势,其目的是通过减少启动固化反应所需的能耗等方法来同步实现产品特性改善、生产力提高、生产成本降低的目标。为了开发及测量上述样品,已专为HAAKE MARS流变仪开发了一款全新的高温UV固化测量元件。此外,标准版UV元件和可定制的圆筒形测量单元(可自由配置光导、聚光镜、玻璃片等光学部件的距离)均已有售。   支持UV的热固化测量元件的主要特点:    全面集成的UV元件,适用于控制测试炉(CTC)    通过软件触发UV光源   赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc.   Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。   关于赛默飞世尔科技   赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站:www.thermo.com.cn
  • 【安东不怕扰e直播】流变测量
    RheolabQC 是一款基于最先进流变测量技术制造的旋转流变仪,同样可以用于研发领域。该流变仪性能超群,操作简便,结构坚固,可用于进行快速单点检查、流动曲线测试、屈服点测试,直到更为复杂的流变研究:RheolabQC 为常规流变测试确立了新的标准。这款功能强大的流变仪是现代测量仪器的卓越典范,它融合了现今所能利用的相关技术,可确保灵活、可靠、简便的操作。黏度测量 — 从单点到复杂的流变测试RheolabQC 旋转流变仪可测量低密度至半固体样品的动态黏度。除单点测量以外,还可通过流动曲线和黏度曲线研究样品的流变特性:不论样品是理想黏度流体(牛顿流体)、剪切变稀流体(假塑料流体)甚或剪切增稠流体(胀塑料流体),RheolabQC 均能轻松进行评估。屈服点测定、触变性和温度测试可帮助显著了解样品的特性。用户可选择控制剪切速率 (CSR) 和控制剪切应力 (CSS) 两种设置。功能强大的高动态 EC 马达可提供极快的速度和扭矩改变(数毫秒内)。仅一台旋转流变仪即可提供多种不同应用很宽的速度和扭矩范围可实现仅用一台仪器即能测量多种样品。从油漆、涂料到食物样品(例如巧克力或乳制品),再到石化产品(例如,机油,甚或沥青),RheolabQC 可快速而简单地测量任何类别的低密度至半固体样品。对于制药行业的客户,可获得符合 21 CFR Part 11 法规的制药认证方案。单点黏度测定和更复杂的流变测试(例如,屈服点测定)的操作简单可在脱机模式下或软件控制下操作 RheolabQC。该仪器含有免费的数据导出软件。可将仪器的测量数据传输至计算机。Toolmaster™ ,用于自动识别测量系统的获得专利的系统,可确保无差错操作。快速连接器可快速简便地安装和更换测量系统,无需使用螺纹装置。各种不同的测量系统和附件适合多种应用。RheolabQC 可提供多种测量系统和附件,适合多种不同的应用。同心圆筒测量系统(符合 DIN EN ISO 3219 和 DIN 53019 标准):适用于粘性液体至粘弹性液体(从低黏度样品至半固体样品,例如乳膏)双间隙测量系统(符合 DIN 54453 标准):适用于低黏度样品(0.1 mm)或趋向于沉淀(例如,分散液)的样品Krebs 转子(符合 ASTM D562 标准):尤其适合使用 Krebs 设备测量黏度的涂料、建筑和采矿业客户灵活的容器支架:可直接将测量转子浸入样品容器中,例如铝罐(油漆、涂料)或 500 mL 烧杯圆球测量系统:适用于大颗粒样品,例如建筑材料(水泥、混泥土、石膏)或食品(例如,含果粒的酸奶或果酱)快速、准确的温度控制RheolabQC 配备有帕尔贴温控设备(温控范围:0 °C 至 180 °C)。帕尔贴系统具有快速的加热速率(8 K/min)和冷却速率(4 K/min)以及极高的控温精度。由于通过空气进行逆向式冷却,因此该系统无需配备额外的流体恒温器。
  • “毒鸡蛋”事件蔓延,哪些科学仪器厂商快速响应?
