当前位置: 仪器信息网 > 行业主题 > >

大型直接剪切试验仪

仪器信息网大型直接剪切试验仪专题为您提供2024年最新大型直接剪切试验仪价格报价、厂家品牌的相关信息, 包括大型直接剪切试验仪参数、型号等,不管是国产,还是进口品牌的大型直接剪切试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大型直接剪切试验仪相关的耗材配件、试剂标物,还有大型直接剪切试验仪相关的最新资讯、资料,以及大型直接剪切试验仪相关的解决方案。

大型直接剪切试验仪相关的资讯

  • 836.6万元!三峡大学获批重大仪器项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”
    据三峡大学网站信息,三峡大学于近日接到国家自然科学基金委通知,获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”。该项目由李建林教授主持申报,直接经费836.6万元,执行期限五年。该类型项目是三峡大学自建校以来首次获批,也是三峡大学受国家自然科学基金项目单项资助额最高的项目。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题,为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。
  • 胶黏剂拉伸剪切试验方法电子拉力拉伸试验机
    胶黏剂拉伸剪切试验方法电子拉力拉伸试验机:原理试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为 MPa。试样1)试验机:使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1%。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。试验机应保证试样夹持器的移动速度在 (5±1) mm/min 内保持稳定。2)量具:测量试样搭接面长度和宽度的量具精度不低于 0.05 mm。3)夹具:胶接试样的夹具应能保证胶接的试样符合要求,在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法,但不能用于仲裁试验。4)标准试样的搭接长度是(12.5±0.5)mm,金属片的厚度是 (2.0± 0.1 ) mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。5)试样数量不应少于 5 个,仲裁试验试样数量不应少于 10 个;对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度,两者中选择前者较好。测试时金属片所受的应力不要超过其屈服强度 σS ,金属片的厚度 δ可按式( 11-12)计算:δ=( Lτ) /σ S (11-12)式中:δ——金属片厚度;L——试样搭接长度;τ——胶粘剂拉伸剪切强度;σS ——金属材料屈服强度(MPa)。试样制备1)试样可用不带槽或带槽的平板制备,也可单片制备。2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。试验条件试样的停放时间和试验环境应符合下列要求:1)试样制备后到试验的最短时间为 16 h,最长时间为 30 d。2)试验应在温度为( 23±2)℃ 、相对湿度为( 45~55)%的环境中进行。3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于 0.5 h;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于 16 h。实验步骤1)用量具测量试样搭接面的长度和宽度,精确到 0.05 mm。2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为( 50± 1)mm3)开动试验机,在 (5±1) mm/min 内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。
  • 全自动核酸剪切仪新品Megaruptor
    Diagenode公司推出全自动核酸剪切仪新品Megaruptor Diagenode公司推出全自动核酸剪切仪新品Megaruptor 比利时 Diagenode公司自成立以来,一如既往地服务表观遗传学研究领域,为表观遗传学科学工作者们提供卓越的自动化设备和优质的抗体等试剂,完善了该领域的实验流程同时提高了实验效率,研发的Bioruptor系列非接触式超声破碎设备,卓有成效地高重复性地解决了染色质片段化和核酸片段化,为chip(染色质免疫共沉淀)和二代测序等下游实验完美对接。在第三代测序仪器出现后,核酸大片段测序得以实现,全自动核酸剪切仪Megaruptor就是用于核酸大片段化的三代测序。Diagenode 全自动核酸剪切仪 MegaruptorMegaruptor的完美设计,使其具有简单化、自动化、高重复性,可以获得2 kb-75 kb长度的DNA片段。剪切性能卓越,不受DNA样品来源、集中度、温度、盐浓度的限制,完全符合了科研人员的实验要求。同时,在无人员值守的情况下,友好的软件系统可以允许两个样品相继被片段化处理,不存在交叉污染。科研人员只需要简洁有效地设定好参数,仪器便可以自动化地进行处理获得目的片段。仪器特点:设定目的片段长度(2kb-75kb),快捷方便地获得集中于目的长度的片段分布获得高质量文库,用于Illumina?, Ion Torrent?, 和 PacBio? 平台自动多端口阀,配置五通道的洗涤平台全程有软件控制,洗涤、剪切自动一体化,彻底解决管路堵塞问题一次可剪切两个样本,剪切参数可完全独立全程电脑程序自动操控,操作界面友善不须定期校正,仪器维护容易绝佳的结果重复性与精准的剪切范围技术参数1. 自动多端口阀,配置了5信道的洗涤平台用于洗涤DNA2. 全程由软件控制:洗涤、切割自动一体化。绝无有卡管问题3. 可产生完全随机、均匀、完整具有代表性的目标大小DNA片段4. 切割DNA片段大小:2-10kb 组件;13Kb-75kb组件, 剪切范围最宽广5. 样品DNA浓度:1-50ng/ul, 最适浓度为20ng/ul6. 样品DNA原始长度:对切割片段大小无影响7. 样品体积:50-400ul8. 一次可上两个样本, 剪切参数可完全独立9. 处理时间:每个样品10-20分钟, 包含样本处理与自动管线清洗时间10.计算机(笔记本)为标准配备及操控软件11.试剂:优化好, 客户可自行配置上海博谊生物科技有限公司是比利时Diagenode公司全自动核酸剪切仪 Megaruptor的代理商,欲知更多产品详情,请联系我们。 发布者:上海博谊生物科技有限公司联系电话:021-51691651E-mail:18616023651@163.com
  • 施一公组首次报道人源剪切体原子分辨率结构
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title="微信图片_20170512000929_副本.jpg"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp  5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。/pp  剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title="微信图片_20170512001013_副本.jpg"//pp  这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。/pp  人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title="微信图片_20170512001027_副本.jpg"//pp  此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title="微信图片_20170512001044_副本.jpg"//pp style="text-align: center "图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”)/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星”/span。/ppbr//p
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双1,2,曹晓1,2,张嘉琪1,2,韩迎春1,2,赵欣悦1,2,陈全1,21.中国科学院机构长春应用化学研究所高分子物理与化学国家重点实验室 长春1300222.中国科学技术大学应用化学与工程学院 合肥230026作者简介:陈全,男,1981年生.中国科学院长春应用化学研究所研究员.本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造.于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的DistinguishedYoungRheologistAward(2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《NihonReorojiGakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者:陈全,E-mail:qchen@ciac.ac.cn摘要:流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工.本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词:流变学/剪切流场/剪切流变测试目录1.流场分类2.剪切旋转流变仪概述2.1测试原理2.2测试模式3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述3.1.1输入(输出)应变为施加在样品上的应变3.1.2流场为简单的剪切流场3.1.3输入(输出)应力为样品的黏弹响应3.2测试中常见问题I:仪器和夹具柔量3.3测试中常见问题II:仪器和夹具惯量的影响3.4测试中常见问题III:样品自身惯量的影响3.5测试中常见问题IV:二次流的影响3.5.1同轴圆筒夹具二次流边界条件3.5.2锥板和平板夹具二次流边界条件3.6测试中常见问题V:样品表面张力3.6.1样品的各向对称性3.6.2样品本身表面张力大小3.6.3大分子聚集3.7测试中常见问题VI:测试习惯3.7.1样品的制备:干燥和挥发问题3.7.2确定样品的热稳定性3.7.3样品体系是否达到平衡态3.7.4夹具热膨胀对测试的影响3.7.5夹具不平行和不同轴对测试的影响4.结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可.流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况.最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯.笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1.流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场.更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”).流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应.虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如SentmanatExtensionalRheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因.图1中分别展示了剪切和拉伸2种形变[14].施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动.剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直.而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变.同样,连续的拉伸形变称为拉伸流动.拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行.施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离.在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场.然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度.在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场.假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图1Figure1.Illustrationoftworepresentativemodesofdeformation:thesimpleshearforwhichthedirectionofvelocitygradientisperpendiculartothatofvelocity,andtheuniaxialelongationforwhichthedirectionofvelocitygradientisparalleltothatofvelocity.(ReprintedwithpermissionfromRef.[14] Copyright(2012)Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数.为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的.即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17].该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18].然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2.剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧).目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪.本小节主要围绕旋转流变仪展开介绍.旋转流变仪主要分为应力控制型和应变控制型2种.应力控制型旋转流变仪一般使用组合式马达传感器(combinedmotortransducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separatemotortransducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用.之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别.对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T(T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数.因此,可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图2Figure2.GeometryandparametersKγandKσofparallel-plate,cone-and-plateandCouettefixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试.但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性.例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20].(2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择.此外,需要注意的是,为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度.(3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应.在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应.根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图3Figure3.ThedifferentresponsesofNewtonianfluid,Hookeansolid,andviscoelasticmaterialstotheimposedsteadyflow(stressgrowth,transientorsteadymodethatdependsonthefocus),stepstrain(stressrelaxation,transientmode),stepstress(creepandrecovery,transientmode)andsmallamplitudeoscillatoryshear(SAOS,dynamicmode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应.通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式.通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力.剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动.(2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等.其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stressrelaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creepandrecovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stressgrowth).这些测试的共性是关注样品在一个特定刺激下的转变过程.以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间.(3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应.以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间.通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(smallamplitudeoscillatoryshear,简称SAOS).对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间.当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(largeamplitudeoscillatoryshear,简称LAOS).需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心.因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力.然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题.需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1)应变作用在样品上;(2)应力为样品自身的响应;(3)流场为简单剪切流场.这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠.接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.3.1.1输入(输出)应变为施加在样品上的应变该假设的关键在于没有考虑仪器和夹具柔量的影响,即假设样品的应变可以直接从角位移得到.然而,在力的作用下,仪器和夹具自身也会旋转一定的角度.只有当该角位移远小于作用在样品上角位移时,上述假设才能成立.由于夹具通常由不锈钢或者其他金属材料制造,其模量通常在~1011Pa或者更高的范围,而测试样品,特别是高分子材料即使是在玻璃态,模量通常小于1010Pa,因此,似乎夹具的形变可以忽略.但是,需要指出的是,平板和锥板的夹具通常被设计成细长空心的圆柱形,而夹具中间的样品通常为扁平的圆片状,这种形状上的差异会显著增加夹具柔量的影响.除此之外,夹具与样品之间的滑移也可造成施加应变和样品实际应变的区别[21~23].这种滑移会消耗一部分施加的角位移,假设被消耗的角位移为θslip,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff).对于平行板样品,由于应变参数Kγ=R/H,这使得在相同的实际应变Kγθeff下,旋转的角位移θeff随着板间距H的增加而增加,而θslip则改变较少,因此,滑移的效应会随着板间距的增加而弱化,该结果也可以用做滑移是否存在的间接判据:即如果存在滑移,则其造成的误差会随着板间距的增加而减少.对于滑移效应更为直接的判据就是通过微小的示踪粒子直接观测板附近的粒子的运动是否和板的运动一致.3.1.2流场为简单的剪切流场上文中提到,剪切流变仪设计的一个基本原则就是生成纯粹的剪切流场并记录样品在该流场下的响应.然而,由于受到界面和样品自身的影响,样品中实际的流场未必为纯粹的剪切流场,该效应通常在大剪切速率下出现.例如,对于同轴圆筒夹具测试低黏度样品,当泰勒数大于一个定值时,或者对于平行板和锥板测试低黏度样品,当雷诺数大于一个定值时,流场会偏离简单的剪切流场.以平行板为例(如图4所示),在高雷诺数下,由于离心作用,旋转的上板附近的流体沿着板的径向向外运动,为了填补这些流体流出的空隙,静止下板附近的流体会沿着径向向内运动,这2种流体的运动就会造成一次流基础上出现叠加的二次流,从而导致测试扭矩的增加和相应的剪切增稠假象[24].