当前位置: 仪器信息网 > 行业主题 > >

塑料颗粒水分测试仪

仪器信息网塑料颗粒水分测试仪专题为您提供2024年最新塑料颗粒水分测试仪价格报价、厂家品牌的相关信息, 包括塑料颗粒水分测试仪参数、型号等,不管是国产,还是进口品牌的塑料颗粒水分测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料颗粒水分测试仪相关的耗材配件、试剂标物,还有塑料颗粒水分测试仪相关的最新资讯、资料,以及塑料颗粒水分测试仪相关的解决方案。

塑料颗粒水分测试仪相关的资讯

  • 维萨拉助力确保塑料颗粒的理想干燥度
    在制造注塑塑料产品时,正确干燥原材料(塑料颗粒)至关重要。这是借助温暖干燥的空气完成的。干燥过程中使用的空气比周围空气干燥,因此使用空气干燥机将其回收到工艺过程中是相当经济实惠的。对干燥工艺过程和再生吸附式干燥机中使用的空气进行加热需要耗费大量能源。露点测量是优化能耗和干燥质量的关键。Eino Korhonen Oy (EKOY) 生产多种塑料产品,如固定件、接头和管套。该公司使用维萨拉 DRYCAP® 露点变送器 DMT143 改进塑料颗粒干燥时的干燥空气质量监测。得益于露点测量,该公司已经取得了更好的整体盈利能力、产品质量和客户满意度。在生产过程中,首先需要将塑料颗粒在高温下熔化成热塑性熔体,然后注入模具。如果塑料颗粒太潮湿,很容易出现外观和机械质量问题。在高温情况下,过多的水分会引起化学反应,从而降低产品的机械性能。因此,密切和持续地监测干燥工艺过程是非常重要的。 为了达到合适的干燥程度,塑料颗粒被放置在料斗中,暴露在干燥和温暖的送风中。回风在再生过程中进行冷却和干燥。为确保空气在加热和重新送入干燥工艺过程之前适当干燥,露点测量在这一阶段必不可少。确保塑料颗粒正确干燥的最佳露点是 -35 °C (-31 °F)。‍DMT143 微型露点变送器维萨拉紧凑型 DMT143 变送器可精确测量小型压缩空气干燥机、塑料干燥机、添加剂生产和其他 OEM 应用中的露点。它采用维萨拉 DRYCAP® 技术,具有自动校准功能,并且易于集成,可与维萨拉 DRYCAP® 手持式露点仪 DM70 配合使用。要优点之一是紧凑小巧,例如可应用于小型工业干燥机。DMT143 稳定测量可实现较长的校准间隔和较低的维护成本,它还具有模拟输出选项,易于维护且支持数据传输。 维萨拉 DMT143 响应快速,其露点测量范围为 -70...+60 °C (-94 ...+140 °F),准确度为 ±2 °C (±3.6 °F)连续且可靠的监测EKOY 吸附式干燥机的再生过程已预先设定,并通过定时开关定期执行此过程。这种方法既不考虑生产浮动性,也不考虑吸附式干燥机的状况,这意味着干燥机的性能持续存在不确定性。“我们经验丰富的技术人员发现热塑性熔体过于潮湿,”技术经理 Antti Heikkilä 表示。 EKOY 团队已经能熟练使用维萨拉 DMT143,因为它内置在 EKOY 的干燥机中,且此干燥机的再生过程已经通过露点测量进行了优化。他们决定借用维萨拉的设备进行测试,旨在测量其定时控制的旧式塑料干燥机的性能。“测试证实了我们的怀疑,也就是说我们旧式干燥机的性能甚至未能接近我们的目标值。根据测试结果,我们决定为所有干燥机购置维萨拉设备。目前,维萨拉 DMT143 变送器能够持续进行监测并能够提供可靠的数据,”Heikkilä 解释道。以前,我们每年都会使用从干燥机制造商那里借用的设备来监测干燥机的性能,如此看来,该设备一直都未能提供可靠的数据。干燥机中的 DMT143 变送器与 EKOY 的楼宇自动化系统相关联,所有测量数据都存储在一个位置,便于跟踪。这是向前迈出的重要一步,因为以前关于干燥机性能的数据非常有限。历史数据和趋势曲线提供了有关设备性能和任何维修需求的宝贵信息。变送器连接到 Modbus 通道,且在 MaWi 自动化和维萨拉技术支持的帮助下,使用起来相当容易。 当塑料颗粒的含水量保持在其目标值时,原料质量较高,且 EKOY 可以充分利用其全部生产能力。优化能耗从生产过程中收集有效和准确的数据也给 EKOY 提供了提高其能源效率的机会。 “我们希望成为一家节能的工业企业。举例来说,我们希望在未来能够告诉我们的客户,在制造每种塑料产品时消耗了多少能源,”Antti Heikkilä 表示。 得益于准确的数据,EKOY 团队可以调整旧式塑料干燥机的再生周期,以尽可能实现节能。尽管仍需要手动调整,但在持续测量过程中允许优化调整设置。在未来,通过将使用定时开关进行再生的塑料干燥机转换为露点控制,将有可能进一步优化该过程。 与维萨拉的合作中,另一个在环境方面和产品生命周期相关的考虑:“我们持有相同的价值观念。对我们来说,维萨拉能够保证未来许多年的备件供应,这一点非常重要。比起丢弃和更换,我们更愿意进行维修和调整,”Heikkilä 说道。 Eino Korhonen OyEKOY 专门从事电工、塑料和金属产品的代工生产。其产品销往全球。EKOY 与 Nordic Aluminum/Lival、Ensto Produal 和 KONE 等公司均有合作。这家家族企业成立于 1978 年,在芬兰波尔沃和爱沙尼亚的哈尔尤县等地都有业务。