    p    strong 仪器信息网讯 /strong 过去一周,席卷欧洲的“毒鸡蛋”事件愈演愈烈,引发了全球对于食品安全的新一轮恐慌。“氟虫腈”一词关注度居高不下,仪器信息网编辑对后台最近一周的仪器企业新闻进行了梳理,看哪些仪器公司及时推出相关解决方案,而哪些公司的市场部小编又该加“鸡腿”啦! /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " (以下排序以仪器信息网发布时间顺序为准) /span /p p    a href=" http://www.instrument.com.cn/news/20170810/226386.shtml" target=" _blank" title=" 快看看你家的鸡蛋是否有毒?——PerkinElmer快速为您提供解决方案" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 快看看你家的鸡蛋是否有毒?——PerkinElmer快速为您提供解决方案 /strong /span /a /p p   PerkinElmer一直致力于为用户提供全方位的解决方案,在欧洲“毒鸡蛋”事件爆发的第一时间,与食品安全检测研发联合实验室-国家糖业质量监督检验中心(广州甘蔗糖业研究所)共同开发建立高效液相串联质谱法测定鸡蛋中氟虫腈及其代谢物检测整体解决方案。 /p p    a href=" http://www.instrument.com.cn/news/20170816/226833.shtml" target=" _blank" title=" “毒鸡蛋”持续发酵,迪马助您快速检测" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong “毒鸡蛋”持续发酵,迪马助您快速检测 /strong /span /a /p p   迪马检测方案方法采用乙腈水提取,ProElut PLS-A固相萃取柱和QuEChERS净化,LC-MS/MS检测,可有效去除鸡蛋中的蛋白质,碳水化合物和脂肪等多种杂质,实现优异的净化效果 方法定量限0.5 μg/kg(欧盟法规 EU No.1127/2014中规定蛋类中氟虫腈的残留量为5 μg/kg)。 /p p    a href=" http://www.instrument.com.cn/news/20170815/226751.shtml" target=" _blank" title=" 赛默飞 Start-To-Finis工作流程助您轻松搞定毒鸡蛋检测" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 赛默飞 Start-To-Finis工作流程助您轻松搞定毒鸡蛋检测 /strong /span /a /p p   对于氟虫腈及其代谢物的分析,无论是采用基于OrbitrapTM技术的高分辨质谱还是三重四极杆质谱检测,赛默飞都有成熟的方法可供用户直接使用。该方法利用TurboflowTM在线净化技术与液相色谱串联质谱技术联用测定氟虫腈及其代谢产物在蔬菜中的残留。 /p p    a href=" http://www.instrument.com.cn/news/20170818/227027.shtml" target=" _blank" title=" 鸡蛋中氟虫腈及其代谢物基于岛津LCMS-8060的快速检测方案" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 鸡蛋中氟虫腈及其代谢物基于岛津LCMS-8060的快速检测方案 /strong /span /a /p p   中国的国家标准GB2763-2016《食品中农药最大残留限量》中规定,氟虫腈在植物源性食品中限量在0.02-0.1mg/kg之间,其中鸡蛋的限量为0.02mg/kg。本文介绍北京市疾控中心基于岛津液相色谱质谱联用仪LCMS-8060的氟虫腈残留检测方案,其灵敏度高、检测快(5min内),完全满足国标要求。 /p p    a href=" http://www.instrument.com.cn/news/20170817/226960.shtml" target=" _blank" title=" 沃特世:“毒鸡蛋”氟虫腈应急响应方案" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 沃特世:“毒鸡蛋”氟虫腈应急响应方案 /strong /span /a /p p   席卷欧洲的“毒鸡蛋”事件愈演愈烈,已影响到了全球的食品安全。为了配合鸡蛋及鸡肉中氟虫腈的检测,沃特世推出“毒鸡蛋”氟虫腈应急响应方案。方案具有全面监控氟虫腈及3种代谢物、鸡蛋回收率结果在80~110% 鸡肉为80~95%等优点。 /p
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制