图4Figure4.Thesecondaryflowoccurswhensampleunderrotarygeometrymovesradiallyoutwardandsampleonthestaticgeometrymovesradiallyinward.对于具有一定弹性的样品,假设其自身的松弛时间为τ,当韦森堡数Wi=τγ˙大于1时,也可能会在低泰勒数(同轴圆筒)或者低雷诺数(平行板或者锥板)的条件下出现弹性非稳定二次流,这种二次流的出现也会造成剪切增稠的假象.下文中,我们会对同轴圆筒和锥板以及平板出现二次流的边界条件进行更详细的讨论.此外,在高度缠结的高分子溶液或者高分子熔体等黏度较高的体系中,剪切速率过高的时候可能会出现剪切带或者较强的壁面滑移,这种剪切速率的非均一分布往往有利于体系自由能的降低.对于高分子熔体,在高剪切速率时,自由表面附近可能出现熔体破裂的现象.这些现象的出现也都会导致测量体系的流场严重偏离简单剪切流场.通常,剪切带、壁面滑移和熔体破裂等现象都会导致体系的应力减少及随之增强的剪切变稀效应(应力或者黏度随时间急剧下降).对于一些极端的情况,甚至会出现剪切应力σ不随剪切速率γ˙γ˙的增加而增加的特殊现象(此时黏度η=σ/γ˙γ˙~γ˙β且β≤−1).为了减弱熔体破裂的现象带来的实验误差,通常可以采用锥板加组合板的特殊夹具(cone-partitionedplate,简称CPP夹具)(如图5所示).CPP夹具中,锥板(绿色)与马达相连,组合板分为2个部分,中心平板(尺寸小于锥板,灰色)和环绕中心平板的环状板(蓝色),两者同轴且分离,共同组合成类似于与锥板同等大小的平板.其中,中心板与传感器相连并记录扭矩,环状板与仪器相连且被固定.测试过程中,一般熔体破裂发生在样品边缘.因此,只要当破裂的边缘没有深入到中心板,所记录的扭矩受到边界熔体破裂的影响就可以忽略[25].图5Figure5.SchematicviewoftheCPPfixture.Green:cone red:sample blue:outerpartition(section) yellow:translationstages(section) orange:bridge(section) grey:innertool(Drawingnotinscale).Thesamplediskshouldhavesizesufficientlylargerthantheinnerplate.(ReprintedwithpermissionfromRef.[25] Copyright(2016)AmericanChemicalSociety)3.1.3输入(输出)应力为样品的黏弹响应其实,上述二次流出现是由样品内部流场的不稳定性带来的效应,会导致额外的应力.在流变测试中,另一个无法忽略的就是测试扭矩的贡献中包含仪器和夹具自身的惯量的贡献.对于真实样品的测试扭矩应该等于测试总扭矩减去仪器和夹具自身的惯量造成的额外扭矩.上面文中提到,对于纯弹性的流体,流变测试中其自身的弹性产生的扭矩T与旋转角度θ具有正比的关系,即T~θ,此时T相对于θ的相位角δ为0°;对于纯黏性的样品,流变测试中其自身的黏性所产生的扭矩与旋转角度相对于时间的导数具有正比的关系,即T~θ˙,此时T相对于θ的相位角δ为90°;对于惯性导致的扭矩,其大小与加速度成正比,即T~θ¨,此时T相对于θ的相位角δ为180°,这种区别可以作为出现惯量效应的判据.例如,在动态测试中,样品黏弹性引起的相位角在0°和90°之间,一旦测试时出现了90°和180°之间的相位角,则必然出现了仪器惯量效应.特别是在高频动态测试中,由于θ=θ0sin(ωt),则惯量I贡献的扭矩高达T0=Iω2θ0,因此,商业的旋转流变仪通常频率ω的测试上限在102rad/s.虽然有些仪器支持测试更高的频率,如103rad/s或者更高,但是测试高于102rad/s的数据时,需要时刻注意分析惯量对于扭矩的贡献.此外,由于自由表面的存在,表面张力对于扭矩的贡献有时也是难以忽略的,该贡献在低黏度的样品中表现得尤为突出.由于表面张力的存在,样品具有收缩表面积的趋势,这会造成剪切作用下界面形状或面积变化时额外的法向力或者剪切力.例如,在平板和锥板夹具中,样品过度充满或者未充满的时候,样品的自由表面会产生突出或者凹陷的曲面结构,这种曲面结构的产生会引起额外的法向力.当样品在剪切流场中,自由表面的面积也会随之出现波动性的变化,这种变化通常会产生弹性应力响应,从而导致额外的应力贡献.通常可以通过填充合适量的样品、增加样品的各方向对称性和引入表面活性剂降低表面张力等方法来抑制表面张力的影响.下文中,我们会结合一些实验实例进一步阐释上述旋转流变仪测试的假设条件失效的情况.此外,我们总结了流变测试中一些不良测试习惯导致无法正确获取实验数据的情况.最后,我们会针对上述内容,给出一些避免类似错误结果的建议.3.2测试中常见问题I:仪器和夹具柔量流变仪能够准确测量样品模量的一个前提是传感器和夹具的柔量远小于样品的柔量,或者换言之,传感器和夹具的刚度远大于样品的刚度(刚度等于柔量的倒数).其中,夹具的刚度不仅与夹具的模量相关,也与夹具的尺寸和形状相关.如果将夹具设计成圆柱形,则其刚度κ与夹具横截面半径R的4次方成正比,与圆柱体的高h成反比:一方面,为了抑制样品的温度对传感器和马达的影响,并减少夹具的惯量,平行板和锥板夹具常被设计成细长的形状(较小的R和较大的h),这种结构会减少夹具的刚度;另一方面,为了增加样品的测试扭矩,常将样品制成扁平的形状,这种形状的差别使得夹具与样品刚度的区别远低于制造夹具的材料和样品模量上的区别,而导致实际施加在样品上的真实应变低于设定应变,这种应变的误差会导致样品流变测试结果的显著误差.例如,刘琛阳等分析了双头应变控制型流变仪ARESG2(TA)的仪器柔量对线性黏弹性的影响[26].如图6(a)所示,在样品模量大于105Pa时,用25mm平行板的测量结果明显偏离8mm平行板的测量结果.虽然样品的模量不发生变化,样品的刚度随着尺寸R的增加而增加,造成了测量时夹具产生了更多的形变,这导致了实际施加在样品上的应变的减少和相应的测试模量的降低;为了说明这个问题,图6(b)展示了相对于指令应变(黑色方块),经过传感器校正后的实测应变(红色圆点)较小,而经过夹具校正后的应变则更小(绿色三角),该应变可反映施加在样品的实际应变.图6Figure6.(a)Theeffectofgeometrycomplianceonlinearviscoelasticity (b)Comparisonofcommandedstrain(as100%),measuredstrain(withforcerebalancetorquetransducers(FRT)compliancecorrection),andcorrectedstrain(withtoolcorrection)obtainedforapolyisobutylenesampleat−20°Cusing25mmparallelplates(ReprintedwithpermissionfromRef.[26] Copyright(2011)SocietyofRheology)为了准确地测量样品的模量,通常建议选取合适尺寸的夹具来直接测量.由于夹具的形变通常正比于扭矩,因此在测量较高模量范围的样品时,为避免柔量的影响,需减少样品和夹具尺寸来降低扭矩.而对于测量较低黏度的样品,需要增加样品和夹具的尺寸来增加扭矩,使得扭矩大于仪器传感器的测试下限.笔者的经验是,25mm板使用的上限通常为~105Pa,8mm板的使用上限为~107Pa,而如果需要准确地测量高分子玻璃态模量(~109Pa),需要使用3mm左右的夹具.对于黏度极低的样品,除了选择更大的板(如50或60mm的夹具)以外,还可以使用过采样技术(oversampling)[27],拓宽动态测试的扭矩测试下限,提高相位角的准确程度.但是考虑到小夹具上样的困难,可利用柔量校正来拓展夹具的使用上限.很多流变学者具体研究了柔量的校正方法,例如1982年,Gottlieb和Macosko[28]讨论了仪器柔量对动态流变测量的影响以及力传感器的校正方法.在2008年,Hutcheson和McKenna[29]详细地研究了夹具尺寸对玻璃化转变区附近的流体的动态振荡测试和应力松弛测试结果的影响,并提出相应的校正方法.本文以Hutcheson和McKenna的校正方法为例[29],简单介绍一下动态剪切数据的校正方法.为了准确测定特定夹具下整个仪器系统的柔量系数,作者设计加工了上下板“连体”的参比夹具(如图7所示),并直接测量了参比夹具的柔量.根据柔量相加原则,流变仪器实测复合扭转刚度κ0∗的倒数等于仪器夹具刚度κt和样品刚度κs∗的倒数之和:由于仪器和夹具的柔量均来源于其固体弹性,可以将两者简化为一个与黏弹样品串联的弹簧,其刚度可简化为实数κt.在已知κt的基础上,可利用公式(6)校正测试的实验数据κmes∗,得到样品的实际复数刚度κs∗.图7Figure7.Asimpleschematicshowingthegeometryofthesolidrodandthedisposableplatens(ReprintedwithpermissionfromRef.[29] Copyright(2008)AmericanInstituteofPhysics).3.3测试中常见问题II:仪器和夹具惯量的影响对于仪器和夹具惯量的校正是准确进行瞬态和动态流变测试的基础.旋转流变仪测得的扭矩不仅来源于样品自身的应力响应,也来源于马达和夹具在加速过程中的惯量贡献.早在1991年,Krieger等讨论了单头的应力控制型流变仪仪器和夹具惯量对测试的影响[30],他们发现,当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.最近,Lauger等研究了流体在振荡剪切模式下的仪器和夹具惯量的影响[31],并给出了通过流变仪测量的实测扭矩、样品产生的扭矩以及仪器和夹具自身惯量产生的扭矩的三者之间的矢量关系(图8).图8Figure8.Vectordiagramoftorques,includingaccelerationtorqueTa,totalorelectricaltorqueT0,andsampletorqueTs,whereδδandααarephaseangleofT0andTs,respectively.ThesampletorquecanbedecomposedintoviscouspartTvandelasticpartTe(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology).其中,仪器测试的实测扭矩T0等于样品扭矩Ts和仪器加速惯量产生的扭矩Ta之和.换言之,样品产生的扭矩应该等于总扭矩减去仪器加速时惯量产生的扭矩,该扭矩可利用相位角分解成弹性贡献部分Te和黏性贡献部分Tv.此外,Lauger等研究表明[31].:对于牛顿流体,惯量产生的扭矩与样品扭矩的比率可表达为其中I为测量设备的转动惯量,|G∗|为样品的复数模量的绝对值,ω为测试的角频率.然而,需要指出的是公式(8)仅适用于牛顿流体,对于黏弹性体系并不准确.据此,可以通过计算仪器和夹具惯量产生的扭矩与样品扭矩之比来判断仪器和夹具惯量的影响.例如:图9展示了Lauger等利用单头的MCR系列流变仪(AntonPaar)测试黏度为4mPas的S4oil频率扫描测试.在测试的频率范围内,该流体应为牛顿流体.其中蓝色正三角表示实测的扭矩T0,绿色倒三角表示校正了仪器和夹具惯量贡献后的样品贡献的扭矩Ts.在最低频区域,实测扭矩与样品贡献扭矩近似相等,说明样品的贡献占主导,此时测得的复数黏度(红色圆)接近样品稳态黏度4mPas.但是随着频率的增加,实测扭矩大于样品贡献的扭矩且两者差距逐渐增加,在频率小于25rads−1(竖箭头所示)的区域,虽然实测扭矩已经远大于样品的扭矩贡献,即实测的T0/Ts已接近2个数量级(横箭头所示,这与通过公式(8)计算的结果Ta/Ts=Iω2Kσ/(Kγ|G∗|)=IωKσ/(Kγ|η∗|)=95近似相等),经过校正得到的样品扭矩计算的黏度仍然接近4mPas,说明测试结果仍然有效.该例子展示了当前流变仪的技术水平已经臻于成熟:即使在惯量贡献的扭矩占主导的情况下,仍然可以通过仪器校正得到准确的样品扭矩.但是在频率高于25rads−1区域惯量校正开始失效,造成了稳态黏度激增的假象.图9Figure9.FrequencysweepmeasurementontheS4oilsamplewithviscosityof4mPas(CP60-0.5geometry).Inadditiontothecomplexviscosity,themeasuredtotaltorqueT0andthesampletorqueTsobtainedaftertheinertiacorrectionareplottedagainstangularfrequencyωω.Arrowspointtodatapointsat25rads−1(seetext),abovewhichtheinertiacorrectionfails.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)在动态振荡测试中,样品黏弹性引起的相位角应当在0°和90°之间(图8所示),因为90°和0°相位角分别对应纯黏性和纯弹性的扭矩贡献Tv和Te,而惯量产生的相位角为180°.图8中,高频处仪器测试的实测扭矩T0远大于样品测试扭矩Ts,表明仪器加速扭矩Ta在测试T0中占据主导,此时的相位角应接近180°.因此,一旦测试时出现了90°和180°之间的相位角,或者动态测试出现G' ~G"~ω2的结果,即可判定出现了仪器惯量效应[32].为了避免实验测试中的不良数据,仪器惯量造成的扭矩Ta与材料自身产生的扭矩Ts之比Ta/Ts应小于一个极限值(该值与仪器的状态和校正的准确性相关).减少惯量影响的一个行之有效的方法是选择合适的夹具.公式(8)中,与夹具几何尺寸相关的参数为Kσ/KγKσ/Kγ.对于锥板,Kσ/Kγ=3β/(2πR3),因此,减少锥角ββ和增加板半径R均有利于减少惯量影响,而对于平板,Kσ/Kγ=2h/(πR4),因此,减少板间距h和增加板半径R均有利于减少惯量影响,或者选择更轻质的夹具来减少I亦可减少惯量影响.总之,无论锥板或平板,增加R或者选择轻质夹具都是减少惯量影响的有效手段.为了降低仪器和夹具惯量影响,对于单头的应力控制型流变仪,需要定期进行惯量的校正,并在更换夹具时做相应的校正.对于双头的应变控制型的流变仪,使用具有力反向平衡功能的传感器可以极大地抑制惯量带来的误差,其表现虽远超单头的流变仪,但也无法完全消除惯量的影响.因此,需要对具体的实验测试结果进行综合的分析和甄别.3.4测试中常见问题III:样品自身惯量的影响剪切流变仪测试中一个基本假设是流场的单一性,即流场是纯粹的剪切流场,这一假设在高速振荡测试过程中失效[33].即在振荡测试中,流变仪通过夹具迫使样品产生往复运动,使得样品内部产生剪切波,当板(夹具)间距与剪切波波长相当或大于剪切波波长时,样品的自身惯量的影响会使得施加样品的剪切流场偏离纯粹的剪切流场.Schrag给出了在剪切流变测试不受该剪切波干扰的临界条件[34],即板间距需远小于其波长λs,其表达式为:式中ρ是流体的密度,|η∗|=|G∗|/ω是复数黏度的绝对值,其中|G∗|是复数模量的绝对值,δ是相位角.研究表明,在给定的频率范围内选取合理的板间距h是减少样品惯量影响数据误差的关键.以水为例,密度为ρ≈1gcm−3,黏度为η≈10−3Pas,相位角δ≈90°,当频率ω=102rads−1时,可估算出λs≈0.9mm.用平板测试一般要求间距在0.5~1mm,因此无法满足hλs.当使用锥板测试时,板间距最宽的部分可以估算为h=βR,因此,半径为25mm、锥角为1°的锥板,h=0.44mm,同样也无法满足hλs.由公式(9)可知剪切波长λs随着样品黏度的增加而增加,因此,上述问题一般不会在黏度较高的高分子溶液或高分子熔体中出现.图10展示了Lauger等利用双头的MCR系列流变仪(AntonPaar)对牛顿流体S4oil在半径相同(R=30mm),锥角分别为0.5°(红色)、1°(绿色)、2°(蓝色)不同的夹具下的振荡剪切测试,研究了样品惯量对流体相位角的影响[31].该流体在测试范围内为牛顿流体.我们发现样品在低频区域表现牛顿流体性质,相位角均为90°,随着频率的增加,相位角逐渐降低,流体出现了一定的弹性响应,且锥角越大,相位角降低越多(箭头指向).相位角的减少导致了储能模量G' ~ω2的标度区域的出现,该结果非常类似于黏弹流体的松弛末端行为,但其实为样品惯量造成的实验假象.显然,此相位角减少的不同来源于测试夹具的区别而非样品的区别.究其原因,是锥板最外侧的板间距βR(0.5°,1°,2°板分别为0.26,0.52和1.05mm)逐渐逼近于通过公式(9)计算出来的λs≈2.0mm,使得样品惯量造成的实验误差逐渐显现.图10Figure10.Phaseangle(circles)andstorageG' (triangles)andlossmodulusG"(squares)fortheS4oilmeasuredinSMTmodewiththreeconeangles,0.5°(red),1°(green),2°(blue).Thearrowindicatesthedirectionofincreasingtheconeangle.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)3.5测试中常见问题IV:二次流的影响在稳态或瞬态测试中,高剪切速率时,由于流动不稳定性的影响可能导致剪切流场出现失稳,造成二次流的出现[24,35~37],使得剪切流变仪测试中剪切流场单一性的基本假设失效.二次流叠加在剪切流场上,会增加仪器测量的扭矩,导致测试样品的表观黏度突然增加.研究表明,对于不同夹具,均可出现二次流.下面我们将对同轴圆筒、锥板和平板3种夹具的几何流场出现二次流的边界条件进行阐述,并通过实例展示二次流对实验数据的影响.3.5.1同轴圆筒夹具二次流边界条件泰勒给出了牛顿流体在同轴圆筒夹具的测量过程中失稳的临界条件[38~40]:可避免Taylor-Couette涡流出现的稳定区间的泰勒数Ta满足:其中R1和R2分别为同轴圆筒夹具中流体的内径和外径(如图2所示),而同轴圆筒夹具的剪切速率为:γ=ΩKγ≈ΩR1/(R2−R1),由此可以得到避免Taylor流的条件:3.5.2锥板和平板夹具二次流边界条件锥板和平板具有不同于同轴圆筒的边界条件,其产生二次流的一个主要原因是离心作用:即高速转动的板附近的流体产生沿着半径方向向外的速度分量,同时诱发静止板附近的流体向内流动(如图4所示).对于锥板和平板夹具,雷诺数Re可定义为[41]:其中h为特征的板间距(平行板h等于间距,锥板h=βR).Turian等研究表明[41],对于利用锥板和平板测试的牛顿流体,实际扭矩T和理想稳定流场下的扭矩T0之比与雷诺数相关:给定T/T0误差1%,即T/T0=1.01,可以得到一个特征的临界雷诺数Recrit=4,该情况下尚未发生持续的湍流.利用Recrit和剪切速率γ˙=ΩR/h,可以估算锥板和平板稳态剪切的临界条件:据此我们可以根据实验条件和夹具参数计算出不稳定流场的临界条件.从公式(14)可以看出,选择较小h的平行板可以抑制二次流,但h过小的时候,两板间微小的不同轴或不平行都会被放大,影响测试的准确性[42].因此,需要选择合适的板间距.为了更直观地展示牛顿流体的二次流不稳定流场对实验数据的影响,图11是我们利用单头应力控制型流变仪MCR-302(AntonPaar)实测的水在剪切速率扫描实验中的黏度相对剪切速率的图,可以看出,在低剪切速率出现的类似于剪切变稀的现象(蓝色区域)可能由于传感器扭矩低于仪器测试下限(Tmin=0.11~0.25μNm)或者表面张力的影响,而在高剪切速率下(红色区域),剪切增稠的异常现象是由于板的高速转动引发了二次流.图11Figure11.SteadyshearflowmeasurementsofH2Ousingcone-and-platewithdiameterof50mm,thescatteredplotsintheblueregimeareobtainedfromtorquebelowthelow-torquelimit,thethickeningbehaviorintheredregimeisduetosecondaryfloweffect.3.6测试中常见问题V:样品表面张力在使用旋转流变仪测试低黏度的牛顿流体时,表面张力往往会影响到测试结果.很多低黏度流体异常的实验数据都和其表面张力有关[42,43].而表面张力的产生与样品的各向对称程度、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系[32,44~47].为了使读者更加清楚地了解表面张力对流变实验数据的影响,下面我们将分别从样品的各向对称性、样品自身表面张力的大小以及样品自身存在吸附和聚集3种情况阐述表面张力对实验结果的影响.3.6.1样品的各向对称性保证样品的各向对称是流变测试中获得准确实验数据的基础,样品的各向非对称性可能在填充上样时即存在,如过度填充或者填充不足均可造成样品的各向非对称性,各向非对称性也可能在测试过程中产生,如样品的边界在流场下存在一定的形状的波动,或样品不对称的挥发引起样品边缘与板的接触线和接触角的不对称性.Ewoldt等[32,44]研究低黏度样品的剪切流变测试时,发现测试扭矩会受到这些边缘形状变化的影响(如图12所示).对比完全对称的理想条件,非理想情况下接触线、接触角Ψ(s)和半径都发生了明显的变化.将接触线看作闭合曲线,可沿闭合曲线积分得到由表面张力引起的扭矩变化.例如,沿z轴的扭矩Tz可表示为:图12Figure12.(a)Contactlineandinterfaceangle:idealversusnon-idealcases.Inthenon-idealcase,asymmetriesareexaggeratedcomparedtotypicalloadingandcanalsooccurasaresultofoverfilling (b)Contactlineinz=0planerepresentedbyanarbitraryparametriccurve,r–r_(s).(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).公式中,r(s)是半径,Γ(s)是表面张力,t^l,r是闭合曲线的切线矢量.从公式(15)中可知表面张力产生的扭矩与接触线的几何形状、样品的表面张力和界面角均相关.样品填充不足或过量填充都会导致表面张力引起扭矩增加.此外,样品挥发也可导致样品填充不足,是高分子溶液或水凝胶体系流变测试过程中最容易忽略的问题.图13显示了Johnston等[44]研究了随着水分蒸发,样品从填充过度到填充不足过程中扭矩的变化.他们发现,刚开始填充过度会随着水蒸发而缓解,扭矩先减小并保持了一定时间,之后的样品量继续减小导致样品填充不足,接触线断开,此时产生更大的扭矩,然后扭矩会继续保持,直到在更长的时间再次提高.出现此现象的原因是水蒸发会同时导致接触线和接触角的改变,从而增加了样品的各向非对称性.因此,对于溶液体系的测试,需要考虑溶剂挥发、样品填充不足导致表面张力引起的扭矩增加,这些因素会影响测试结果.