DM70 手持式露点仪 用于抽检应用和现场校准的 Vaisala DRYCAP® 手持式露点仪 DM70 能为工业露点应用提供准确快速的测量结果,例如在压缩空气、金属处理、添加剂生产以及食品和塑料干燥等应用方面。DM70 可提供宽量程范围内的准确露点温度测量。该探头可以直接插入带压工艺过程中,并且能在外界环境转换到工艺环境的条件下快速调整。DM70 也可用作对固定的维萨拉露点变送器进行输出读取的工具。DM70 通过其传感器净化功能进一步加快了响应时间,从而可确保快速准确的数据。该传感器抗冷凝,并且弄湿后可以完全恢复。其操作界面易于使用,并且具有清晰的 LCD显示屏和数据记录功能。❖ 微型露点变送器 DMT143 和 DMT143L(长型)(针对 OEM 应用)当您想要准确地测量小型压缩空气干燥机、塑料干燥机、添加剂生产和其他 OEM 应用场合内的露点时,微尺寸露点变送器 DMT143 和 DMT143L 是您的理想选择。它们很容易集成,并可以应用于手持式维萨拉 DM70 中。长型设备已取代 DMT242。特点:可进行自动校准的维萨拉 DRYCAP® 技术快速响应时间露点测量范围为 -70 ... +60 °C (-94 ... +140 °F)准确度为 ±2 ºC (±3.6 ºF)防冷凝与维萨拉 DRYCAP® 手持式露点仪 DM70 兼容可溯源的校准(包括证书)超过露点水平时触发 LED 报警
  • 好可怕,微塑料成“达摩克利斯之剑”,监控微塑料颗粒,迫在眉睫!
    热点聚焦图片来源于http://www.mnn.com显微镜下微塑料4月7日,一篇发表在《Science of the total Environment》期刊上的研究论文显示,来自英国赫尔大学领导的研究团队在活人的肺部深处发现了微塑料;3月25日,发表在另一环境科学领域《Environment International》期刊上的研究论文显示,来自荷兰阿姆斯特丹自由大学领导的研究团队在人类志愿者的血液中发现了微塑料;不久前,南京大学环境学院污染控制与资源化利用国家重点实验室团队在《Environmental Science & Technology》发表研究论文,通过调查来自中国11个省市参与者的粪便样本发现了一个令人担忧的证据:咱们经常喝瓶装水、吃外卖食品以及工作性质为粉尘暴露的参与者,其粪便中的微塑料更多… … 可怕,在这个被微塑料浸染的环境里,微塑料已经不仅仅存在于山川和河流中,存在于空气和食物中,竟然已经存在于人类的血液和器官里。 什么是微塑料?微塑料指直径小于5毫米的塑料颗粒,是形状多样的非均匀塑料颗粒混合体,属于新型污染物之一。它体积小,比表面积大,吸附污染物能力强,可以在环境中到处游荡,严重影响人类健康。 如何进入人体?人类摄入微塑料的主要来源是饮用水,如瓶装水、自来水、地表和地下水;再就是食物,主要是甲壳类海鲜、啤酒和盐;还有如牙膏、磨砂洗面奶及日用品中的塑胶颗粒以及衣物、地毯等制品中释放出的微纤维,通过呼吸摄入人体等。 如何检测?无论从《进一步加强塑料污染治理的意见》还是《生态环境监测规划纲要(2020-2035年)》文件中不难看出,微塑料作为一类重要的新污染物,已经引起国家重视。在微塑料监测中,检测方法主要分为热分析法和光谱分析法两大类。热分析法主要是裂解气相色谱-质谱联用(Pyr-GCMS)、热萃取解析-气质联用(TED-GCMS),光谱分析法主要是傅立叶红外光谱法(FT-IR)、拉曼光谱法以及其它方法等。 GC-MS或成为微塑料分析关键在微塑料检测中,光谱分析法主要用于根据颗粒数量、颗粒大小和形状来评估微塑料污染,并不能给出聚合物组成的指示,也不能识别添加剂。而Py-GC-MS为微塑料分析领域提供了一个有前景的选择,可用于微塑料颗粒的聚合物类型以及相关的有机塑料添加剂的识别和定量,这里气相色谱-质谱联用仪起到关键的作用。东西分析作为国内较早成立的科学分析仪器生产厂商之一,在2007年推出自主研发的商品化气质联用仪GC-MS3100,是中国分析仪器发展史上的一个里程碑。经过十几年的发展,东西分析推出多款GC-MS系列产品。可以为微塑料检测方面提供相关解决方案及产品服务。 产 品GC-MS3200气相色谱(四极)质谱联用仪国内商品化气质联用仪第二代产品;DC补偿技术,进一步改善了信噪比;高速直流补偿技术,有效地改善了分辨率;可调正化学电离源(PCI)功能,拓展了应用领域。 GC-MS3100气相色谱(四极)质谱联用仪离子源:EI源,独立加热系统;检测器:带高压转换打拿极电子倍增器;色谱部分:EPC全自动气路,可连接多种前处理设备及进样装置。GC-MS3110车载气相色谱(四极)质谱联用仪 气路EPC电子流量控制;可配置如NIST\WILEY\DRUG等谱图库;符合《移动实验室仪器设备通用技术要求》;车载减震系统设计、专用气源、专用电源系统。GC x GC TOF MS 3300全二维气相色谱-飞行时间质谱联用仪 采用GC x GC消除扰动四喷口调制器,减少对柱温箱的干扰;独立控温双柱温箱结构,使仪器控制更灵活,适用面更广;飞行时间质量分析器具有可选择性去除背景离子功能;系统集成运行控制。 最 后微塑料静静入侵,精确有效的分析方法变得迫在眉睫。抗击微塑料污染的道路道阻且长,需要我们一起努力!