图13Figure13.Evaporation-inducedcontactlinemigration,whichcausessurfacetensiontorque.Thegeometryisparallelplate(diameter40mm)withconstantvelocityΩΩ=0.01rads−1.Insetimages(viewsfrombelow)illustratethecontactlinesoftheoverfilledandunderfilledcases(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).3.6.2样品本身表面张力大小样品自身的表面张力的不同也可造成测试结果的显著不同.Johnston等[44]讨论了水和正癸烷在稳态剪切测试过程中测试扭矩与剪切速率的依赖关系,虽然两者室温下的黏度近似,分别为1.17和1.57mPas,利用同轴圆筒测量的低剪切速率下的扭矩却大相径庭,这主要源于水和正癸烷表面张力的不同(75和25.3mNm−1),从图14可以看到,相对于正癸烷溶液,具有更高表面张力的水在低剪切速率下显示出由表面张力导致的扭矩平台1μNm,值得注意的是,其中4组水的测试结果表现出该扭矩平台,但仍有2组水的测试结果没有表现出扭矩平台,Johnston等认为这可能与前面3.6.1节讨论的接触线的不确定性有关.图14Figure14.Steadyshearflowwithdifferentsurfacetension(waterandn-Decane)usingtheconcentricdoublegap(DG)geometry(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology)3.6.3大分子聚集对于一些低黏度的蛋白溶液体系,在低剪切速率下的流变测试时,通常需要考虑空气与水界面处形成的蛋白表面膜产生的界面张力和蛋白溶液中蛋白聚集的影响[46,47],表面膜形成和蛋白聚集可导致包括黏度增加、剪切变稀增强和表观屈服应力的出现,这些表面的因素有时会误导研究人员对溶液的整体流动特性的判断.例如,Castellanos和Colby等研究了牛血清蛋白和抗体溶液黏度对剪切速率的依赖性[47].他们发现:不含表面活性剂成分的牛血清蛋白在液-气界面处形成聚集膜,在低剪切速率下出现明显的表观屈服应力和相应的η∼γ˙−1η∼γ˙−1的屈服区域(图15(a)).添加表面活性剂能抑制和延缓蛋白表面膜的产生,从而弱化了屈服区域,但经过较长的等待时间(41天),蛋白聚集导致屈服区域逐渐重新形成(图15(b)).图15Figure15.(a)Increaseofapparentviscosityofsurfactant-freeBSAsolutionsduringtheproteinaggregation.(b)Increaseofviscositywithtime,owingtotheproteinaggregationinthemAbsolutionsevenafterintroductionofthesurfactant.(ReprintedwithpermissionfromRef.[47] Copyright(2014)TheRoyalSocietyofChemistry)3.7测试中常见问题VI:测试习惯如上面所述,3个基本假设都是在比较极端的情况下会失效,如样品刚度足够高,需要考虑仪器和夹具柔量的影响;黏度足够低或者剪切强度足够大,需要考虑仪器夹具惯量和样品惯量的影响以及施加流场是否为纯粹的剪切流场.而在实际流变测试中,也有一些情况满足上述3个基本假设,却得不到准确的测量数据.下面总结了流变测试过程中一些容易忽略的问题.为了避免这些问题,提高流变测试的正确性和准确性,需要建立良好的测试习惯.3.7.1样品的制备:干燥和挥发问题对于聚合物熔体,如果样品干燥不充分时,或者测试过程中暴露在湿度较大的环境中,样品中的微气泡和水分会对测试结果产生显著影响,尤其含有氢键和离子极性组分的聚合物(如离聚物),溶剂(如水)对其流变行为的影响明显.此外,对于水凝胶和溶液体系,测试前和测试过程中需要考虑样品自身溶剂挥发对测试结果的影响,对于溶剂高挥发性的溶液体系这是常见的问题,通常可以使用液封(如用石蜡油密封水溶液)的方法避免溶剂的挥发.图16展示的是Wolff等[48]对聚二甲基硅氧烷树脂(PDMS)在具有气泡(圆)和无气泡(三角)条件下的频率扫描测试,发现损耗模量几乎不受气泡的影响,松弛末端满足G' ' ∼ω1∼ω1标度关系,而储能模量受气泡影响较大,逐渐偏离G' ∼ω2标度关系,这是气泡/样品界面的慢松弛过程导致的.图16Figure16.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforaPDMSsiliconeoilwithandwithoutbubbles(ReprintedwithpermissionfromRef.[48] Copyright(2013)Spring)图17展示了Shabbir等[49]对聚四氢呋喃磺酸锂离聚物(PTMO-Li)在干燥和一定湿度条件下的频率扫描测试,他们发现湿度对离聚物的流变性能有很大影响,储能模量和损耗模量相较干燥条件下下降一个数量级左右,由此可见干燥样品对于流变测试的重要性.图17Figure17.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforPTMO-Liindriedandundriedstates.(ReprintedwithpermissionfromRef.[49] Copyright(2017)SocietyofRheology)3.7.2确定样品的热稳定性在进行流变测试之前,对于不熟悉的聚合物样品,需要进行TGA和DSC测试,了解样品的热稳定性和玻璃化转变温度,以便于测试条件的选择,比如:低温测试时样品接近玻璃态,模量接近109Pa左右,样品较高的模量下突然变化夹具间隙会导致仪器法向力的激增,损坏空气轴承和力传感器;高温测试时,不了解样品热稳定性,测试温度过高会导致样品发生化学交联和降解行为,影响测试结果.通常,对于容易交联的样品,可以采取添加少量稳定剂的办法抑制化学交联,获取准确的实验数据.图18展示了Stadler等[50]对低分子量低密度聚乙烯分别在加入少量稳定剂和不加稳定剂条件下,复数黏度随时间扫描变化,可以看出当时间经过4300s之后,样品黏度突然增加,这主要由于体系中含少量双键的组分发生化学交联导致,而加入少量稳定剂的样品持续到8.24×105s(~9.5天)后,样品才开始降解,说明加少量稳定剂的办法可以有效抑制样品的化学交联.此外,为排除样品在测试过程中发生变化,对测试产生的影响,建议完成所有测试后,再次重复第一步测试,通过数据重复性来考察样品是否在测试过程中发生变化,以保证样品数据的可靠性.图18Figure18.ThermalinstabilityofsamplemLLDPEF18F.Thesamplewithoutstabilizerexceedsthe±5%criterionafter4300sowingtothecrosslinking,whilethesamplewithstabilizerstayswithinthiscriterionfor8.24×105s(≈9.5days).(ReprintedwithpermissionfromRef.[50] Copyright(2014)Springer).3.7.3样品体系是否达到平衡态在测试过程中确保样品体系在测试前是否达到平衡稳态是获取准确数据的前提.例如超高分子量聚乙烯样品,从结晶状态加热到熔体状态后,往往需要较长时间才能达到链充分缠结的平衡态.例如,图19展示了超高分子量聚乙烯样品在加热到160°C熔融后,体系从低缠结状态达到缠结平衡态的过程中储能模量G' 的变化,作者发现,热平衡时间随着合成分子的时间(图中标示),也即分子量增加而增加,对于合成30min的样品,热平衡时间长达约一天之久[51].这种缠结程度低于平衡缠结程度的样品也可以通过在稀溶液中沉降高玻璃化温度的长链高分子(如高于缠结分子量的聚苯乙烯)来制备[52,53].图19Figure19.Buildupofmodulusindisentangledpolymermeltswithtimeofultra-high-molecular-weightpolyethylene.ThetopschemeshowsthemechanismandthebottomfigureshowsthemeasuredstoragemodulusG' (t)againsttime(symbols),whereG' (t)hasbeennormalizedbytheequilibriumplateaumodulusGN0.Curvesarethepredictionsbasedontubetheory.(ReprintedwithpermissionfromRef.[51] Copyright(2019)AmericanChemicalSociety)此外,对于高填充体系、不相容聚合物共混物等极难达到平衡态的体系,常需高速施加预剪切,使体系保持初始态的一致性.需要注意的是,该初始态往往处于非平衡态.3.7.4夹具热膨胀对测试的影响除了前面3.1和3.2节提到夹具柔量和惯量对测试结果的影响,在测试过程中还需要考虑夹具的热膨胀对测试结果的影响,不同材质的夹具具有不同的热膨胀系数.现在很多仪器在输入夹具类型时已经考虑到热膨胀系数.但是很多自制的夹具和可抛弃的夹具在使用之前需要人为地测量热膨胀系数并输入.此外,样品也具有一定的热膨胀系数,因此在测试温度范围很宽时,需要在加热过程中适当增大板间距,在降温过程中适当减少板间距,从而保持样品的填充程度一致.此外,还需考虑控温组件的结构也会对夹具的传热温度梯度造成影响[54],即使是同一个夹具在不同控温组件下的膨胀系数也是不同的,夹具膨胀系数的差异直接会影响设置夹具间距的大小,尤其在设置夹具间距很小的情况下(如锥板),板受热膨胀可能会使两板直接接触,造成法向应力的激增从而损坏空气轴承和力传感器.3.7.5夹具不平行和不同轴对测试的影响保证夹具的平行与同轴也是获取实验数据的关键.随着测试夹具频繁使用,以及不小心跌落,非常容易造成夹具不平行和不同轴,这样会导致仪器校零出现误差以及仪器法向力影响测试结果.因此,在测试中需要注意夹具的正确使用,特别是不要将不使用的夹具立在桌面上或者高处,以防止跌落造成夹具的变形.4.结论与展望本文结合作者多年的流变测试经验,从流场类型和仪器的特征出发,对流变仪进行了简单的分类.重点阐述了旋转流变仪的工作原理,剪切流变测试的假设条件及其失效的情况,和实际测试中一些不良的测试习惯及其导致的结果.简言之,流变仪器测试时,只有当输入或输出的应变或应力为施加在样品上的应变或应力,且流场为纯粹的剪切流场时,测试的结果才是可靠的结果.这些基本前提都是会在一定的测试条件下失效.我们结合一些实验实例,具体解释了这些假设条件失效的情况,以及在实际流变测试中仪器完全满足基本假设的情况下,一些不良测试习惯对测试的影响,具体总结如下:(1)当样品的刚度接近仪器夹具和传感器的刚度时,在样品形变的同时,仪器夹具和传感器也会发生一定的形变,造成样品的真实应变低于仪器设定的应变.此时,准确校正夹具和传感器的扭转柔量对于样品的测试是非常重要的.一般的校正过程中考虑夹具和传感器的柔量(或者刚度)为常数.然而,真实测试中,该柔量也会随着测试条件(如温度)和仪器状态的变化而变化.因此,从实验操作上来讲,更可行的方法就是选择合适的夹具来增加施加在样品上的应变和因仪器柔量消耗的应变之比.(2)当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.因此,在瞬态和动态等具有加速过程的测试中,当样品反馈的实际扭矩较小时,源于仪器和夹具加速度过程中的惯量贡献会影响到测试结果.对于单头的旋转流变仪来说,马达和传感器集成在一边,仪器惯量的影响更大.虽然双头的旋转流变仪具有力反向平衡功能的传感器,可以很大程度上抑制仪器惯量的影响,但是也无法完全消除该影响.由于仪器的惯量影响与夹具和仪器的状态相关,需要对仪器进行定期的惯量校正.(3)在高速振荡测试过程中,样品在往复运动过程中会产生剪切波,当(夹具)板间距与该剪切波波长相当时,样品自身的惯量影响会使得施加样品内部的流场偏离纯粹的剪切流场,造成相位角的变化和相应的测试模量的变化;在高剪切速率时(如稳态或瞬态测试时),流动的不稳定性使剪切流场产生失稳,造成二次流的出现,二次流叠加在剪切流场上会增加仪器测量的扭矩,导致测试中出现“剪切增稠”的假象.因此,给定的频率范围内选取合理的板间距h是减少样品惯量影响和抑制二次流的关键.(4)对于低黏度的牛顿流体,表面张力对实验结果的影响往往会被忽略.表面张力产生的扭矩大小与样品的各项对称性、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系.因此,在低黏度样品测试过程中,建议结合显微工具在线地观测测试过程中样品形状的变化.(5)上述四个方面是在样品模量足够高、黏度足够低或者剪切强度足够大的极端情况下,测试中3个基本假设失效的情形.其实,在实际流变测试中即使仪器完全满足测试需求和基本假设的情况下,流变测试者如果没有养成良好的测试习惯,也会得不到准确的数据.因此,我们总结了一些常见容易忽略的问题,例如样品干燥和挥发、样品自身热稳定性,样品是否达到平衡态,夹具和样品热膨胀、夹具的不平行不同轴等问题.我们针对上述容易忽略的问题进行了阐述,希望有助于流变测试的初学者养成良好的测试习惯,了解这些知识对于维护仪器、保护样品以及获取准确的测试数据都是十分重要的.虽然流变仪器测试过程中会存在上述因素的干扰,但是读者在熟悉流变仪的原理和养成良好的测试习惯的前提下,是很容易判断出实验数据出现问题的“症结”所在,使得流变仪不再成为科研工作中的“黑箱”.最后需要指出,本文关注的测试手段仅限于剪切流场.由于拉伸流场较剪切流场难实现,高分子流变学的实验研究多数在剪切流场下进行.对于加工过程中同等重要的拉伸流场下测试的仪器和研究还在快速的发展之中[15,55~57].笔者计划在后续的综述中探讨拉伸测试的仪器原理和测试技巧.参考文献[1]TadmorZ,GogosCG.PrinciplesofPolymerProcessing.2nded.Hoboken,NewJersey:JohnWiley&Sons,2013[2]PtaszekP.LargeAmplitudeOscillatoryShear(LAOS)measurementandfourier-transformrheology:applicationtofood.In:AhmedJ,PtaszekP,BasuS,eds.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2017.87−123[3]KanedaI.RheologyControlAgentsforCosmetics.RheologyofBiologicalSoftMatter.Tokyo:Springer,2017,295−321[4]EleyRR.JCoatTechnolRes,2019,16(2):263−305doi:10.1007/s11998-019-00187-5[5]AhmedJ,PtaszekP,BasuS.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2016[6]ZhangZ,LiuC,CaoX,GaoL,ChenQ.Macromolecules,2016,49(23):9192−9202doi:10.1021/acs.macromol.6b02017[7]ChenQ,TudrynGJ,ColbyRH.JRheol,2013,57(5):1441−1462doi:10.1122/1.4818868[8]LiuS,WuS,ChenQ.ACSMacroLett,2020,9:917−923doi:10.1021/acsmacrolett.0c00256[9]LarsonRG.TheStructureandRheologyofComplexFluids.NewYork:OxfordUniversityPress,1999[10]MihaiM,HuneaultMA,FavisBD.PolymEngSci,2010,50(3):629−642doi:10.1002/pen.21561[11]AriawanAB,HatzikiriakosSG,GoyalSK,HayH.AdvPolymTechnol:JPolymProcessInst,2001,20(1):1−13[12]LundahlMJ,BertaM,AgoM,StadingM,RojasOJ.EurPolymJ,2018,109:367−378doi:10.1016/j.eurpolymj.2018.10.006[13]LiB,YuW,CaoX,ChenQ.JRheol,2020,64(1):177−190doi:10.1122/1.5134532[14]WatanabeH,MatsumiyaY,ChenQ,YuW.Rheologicalcharacterizationofpolymericliquids.In:MatyjaszewskiK,MöllerM,eds.PolymerScience:AComprehensiveReference.Amsterdam:Elsevier,2012.683−722[15]MarínJMR,HuusomJK,AlvarezNJ,HuangQ,RasmussenHK,BachA,SkovAL,HassagerO.JNon-NewtonFluid,2013,194:14−22doi:10.1016/j.jnnfm.2012.10.007[16]WatanabeH,MatsumiyaY,InoueT.Macromolecules,2002,35(6):2339−2357doi:10.1021/ma011782z[17]YoshidaH,AdachiK,WatanabeH,KotakaT.PolymJ,1989,21(11):863−872doi:10.1295/polymj.21.863[18]TroutonFT.ProcRSocLondon,SerA,1906,77(519):426−440doi:10.1098/rspa.1906.0038[19]LiuC,ZhangJ,ZhangZ,HuangS,ChenQ,ColbyRH.Macromolecules,2020,53(8):3071−3081doi:10.1021/acs.macromol.9b02431[20]ZhangJ,LiuC,ZhaoX,ZhangZ,ChenQ.SoftMatter,2020,16(21):4955−4960doi:10.1039/D0SM00572J[21]BuscallR,McGowanJI,Morton-JonesAJ.JRheol,1993,37(4):621−641doi:10.1122/1.550387[22]BuscallR.JRheol,2010,54(6):1177−1183doi:10.1122/1.3495981[23]BallestaP,PetekidisG,IsaL,PoonW,BesselingR.JRheol,2012,56(5):1005−1037doi:10.1122/1.4719775[24]MagdaJ,LarsonR.JNon-NewtonFluid,1988,30(1):1−19doi:10.1016/0377-0257(88)80014-4[25]CostanzoS,HuangQ,IannirubertoG,MarrucciG,HassagerO,VlassopoulosD.Macromolecules,2016,49(10):3925−3935doi:10.1021/acs.macromol.6b00409[26]LiuCY,YaoM,GarritanoRG,FranckAJ,BaillyC.RheolActa,2011,50(5−6):537doi:10.1007/s00397-011-0560-3[27]PogodinaN,NowakM,LäugerJ,KleinC,WilhelmM,FriedrichC.JRheol,2011,55(2):241−256doi:10.1122/1.3528651[28]GottliebM,MacoskoC.RheolActa,1982,21(1):90−94doi:10.1007/BF01520709[29]HutchesonS,McKennaG.JChemPhys,2008,129(7):074502doi:10.1063/1.2965528[30]KriegerIM.JRheol,1990,34(4):471−483doi:10.1122/1.550138[31]LäugerJ,StettinH.JRheol,2016,60(3):393−406doi:10.1122/1.4944512[32]EwoldtRH,JohnstonMT,CarettaLM.Experimentalchallengesofshearrheology:howtoavoidbaddata.ComplexFluidsInBiologicalSystems.In:SpagnolieSE,ed.ComplexFluidsinBiologicalSystems.NewYork:Springer,2015.207−241[33]YosickJA,GiacominJA,StewartWE,DingF.RheolActa,1998,37(4):365−373doi:10.1007/s003970050123[34]SchragJL.TransactionsoftheSocietyofRheology,1977,21(3):399−413doi:10.1122/1.549445[35]ShaqfehES.AnnuRevFluidMech,1996,28(1):129−185doi:10.1146/annurev.fl.28.010196.001021[36]McKinleyGH,PakdelP,ÖztekinA.JNon-NewtonFluid,1996,67:19−47doi:10.1016/S0377-0257(96)01453-X[37]PakdelP,McKinleyGH.PhysRevLett,1996,77(12):2459doi:10.1103/PhysRevLett.77.2459[38]ChandrasekharS.HydromagnetsandHydrodynamicsStability.NewYork:DoverPublishing,1981[39]LarsonRG.RheolActa,1992,31(3):213−263doi:10.1007/BF00366504[40]TaylorGI.PhilosTransRSocLondon,SerA,1923,223(605-615):289−343doi:10.1098/rsta.1923.0008[41]TurianRM.IndEngChemFundam,1972,11(3):361−368doi:10.1021/i160043a014[42]Andablo-ReyesE,VicenteJd,Hidalgo-AlvarezR.JRheol,2011,55(5):981−986doi:10.1122/1.3606633[43]GriffithsD,WaltersK.JFluidMech,1970,42(2):379−399doi:10.1017/S0022112070001337[44]JohnstonMT,EwoldtRH.JRheol,2013,57(6):1515−1532doi:10.1122/1.4819914[45]ShipmanRW,DennMM,KeuningsR.IndEngChemRes,1991,30(5):918−922doi:10.1021/ie00053a014[46]SharmaV,JaishankarA,WangYC,McKinleyGH.SoftMatter,2011,7(11):5150−5160doi:10.1039/c0sm01312a[47]CastellanosMM,PathakJA,ColbyRH.SoftMatter,2014,10(1):122−131doi:10.1039/C3SM51994E[48]WolffF,MünstedtH.RheolActa,2013,52(4):287−289doi:10.1007/s00397-013-0687-5[49]ShabbirA,HuangQ,BaezaGP,VlassopoulosD,ChenQ,ColbyRH,AlvarezNJ,HassagerO.JRheol,2017,61(6):1279−1289doi:10.1122/1.4998158[50]StadlerFJ.Korea-AustRheolJ,2014,26(3):277−291doi:10.1007/s13367-014-0032-2[51]HawkeLGD,RomanoD,RastogiS.Macromolecules,2019,52(22):8849−8866doi:10.1021/acs.macromol.9b01152[52]WangX,TaoF,SunP,ZhouD,WangZ,GuQ,HuJ,XueG.Macromolecules,2007,40(14):4736−4739doi:10.1021/ma0700025[53]TengC,GaoY,WangX,JiangW,ZhangC,WangR,ZhouD,XueG.Macromolecules,2012,45(16):6648−6651doi:10.1021/ma300885w[54]LippitsDR,RastogiS,TalebiS,BaillyC.Macromolecules,2006,39(26):8882−8885doi:10.1021/ma062284z[55]StadlerFJ,StillT,FytasG,BaillyC.Macromolecules,2010,43(18):7771−7778doi:10.1021/ma101028b[56]LingGH,WangY,WeissR.Macromolecules,2012,45(1):481−490doi:10.1021/ma201854w[57]ScherzLF,CostanzoS,HuangQ,SchlüterAD,VlassopoulosD.Macromolecules,2017,50(13):5176−5187doi:10.1021/acs.macromol.7b00747