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • Nature Nano! O-PTIR光热红外显微成像技术揭示微塑料颗粒新来源及形成机制
    微塑料,作为一种新兴污染物,泛指直径小于5 mm的塑料颗粒,充斥于从海洋到陆地的所有环境里。科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。如硅橡胶,作为一种重要的合成橡胶,因其优良的耐热性,常用于高温、高湿环境中使用(例如消毒、蒸煮)的产品,例如婴儿奶嘴、烘焙模具和密封圈等。但这些产品在反复高温水热作用下的老化情况以及微塑料颗粒的释放情况,目前尚未能引起充分的重视。目前微塑料的常规检测是光谱分析法对样本的种类和组成进行鉴定,由于它们具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术。如傅里叶红外显微红外(μFTIR)或显微拉曼光谱(μRM),在实际操作中,需要进行复杂的样本处理,如浮选,多过滤等,而且因其自身的技术限制,如μFTIR分辨率取决于红外波长,仅为10−20 μm,μRM易受荧光干扰,分辨率低为1 μm,无法表征亚微米尺度下塑料表面的化学变化,也不能识别单个纳米塑料(图1. 根据O-PTIR红外显微成像技术估算硅橡胶奶嘴蒸汽消毒过程中两种微纳塑料颗粒的生成、婴儿暴露及环境排放量O-PTIR光热红外显微成像技术,其原理是利用短波长可见激光探测样品IR吸收区域的光热效应,即可见激光与脉冲式中红外激光共轴照在样品表面,IR吸收区域的温度上升、折射率改变,并据此获得样品特定区域的IR光谱。它突破了传统傅里叶红外光谱技术的局限,空间分辨率提高了几十倍,达到500 nm,并且测量更简单,更快速,无需复杂的样品制备过程,结合液体检测模式和同步拉曼技术,可直观判断亚微米尺度下(微)塑料表面是否发生降解,并可识别和统计出小尺寸微米塑料(1−10 μm)和纳米塑料(400−1000 nm)的粒径分布和数量。南京大学环境学院季荣教授和苏宇副研究员团队与美国麻省大学邢宝山教授等合作,利用先进的Photothermal Spectroscopy Corp 公司生产的mIRage O-PTIR显微光谱仪,建立了一种新型的(微)塑料表面亚微米尺度化学变化表征方法。研究团队通过对比分析四个国际主流品牌奶嘴产品在蒸汽消毒前后表面形貌及分子结构的变化,先证实了蒸汽消毒引起硅橡胶老化具有普遍性。研究发现,硅橡胶婴儿奶嘴的主要成分为聚二基硅氧烷(PDMS)及树脂添加剂聚酰胺(PA)(图2b和2c),在经过蒸汽消毒(100 °C)时表面发生降解并释放出微纳塑料颗粒(图2a)。另外借助O-PTIR特有的单一波长大范围成像技术,作者统计了奶嘴消毒过程中PDMS降解产生的1.5 μm以上塑料颗粒数量,并估算出正常奶瓶喂养一年进入婴儿体内的该类微塑料总量约为66万颗,比此前文献报道的儿童从空气、水和食物中摄入的热塑性微塑料数量之和高出一个数量;假如这些微塑料全部被排入环境,全球平均排放量可能高达5.2万亿个/年。上述结果表明硅橡胶奶嘴消毒产生的颗粒物可能是儿童体内和环境中微纳塑料的重要来源。图2. 使用水热分解法对硅橡胶试样表面进行蒸汽腐蚀;(a) 实验装置及O-PTIR工作原理示意图 (b)样品蒸煮60 × 10 min表面前后的光学图像 (c) 图(b)中位置1-16的归一化O-PTIR光谱如图3所示,作者通过对代表性产品蒸汽处理不同时间后(图3a),采集其表面的光学显微图像(图3a和3b)、红外吸收光谱(图3c)和单一特定波长下的大范围的红外成像(图3d),实现了硅橡胶表面同一微区两类聚合物(PDMS和PA)降解过程可视化。在消毒开始后10 h内,蒸汽从硅橡胶表面缺陷位置渗入,使得表层PDMS聚合物膨胀鼓出(高度5 μm)形成侵蚀面;伴随PDMS分子水解、氧化,侵蚀面开裂、凹陷(深度5 μm),部分脱落;同时,伴随PA分子断裂、氧化,树脂颗粒发生迁移、脱落和缩小。图3. 试样表面蚀刻演变的可视化研究. (a,b) 1号样品表面在蒸煮10、60和600分钟前后的光学图像;(c)b中位置1-13的归一化O-PTIR光谱 (d)b中S1-S4区域的部分区域的可见光图像以及在C=O (1655 cm−1)和Si−CH3 (1263 cm−1)的O- PTIR红外成像) 除此之外,作者根据消毒后奶嘴清洗液中单个颗粒物的显微图像和红外吸收光谱,作者揭示了硅橡胶表面聚合物(PDMS和PA)降解生成两类微纳塑料的结构特征,并在单颗粒水平上表征了微塑料的降解转化动态过程。PDMS和PA水热降解后分别生成了薄片状、含聚硅氧烷的塑料颗粒(0.6−332 μm;其中【文末小故事】 本文作者苏宇副研究员在2019年便有了此实验想法,但受限于常规FTIR分析手段无法测量。