  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。2.简单明了的数据解释和物理原理。3.使用波动量来量化粉体的粘结力。4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。6.理想的设计保证了稳定性和长使用寿命。7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。粉体剪切性能分析仪 Granudrum
  • 力学所戴兰宏团队揭示非晶合金剪切带涌现的时空序列与临界行为
    非晶合金(又称金属玻璃)因具有一系列优异性能,在空天、国防、能源等领域显示出广阔应用前景。然而,非晶合金极易形成纳米尺度变形局部化剪切带,而剪切带快速扩展诱致的宏观脆性严重地限制了其走向广泛的工程应用。因此,非晶合金剪切带问题成为力学、物理与材料等相关领域共同关注的重要课题。本征上,非晶合金剪切带涌现是一类远离热力学平衡下时空多尺度耦合的非线性过程。空间上,固有的结构不均匀性会引起强烈的变形及动力学行为的梯度效应。时间上,涵盖原子振动、原子团簇协同重排、塑性流动等多个速率过程。这些事件均具有各自的特征时间和空间尺度,他们的关联耦合控制剪切带涌现,使变形高度集中在宽度或厚度为数十纳米的带状区域,并以近声速的模式快速扩展。与原子周期有序排列的晶态合金不同,原子长程拓扑无序堆垛的非晶合金变形内蕴三种高度耦合纠缠的原子尺度运动:剪切、体胀和旋转。这三种局域原子运动的强纠缠是非晶合金剪切带涌现精细物理图像尚未探明的关键瓶颈。近期,中科院力学所戴兰宏研究团队在该问题研究上取得新进展。基于连续介质力学理论框架,研究人员首先提出了一个同时考虑仿射和非仿射变形信息的两项梯度模型(Two-term gradient model, TTG模型),可以完整地描述无序固体介质的局部变形场,突破了目前广泛使用的单纯仿射或非仿射模型的局限。研究人员进一步完成了对剪切、体胀、旋转这三个高度纠缠的局域运动的解耦,并在原子尺度上定义了全新的局部剪切、体胀、旋转运动事件的定量描述符。为了表征这三类原子团簇运动,提出了剪切主导区(shear dominated zone, SDZ)、体胀主导区(dilatation dominated zone, DDZ)及旋转主导区(rotation dominated zone,RDZ)的概念和定量表征方法,克服了目前流行的剪切转变区(shear transformation zone, STZ)不能表征原子团簇旋转运动和定量描述体胀运动的不足。在此基础上,研究人员利用大规模分子动力学模拟,对非晶合金从均匀变形到局部化剪切带涌现全过程进行精细表征。通过追踪SDZ、DDZ及RDZ原子团簇运动演化时空序列,发现初始宏观均匀变形阶段剪切、体胀及旋转团簇运动事件呈现出类似“军队行动”式的步调协同一致行为,具体表现为SDZ、DDZ及RDZ在空间离散的“类液”软区随机同步激活。基于统计学的极值理论分析,研究人员发现在这个阶段,体胀局域运动事件较剪切和旋转事件的空间分布展现出更明显的非高斯长拖尾特征,表明体胀局域化流动(DDZ)起先导的主控作用。原子团簇通过体胀运动(DDZ)完成局部软化过程,随着变形加剧,这种体胀局域软化进一步激活其邻近硬区的旋转运动,进而逐渐打破了SDZ、DDZ和RDZ三者间同步激活,转变为SDZ、DDZ及RDZ的非均匀间隔分布。增强的RDZ运动又进一步加剧了SDZ和DDZ局域运动,进而诱发硬区团簇的软化。当软化程度达到临界时,硬区壁垒被打破,激活的SDZ、DDZ及RDZ相互贯穿形成剪切带。研究人员进一步基于逾渗理论,对SDZ、DDZ及RDZ原子团簇运动事件从初期均匀变形阶段的随机离散激活到变形局部化剪切带涌现时的群体贯穿演变全过程进行定量分析,发现剪切带涌现属于定向逾渗(directed percolation),并且呈现出临界幂律标度行为。本项工作提出的两项梯度(TTG)模型及三种原子团簇运动单元(SDZ、DDZ及RDZ)新概念为无序固体介质变形定量描述提供了基本工具,所揭示的剪切带涌现过程原子尺度精细图像及临界行为为深入认知非晶合金剪切带提供了新的线索。该研究成果近期以“Hidden spatiotemporal sequence in transition to shear band in amorphous solids”为题发表在Physical Review Research 4, 23220 (2022),第一作者为博士生杨增宇。该项研究工作得到了国家自然科学基金重大项目“无序合金的塑性流动与强韧化机理” 、基础科学中心项目“非线性力学的多尺度问题”、中科院B类战略性先导科技专项项目“复杂介质系统前沿与交叉力学”等资助。论文链接:doi:10.1103/PhysRevResearch.4.023220图1 非晶合金剪切带中的旋转(涡旋)、剪切和体胀运动事件图2 剪切-体胀事件与旋转事件的关联“破缺”,空间分布从同步激活转变为交替间隔分布图3 剪切带涌现前出现原子旋转团簇运动(RDZ)显著增强(图中白色气泡代表RDZ,也即原子运动的涡旋结构)图4 非晶合金剪切带涌现原子尺度演变过程示意图
  • 中国第一台界面剪切流变仪ISR400在中石油落户
    2008年3月24日,中国第一台界面剪切流变仪ISR400在中国石油天然气股份有限公司&中国科学院 廊坊分院渗流流体力学研究所正式落户。制造商芬兰KSV公司专门派遣工程师来华进行培训。
  • 自然资源部发布 《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等多项行业标准报批稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等10项行业标准,并于2024年1月18日予以公示。其中4项标准涉及在线监测设备、便携设备等。一、《海洋饱和软黏土强度的测定 微型十字板剪切仪法》(报批稿)规定了微型十字板剪切仪测定饱和软黏土不排水抗剪强度的仪器及组件要求、仪器标定方法、试验步骤与要求和试验数据采集与处理方法等,适用于海洋原状或重塑饱和软黏土的不排水抗剪强度和灵敏度的室内或野外现场测定。二、《海上油气生产设施水文气象观测系统建设规范规范》(报批稿)规定了海上油气生产设施水文气象观测系统的选址、观测要素、系统组成、仪器安装、试运行管理、接收岸站的要求,适用于在海上油气生产设施上新建或升级改造的水文气象观测系统。海上油气生产设施水文气象观测系统的观测要素主要包括以下内容:a)水文要素应包括但不限于:流向、流速、水位、水温、波向、波高、波周期、潮高等;b)气象要素应包括但不限于:风向、风速、气温、气压、相对湿度、能见度等。海上油气生产设施水文气象观测系统主要包括:数据采集器、定位装置、方位传感器、风速风向传感器、气温和湿度传感器、气压传感器、波潮仪、能见度传感器、流速流向传感器、水温和盐度传感器、卫星通信系统、供电系统、防雷系统等。三、《海洋岸(岛)基水质自动监测站在线运行维护技术要求》(报批稿)规定了海洋岸(岛)基水质自动监测站在线运行维护管理基本要求、检查维护、质量保证与质量控制及运行维护记录等内容,适用于海洋岸(岛)基水质自动监测站在线运行维护管理工作。海洋岸(岛)基水质自动监测站用于海岸(岛)边海洋水质监测,通过系统集成技术、数据采集与传输技术及通讯网络集成的综合性监测系统。主要由站房、分析单元、采配水单元、控制单元、通讯单元和辅助设备等组成,其核心设备为在线分析仪器,可以定期或长期、在线、自动、连续地进行采集、处理、存储和传输监测数据。四、《走航式温盐深剖面测量仪》(报批稿)本文件规定了走航式温盐深剖面测量仪的要求、检验方法、检验规则以及标注、包装、运输和贮存。本文件适用于走航式温盐深剖面测量仪的设计、生产、试验和检验。走航式温盐深剖面测量仪以海上移动载体为使用平台,在规定航速范围内,利用可回收的测量探头进行海水温度、电导率和压力剖面测量的仪器。
  • 实现精准的基因剪切 中国科研人员开发出新型“基因剪刀”载体
    p  新华社华盛顿4月6日电(记者 周舟)来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。/pp  被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。/pp  论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。/pp  据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于strong这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切/strong。研究显示,strong这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。/strong/pp  宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。/p
  • 新款SmartPave 92动态剪切流变仪——安东帕为您沥青检测铺平道路
    安东帕为沥青、柏油行业及应用量身定制高质量的解决方案。安东帕提供多种产品线的综合解决方案,ProveTec系列产品在石油石化分析领域有多年经验,拥有软化点测试仪、弗拉斯脆点测试仪、数字延度仪等产品,结合密度计、旋转流变仪等多达9种仪器,为您提供测量21种参数的可能并符合36项标准,测量柏油组成和成分的粘度、形变和流动特性、后续跟踪分析的消解柏油样品、软化点、渗透力、延展性、拉伸性能、脆点等。 2017年,安东帕隆重推出全新的SmartPave 92动态剪切流变仪。SmartPave 92可以满足实验室对于沥青结合料以及混合料的检测和质控的需要。如同SmartPave 102,这一新产品基于安东帕成功的模块化智能流变仪技术,确保您获得最精确和最稳定的测量结果。 SmartPave 92采用帕尔贴温控系统对沥青样品进行精确的温度控制,从而可以按照各种行业标准进行结合料和混合料的测试,符合的标准包括AASHTO T315, AASHTO T350, AASHTO TP101, ASTM D7175, ASTM D7405, DIN EN16659,和DIN EN14770。 同时,SmartPave92流变仪可以使用同心圆筒帕尔帖温控测量系统,替代旋转粘度计,进行符合AASHTO T316, ASTM D4402 和 DIN EN13302标准的黏度测试。 SmartPave 92 的优势1.RheoCompass软件提供功能强大,又易于上手的测试模板,手把手协助您展开对于沥青的测试2. 独特的环形TruRay光源让您更清楚的观测样品和测量区域,确保正确的样品填充量3. 使用快速连接器,单手即可方便快捷地安装或更换测试夹具,无需使用额外的工具4. ToolmasterTM自动识别功能,快速自动识别测量夹具和温控系统的型号并设置参数
  • 得利特更新润滑脂万次剪切实验仪参数
    在20世纪前些年,经典的分析技术现代产业大生产服务,主要为了适应分析、监控工农生产,保证产品质量,保障大生产流程安全术和分析仪器的“用武之地”已经大大拓展,最引人注目的是在生物、环保、医学等有关人的生存、发展领域的应用日新月异,现代高科技在军事方面的发展也促进了分析技术和分析仪器的应用拓展(例如生物武器、化学武器战争中调整、灵敏、准确的现场毒物检测、生命保障任务也大大扩大了分析仪器的应用领域)。 可以肯定:在新世纪到来后,分析技术和分析仪器的应用由“物”到“人”的拓展趋势将更加显著。我们必须看准这个发展潮流,分析仪器事业的发展思路中摆正位置、选好方向。润滑脂万次剪切实验仪用于在测定润滑脂的锥入度前,使试样在润滑脂工作器中往返工作多次(通常是60次、1万次或10万次),以便于测定出润滑脂的延长工作锥入度或工作锥入度。执行标准:适用标准:GB/T 269《润滑脂和石油脂锥入度测定法》及ISO 2137、ASTM D217、FED-STD-791/313.3技术参数:• 工作次数:10次~99.99万次• 安放工作器个数:2个• 孔板规格:3圈51个孔(GB/T 269、ISO 2137、ASTM D217)或6圈270个孔(FED-STD-791/313.3)• 工作速度:每分钟60±10次• 报警:达到设定次数后有蜂鸣报警• 使用电源:AC220V±5%,50Hz±1Hz• 额定功率:约600W
  • 上海沪析发布沪析HR-500 高剪切分散乳化机新品
    产品应用:● 实验室高剪切分散乳化机集灵巧、方便于一身。可手持操作。选用德国原装马达,运行更稳定,噪音更小。可长时间运转,20余种工作头可供选择,可实现真空操作,轻松满足多种高要求分散、乳化、均质的实验要求。主要特征:● 选用德国原装马达、运行稳定,噪音更小,可长时间运转,设计安全可靠。● 工作头接触物料部位全部采用优质不锈钢制作,耐腐蚀性好。● 工作头采用联轴器与驱动电机连接,拆装简便灵活。● 调速机座采用无极调速器,调速方便,运转稳定。产品参数:型号HR-500转速范围8000-28000r/min处理量0.2-7000ml (H2O)标准工作头HR-500A输入功率500W输出功率320W转速显示刻度显示调速方式无极调速接触物料材质316L不锈钢进入物料部分轴套材质PTEE适用温度≤120C°允许环境温度5-40C°允许相对湿度80%工序类型分批处理成套重量9KG电源220V 50HZ定子转子配置:定子转子功能描述:型 号转子定子功能描述工作容积转子直径定子直径线速度浸没深度分散粒径灭菌乳适应领域组合方式mlmmmmm/smm悬浮液状液HR-500AS20CSR20固液混合介质10-5000152023.540/17010-501-10制药.陶瓷,石化HR-500BS20CCR20纤维类材质10-5000152023.540/17010-501-10污水,药品.食品.造纸,烟草HR-500CS20CMR20固液混合介质10-5000152023.540/17010-501-10陶瓷,涂料HR-500DS20FER20乳状液10-5000152023.540/17010-501-10污水,涂料,造纸,制药HR-500ES20FCR20纤维类材质10-5000152023.540/17010-501-10污水,生物,药品.食品.造纸,烟草HR-500FS20FMR20固液混合介质10-5000152023.540/17010-501-10陶瓷,化妆品涂料,食品.造纸,石化HR-500GS30CMR20搅拌桨功能250-20000153036.140/170高速混合陶瓷,食品.污水HR-500HS30CSR30固液混合介质100-8000233036.140/1705-251-5污水,药品.食品.造纸,制药HR-500IS30CCR30纤维类材质100-8000233036.140/1705-251-5污水,药品.食品.造纸,制药HR-500JS30CMR30固液混合介质100-8000233036.140/1705-251-5陶瓷,涂料HR-500KS30FSR30固液混合介质100-8000233036.140/1705-251-5污水,涂料,造纸,制药HR-500LS30FER30乳状液100-8000233036.140/1705-251-5污水,涂料,造纸,制药HR-500MS30FMR30固液混合介质100-8000233036.140/1705-251-5陶瓷,化妆品.制药.食品.烟草HR-500NS30CMR30搅拌桨功能1000-40000234036.140/170高速混合陶瓷,食品.污水HRZ5小样品分散0.2-50456.340/6010-501-10生物药品.HRZ10小样品分散1-2509106.310/6010-501-10生物药品.HRZ14小样品分散100-100013146.310/6010-501-10生物药品.创新点:1)采用进口电机,运行稳定,噪音低,可长时间运作2)工作头部分采用不锈钢材质,耐腐蚀30无极调速沪析HR-500 高剪切分散乳化机
  • 震撼!直接破碎核桃木屑,全球唯一-- 德国ART推出分散乳化机视频
    定转子分散/乳化/均质机中,全球有哪个品牌的产品能直接破碎核桃的? 只有德国ART。 视频能说明一切: 请见分散/乳化/均质机D-15 的最新视频(在优酷网www.youku.com 和腾讯视频网 v.qq.com 都可找到)链接:http://v.youku.com/v_show/id_XNzQ0MzA0MzY4.html 在中国的相关会展上,直接演示核桃破碎实验,引来与会者团团围观,处理速度之快,处理效果之好,用二字可以说明效果:震撼! 除了破碎核桃木屑,凡是坚壳类的物料,如:黄豆,开心果,花生等,用德国ART分散机来分散破碎,都可以说是轻而易举; 同时还有相应的刀头来处理粉末和油脂类物质; 另外,还有专门的分散刀头来处理蔬菜类纤维状物质;这也是ART 独有的专利刀头。产品保修1+4年哟! 附:D-15产品介绍 ART MICCRA D-15超强分散机,用于实验室分散、匀浆、均质、乳化、剪切和破碎等,可手持也可固定使用,操作方便,性能卓越:1. 德国精工制造、原装进口;2. 尺寸小,但功能强大。集成恒速电子模块以及动力强劲的1,520W 马达,在处理样品体积量大且粘度越来越大的情况下还能保持恒定的转速;3. 超宽处理范围从0.1 ml 至100,000ml;4. 高达33600rpm的转速,保证了破碎效果又能节省操作时间。无级调速,连续可调;5. 可根据需要选用ART的所有的多规格、多用途的分散刀头;6. 所有分散刀头更换方便简单,无需特别工具;7. 舒适环保,噪音低;8. 应用行业广泛:生物技术、医学、制药、化妆品、食品、石化、环境控制、涂料、烟草、纺织等。 关于语特 和 英国Bibby / 德国ART / 德国CAT ( http://bibbyyt.instrument.com.cn. 电话/传真: 020 2802 3589 电邮: GZ_YT8@163.com)广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国ART, 德国CAT 在中国的首代。英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器仪器生产商,世界上拥有最广泛产品系列的实验室仪器制造商之一, 其向全球提供的品牌产品以高品质和高操作性能而著称. 旗下有4个子品牌:Stuart,Techne,Jenway,Electrothermal.l Stuart: 专注于样品前处理等通用实验室仪器,包括: 熔点仪, 菌落计数器, 搅拌器, 混匀器,摇床, 纯水蒸馏器系列;l Techne: 专注于分子生物学研究设备(基因扩增仪和杂交箱), 以及温度控制产品系列(包括水浴和干浴) ;l Jenway: 是紫外/分光光度计, 火焰光度计,色度计等分析仪器的专家;l Electrothermal: 作为有70多年历史的BIBBY的新成员,全球领先的科学仪器提供者,提供电加热套,平行反应设备, 凯氏定氮设备, 电子本生灯系列。其平行反应设备是全球市场领导者。 德国ART 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。 其顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类极多,可满足客户各类需求;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。德国CAT 成立于上个世纪50年代,是德国样品制备仪器方面的专家之一。其搅拌器,从手持式,教学用,到科研通用型,高粘度型,应有尽有,是CAT的代表产品线; 而今又由普通电子马达走向无刷马达, 引领着搅拌器的研发潮流。
  • 切向流过滤工艺主要可以从哪些方面进行优化?