在几经周折后,了解到Quantum Design中国的mIRage O-PTIR显微光谱仪具有亚微米分辨、无需复杂的样品制备过程,结合液体检测模式和同步拉曼技术,可直观判断亚微米尺度下(微)塑料表面是否发生降解等技术优势,可完全解决现有的测试难题,终在QD中国(北京)样机实验室,利用mIRage O-PTIR显微光谱仪顺利完成了样品的红外测试部分。 Quantum Design中国能够为中国科学研究和科技发展贡献自己的一份力量是QD中国一直以来的信念和企业文化,也是我们的荣幸,期待mIRage O-PTIR显微光谱仪及我们的其他先进技术设备能够助力相关科研工作者取得更好的成绩! 【参考文献】[1]. Su, Y., Hu, X., Tang, H. et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. (2021).
  • 走进禾工实验室和我们一起探讨塑料粒子水分检测方法
    塑料粒子水分检测的目的:塑料粒子是塑料颗粒的俗称 ,是塑料以半成品形态进行存储、运输和加工成型的原料,是用来生产和注塑塑料制品的原料,广泛应用于各类塑料制品。塑料粒子的产品质量直接影响注塑后产品的质量,水分含量过高,注塑过程中水分就会气化产生气泡,影响塑料制品的外观和机械强度,因此,控制塑料粒子水分含量是控制塑料注塑工艺的一个关键步骤。 常用的水分检测方法:目前市面上常用的塑料粒子水分检测方法为加热失重法,通过将样品加热到一定温度后,水分挥发,样品重量的改变来测得塑料粒子中的水分含量。常用的测量仪器有烘箱加热检测和红外或者卤素水分测定仪(参考型号HM-101X)。由于烘箱检测时间过长,需要人工计算,测量误差也较大,因此烘箱检测的方法逐渐淘汰;而卤素水分测定仪检测时间较短,使用方便,因此很多客户会选择这种方法来进行塑料粒子的水分检测。但是,这种加热失重的方法来进行水分检测的弊端在于,在对塑料粒子的加热过程中,除了水分以外,其中还含有一些挥发性的溶剂和有机组分也随之挥发,这样就造成了水分检测的结果偏高。那么除此之外还有什么更好的方法呢下面我们就跟着周工一起来实验一下卤素水分测定仪与上海禾工研发生产的塑料粒子专用水分测定仪水分检测对比: 检测过程与对比: 我们对客户寄来的塑料粒子样品用塑料粒子专用的卡尔费休水分测定仪AKF-PL2015C和卤素水分测定仪HM-101X进行水分检测。 塑料粒子1 塑料粒子2 AKF-PL2015C测定方法: 打开仪器,点击测量,仪器自动平衡;卡式加热炉设置加热温度为150℃,空气流量为15ml/min,吹扫样品瓶和管路中存在的水分,等待平衡;平衡后将样品瓶移至冷却槽中冷却至室温,用电子天平称取样品,然后在水分仪上点击“测量”,同时将样品瓶装入加热槽,开始测量; 测量结束后将样品瓶移至冷却槽中冷却,进行下一次测试。 塑料粒子1检测图 塑料粒子2检测图 HM-101X测定方法:打开仪器,设置加热温度为150℃;将样品放入铝盘上,点击开始后测量; 测量结束后显示含水量,进行下一次测试。 塑料粒子1检测图塑料粒子2检测图样品来源:江苏某客户环境温度:16 ℃加热温度: 150℃载气流量:15ml/minAKF-PL2015C检测结果样品名称样品质量/g含水质量/μg检测时长测量结果/% 塑料粒子10.2207416.95:120.18880.2421467.25:290.19290.2363458.35:250.1939 HM-101X检测结果 样品名称样品质量/g加热后重量/g检测时长测量结果/%塑料粒子13.1433.1272:200.503.4293.4112:500.523.4193.4012:500.52 AKF-PL2015C检测结果样品名称样品质量/g含水质量/μg检测时长测量结果/% 塑料粒子20.896152.41:430.00581.055149.61:400.00471.009059.41:450.0058 HM-101X检测结果样品名称样品质量/g加热后重量/g检测时长测量结果/% 塑料粒子24.4374.4291:450.183.5653.5581:450.193.9173.9091:400.20 结论:由上述结果可以看出,卤素水分测定仪HM-101X的检测结果比卡尔费休水分测定仪AKF-PL2015C的结果大很多,由检测图片我们也可以看出,塑料粒子加热后除了水分,可能还会有其他挥发性组份挥发,因此加热法的测试结果会比卡尔费休法的测试结果偏大,且卤素加热水分测定仪的测量精度为1mg,远大于AKF-PL2015C的0.1μg 的测量精度。
  • 塑料生物降解测试用样品该如何制备