    切向流技术(Tangential Flow Filtration, TFF),又称错流过滤(Cross-Flow Filtration,CFF)料液以一定的流速在膜表面循环,小于膜孔径的物质可以透过膜到透过端,而大于膜孔径的物质会被膜截留,从而实现不同物质的分级分离。相比于死端过滤,切向流过滤再循环料液流经膜表面,液体形成的“冲刷作用”冲洗整个膜表面,降低了膜孔堵塞及膜污染的风险,形成长时间稳定的膜过滤生产能力。 通过对切向流工艺中的操作参数及各种变量进行优化,可以有效提高过滤效率,同时降低物料成本,在达到产品质量要求的同时实现收率的最大化。一、膜的优化1、膜孔径选择通常用截留分子量(MWCO: molecular weight cutoff)表征孔径大小,但不同结构的分子,即使分子量相同,其分子粒径也有较大的差异。不同厂家使用的标定物质也会不同,因此实际使用时,截留率也会有一定的差异。希望目标物质透过膜孔,一般选择膜截留分子量为目标物质分子量的5-10倍或以上;希望目标物质充分截留,一般选择膜截留分子量为目标分子量的1/3-1/5。2、膜材质膜材质是切向流过滤工艺中的关键点,不同材质的过滤膜从化学性质、溶析出性质、机械强度、蛋白吸附等方面有较大差异。用户需要根据料液的性质、缓冲体系的要求等选择合适材质的过滤膜。3、膜面积膜面积决定了单次过滤工艺中所能处理的料液的量,所需膜面积的可以按照以下公式大致计算:膜面积=料液透过体积/(膜通量*工艺时间)例如对200L某料液进行10倍浓缩,要求超滤工艺在2小时内完成,假设使用的超滤膜对该料液的稳定通量为50LMH(升每平米每小时),则需要的膜面积计算为:浓缩料液透过体积=200L-200L/10=180L膜面积=180L/(50LMH*2)=1.8m2二、TMP优化TMP(Transmembrane Pressure)跨膜压,物质跨膜所需的驱动力,是工艺放大的基本和必要参数。在工艺起始阶段,增加TMP,可线性增加滤液通量,但随着凝胶极化层的形成,其对过滤的阻力会抵消TMP的作用。所以,优化的TMP取值应为凝胶层完全形成前的拐点最高值。简易TMP优化方法1、确定一个合适的切向流速;2、切向流速稳定后设定一个较小的TMP值;3、在设定的TMP值下稳定运行5-10min 4、记录下此TMP下通量(LMH) 5、调整TMP值,每次增加1-2psi,重复步骤3、4;6、对不同TMP及运行的通量进行分析,即可找出比较合适的TMP。三、切向流速切向流过滤工艺中的切向流流速(进料速度)主要作用是减少凝胶层的形成,降低透过的阻力,提高通量。增加切向流速度将增加膜剪切力并通常会提高过滤速度,但是对于剪切力敏感的料液,过高的流速带来的高剪切力会对样品造成破坏。高切向流速的好处,一方面能在相同TMP下获得相对更高的通量,另一方面能够有效降低凝胶层的形成。但是高切向流速也存在诸多不足,为得到高流速需要配置更大的泵及管路,这样就会使系统的滞留体积增加,也增加了固件的成本。另外,膜的通量达到最佳值时,即时进一步提高切向流速度,通量也不会有明显增加。Challenge Dream切向流过滤系统Challenge Dream系列是基于切向流过滤技术开发的一套全自动、集成化的过滤系统,搭载成器智造自主开发的Challenge Navigator流程控制软件,满足用户对切向流工艺的研发、中试、生产的需求。智能化、自动化系统预设多种自动化处理模式,浓缩、洗滤、冲洗等工艺方法,一键调用新增TMP优化程序,challenge Dream可以根据您的需求,在对新过滤膜不了解的情况下可以自动运行计算出最佳的TMP可用于研发及生产,灵活多用Challenge Dream系列切向流系统产品线完善,能够稳定的支持从工艺研发至中试放大及小规模商业化生产的所有需求数据电子化,稳定可靠优秀易用的Challenge Navigator软件提供智能化的操作界面和符合21 CFR Part 11的数据管理系统,保证了工艺的稳定和可重复性,参照商业化生产设备的自动化操作方式以及程序架构,为生产工艺的缩小或放大提供了极大便
  • 国际领先!这座超大型实验仪器通过验收
    近日,国家重大科研仪器研制项目“爆轰驱动超高速高焓激波风洞”(简称JF-22超高速风洞)结题验收会议举行。验收专家组一致同意通过验收,并评价该风洞在有效实验时间、总温、总压和喷管流场尺寸等综合性能指标方面处于国际领先水平。图片来源:国家自然科学基金委员会网站JF-22超高速风洞项目是由国家自然科学基金委员会支持,中国科学院力学研究所承担的国家重大科研仪器研制项目,于2018年正式启动,研制周期为5年。项目负责人姜宗林提出激波反射型正向爆轰驱动方法,把“不能用”的爆轰波头变为“可用”和“好用”,带领团队构建了超高速激波风洞技术体系,成功研制出JF-22超高速风洞。该风洞是高超声速和超高速领域的一座超大型实验仪器,总长167m,喷管出口2.5m,实验舱直径4m,实验气流速度范围3—10km/s,能够揭示由分子解离主导的复杂介质超高速流动规律,可有力支撑我国天地往返运输系统和超高速飞行器研发,对于推动气动学科发展、提升我国宇航高技术研发能力具有重大意义。图片来源:央视新闻客户端风洞是空气动力学研究和试验中最广泛使用的工具,以验证和发展有关理论,并直接为各种飞行器的研制提供服务,通过风洞实验来确定飞行器的气动布局和评估其气动性能。现代飞行器的设计对风洞的依赖性很大。超高速风洞对于研制超高速飞行器意义重大。我国这支激波风洞的攻关队伍源于上世纪五六十年代。在钱学森和郭永怀的战略部署下,中科院力学所组建起我国第一支高超声速激波风洞的科研攻关队。紧握老一辈科学家的接力棒,科研人员接续奋斗,攻坚克难,取得突破。2012年,总长265m的JF-12复现风洞研制成功,可复现5—9倍声速的飞行条件。它为我国航空航天重大任务研制提供了关键支撑。如今,JF-22超高速风洞项目通过验收。JF-22超高速风洞与JF-12复现风洞共同构成唯一覆盖临近空间飞行器全部飞行走廊的地面实验平台。
  • 国际领先!这座超大型实验仪器通过验收
    近日,国家重大科研仪器研制项目“爆轰驱动超高速高焓激波风洞”(简称JF-22超高速风洞)结题验收会议举行。验收专家组一致同意通过验收,并评价该风洞在有效实验时间、总温、总压和喷管流场尺寸等综合性能指标方面处于国际领先水平。图片来源:国家自然科学基金委员会网站JF-22超高速风洞项目是由国家自然科学基金委员会支持,中国科学院力学研究所承担的国家重大科研仪器研制项目,于2018年正式启动,研制周期为5年。项目负责人姜宗林提出激波反射型正向爆轰驱动方法,把“不能用”的爆轰波头变为“可用”和“好用”,带领团队构建了超高速激波风洞技术体系,成功研制出JF-22超高速风洞。该风洞是高超声速和超高速领域的一座超大型实验仪器,总长167m,喷管出口2.5m,实验舱直径4m,实验气流速度范围3—10km/s,能够揭示由分子解离主导的复杂介质超高速流动规律,可有力支撑我国天地往返运输系统和超高速飞行器研发,对于推动气动学科发展、提升我国宇航高技术研发能力具有重大意义。图片来源:央视新闻客户端风洞是空气动力学研究和试验中最广泛使用的工具,以验证和发展有关理论,并直接为各种飞行器的研制提供服务,通过风洞实验来确定飞行器的气动布局和评估其气动性能。现代飞行器的设计对风洞的依赖性很大。超高速风洞对于研制超高速飞行器意义重大。我国这支激波风洞的攻关队伍源于上世纪五六十年代。在钱学森和郭永怀的战略部署下,中科院力学所组建起我国第一支高超声速激波风洞的科研攻关队。紧握老一辈科学家的接力棒,科研人员接续奋斗,攻坚克难,取得突破。2012年,总长265m的JF-12复现风洞研制成功,可复现5—9倍声速的飞行条件。它为我国航空航天重大任务研制提供了关键支撑。如今,JF-22超高速风洞项目通过验收。JF-22超高速风洞与JF-12复现风洞共同构成唯一覆盖临近空间飞行器全部飞行走廊的地面实验平台。
  • 国际领先!这座超大型实验仪器通过验收
    近日,国家重大科研仪器研制项目“爆轰驱动超高速高焓激波风洞”(简称JF-22超高速风洞)结题验收会议举行。验收专家组一致同意通过验收,并评价该风洞在有效实验时间、总温、总压和喷管流场尺寸等综合性能指标方面处于国际领先水平。图片来源:国家自然科学基金委员会网站JF-22超高速风洞项目是由国家自然科学基金委员会支持,中国科学院力学研究所承担的国家重大科研仪器研制项目,于2018年正式启动,研制周期为5年。项目负责人姜宗林提出激波反射型正向爆轰驱动方法,把“不能用”的爆轰波头变为“可用”和“好用”,带领团队构建了超高速激波风洞技术体系,成功研制出JF-22超高速风洞。该风洞是高超声速和超高速领域的一座超大型实验仪器,总长167m,喷管出口2.5m,实验舱直径4m,实验气流速度范围3—10km/s,能够揭示由分子解离主导的复杂介质超高速流动规律,可有力支撑我国天地往返运输系统和超高速飞行器研发,对于推动气动学科发展、提升我国宇航高技术研发能力具有重大意义。图片来源:央视新闻客户端风洞是空气动力学研究和试验中最广泛使用的工具,以验证和发展有关理论,并直接为各种飞行器的研制提供服务,通过风洞实验来确定飞行器的气动布局和评估其气动性能。现代飞行器的设计对风洞的依赖性很大。超高速风洞对于研制超高速飞行器意义重大。我国这支激波风洞的攻关队伍源于上世纪五六十年代。在钱学森和郭永怀的战略部署下,中科院力学所组建起我国第一支高超声速激波风洞的科研攻关队。紧握老一辈科学家的接力棒,科研人员接续奋斗,攻坚克难,取得突破。2012年,总长265m的JF-12复现风洞研制成功,可复现5—9倍声速的飞行条件。它为我国航空航天重大任务研制提供了关键支撑。如今,JF-22超高速风洞项目通过验收。JF-22超高速风洞与JF-12复现风洞共同构成唯一覆盖临近空间飞行器全部飞行走廊的地面实验平台。
  • 江苏大型科学仪器平台成为企业“共享实验室”
    “平时我们企业与科研机构联系较少,遇到技术问题难以寻求技术支持,今天参加这个推介活动才发现,科技公共服务离企业技术创新原来这么近!”多年来一直从事太阳能热水器生产的扬州日利达股份有限公司,想以技术创新提升产品档次,但是苦于力量单薄进展缓慢,意想不到的是在家门口却结识了无锡光伏产品公共服务平台的科技人员,还当场达成了共同研究屋顶太阳能装置标准的协议。  25日,江苏省大型科学仪器平台组织省材料结构与成份测试服务中心、玻璃纤维及绝热材料测试服务中心、扬州LED新光源材料测试技术服务中心、集成电路专业测试服务中心、电磁兼容专业测试服务中心、扬州光电产品环境与可靠性试验检测中心、无锡光伏产品公共服务平台等7家成员单位共赴扬州,将大型仪器共享共用服务主动“送货上门”,扬州市62家“三新”产业相关企业来到现场“寻宝掘金”,有一半以上的企业与科研单位喜结亲家。  为了提高大型科学仪器设备资源使用效率,避免仪器设备的重复购置和浪费,1998年,江苏省科技厅在全国率先建立起大型科学仪器协作网。2005年又会同教育厅、财政厅、质监局和中科院南京分院共建江苏省大型科学仪器共享服务平台,整合全省198家高等院校、科研院所、检测机构等的1600余台(套),总价值10.8亿元的仪器设备机组让全社会共享使用,3年节约仪器购置经费8674万元。近5年来,仪器平台成员机组平均开机时间、对外服务量、服务收入均保持年均15%以上的速度增长。2008年,平均每台机组开机机时达1385小时,平均测试样品数1807个,原来只为单位内部服务的大型科学仪器创造了对外测试服务收入7541万元。  江苏中小企业、民营企业数量庞大,创新意识强、研发活动频繁,但是开展技术创新不可或缺的大型科学仪器设备价格昂贵,大多数企业无力承担。充分利用仪器设备资源,为企业提供高质量检验、检测及咨询服务,也就成为江苏省大型仪器平台的根本宗旨和主要服务内容。仅2008年,仪器平台就为企业测试样品数约37万个,占仪器平台成员单位全年测试样品总数的40%。如中国电子科技集团第58研究所,利用自身在集成电路研究检测方面的优势,主动与集成电路产业较为集中的无锡市对接,为中小企业提供集成电路设计检测服务,为这些企业直接带来了10多亿元的经济效益。  去年以来,为积极应对全球金融危机,充分发挥大型科学仪器设备在技术创新中的重要支撑作用,江苏省大型仪器平台加大了服务推介力度,首先组织5个相关成员单位在宿迁市举办了木材制品产业的专项服务推介活动。此次针对扬州近年来快速发展的新能源、新光源、新材料“三新”产业,主动提供研发及其产业化过程中的检验检测、设计咨询等服务,有效消除了科技公共服务供需之间的信息不对称,充分调动了优质科技资源为地方经济建设服务。
  • 四川质监局采购196台色谱质谱等大型设备
    中国政府采购网消息,四川省质量技术监督局各市州食品检测集中采购196台大型仪器设备,其中各类质谱32台、色谱53台、光谱28台,采购详情如下:  公告标题:四川省四川省质量技术监督局各市州食品检测设备政府采购项目招标公告  采购方式:公开招标  招标编号:SCWZDL-201211-SZLJSJDJ01  公告日期:2012-12-05 17:32:07  供应商资格要求:1、具有独立法人资格的合法企业,且具有有效的营业执照、组织机构代码、税务登记证 2、具有产品生产厂家或授权经销商针对本项目投标的授权或者指定本地代理商文件(非产品生产厂家投标适用,详见设备采购清单对授权的要求) 3、具有良好的商业信誉和健全的财务会计制度 4、具有履行合同所必须的设备和专业技术能力 5、具有依法缴纳税收和社会保障资金的良好记录 6、参加本次政府采购活动前三年内,在经营活动中没有重大违法违规记录。六、资格审查:供应商购买招标文件必须携带营业执照副本(年检合格)、组织机构代码证副本(年检合格)、税务登记证副本、设备采购清单要求授权的产品须具有生产厂家或授权经销商针对本项目投标的授权或者指定本地代理商文件(非产品生产厂家投标适用)、单位介绍信、被授权代表身份证。注:报名时上述所有证明资料验原件,留加盖公司公章的复印件。  投标开始日期:0000-00-00 00:00:00  投标截止日期:2012-12-27 11:00:00  投标地点:成都市武侯区星狮路511号大合仓C区415房(成都市三环路川藏立交西内侧)四川五洲招标代理有限公司开标一厅。  开标日期:2012-12-27 11:00:00  开标地点:成都市武侯区星狮路511号大合仓C区415房(成都市三环路川藏立交西内侧)四川五洲招标代理有限公司开标一厅。  本项目联系人/联系方式:采购代理机构: 四川五洲招标代理有限公司地 址:成都市武侯区星狮路511号大合仓C区415房(下川藏立交内侧) 联 系 人:李女士 邓女士联 系 电 话:85446608、85445511、85045522转8809 8803 传 真:028-85431100包号序号仪器数量地区是否允许进口设备授权书第一包微生物1全自动微生物鉴定系统4达州/广安/巴中/内江是是2菌落计数器2巴中/凉山是是3全自动荧光免疫分析仪1广元是是4全自动酶标仪(全波长)及洗板机2简阳否否5多功能酶标仪(滤光片)及洗板机1凉山是是6A2双人单面生物安全柜1是是7霉菌培养箱1凉山是是8拍击式均质器2长宁/南溪是否9多样品剪切均质匀浆仪1广元是是10厌氧工作站1宜宾是是11高速冷冻离心机4巴中/屏山/长宁/南溪是是12高压灭菌器2长宁/南溪是否第二包气谱类1气相色谱/四极杆飞行时间质谱仪1泸州是是2三重四极杆气质联用仪2遂宁/宜宾是是3顶空气相色谱仪1德阳是是4样品制备平台1宜宾是是第三包气谱类1三重四极杆气质联用仪3广元/自贡/乐山是是2原子吸收光谱仪2绵阳/乐山是是3快速溶剂萃取仪1乐山是是第四包气谱类1三重四极杆气质联用仪2资阳/眉山是是2气相色谱仪3乐山/安岳/资阳是是3全自动电位滴定仪4南充/宜宾/南溪/达州是是4自动电位滴定仪1广元否是5精密台式PH测量仪1甘孜质检所是否6酸蒸馏纯化器1宜宾质检所是是第五包气谱类1气相色谱-质谱联用仪1简阳是是2气相色谱仪5南溪/屏山/长宁/剑阁是是3原子吸收分光光度计2剑阁/巴中是是4傅立叶变换红外光谱仪3凉山/达州/巴中是是5傅立叶变换显微红外光谱仪1绵阳是是6动态顶空进样器(液体、顶空及SPME三合一自动进样器1雅安质检所是是7液相色谱仪1剑阁是是8顶空进样器1巴中是是第六包气谱类1气相色谱仪2南充是是2原子吸收光谱仪3眉山/安岳/资阳是是3带捕集阱进样功能的顶空进样器2广安/南充是是4紫外可见光分光光度计2乐山是是5高温高压灰解仪1雅安是是6全自动啤酒饮料分析系统1资阳是是第七包光谱类1电感耦合等离子体质谱联用仪5遂宁/德阳/巴中/广安/绵阳是是第八包光谱类1电感耦合等离子质谱仪3自贡/攀枝花/内江是是2电感耦合等离子体光谱仪2乐山/南充是是第九包前处理类1全自动样品前处理平台(GPC+SPE+浓缩)3雅安/眉山/宜宾是是2全自动凝胶色谱-在线浓缩系统3乐山/南充/德阳是是第十包前处理类1全自动固相萃取仪7乐山/资阳/安岳/南充/平昌/巴中/广元是是2凝胶色谱及在线浓缩系统2安岳/资阳是是3全自动超低温冷冻研磨仪1达州质检所是是4样品磨1甘孜质检所是否5精细研磨机1甘孜质检所是否6吹扫捕集浓缩系统(含自动进样器)1雅安质检所是是第十一包液谱1液相色谱飞行时间质谱联用仪1内江市质检所是是第十二包液谱1液相色谱三重四级杆串联线性离子阱质谱仪6雅安/德阳/自贡/攀枝花/遂宁/绵阳是是第十三包液谱1液相色谱串联质谱仪2广安/达州是是2液相色谱仪3绵阳/达州/汉源是是第十四包液谱1液相色谱串联质谱仪2巴中/眉山是是2液相色谱仪4南充/乐山/简阳/攀枝花是是第十五包液谱1液相色谱串联质谱仪2广元/泸州质检所是是2超高效液相色谱仪3安岳/资阳/南充是是第十六包离子色谱等1离子色谱1类4广元/乐山/资阳/甘孜是是2离子色谱仪2类2达州/平昌是是3离子色谱仪3类2汉源/凉山是是4全自动凯氏定氮仪1眉山质检所是是5纯水/超纯水仪6宜宾/长宁/南溪/屏山/汉源/凉山是是第十七包食品检测设备1原子荧光分光光度计6南充/达州/长宁/凉山/屏山/南溪否是2荧光分光光度计2凉山/宜宾否是3全自动凯氏定氮仪4剑阁/资阳+消解系统/南充/南溪否是4X射线衍射仪1达州质检所否是5原子吸收分光光度计自动进样器(东西电子)1资阳市简阳质检所否否6气相色谱仪自动进样器1资阳市简阳质检所否否7自动顶空进样器(多模式)2攀枝花/凉山否否8粗纤维测定仪1广元市剑阁质检所否是9自动控制快速溶剂萃取仪1广元市剑阁质检所否是10单通道固相萃取仪1广元市剑阁质检所否是11全自动固相萃取系统1攀枝花质检所否是12二路低本底αβ测量仪1攀枝花质检所否是13全自动凝胶净化定量浓缩系统1自贡/攀枝花/平昌否是14糖化仪1甘孜否是15生物显微镜1凉山否否16双通道实时荧光定量PCR仪1甘孜否是第十八包食品检测设备1微波消解仪8德阳/广安/南充/乐山/资阳/屏山/南溪/长宁是是2全自动测汞仪1长宁是是3电感耦合等离子发射光谱仪1凉山是是第十九包食品检测设备1全自动固相萃取系统2甘孜/广安是是2凝胶色谱-在线浓缩系统3甘孜/广安/屏山是是3火焰/石墨炉原子吸收光谱仪3屏山/南溪/长宁是是4顶空自动进样-气质联用仪1屏山是是第二十包食品检测设备1气相色谱仪5南溪/长宁/眉山/广安/巴中是是2液相色谱仪5屏山/南溪/长宁/眉山/广安是是第二十一包食品检测设备1液相色谱串联质谱仪1危化所是是2超高效液相色谱仪(UPLC)2眉山/长宁是是