    在塑料生物降解测试中,对于塑料材料原料或制品的前处理制样是一个非常重要的步骤,但也一直是广大测试人员最头疼的问题之一。由于塑料材料普遍具有较低的软化温度、较高的粘度,对于样品的研磨、剪切都造成了极大的障碍。塑料材料原料或制品通常主要以粉末、颗粒、薄膜、片材、空心管状、块状等几种形态呈现。在降解测试中,为了确保样品能够以最大的接触面积充分接触接种物底物,使微生物和所分泌的各种不同解聚酶容易进攻塑料材料,我们一般都会将塑料样品处理成更细小的颗粒或更薄的片材。常见生物降解标准所要求样品形态(参考GB/T 38787-2020《塑料 材料生物分解试验用样品制备方法》)其中:(1)对于吸管类制品,一般需将其剖开,并剪成不大于2 cm的片状材料。(2)对于非薄膜、非粉末状样品,一般参考GB/T 38787-2020《塑料 材料生物分解试验用样品制备方法》,采用干冰或液氮冷却并机械研磨制成粉料。(3)对于要求采用薄膜样品的方法,需采用平板硫化机将塑料颗粒热压成约几十μm的薄膜,再按照要求进行裁片。湖北洛克泰克是国内少有的通过完全自主研发,提供材料生物降解测试仪器和服务全解决方案的供应商。我们为广大不同需求的客户提供RTK PBDA塑料生物降解分析仪、RTK PBD 全自动塑料崩解分析仪、RTK CRM密闭呼吸计、RTK BMP全自动甲烷潜力测试系统、RTK-BRE微生物降解呼吸仪等产品,可适用于各类塑料生物降解性能评估标准方法的测试。湖北洛克泰克仪器股份有限公司成立于2013年,是国家级高新技术企业(证书编号GR202042003741),拥有包括生物降解领域的近30余项专利证书(含发明专利)。为中国农业大学厌氧发酵联合实验室、华中农业大学产学研合作基地。作为中国科学测试仪器研究型制造商,洛克泰克努力为全球客户提供专业的科学测试仪器、测试方法、培训及技术服务。洛克泰克秉承“技术推动科学进步”的使命,致力于我国的“碳达峰、碳中和”目标,为政府、大学、研究机构及企业提供服务,实现更健康、更安全、更环保的高质量发展。欢迎垂询!
  • 塑料袋负压密封性测试仪的测试原理与应用
    塑料袋负压密封性测试仪的测试原理在现代包装行业中,塑料袋以其轻便、耐用、成本效益高等特点,广泛应用于食品、医药、日化、电子等多个领域,成为连接生产与消费不可或缺的桥梁。从超市中的生鲜果蔬包装到家庭中的垃圾收集袋,塑料袋的身影无处不在,其密封性能直接关系到产品的保质期、安全性及体验。因此,对塑料袋进行严格的密封性测试,不仅是行业规范的要求,更是保障产品质量、维护消费者权益的重要措施。塑料袋的使用用途及其重要性1.食品包装:在食品行业中,塑料袋作为直接接触食品的包装材料,其密封性直接关系到食品的新鲜度、口感及安全性。良好的密封性能可以有效防止氧气、水分及微生物的侵入,延长食品保质期。2.医药包装:医药产品对包装材料的密封性要求极高,以防止药品受潮、变质或污染。塑料袋作为药品初级包装或辅助包装材料,其密封性测试是确保药品质量与安全的关键环节。3.电子产品包装:在电子产品领域,塑料袋虽不直接参与产品功能实现,但其作为防尘、防潮的临时保护措施,密封性同样重要,以防止电子元件在运输和储存过程中受损。鉴于塑料袋密封性的重要性,采用科学、高效的测试方法至关重要。济南三泉中石的MFY-05S塑料袋负压密封性测试仪采用气泡法测试,是当前评估塑料袋密封性能的主流手段之一。三泉中石的塑料袋负压密封性测试仪,测试原理:在测试过程中,将真空室部分或全部浸没于水中,以放大观察效果。若试样存在密封缺陷(如孔洞、裂缝或密封不严),则内外压差会导致试样内的气体通过缺陷处逸出,形成气泡。通过观察气泡的产生位置、数量及持续时间,可以直观、准确地判断试样的密封性能。济南三泉中石的MFY-05S塑料袋负压密封性测试仪,以其科学、直观、高效的测试方式,为塑料包装行业提供了强有力的质量保障手段。通过严格的密封性测试,不仅能够筛选出存在质量隐患的产品,避免其流入市场造成不良影响,还能促进企业不断提升产品质量。济南三泉中石实验仪器紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 拉曼和傅里叶光谱技术已成为最常用的两种微塑料鉴别方法
    目前微塑料定性定量探测技术主要有拉曼光谱技术(Raman)、傅里叶变换红外光谱技术(FTIR)、裂解气相色谱-质谱联用技术(Pyrolysis-GC/MS)等,其中Raman和FTIR已成为最常用的两种鉴别方法,这与其技术特点是分不开的。1.拉曼光谱技术(Raman)是基于拉曼散射效应,光照射在微塑料样品上后,大部分光子被样品分子直接散射出来,散射光频率不变,小部分光子和样品分子发生碰撞和能量转移,改变了分子的振动方式,导致样品散射出了其他频率的光,它与原入射光的频率差值又称“拉曼位移”。“拉曼位移”的程度与分子结构密切相关,因而可以起到类似“指纹”的作用,通过光栅光谱仪等设备可以提取出样品拉曼特征谱峰的位置和强度,然后与标准物质的光谱数据库进行比对,就可以确定样品的成分。在微塑料分析时,经常将拉曼光谱技术与光学显微镜组合,构成显微拉曼测量系统(Micro-Raman),这样不仅可以获取样品的拉曼光谱,还可以绘制整个样品区域图像,从而快速确定微塑料的种类、形貌、尺寸及数目。图4是显微拉曼系统结构示意图,它主要由激光器、显微镜和光探测器等组成。用于微塑料测定时,常用的激光波长有785nm,532nm或1064nm;因为样品的拉曼光谱信号往往很弱,光探测器需使用带制冷功能的高灵敏度光谱仪。测量时,激光器出射光经过调制或过滤,进入显微镜后,被物镜聚焦到样品上,样品散射出的拉曼光谱信号被显微镜头收集,再经过分束器和二向色镜过滤进入光谱仪的探测器中,变成电信号后由电脑记录和分析。样品的形貌、尺寸等信息可由显微镜上自带的CCD(或CMOS等)图像传感器获取。图4:拉曼系统测量原理示意图。图片来源:Raman Spectroscopy, ScienceFacts在微塑料分析方面,Raman光谱技术优势很多,对样品无破坏性或微损,抗水分子干扰能力强,对样品预处理要求简单,并且可以分析深色或不透明的塑料样品。此外拉曼光谱的空间分辨率较高,在鉴定粒径小于20um的微塑料颗粒碎片方面优势明显。该技术的主要缺点在于拉曼光谱属于弱信号,信噪比较低。另外样品中杂质的荧光会产生干扰,严重时会彻底淹没待检特征光谱信号,影响了测量速度和检测限。2.傅里叶变换红外光谱技术(FTIR)傅里叶变换红外光谱技术(FTIR)是基于迈克尔逊干涉仪和分子吸收光谱原理。红外光源发出的连续光被干涉仪内的分束器分为两束,一束到达动镜,另一束经反射到达定镜。两束光分别经过定镜和动镜反射后再回到分束器上汇合后射出。动镜以恒定速度前后移动,导致两束光之间存在光程差而发生干涉。射出的干涉光穿过样品池,照射在样品上,样品分子或其官能团会发生振动能级跃迁,吸收与其振动频率相同的红外光能量,使得几个特定波段的红外光能量被削弱,出射光束携带了样品的特征吸收信息,并被光电检测器转为电信号传输到电脑上,然后采用傅里叶变换算法对信号进行解析,最终提取出样品的吸收光谱信息。因为不同种类的微塑料会有不同的光谱吸收峰结构,可以起到类似“指纹”的作用,故可以像拉曼光谱分析一样,将其与标准物质的光谱数据库进行比对,就可以确定样品的成分。其测量系统如图5所示。如若样品比较透明、轻薄,可以采用简便的透射模式测量,不过需要红外滤片配合;如若样品比较厚或不透明,则可采用反射或衰减全反射(ATR)模式来获取样品特征光谱信息[5]。此外FTIR也可以与光学显微镜联用,进一步获取样品的图像特征。图5:FTIR测量系统示意图。图片来源:In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht.在微塑料分析方面,FTIR技术有和Raman技术相同的优点,比如对样品无破坏性,样品预处理要求简单,测量准确等。但不同于Raman技术,FTIR技术无需衰减严重的色散分光,光能量利用率高,光通量大,信号强度高,测量速度快,这是FTIR技术的独特优势。FTIR技术也有一些缺点,样品测试极易受水分子干扰,样品必须保持严格干燥;同时对于形状不规则或厚度过大样品,FTIR技术会因折射误差等原因造成红外光谱图解析困难。对于粒径小于20µm的小塑料颗粒,FTIR技术也易受周围粒子或者环境的干扰,测定效果一般。微塑料在人体内的检测与发现近年来,Raman和FTIR技术在帮助人们鉴定人体内塑料方面进展迅速,取得了一系列新发现,下面是几个案例。2021年,北京大学的研究团队,从北京体育大学的青年学生志愿者中,采集了24份粪便样品,使用光学FTIR技术对样品开展检测,结果有23份检测出了8种微塑料,其中聚丙烯(PP)的相对质量丰度比占到61.0%,检出的微塑料尺寸在20-800um之间。相关研究论文标题引用了一条西方谚语-“You are what you eat”,也是一个形象的提醒,检出的微塑料与大家饮用的瓶装水和饮料有关。2022年,南京大学和南京医大的研究团队从50名健康人和52名炎症性肠病(IBD)患者中获取了粪便样品,然后使用显微拉曼光谱技术开展了检测,发现健康者与肠炎患者的粪便中都有微塑料,其中PET和PA的拉曼特征峰出现次数最多[7]。图6是测试结果,测出的微塑料颗粒形状多为薄片、纤维、碎块和球状,其中薄片和纤维状微塑料占比超过80%,成分以PET(多用于瓶子和食品容器)和PA(多用于食品包装和纺织品)塑料为主。需要注意的是,研究发现,常喝瓶装水、常吃外卖食品、或经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。肠炎患者的粪便中的微塑料含量是健康者的1.5倍,意味着微塑料在肠炎患者肠道内有更多的堆积,可能加重了炎症。