  • 一套软件盘活大型仪器资源
    “目前,在中国科学院108家研究所里,已有6726台仪器设备实现共享,2360台仪器设备安装了智能刷卡系统。”中国科学院南京土壤研究所(以下简称土壤所)土壤与环境分析测试中心主任韩勇自豪地告诉《中国科学报》记者。  韩勇是这套大型仪器共享管理系统软件的开发者,最初这套软件仅供土壤所内部使用。然而,是金子总会发光。土壤所的这套大型仪器共享系统很快就在整个中科院得到推广,韩勇和他的团队通过技术支撑,给全院支撑系统管理机制的创新提供了借鉴。  从粗放到集约  物理专业出身的韩勇于1982年来到土壤所,最初的主要科研工作是建立土壤养分循环计算机模型。2004年,韩勇接任土壤与环境分析测试中心主任一职,工作重心也从科研岗位转换到管理岗位。土壤与环境分析测试中心是土壤所土壤与农业可持续发展国家重点实验室的技术支撑单元,刚开始从事中心主任工作的韩勇天天都有接不完的电话,内容无外乎:仪器有人占用吗、需要排队等多久、检测结果什么时候能出来等等。  通过观察,韩勇还发现,实验室每台仪器的使用频率并不一致,哪台仪器在使用或者闲置,除了设备管理员,前来使用的人员往往并不知情,因此导致了不少仪器使用的撞车、闲置和重复采购。  由于之前的科研工作跟计算机密切相关,韩勇就开始琢磨能否写一套软件,让这些仪器的使用情况在计算机系统里一目了然,以实现大型仪器资源的合理分配和利用。  说干就干,韩勇还找来南京理工大学计算机学院的一支团队,共同开发这套大型仪器共享管理系统软件,前后用了不到一年时间,该系统就在土壤所正式上线使用。  通过4年的平稳运行,土壤所大型仪器共享管理系统软件得到了所内外的一致好评,被中科院计划财务局采用并在全院推广。从最初的几十家到现在108家研究所,从1.0版本到2.0版本,大型仪器共享管理系统软件支撑了全中科院仪器资源的共享。  目前,这套共享平台的服务器也从土壤所搬至中科院网络信息中心,为有效统筹全中科院的仪器设备、减少重复采购和浪费资源提供了有力支持。  为什么我们行  为什么这样一套系统来自土壤所?韩勇坦言:“这是一套管理软件,不仅需要计算机技术支撑,还需要管理经验,需要二者有效又合理的结合。”  韩勇告诉记者,2008年这套大型仪器共享管理系统软件在全院推广前夕,类似的平台在中科大和福建物构院都有。2008年,时任中科院常务副院长白春礼来所视察时,对这套系统也给出很好的评价,指示其作为“创新2020”体制机制改革的重大产出之一,可在全院推广。  韩勇至今还记得当年内部讨论时,一位计算机领域的专家曾感叹:“仅靠计算机方面人员真的做不出来这么好用的软件!”  之前,韩勇也曾将一套国家实验室认可的国际标准(ISO17025)交给一位计算机专业的科研人员,让其给出一套结构设计方案,但十余天后,那位研究人员给韩勇的回复是,标准的每个字都能看懂,但合起来却一点看不懂。  “这套软件开发的困难就在于既要具备管理经验,同时要具有计算机功底。当年,论计算机技术我们的确不及专业人员,大仪器的管理也只刚开始涉足,但我们很好地将这二者结合起来。”韩勇笑言道。  “管理是一门科学,大仪器共享平台亦是如此,用科学的手段实时管理。”韩勇向记者介绍,大仪器共享平台有几个好处:一是完全清楚各仪器状态,提高使用效率 二是溯源性管理,对过程实施控制 三是实时了解运行情况 四是公开性质立刻可查。  自从使用了该平台,通过预约审核、预约不审核、直接刷卡使用三种途径,科研人员可以很便捷地使用现有仪器设备,有效提升仪器使用效率,很大程度上节约了人力管理成本。  作为固定成本管理,韩勇的大型仪器共享管理系统软件在未来将与现运行的中科院资源规划项目(ARP项目)进行融合,韩勇和他的团队也将迎来新的任务和挑战。  新系统新融合  今年7月,大型仪器共享管理系统软件新的版本将开始投入研发,不久前,该系统正处于紧张的验收、报告和审批阶段。“新版本将和ARP数据实现共享,届时这套软件也将移交给中科院网络信息中心的专门运行团队。”韩勇告诉记者。  目前,验收工作已收尾,韩勇现在需要考虑新版本的研发团队融合。“我们很清楚这套软件的关键不在于底层技术有多复杂,而在于设计的理念是否能满足需求。”  在采访中,韩勇接到的几个电话,都是院外单位询问样品测试的一些进展,因为这套系统仅对中科院内部共享,院外单位还需要通过联系来使用仪器。  “仪器本身就是中科院的固定资产,全院参与的单位也可以根据情况选择共享的仪器设备,我们最大的贡献还是给院技术支撑系统管理提供了有利的技术支持。”韩勇现在更多地希望新版本能早日上线,在功能上更加健全和完善。
  • 西北大学构建共享平台推进实验室大型仪器设备开放共享
    仪器设备是高校实验室重要的资源和标识,开放共享是仪器效能发挥与运行的现实需求。为落实学校整体工作部署,西北大学聚焦仪器设备开放共享,多措并举扎实推进,通过机制创新、开放共享、分级分类、全成本核算、跨学科交融的实践探索,试点运行,积极构建学校实验室仪器设备共享平台。  ——设立试点运行,加强制度建设。根据国家有关文件精神,学校在原有基础上积极推进大型仪器设备开放共享工作。2020年7月,该校地质学系出台《西北大学地质学系实验室共享发展计划实施办法(试行)》(系发﹝2020﹞9号)文件及系列办法制度。经过近一年的建设、运行,地质学系仪器设备共享工作初见成效,目前共享单价20万元以上大型仪器设备40余台。  管理和运行机制是大型仪器设备开放共享的基础保障。该校根据院(系)大型仪器设备共享平台建设试点运行的实际情况,充分调研、科学规划,整理《高等学校仪器设备开放共享制度选编》,编写《西北大学实验室贵重仪器设备信息手册》等系列制度与资料,积极推进共享工作,制定出台《西北大学大型仪器设备开放共享管理办法(暂行)》(西大发﹝2021﹞1号),保障仪器设备共享平台建设走向可持续发展的道路。  ——构建管理体系,创新服务模式。该校大型仪器设备共享管理,实行“统一领导,归口管理,分级负责”的原则,根据优势学科,实行学校、院(系)、实验室三级管理,简化流程,合理配置资源,科学管理,调动参与大型仪器设备共享工作相关人员积极性,提高大型仪器设备使用效率。  构建大型仪器设备共享激励机制实行导向性政策,在制定各种奖励和鼓励措施激发相关人员积极性的同时,建立大型仪器设备效益评价考核机制,综合运用奖惩手段,规范、约束、引导大型仪器设备共享工作走上良性发展道路。探索考核和效益评价体制,按照考核及效益评价指标对所属大型仪器设备的使用频率、机时利用、人才培养、科研成果、服务收入、功能利用、开发水平等方面进行全面测评并采取相应奖惩措施。  ——搭建信息平台,助力仪器共享。根据“一院一策”改革思路,结合学校共享工作的需要,建立“总分总”的仪器共享模式,学校集中管理,对资源实施分层授权使用。定制研发具有西大特色,能够适应不同学科特点,安全可靠、实时高效、便捷普适的信息化管理平台,实现大型仪器设备资源共享、信息查询、网上预约、委托测试、费用计算、绩效考核、工作量统计和信息交流等功能。  该校以加入“陕西省大仪共用协作网”为依托,面向省内高校、科研院所与企业单位等提供大型仪器设备、专业技术指导和科技咨询等服务。借助信息化平台,实现学校与其他单位从共享大型仪器设备到更多领域、更深层次的科研合作,从开放共享走向合作共赢。  ——积极推广试行,倡导共享理念。在仪器设备开放共享初期,该校选择具有代表性的化学与材料科学学院、生命科学学院进行推广运行。化材学院分析测试研究中心可直接通过信息平台预约自主测试。根据仪器设备的使用率,对教学科研工作的贡献度,实验消耗,服务等进行评价,并定期对仪器分类进行合理优化调整,保障设备高效运行。生命学院中心实验室共享平台拥有液相色谱仪、气相色谱仪、气相色谱质谱联用仪等大型仪器,为教学科研人员提供了优质高效的硬件支持。  在前期试点运行工作的基础上,实验室建设与管理处结合“十四五”学科发展规划,为仪器设备开放共享工作做好长远规划,加大试点建设单位的仪器设备开放共享建设力度,以试点为突破口,在全校树立典型标杆,引领全校的开放共享工作开展 根据共享工作推动的需要,引入并构建全校共享软件信息化平台,实现共享工作的高度自动化和人性化,提高共享效率 扩大共享业务覆盖范围,吸纳更多的用户和仪器设备参与,形成规模效应并进入运行的稳定期,实现良性循环。  仪器设备开放共享是一个系统性工程,不仅涉及学校顶层设计规划、完善的制度保障与信息化技术的支持,还需各管理部门和一线教职工的广泛参与。西北大学立足实验室资源的统筹、协调、开放、共享,积极联动智慧校园信息建设的技术支持,推进贵重仪器设备的开放共享,提高仪器设备的使用效益。
  • 获批国家重大科研仪器研制项目,三峡大学实现零的突破
    11月7日,极目新闻记者从三峡大学获悉,近日接国家自然科学基金委通知,该校获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”,项目由李建林教授主持申报,直接经费836.6万元。这是该校自建校以来首次获批该类型项目,也是获得国家自然科学基金项目单项资助额最高的项目。李建林教授(中)团队部分成员国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,提升我国的原始创新能力。该项目包括部门推荐和自由申请两个亚类。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题。为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。李建林教授团队开展科研工作据介绍,该项目预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。李建林教授团队依托长江三峡滑坡国家野外科学观测研究站和三峡库区地质灾害教育部重点实验室,长期从事卸荷岩体力学理论与应用、地质灾害致灾机理与防治技术等方面的工作。先后主持国家自然科学基金重点项目(3项)、面上项目、国家重大科技攻关项目、中央军委后勤科研项目重点项目、973计划专项等国家级项目30余项,研究成果成功应用到三峡工程、水布垭、南水北调、白鹤滩、乌东德等国内30多个重点水利水电工程,为工程设计、施工、运行提供了重要技术参考。团队先后获批湖北省自然科学基金创新群体、优秀中青年科技创新团队。李建林教授团队开展科研工作据悉,该校高度重视国家自然科学基金项目申请工作,积极发挥水电学科特色优势,搭建高层次科研平台,培育引进高水平人才。该项目的成功获批是该校科研团队历年坚持奋斗结出的硕果,意味着学校基础研究水平再上新台阶。
  • 799.6万!苏试试验中标卫星创新院大型力学测试系统项目
    近日,中国科学院微小卫星创新研究院发布大型力学测试系统项目中标结果,苏州苏试试验集团股份有限公司以799.6万元中标。主要标的信息:供应商名称货物名称货物型号货物数量货物单价苏州苏试试验集团股份有限公司大型力学测试系统DC-400001套799.6万元项目技术规格书如下:1. 名称及数量设备名称:大型力学测试系统。 数量:1套。2. 主要技术要求1) *额定正弦激振力:≥350kN;2) *额定随机激振力:≥280kN;3) *最大位移:≥51mm(p-p);4) *最大速度:不小于2m/s;5) *工作频率:5Hz~2000Hz; 6) *最大加速度:正弦≥80g,随机≥50grms;7) *最大负载能力:≥12000Kg(含辅助支撑本身重量,动圈本身承载4000kg);8) 振动台地基:满足40T振动台系统需求。3. 配置要求40T振动台配置要求如下:(1) 40T振动台体:2套;(2) 开放式功率放大器(含切换装置):1套;(3) 冷却循环水系统(含切换装置):1套;(4) 外循环水系统改造:1套:(5) 垂直扩展台:1套;(6) 水平滑台:1套;(7) 台面加强板:2套;(8) 振动台地基改造(含地基、环氧自流地坪修复、地基钢平台、电缆盖板):1套;(9) 控制终端:2套(台式/便携)。(10) 洁净厂房清洁(地基施工后一次、二次浇灌后一次、调试后一次):不少于3次;(11) 配电箱及电路改造:1套;(12) 气管改造(材料:不锈钢;大概100米):1套;(13) 系统备件:1套(14) 系统易损件:2套。4. 功能要求4.1 概述:振动台系统与控制仪、传感器和电荷放大器等部分就组成一套完整的振动试验系统,振动试验系统的工作原理图如图1所示。首先控制仪根据振动试验要求,输出一定幅值的控制信号给功率放大器,经过功率放大器把信号放大后输出给振动台动圈绕组,由于振动台中的励磁线圈接通励磁电源后,在台体构成的磁回路的环形工作气隙中会形成径向直流磁场,而动圈的绕组正好位于这个充满直流磁场的工作气隙的中间,所以当绕组中通过由功率放大器输入的交流驱动电流后,在稳定的直流磁场内就会受到电磁力的作用带动动圈沿轴向方向即推力方向运动,其推力为:F=BLI其中:F——推力;B——工作气隙中的磁感应强度;I——驱动线圈电流;L——驱动线圈导线的有效长度。通过粘接或螺接在试件上面的加速度传感器,把测量的振动信号变换成电荷信号(或者直接变换成电压信号输出给控制仪)输出给电荷放大器,经过电荷放大器变换成电压信号后输出给控制仪,控制仪通过这个回馈信号来调整输出给功率放大器的控制信号,从而实现振动试验系统的闭环控制。图1 振动试验系统工作原理图4.2 具体功能要求:40T电动式振动试验系统分解为振动台台体、开放式功率放大器、冷却循环水系统、水平滑台、垂直扩展台等五部分。考虑到后续型号的高度可能大于6m,为增加临港振动厂房与振动台体的空间,振动台整个台体需要下沉1000mm。根据分解的系统进行以下设计工作。4.2.1 振动台台体功能要求如表1所示。表1 振动台台体功能要求项目指标*单台额定正弦激振力≥350kN*单台额定随机激振力≥280kN耳轴隔振频率<3Hz动框的一阶频率≥1350Hz*工作频率5~2000Hz(正弦),10~2000Hz(随机)*最大位移≥51mm(p-p)*最大速度不小于2m/s*最大空载加速度(空台)正弦≥80g,随机≥50grms*动态范围≥40dB振动台动框静承载能力≥4000kg漏磁≤1mT(具体按照JJG948-2018标准)振动台冷却方式水冷系统连续工作时间≥4小时(随机70%满推力)台体抗倾覆力距≥15kN.m径向刚度72N/mm轴向刚度8500kNm/rad扭转刚度55kN/mm振动台动圈台面加速度波形失真度参照JJG948振动台动圈台面加速度不均匀度参照JJG948振动台动圈台面横向分量参照JJG9484.2.2 开放式功率放大器功能要求如表2所示。表2 4开放式功率放大器功能要求项目指标*功率模块输出功率≥480kVA数量1套*总谐波失真<1%*功放效率≥92%*功放频响2~10Hz:±1dB;10~3000Hz:±0.5dB*输出电压测量误差≤1%*输出电流测量误差≤1%*信噪比≥65dB*平均无故障工作时间大于3000小时*70%随机满推力连续工作时间≥16小时功放环境适应程度温度:0~40℃相对湿度:0~90%冷却方式风冷功放外型尺寸外包络尺寸不大于6000mm×2100mm×1000mm4.2.3 冷却循环水系统功能要求:1) *外循环水具备检测水压、流量、温度等功能;2) *外循环水进水管预留供健康监测系统使用的水压、流量、温度的传感器接口;3) *内循环水需要有提示保护功能:水位过低、外控连锁、外冷水流、热继保护、动圈水流、动圈水压、励磁水流、励磁水压、保护输出、控制电源;4) *动圈、静圈的进水管、回水管预留供健康监测系统使用的水压、流量的传感器接口;5) *动圈、静圈水箱内预留供健康监测系统使用的温度、液位检测的传感器接口;6) *动圈、静圈水箱的水位和台体的油位具备显示功能;7) 动圈、静圈内循环水系统具有去离子功能;8) 冷却循环水系统具备一键开机,所有监控参数显示功能,并提供接口,具备厂房组网能力;9) 厂房内供水不足,需利用现有汽化池水源,改造外循环系统,提高冷却效率,对相应管路进行改造,做保温处理等。4.2.4 垂直扩展台功能要求:1) *静承载:≥12000Kg;2) 振动工作频率范围:10Hz~2000Hz(随机);3) 台面可用尺寸:3000mm*3000mm;4) *垂直扩展台面一阶频率:≥200Hz;5) 系统一阶频率:≥150Hz;(垂直扩展台、振动台及所有设备安装后组成的系统) ;6) 最大抗倾覆力矩:≥150KNm;(需要提供理论数据)7) *安装后,空台200Hz以内进行0.05g小量级试验,500Hz以内进行0.1g小量级试验,控制曲线在容差范围内,示波器信号光滑无异常。4.2.5 水平滑台功能要求:1) 滑台静承载能力:≥15000Kg;2) 振动工作频率范围:5Hz~2000Hz(随机) ;3) *水平滑台可用尺寸:≥3000mm*3000mm*80mm;4) 水平滑台固有频率:不小于300Hz;5) *系统一阶频率:≥150Hz (滑台、振动台及所有设备安装后组成的系统) ;6) 滑台抗倾覆力矩:≥1000kN.m(需要提供理论数据和实测数据) ;7) 滑台抗偏转力矩:≥100kN.m(需要提供理论数据和实测数据) ;8) 滑台位移:≥35mm(P~P) ;9) 滑台速度:≥1m/s;参照电动水平振动台标准(JJG1000-2005L) 安装后,空台200Hz以内进行0.05g小量级试验,500Hz以内进行0.1g小量级试验,控制曲线在容差范围内,示波器信号光滑无异常。5. 指标要求5.1 振动台指标要求1) 须提供振动台倾覆力矩理论数据、垂直扩展台倾覆力矩理论数据、水平滑台径向刚度、轴向刚度、旋转刚度理论数据;2) 须提供所有运动部件的质量数据;3) 须提供振动台详细尺寸和图纸;4) 具备电动翻转台体的功能;5) 提供功放系统远程控制功能,可进行增益的开关,以及电流、电压的数据显示和监测;6) 功放系统采用高、低励磁形式;7) 功放系统保护装置:过载、过热、过电流、过电压、过位移:振动控制器输出“0”保护;电网过压、欠压保护;电网缺相保护、时序保护;驱动电源保护、限流保护;模块直通保护;模块温度保护;8) 功放系统预留安装电流输出转换成电压信号的传感器接口;9) 台体机械接口加工装配误差:优于7级加工精度要求;10) 具备自动充放气对中功能;11) 功放驱动信号需加隔离噪声装置。