更进一步的,2022年荷兰阿姆斯特丹自由大学研究团队采用裂解-气相色谱/质谱(Py-GC/MS)技术,首次在人类活体血液中检测出微塑料颗粒,平均浓度为1.6ug/ml。图6:受试者粪便内微塑料。图片来源:Environmental Science & Technology 56.1 (2021): 414-421.不仅是血液,最近人们在人类胎盘和母乳中也检出了微塑料。2020年来自意大利Marche大学团队联合当地医院妇产科采集了6位正常怀孕并分娩的健康女性的胎盘样品[9],并选择了其中4%的区域,进行染色加工等预处理,然后该团队使用785nm激光器为光源,结合显微镜,测量了样品的微区拉曼光谱,结果首次在胎盘的胎儿侧、母亲侧以及胎盘膜中检测到了12个微塑料颗粒的存在,其尺寸小于10um,鉴定出塑料的成分为常见的乙烯和聚丙烯等。为避免胎盘受到污染,样品采集与分析过程中,该团队全程采取了零塑料措施。2022年,该团队再接再厉,继续发挥拉曼光谱技术的威力,以母乳为研究对象,结果首次在健康人体母乳样本中也发现了微塑料,其成分特征光谱和显微图片如图7所示,光谱图中横坐标代表波数(cm-1),纵坐标代表相对强度值(Counts)。研究人员将测量得到的波峰的位置与标准数据库中的波峰对比,确认出这些塑料与日常生活中常见的PE等塑料一样。其进入人体的途径与母体皮肤和呼吸接触的油漆、染料、塑料粘合剂、灰泥、化妆品以及个人护理等产品密切相关。图7:微塑料颗粒特征拉曼光谱。图片来源:Polymers 14.13 (2022): 2700.上述研究让我们清晰地感觉到,微塑料可以滞留在人体内,并进一步突破屏障,进入血液并被输运到全身各处,甚至可以进入人体胎盘和乳汁! 同时,上述研究也展示了Raman和FTIR技术在研究微塑料方面的价值。两种光谱技术各有千秋。在未来,如将两种技术进行有机组合,互补其优势,将可以进一步发挥其威力,对探索人体内的微塑料提供更全面、更深入的帮助。
  • 0.5um微塑料颗粒的非接触式定性定量测量新技术
    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。图1. 非接触亚微米分辨红外拉曼同步测量系统—mIRage结构示意图光学光热红外技术(O-PTIR)是一种新兴的光谱分析技术,可以提供几百纳米尺度上高空间分辨的振动光谱,且远低于传统红外显微镜的衍射限(~10-20 μm)。在O-PTIR光谱学中,高频率调制下的强红外光束源,如量子联激光器(QCL),用于照射样品。当红外光束波数与样品分子振动频率相匹配时,红外光被吸收,能量被转化为热。当被激发的分子回到基态时,温度会以光源调制的频率发生波动,从而引发相应的体积变化(光声效应)和折射率变化(光热效应)。这些信号可被具有远低于传统红外源空间衍射限的高度聚焦的可见激光束所探测,同时在同一位置上伴随O-PTIR信号产生一个拉曼散射信号,从而实现真正的同时红外吸收和拉曼散射测量,并具有亚微米的空间分辨率。O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。该工作中,作者先对这PHA和PLA的结合面进行了固定波数下的红外成像(图2)。通过对比可以发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用O-PTIR技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图2. 使用O-PTIR技术实现PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图3)。从羰基(C=O)伸缩振动区和指纹区(图3 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图3 C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图3. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合O-PTIR图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)被用来分析羰基拉伸区域采集到的红外谱图(图4A和4B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过O-PTIR技术对该区域进行了同步红外和拉曼分析(图4C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。图4. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.
  • 从此告别复杂分析,安捷伦铝膜原位测试方案让微塑料检测轻松易行!