5.2 垂直扩展台指标要求1) 垂直扩展台面的材料采用镁合金(型号:ZM5,T6处理)整体铸造;2) 所有螺纹孔及台阶孔应在消除应力后进行加工;3) 扩展台面具有与产品连接的螺纹孔,螺纹孔位置由甲方给出;4) 所有螺纹孔需下整体钢套;5) 所有台阶孔内需下钢衬;6) 所有台阶孔及螺纹孔位置公差不大于0.1mm;7) 上下表面粗糙度优于3.2μm;8) 垂直扩展台面上表面的平面度要求优于0.2mm;9) 垂直扩展台面需进行表面抗腐蚀及硬化处理;10) 垂直扩展台面用的导向轴承的数量不小于4个;11) 使用空气弹簧,数量不少于4个;隔振频率小于3Hz;空气弹簧总的承载范围:大于12000kg;空气弹簧需配备自动对中装置,能够调节台面的对中;空气弹簧的压力使用范围0~0.7Mpa;12) 辅助支架与扩展台面、轴承、空气弹簧连接为一体结构,可以进行整体吊装,并根据安装状态和总重量设计吊装吊具。5.3 水平滑台指标要求1) 滑台材料:镁铝合金板(材质:AZ40M(H112),板材质量优于国家标准GB/T5154~2003);2) 轴承指标:T型轴承,单个轴承静承载不小于3吨,数量不少于48个,至少一列导向轴承;3) 滑台具有与产品连接的螺纹孔,螺纹孔位置由甲方给出;4) 所有螺纹孔需下整体钢套;5) 所有台阶孔及螺纹孔位置公差不大于0.1mm;6) 表面粗糙度优于3.2μm;7) 表面的平面度要求优于0.2mm;8) 表面需进行表面抗腐蚀及硬化处理;9) 油泵采用二次冷却单元;10) 回油泵安装在滑台底部;11) 滑台油泵的进、回油管预留供健康监测系统使用的压力、流量传感器接口;12) 滑台油泵油箱内预留供健康监测系统使用的温度、液位传感器接口。5.4 其他指标要求1) 水平滑台及垂直扩展台面的接口尺寸由甲方提供。2) 振动台及水平滑台安装接口需配合现有厂房地基条件设计。3) 水平滑台及垂直台上需各配置一块台面加强版,加强版的厚度为60mm,长宽均为3000mm,孔位由M16转M12螺钉,可以将现有振动夹具安装至加强版上进行现有型号卫星试验。4) 控制终端配置一台台式机及一台便携式笔记本电脑,电脑的配置如下:处理器不低于i9 9900K,显卡不低于RTX2060,内存不小于16G,固态硬盘不小于1T。5) 控制采集系统须配置电源滤波器一台,功率不小于4.5kW。6. 需完成的任务要求(1) 完成大型力学测试系统设计加工;(2) 完成大型力学测试系统地基设计改造;(3) 完成大型力学测试系统集成及预测试;(4) 完成大型力学测试系统安装调试及验收;(5) 完成大型力学测试系统配套的改造工作。7. 设备及附件清单7.1 配套设备清单序号名称主要规格和型号名称数量单位1振动台台体40吨大型水冷电动振动台2套2开放式功率放大器含切换装置,与振动台配套1套3冷却循环水系统含切换装置,与振动台配套1套4外循环水 系统改造与振动台配套1套5垂直扩展台3m×3m,其余如技术要求所述1套6水平滑台3m×3m,静承载能力:≥15000Kg,抗倾覆力矩:≥1000kN.m1套7台面加强板3m×3m,60mm厚(根据设计图纸布孔)2套8振动台地基改造含地基,垂直振动台地基下部需要5个承重桩,水平振动台地基下部需要不少于9个承重桩,调试完成后环氧自流地坪修复(地基四周及卸货就位破坏的地面)、地基钢平台、电缆盖板1套9洁净厂房清洁地基施工后一次、二次浇灌后一次、调试后一次3次10配电箱及电路改造新增智能电柜(≥1600A,经设计院设计的,含所有配套使用的开关、铜排、从主电源到配电箱的电缆线、配电箱到设备的电缆线、终端箱以及安装桥架等) 1套11气管改造材料:不锈钢;大概100米1套12系统备件振动台系统所涉及的关键备件1套13系统易损件振动台系统所涉及的易损件2套14控制终端振动台控制计算机(台式/便携)2套7.2 配套文件清单序号文件名称交付时间数量单位备注1详细设计方案合同签订后15天2套会签&参加评审2系统运输、安装、调试方案出厂前2套会签&参加评审3交付产品清单及附件明细出厂验收2套4外购件及关键件的合格证出厂验收2套5产品质量报告(包括材质证明书、主要参数指标检测报告等)出厂验收2套6产品合格证出厂验收2套7操作手册及图纸出厂验收2套8验收测试大纲交付验收2套9验收测试报告交付验收2套10研制总结报告交付验收2套会签&参加评审11培训资料(如有)、培训记录交付验收2套8. 交货期(1)交货期为合同生效后1个月内。(2)交货前如设备需求方急需,设备供给方提供设备供设备需求方免费使用至设备交付;(3)交付验收前,乙方负责对设备的妥善安置与防护,防止出现渗水、渗油,生锈等现象。9. 培训要求(1)由原厂技术人员或原厂指定技术人员提供培训;(2)培训时间不小于10个工作日;(3)每次培训人员数量不小于3人;(4)培训地点:上海。10. 质保期及售后技术服务要求(1)产品质量保证期为2年,自产品验收合格之日起算。(2)在保修期内,所提供设备的维修不会因配件供应原因影响设备维修时效。设备在免费保修期外的维修,只收取配件成本费。(3)保修期内,乙方必须提供7x24小时技术支持服务。对使用中出现的问题,及时响应、及时检修。保证全时段响应,设备在安装调试、保修期内及保修期外如发现质量问题,24小时内提供解决方案,如需到现场服务,48小时内专职服务人员出发赶赴现场。(4)配套软件在保修期内,按照用户要求提供免费升级,保证软件质量的稳定性、可靠性。11. 安装、调试、验收要求11.1 安装、调试要求11.1.1 安装调试的主要目标是使相关硬件和软件能够正常运行、并测试通过,同时符合整个系统建设进度。乙方有责任且必须承诺使甲方的系统达到以上目标。11.1.2 乙方必须按技术要求规定完成甲方所购软件产品的安装测试、单体调试工作,在安装调试过程中负责解决全部技术问题。若软件、许可证等方面的配置或要求出现不合理或不完整的问题时,乙方有责任和义务无偿提供补充修改方案,并征得甲方同意后付予实施,但不得影响本项目的进度。11.1.3 设备到货运抵项目现场后,供方在两周内到达需方现场进行安装,安装、调试由供方负责,安装调试和集成期间食宿交通供方自理。设备运抵项目现场到验收交付期间所发生的所有费用均由供方负责。11.2 验收要求11.2.1 供方与甲方共同组成测试组共同进行验收调试并形成验收测试报告;11.2.2 供方提供资料交付清单及实物交付清单用于验收。验收中出现的问题,供方应必须及时补救,并做出解决问题的时限承诺。
  • 科学期刊计划建立防剽窃机制
    科学期刊计划建立防剽窃机制  “剪切—粘贴”文化将被交叉检查软件阻击  据《自然》网站报道,包括Elsevier和Springer在内的一些大的出版商正在准备打击剽窃,他们将推出软件(CrossCheck software)来检查投稿文章是否存在雷同,或是从已发表文章大块改写而来。  在此之前,据《自然》所做的一项非正式调查显示,使用该软件可确定大量的投稿文章存在剽窃行为,某杂志甚至查出剽窃行为达23%。从2008年6月开始,许多出版商(包括自然出版集团)在过去的两年里已开始试验交叉检查软件。该项服务使用美国加州奥克兰iParadigms公司生产的iThenticate交叉检查软件,它的优势是其数据库具有的全文文章数量巨大,使之能够与其他文章比对。  在过去几个月里,随着出版商扩大他们的交叉检查测试,一些人发现了惊人的剽窃程度——从自我剽窃到拷贝其他文章的几个段落或全文。Taylor & Francis公司6个月来一直对三本科学杂志进行交叉检查测试,发现其剽窃率分别为10%、6%和23%。  出版者不能确定剽窃是否在增加,抑或是现在被发现的更多,或两者兼而有之。“几年以前,我们1年发现一两个剽窃案例。现在我们1个月发现一两个”,刚刚开始采用交叉检查的美国计算机学会出版主任Bernard Rous说。  交叉检查揭露出的剽窃程度已经足够让出版商喜欢这款软件,但使用交叉检查软件给出版商增加了额外的成本和管理费用。看起来检查每篇文章花费0.75美元很合理,但是编辑们需要花费大量时间来检查被软件怀疑的文章。  此外,确定剽窃需要对相关的两篇文章都给以专业的解释,有时“抄袭”自己以前的方法和材料是正当的,比如可以用不同的方式来描述如何跑凝胶电泳。
  • 食品"押宝"检测关远远不够 一刀切为“国标”有待商榷
    东方网6月17日消息:米面水油、蔬菜瓜果、鸡蛋禽肉&hellip &hellip 食品安全事件就像不定时炸弹,随时可能波及一日三餐,食品安全检测犹如最后一道安全防线。记者日前走访沪上食品安全监测机构发现,食品安全&ldquo 把关人&rdquo 的困惑并不少。解决之道可能在于:安全食品不应该&ldquo 押宝&rdquo 在食品上市前的检测关,而是应当提前,再提前!  实验室查肉的真伪有难度  前段时间,掺假羊肉闹得沸沸扬扬,制假者承认使用狐狸肉代替羊肉。据此突击检查了涉嫌火锅店,才使掺假&ldquo 混合羊肉&rdquo 曝光。公众不禁疑惑:消费者吃肉难辨真伪,拥有各种先进仪器设备的食品检测机构难道也难辨真伪?  实际上,权威的第三方食品检测机构对此也有困惑。&ldquo 如果将混合肉拿来检测,各项指标很可能是&lsquo 达标&rsquo 的。要分辨是纯羊肉还是混合肉,只有通过提取DNA来鉴定。&rdquo 位于徐汇区漕河泾开发区的谱尼测试上海实验室是具有中国合格评定国家认可委员会CNAS及CMA资质的大型综合第三方检测机构,其副总经理宋虹坦言,&ldquo 借助现有设备,实验室人员能检测肉中是否含有细菌,或各项指标是否符合标准,要让他们分辨是哪种肉,有点困难。&rdquo 就算应用DNA检测,掺假肉甚至不需要羊肉,只要用一点羊油或者羊膘,就能骗过DNA检测 只要含有羊的组织成分,就能检测出羊的DNA。  有人提出,能否出台一个统一标准,规定羊肉达到多少比例才能称之为羊肉,并在包装上公示,低于标准的则按混合肉标识。宋虹说:&ldquo 这个操作起来很难。&rdquo 因为,即便费时费力地鉴别出掺假肉的DNA,食品检测机构也只能做定性分析,无法定量判断,也就是说只能确定掺了哪些&ldquo 假羊肉&rdquo ,不能明确各类假肉所占比例。如果要定量,还需引入更专业的基因检测机构做DNA比对,势必大大增加每批次食品的检测成本。而食品检测成本的增加最终将由消费者埋单,食品价格很可能因此被推高。  超出标准规定范围很难检测  专业的食品科学与工程,精密先进的检测仪器,不断更新的检测方法,一丝不苟的检测团队,为何无法彻底拦截不安全食品溜上餐桌。&ldquo 第三方食品检测的工作很大程度上是&lsquo 照本宣科&rsquo ,这个&lsquo 本&rsquo 就是各种各样的食品安全标准。一旦掺假物质超出国家食品安全标准规定的范围,食品检测机构是很难大海捞针的。&rdquo 宋虹举了个例子:在三聚氰胺事件发生前,谱尼测试只按照国家规定在检测农作物时做三聚氰胺含量测试。事件曝光后,牛奶检测中才添上了三聚氰胺这一项。  据统计,我国现有食品、食品添加剂、食品相关产品国家标准1900项,地方标准1200余项,行业标准3100余项目,有些标准长期原地踏步 有些标准出处不同,统一成分的限值时有衔接不畅甚至打架,常常让&ldquo 按图索骥&rdquo 的食品检测无所适从,也给正常生产的食品企业留有&ldquo 讨价还价&rdquo 的余地。上海海洋大学食品学院教授钟耀广告诉记者,即使在国家层面的食品安全标准中,也分强制限值和推荐性指标。推荐性指标中,企业可选余地大。例如,农夫山泉饮用水事件中,就有国家标准和地方标准&ldquo 打架&rdquo 的影子。  再比如,多家权威检测机构曾检出,&ldquo 绿A&rdquo 、&ldquo 汤臣倍健&rdquo 、&ldquo 金奥力&rdquo 等品牌的螺旋藻产品铅含量超标 随后,国家药监局却给以上品牌产品&ldquo 平反&rdquo 。原来,两家权威机构的检测标准都参照1997年2月实施的《保健(功能)食品通用标准(GB16740-1997)》,其中明确规定:&ldquo 铅含量标准一般产品&le 0.5mg/kg,胶囊类产品&le 1.5mg/kg,以藻类和茶类为原料的固体饮料和胶囊产品&le 2.0mg/kg&rdquo 。前者将检测物认定为一般产品,而后者参照以藻类和茶类为原料的固体饮料和胶囊产品标准,所以检测结果大相径庭。  一刀切为&ldquo 国标&rdquo 有待商榷  可喜的是,国家颁布《食品安全法》后,明确了统一制定食品安全国家标准的原则,即卫生部门对现行的食用农产品质量安全标准、食品卫生标准、食品质量标准予以整合,统一颁布为食品安全国家标准。2010年开始,卫生部开展食品标准大清理,许多食品安全标准更新速度加快,某些重要成分标准的缺失、宽松也在一步步弥补。&ldquo 不过,我国的食品安全标准并不应该迅速提高到CAC(国际食品法典委员会制定、被世界各国普遍认可的食品安全标准)、欧盟或日本标准。&rdquo 钟耀广认为,世界各国在制定食品安全标准时,都会依照本国利益,保护本国企业。虽然,欧盟或日本的食品安全标准世界领先,但并不完全适合依然处于发展中的我国食品安全现状。&ldquo 况且,我国也有部分食品安全指标,是高于欧盟或日本的。&rdquo   有人提出,我国现有食品标准多头管理系统庞杂,何不直接统一为国标,以杜绝行业、地方或企业标准自我代言的可能性?&ldquo 食品产业的发展是一个过程,新产品层出不穷往往超出现有食品标准划定的&lsquo 安全圈&rsquo ,制定合理的食品安全标准就成了企业或者行业的生存之需。特别是有些食品企业产品要出口,就参照国际先进水平高标准严要求,制定相关的食品安全标准。因此,有些行业标准或者企业标准是远远高于相应的国家标准。如果一刀切为&lsquo 国标&rsquo ,反而可能降低了许多食品安全标准。&rdquo 钟耀广说。  生产过程可提前预警风险  再严格的食品安全标准,也有一定的局限性,也会滞后于日新月异的食品行业发展。毕竟,任何一项食品标准的制定,都是一个比较复杂的过程,需要专家委员会充分论证和相关部门的严格评审,其中必然存在不小的时间差。这在食品安全十分过硬的欧盟或者日本,也不例外。在上海市农业科学院农产品质量标准与检测技术研究所所长赵志辉看来,无论从第三方检测机构的工作实践,还是从科学意义上讲,将整个食品产业链的安全篱笆扎紧在食品安全标准和食品检测中,本身就不够科学。&ldquo 安全的食品是生产出来的,不是检测出来的&rdquo 。从种植的田间地头直到上市前,都应该对食品进行全程的风险控制。  目前比较理想的做法就是,在不安全食品尚处于&ldquo 青萍之末&rdquo ,相关机构就能捕捉到危害因子,给予充分的科学研究,做出恰当的安全预警和风险评估,并及时更新至食品安全标准和食品检测样本之中。  继国家食品安全风险评估中心成立之后,农业部农产品质量风险评估上海实验室上月在市农科院挂牌成立。赵志辉透露,上海实验室将针对农药、真菌毒素、重金属、添加剂、食源性病原微生物等安全危害因子,开展检测方法研发和优化,确定危害因子迁移规律,及其对环境和食品安全的机理、毒理学评价研究,为管理部门提供风险交流和风险管理的技术支持,并建立风险评估模型并应用,以初步建立起农产品质量安全检测、评价、预警和控制体系。同时,在食用菌、蔬菜、饲料、农药、化肥等领域开展有特色的食品安全风险评估和预警。  提高公众&ldquo 科学免疫力&rdquo 风险交流呼唤民间平台  风险检测与评估之后的风险交流也要及时补位。  中科院上海生命科学研究院营养所研究员王慧在日前举行的&ldquo 浦江学科交叉论坛&rdquo 上指出,层出不穷的食品添加剂安全事件已经让公众有点过度紧张,实际上硫磺、卤水等国家规定的食品添加剂,有明确的适用范围和用量要求,在国家标准范围内使用是必要和安全的。由于公众对基本的食品安全知识和信息知之甚少,相关事件被过度发酵,每一次都引起不必要的过度恐慌。据有关专家介绍,2010年以来,我国发生的食品安全事件中,除三聚氰胺等少数真正的食品安全问题外,很多是缺乏科学依据的、在媒体上炒作热闹且对食品安全的科学认识造成巨大影响。食品添加剂就在此列,属于被&ldquo 污名化&rdquo 的 反式脂肪酸的危害则被夸大&hellip &hellip   在欧美等国家,食品安全风险交流是食品安全管理中比较通行且十分有效的一环,各国均设立了专门从事风险交流的部门。而且,建立了第三方民间风险交流平台,如国际食品信息中心(IFIC)、欧洲食品信息中心(UF-IC)和亚洲食品信息中心(AFIC)等,大大增强了公众对各类不安全食品的&ldquo 科学免疫力&rdquo 。目前,我国还没有一个有影响的、提供食品安全科学信息的民间平台。王慧建议,我国应及早建立一个由政府、科学家、第三方检测机构和社会公众等共同参与的食品安全风险交流平台,就各种潜在和正在发生的食品安全风险与公众及时沟通、客观交流、科学对话,交流内容包括对食品风险的解释和风险决策的相关依据,为什么制定食品安全标准等,以减少食品安全事件曝光后不必要的过度恐慌。  【焦点链接】  食品安全风险评估,是指对食品、食品添加剂中生物性、化学性和物理性危害对人体健康可能造成的不良影响进行科学评估,包括危害识别、危害特征描述、暴露评估、风险特征描述等。赵志辉解释说:&ldquo 西方食品安全发达的国家已经发展十余年,催生了一整套成熟的食品安全风险评估体系,给食品安全标准的实时更新&lsquo 站岗放哨&rsquo ,而在我国食品安全领域,才刚刚起步。&rdquo
  • 实验室建设与管理 | 新购大型科研仪器查重评议相关机制研究
    新购大型科研仪器查重评议相关机制研究Study on relevant mechanism of duplicate checking review of newly purchase large-scale scientific research instruments作者单位徐振国1,王荣荣2,郭振玺3,江永亨4,韩玉刚5,王晋11. 国家科技基础条件平台中心,北京 1000382. 中国科学院动物研究所,北京 1001013. 北京大学 生命学院,北京 1008714. 清华大学 实验室管理处,北京 1000845. 中国科学院生物物理研究所 蛋白质科学研究平台,北京 100101XU Zhenguo1, WANG Rongrong2, GUO Zhenxi3, JIANG Yongheng4, HAN Yugang5, WANG Jin11. National Science and Technology Infrastructure Center, Beijing 100038, China2. Institute of Zoology, Chinese Academy Sciences, Beijing 100101, China3. School of Life Science, Peking University, Beijing 100871, China4. Office of Laboratory Management, Tsinghua University, Beijing 100084, China5. The Core Facilities of Protein Sciences, Institute of Biophysics, Chinese Academy Sciences, Beijing100101, China作者简介:徐振国(1976—),男,辽宁瓦房店,博士,研究员,主要研究方向为科技资源管理。通信作者:王晋(1982—),男,河北沧州,学士,处长,主要研究方向为科研设施与仪器建设与开放共享。以下为本文目录结构摘 要查重评议是促进大型科研仪器开放共享、布局优化,减少重复购置、提高财政资金使用效率的有效方法。该文从建立数据库、确立查重评议方法、形成评议流程、跟踪分析结果等方面详细阐释查重评议体系的建设要点,并进一步分析体系中仪器命名规范性、基础数据完整性、预警机制、饱满工作机时等4个核心要素的作用,最后从具体操作层面和制度机制层面提出改进措施建议。Abstract: Duplicate checking review is an effective means to promoting opening and sharing, optimizing the layout and reducing the repeated purchase of large-scale scientific research instruments, as well as improving the effective use of financial funds. In this paper, the key points of the construction of the duplicate checking review system are explained in detail from setting up a database, defining methods, developing the review process, and tracking analysis results. The four core elements of this system, including instrument nomenclature, data integrity, early warning mechanism and service time, are further analyzed in details. Finally, suggestions for improvement are put forward from the specific operation level and institutional mechanism level.关键词:大型科研仪器;查重评议;开放共享;政策建议Key words: largescale scientific research instruments duplicate checking review opening and sharing policy suggestion正文近年来,由于国家财政经费投入的持续增加,我国高校和科研院所科研仪器规模快速增长。根据国家科技基础条件资源调查数据显示,截至2020年底,我国高校和科研院所大型科研仪器总量超过12万台(套),总原值超过1800亿元。最近10年间,我国大型科研仪器数量与原值年均增长率均超过20%。在大型科研仪器持续增长且保有量大的背景下,也产生了仪器利用率和开放共享水平不高、部分大型科研仪器重复建设和闲置的现象,出现了仪器的布局不尽合理、配置分散封闭的情况,以及进口仪器的市场占比高、国产仪器的份额占比低的情况。针对我国仪器开放共享中存在的相关问题,很多学者进行了深入研究与思考,如文献[1—2]研究了高校大型科研仪器开放共享机制和新思路,文献[3—5]分析了科研院所等仪器开放共享机制模式;文献[6]通过分析国内外大型科研仪器共享现状提出了改进对策建议。同时很多学者也十分关注国产仪器的发展,通过分析国产仪器的现状,提出相关建议解决“卡脖子”问题[7-9]。基于大型科研仪器利用与开放共享中存在的问题,需要对其购置和布局进行调控,开展大型科研仪器查重评议是解决上述问题的重要手段之一。新购大型科研仪器查重评议是指负责审核批复仪器设备购置事项预算的部门或单位在预算批复前,对新购大型科研仪器的学科相关性、必要性、合理性等进行评议,以此作为预算核定和批复的主要依据,避免科研仪器重复购置,提高财政资金使用效率。2004年,财政部、科技部、教育部和中科院联合发布了《中央级新购大型科学仪器设备联合评议工作管理办法》,建立了200万元以上大型科研仪器设备购置的联合评议制度。2014年,国务院印发的《关于国家重大科研基础设施和大型科研仪器向社会开放的意见》(国发〔2014〕70号,以下简称“70号文”),提出了“对于拟新建设施和新购置仪器应强化查重评议工作”的要求。2017年,科技部、发展改革委、财政部印发《国家重大科研基础设施和大型科研仪器开放共享管理办法》,提出“有关部门要结合考核结果和仪器设备资产存量情况,对拟新建设施和新购置仪器开展查重评议工作,避免资源重复建设”。2018年,国务院《关于全面加强基础科学研究的若干意见》第二十条提出“强化新购大型科研仪器查重评议,建立健全科研设施与仪器开放共享管理机制和后补助机制”。2019年,为规范中央级新购大型科研仪器设备查重评议工作,财政部和科技部联合发布了《中央级新购大型科研仪器设备查重评议管理办法》(以下简称《办法》),进一步明确了查重评议的要求和相关标准。为落实《办法》的相关要求,规范新购大型科研仪器设备查重评议的工作方法和流程,2019年国家科技基础条件平台中心(以下简称“平台中心”)研究制定了《新购大型科研仪器设备查重评议工作规则(试行)》,有效指导了查重评议工作的开展。2021年新修订的《中华人民共和国科学技术进步法》第九十四条规定“统筹购置大型科学仪器、设备,并开展对以财政性资金为主购置的大型科学仪器、设备的联合评议工作”。根据上述的相关文件和政策,相关学者对大型科研仪器联合评议工作进行了深入分析研究,如文献[10]针对长三角地区大型科研仪器联合评议情况,提出该区域联合评议存在的问题及解决措施;文献[11]阐述了江苏省大型科研仪器联合评议成效和意义;文献[12]指出查重评议是一项非常复杂的工作,将会随着社会和技术的发展而不断变化,需要通过结构分析方法和层次分析法将评价指标进行分级。还有学者对查重评议的作用、内在机制提出了独到的见解,提出加强或改进查重评议工作的对策和意见[13-15]。自2009年开始,平台中心受财政部、中科院等部门的委托,利用国家科技基础条件资源调查结果形成的全国大型科研仪器数据库,对财政资金申请购置的大型科研仪器进行查重评议。目前查重评议的范围为中央级科学事业单位改善科研条件专项、国家重点实验室建设、国家重点研发计划、中央引导地方科技发展专项中新购大型科研仪器以及中科院相关资金渠道新购大型科研仪器。经过十几年的探索,平台中心逐步建立了查重评议工作体系,为财政部、中科院等部门统筹仪器购置建设经费提供了有效的支撑。1 实施查重评议的意义1.1 优化大型科研仪器布局大型科研仪器查重评议既可以盘活仪器存量,促进大型科研仪器利用效率和共享率最大化,又可以调控增量,对于科学研究必须配置的大型科研仪器加以支持。对于利用率不高,非必须的大型科研仪器暂缓购置,使增量资源配置在能发挥最大效益的科研单位,从而优化大型科研仪器的布局。1.2 促进仪器资源高效利用和开放共享查重评议可以从建设源头上防止仪器设备重复购置,促进存量资源高效利用,解决大型科研仪器建设和管理中存在的条块分割、自我封闭、使用效率低下、开放共享率低等问题。据统计,通过实施大型科研仪器查重评议制度,以及建立大型科研仪器开放共享评价考核机制,中央级单位大型科研仪器的年平均有效工作机时从2014年的500 h提高到2020年的近1300 h,平均对外开放共享服务机时从2014年的不足50 h增加到2020年的200 h。1.3 提高科技经费使用效率查重评议是减少仪器资源和财政资金浪费,提高科技经费使用效率的制度性举措,可以更加合理地使用有限的购置资金,同时降低政府投资的成本和风险,提高科技资源产出效率。平台中心实施查重评议以来,共建议核减仪器数量超过1万台(套),建议核减经费达百亿元级别。2 大型科研仪器查重评议体系建设查重评议是一项政策性、长期性、综合性、系统性、复杂性、实践性、科学性的工作,涉及的范围广、数据量大、人员广、部门多、单位广。通过深入研究分析查重评议所需要素,平台中心构建了包括信息化管理系统、数据库、评议标准和方法、标准化工作流程的完整查重评议体系,保证该项工作的顺利、高效实施。2.1 建立查重评议所需数据库数据库包括全国大型科研仪器数据库、分领域专家库、查重评议历史记录数据库、通用仪器市场价格库等各类数据库,依托重大科研基础设施与大型科研仪器国家网络管理平台(以下简称“国家网络管理平台”)开发了查重评议信息化系统,支撑查重评议工作全程通过信息系统完成,保证查重评议工作流程精细、高效。2.2 确立查重评议方法和标准标准主要包括仪器与申购单位相关学科发展是否相符,申购仪器设备功能、技术指标是否具有先进性,申购单位现有同类仪器存量、使用情况和应用领域能否满足当前需要,所在地区或全国其他单位同类仪器是否能够通过开放共享解决需求,仪器运行保障条件及实验技术支撑队伍是否完备,购置预算和开放共享方案是否合理等方面,既有定量标准,也有定性判断,保证评议标准严谨规范。2.3 形成标准化评议流程查重评议实行闭环管理,经过原始数据获取、数据形式审查、数据导入、数据分配、专家遴选、评议不同项比对、专家合议、初评结果反馈、申购单位申诉、专家复评、终审结果确定、提交查重评议报告等流程步骤,最终完成该次任务,最后提交相关委托查重评议的部门或单位,保证评议结果客观、公正、科学、合理。2.4 对查重结果跟踪分析将查重评议结果纳入国家网络管理平台大型科研仪器数据库,实时跟踪建议购置仪器是否完成购置,以及是否按时纳入国家网络管理平台开放共享,定期对查重评议数据进行整理分析,研究对比各类科研仪器设备购置需求以及实际购置情况,对科研仪器的发展态势进行预判。3 大型科研仪器查重评议核心要素为了保证大型科研仪器设备查重评议结果科学、客观、准确,需要对相关的购置评议核心要素进行分析,包括大型科研仪器名称的规范性、大型科研仪器查重评议基础数据库的完整性、开展新购大型科研仪器购置预警、按仪器类型划分年均饱满工作机时等4个核心要素。3.1 大型科研仪器名称的规范性通过对国家科技基础条件资源调查数据和国家网络管理平台填报的大型科研仪器数据梳理发现,我国大型科研仪器的名称很多都是不规范的,主要原因有以下几方面:一是我们国家没有统一的命名标准;二是管理单位资产信息填报不准确、不完整,如把300 kV场发射冷冻透射电子显微镜简单写为电镜;三是随着查重评议的深入推进,管理单位为了规避查重评议,故意改变仪器的名称。不规范的仪器名称为新购大型科研仪器查重评议带来很大困难,对评议结果产生较大影响。基于此,平台中心开展了大型科研仪器标准化命名的相关研究工作。经调研分析,大型科研仪器命名需要遵循“主要原理、主要配置、服务对象”等关键指标。一是命名与分类结合,命名规则遵循分类标准;二是命名需要符合现有仪器命名和厂商产品命名习惯;三是命名需要参考现在的管理规定中心语(关键词)。根据以上原则,大型科研仪器的命名应采取以下标准规范[16]:统一用仪器原理命名法;仪器名称按照“服务对象—配置功能—主要原理—主语”的顺序描述。对于复杂仪器,配置功能按照样品分析时被分析物经历的次序描述,要求服务对象不超过1个,配置功能一般不超过3个,主要原理不超过2个,主语尽量用计、仪、镜、器、机等明确主体,不用系统等模糊概念。经梳理、分析,标准化命名后,光学显微镜可以用69个、电子显微镜可以用45个、质谱仪可以用65个、X衍射仪可以用57个规范名字表达(表1),有效规范的仪器命名将为科研仪器开放共享评价考核和查重评议等工作提供有效支撑。3.2 查重评议基础数据库的完整性大型科研仪器设备查重评议是以仪器设备名称、规格型号等为主要检索词,通过申购仪器和查重评议基础数据库中的已有仪器设备的功能、技术指标、应用领域、使用效率、开放共享情况等逐一比对判断申购的仪器是否重复。因此,查重基础数据库是查重评议的重要基础保障,平台中心实时对查重评议基础数据库进行更新和分类,目前基础数据库中共有大型科研仪器17余万台(套),保证数据库的完整性,为查重评议结果的科学、客观、准确提高重要支撑作用。3.3 开展新购大型科研仪器购置预警为从源头上控制大型科研仪器设备的重复购置,提高仪器设备的利用率和财政资金的使用效率,根据国家网络管理平台大型科研仪器数据,在综合分析大型科研仪器设备总量、年有效平均工作机时、科研仪器价格、开放共享情况和地方发展差异等多种要素基础上,对全国范围内科研仪器设备数量较多,但利用率较低的大型科研仪器设备进行汇总分析,形成新购大型科研仪器设备预警目录清单,在全国高校和科研院所利用财政资金申请购置单台(套)价格在200万元及以上的大型科研仪器设备查重评议中作为参考。对于出现在预警目录中的科研仪器设备,在查重评议时应从严把关。目前,平台中心开展了透射电子显微镜、扫描电子显微镜、激光共聚焦显微镜等3类显微镜预警清单的编制(表2),后续还将开展其他分析类仪器预警清单的编制。3.4 划分年均饱满工作机时目前,无论是《中央级新购大型科研仪器设备查重评议管理办法》,还是平台中心制定的《新购大型科研仪器设备查重评议规则(试行)》,都是将1200 h作为年平均饱满工作机时的标准。如果年平均有效工作机时超过1200 h,则认为该仪器的使用效率比较饱满,可以建议购置;如果年平均有效工作机时不足1200 h,且本单位及本地区有类似设备,一般情况下建议通过共享解决,不建议购置。但实际上,按照70号文,仪器共分成14类(除去计算机及其辅助设备),每类仪器的性能、用途和使用特点不尽相同,利用机时也有较大差别,比如电子显微镜类仪器,基本都是24 h运转,年平均有效机时能够达到3000 h,因此1200 h的年平均有效机时门槛相对就比较低;而特种检测仪器年均有效机时比较低,只有1000 h左右,达不到1200 h的标准。因此,需要对每类仪器划分年平均饱满工作机时,在查重评议中按此标准进行评议,才能使评议更科学、客观、公正、准确。目前,平台中心根据国家科技基础条件调查和领域专家提供的数据信息,初步统计了相应类型仪器的年平均饱满机时(表3),下一步需要进行深入调研和分析,划定科学合理的年均饱满工作机时。参考文献 (References)[1] 李春梅,何洪,程南璞,等. 高校大型仪器设备共享管理模式和运行机制探讨[J]. 西南师范大学学报(自然科学版),2018, 43(2): 83–88.[2] 耿忠兴,李炳昆,任铁强. 高校大型仪器设备管理与开放共享新思路的探究[J]. 实验室科学,2019, 22(2): 183–186.[3] 杨松,李霞章,田轶. 江苏高校和科研院所大型仪器设备开放共享机制研究与探索[J]. 常州工学院学报,2021, 34(6): 92–96.[4] 张璇,于雷. 科研院所大型仪器设备共享机制构建的探讨[J]. 农业科技管理,2022, 41(1): 52–56.[5] 张海峰,李桂宾,梁国丰. 大型仪器设备开放共享管理体系探索与研究[J]. 实验技术与管理,2017, 34(3): 257–259.[6] 肖李鹏,汤光平. 国内外大型科学仪器设备开放共享分析及对策[J]. 实验室研究与探索,2016, 35(4): 275–278.[7] 王兵丽,黄冰晴. 浅谈国产科学仪器的现状及发展[J]. 闽南师范大学学报(自然科学版),2018, 31(2): 117–121.[8] 袁勇,付国春,戴灵豪,等. 加快推进国产科研仪器“进口替代”的思考[J]. 分析测试技术与仪器,2022, 28(1): 62–67.[9] 邱烨,刘凌,李惟庚,等. 国产科学仪器发展现状研究[J]. 分析仪器,2021(3): 185–189.[10] 赵蕊,周斌. 关于大型科研仪器源头控制的探索与研究[J]. 安徽科技. 2019(12): 32–34.[11] 夏婷. 关于江苏新购大型科学仪器设备联合评议的思考与建议[J]. 江苏科技信息,2015(15): 5–7.[12] 张静. 新购大型科学仪器设备联合评议指标体系分析[J]. 现代科学仪器,2013(1): 165–168.[13] 李静. 研究型高校大型仪器共享平台运管问题与对策探究[J]. 浙江化工. 2021, 52(11): 9–13.[14] 刘家龙,杨继进. 大型仪器全面管理策略[J]. 实验室研究与探索,2020, 39(5): 273–279.[15] 张丽娜,王晋,吴爱华,等. 质谱仪技术进展、自主创新研发和开放共享使用现状[J]. 分析测试与技术,2021, 27(4): 273–277.[16] 王晋,张文娟,江永亨,等. 大型仪器设备名称规范化标准化研究. 实验技术与管理[J]. 2022, 39(2): 1–6.引文格式:徐振国,王荣荣,郭振玺,等. 新购大型科研仪器查重评议相关机制研究[J]. 实验技术与管理, 2022, 39(9): 261-265.Cite this article: XU Z G, WANG R R, GUO Z X, et al. Study on relevant mechanism of duplicate checking review of newly purchase largescale scientific research instruments[J]. Experimental Technology and Management, 2022, 39(9): 261-265. (in Chinese)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制