    为了进一步解决微塑料测试过程中操作复杂耗时的问题,且实现环境样品大规模实时监测研究的可行性,安捷伦最新推出了 8700 LDIR 红外成像搭配镀铝滤膜(0.8um, 25mm)进行微塑料原位分析的解决方案。该方案在保证测试结果精确度的同时,将进一步简化用户样品前处理的工作流程。镀铝滤膜安装及过滤流程使用镀铝滤膜(0.8um, 25mm)搭配小孔玻璃砂芯真空抽滤装置,对前处理完的样品进行直接过滤,并使用不含微塑料的水(提前过滤处理)冲洗瓶子和漏斗的内部各一次,尽量确保将瓶内的所有微塑料收集到。抽滤完成后,将滤膜自然晾干后安装到滤膜支架上,并尽量保持滤膜表面的平整度。具体操作流程如图 1 所示:图 1. 样品抽滤装置及滤膜过滤安装流程为保证滤膜的平整度,请使用提供的镊子对滤膜进行转移。与镀金滤膜相比,涂层的硬度增加使得镀铝滤膜不易折叠,用户能更加轻松地将其放置到滤膜支架上。使用 8700 LDIR 红外成像原位测试镀铝滤膜上微塑料颗粒为对比仪器测试结果的精度及准确性,我们使用了自动测试和手动计数方式来评估 LDIR 对镀铝滤膜上颗粒的检测能力。将 20µ m 透明聚苯乙烯微球悬浮于 10mL 无水乙醇中,然后使用镀铝滤膜直接进行过滤后上机测试,并对测试结果进行如下对比。LDIR 利用 1442 cm-1 对目标测试区域进行快速成像,软件对成像区域内的颗粒进行自动识别对上述同一测试区域生成的可见光图像进行高倍放大后,利用人眼手动计数的方式识别颗粒如图 2 所示,使用软件自动检测流程共测试出 31 个颗粒,而在可见光图像中通过人眼仅能识别出 30 个颗粒。结果表明,LDIR 对镀铝滤膜上的颗粒具有优异的检测能力。与容易出错的可见光图像颗粒检测方法相比,基于红外成像的自动颗粒检测方法的测试结果更加便捷精准,且大大提高了工作效率并降低了小颗粒人眼识别的辨别难度。图 2. 同一目标测试区域采集的两张图像。(A)通过固定波数红外成像图自动识别的微塑料颗粒总数;(B)通过高倍放大可见光图像人眼手动识别的微塑料颗粒总数颗粒数、粒径及定性结果数据重现性对比我们使用 Clarity 软件中的微塑料颗粒自动分析测试流程,从颗粒数、粒径和定性统计结果三个方面综合评价了 LDIR 测试镀铝滤膜样品的结果重现性。在不移动样品的情况下,对直径为 9mm 的圆形区域共进行了 10 次测量。从测试结果看,检测到的微塑料颗粒数的总平均值为 407 个,10 次运行之间的差异性 1%(如图 3A)。基于粒径范围和聚合物鉴定的颗粒数重现性显示出相似的性能,10 次运行的差异性 1%(如图 3B 和图 3C)。以上结果均证实 LDIR 对镀铝滤膜上微塑料的测试结果具有良好的可靠性和准确度。图 3. 使用 LDIR 自动颗粒分析工作流程,对同一测试区域进行 10 次重复测试结果的重现性对比。(A)颗粒总数重现性;(B)粒径范围颗粒数重现性;(C)定性统计结果重现性粒径准确度对比由于微塑料研究中准确的粒径测定对于获得可靠且有意义的结果至关重要,因此对粒径测定数据的准确度进行了评估。通过监测 NIST 可溯源的 50 µ m 和 20 µ m 聚苯乙烯微球,来考察镀铝滤膜上样品测试颗粒粒径的准确度。如图 4 所示,检测到 37 个 50 µ m 的微球,它们的平均粒径为 55.10 µ m,标准偏差为 3.67 µ m;检测到 223 个 20 µ m 的微球,它们的平均粒径为 22.9 µ m,标准偏差为 2.3 µ m。这些结果表明,使用 LDIR 自动颗粒分析工作流程能够在镀铝滤膜上实现准确的粒径测定,且差异极小。图 4. 使用自动颗粒分析工作流程得到的粒径统计结果。其中(A)为 50 µ m NIST 微球粒径分布统计结果;(B)为 20 µ m NIST 微球粒径分布统计结果大样本研究对于全面了解微塑料污染物对环境和健康的影响以及制定减少微塑料污染影响的策略至关重要。与其他技术相比,使用 8700 LDIR 红外成像直接分析滤膜上的微塑料颗粒能够大幅减少样品处理,降低样品污染的可能性并提高样品通量,使实验室能够在更短时间内表征更多数量的样品。点击下载:利用 8700 LDIR 激光红外成像系统分析镀铝滤膜上的微塑料 (agilent.com.cn)
  • 关爱地球|一台能让塑料样品“仅小剩微”的研磨仪
    塑料:被称为20世纪人类“最糟糕的发明”。基本上都是不可再生、不可降解材料制成的,其结构稳定,不能够被天然微生物菌降解,在自然环境中长期不分离。对土地和海洋有非常大的危害,会改变土地的酸碱度,减少海洋生物的多样性,影响农作物吸收养分和水分和海洋吸收二氧化碳或产生氧气的能力,导致农业和水产品减产,影响资源的可持续利用。而焚烧所产生的有害烟尘和有毒气体,同样也会造成对大气环境造成污染。因此现在塑料的可回收利用是一件非常棘手的科学难题。 曾有人计算过,到2050年,海洋中的塑料可能会超过鱼类总和。塑料,正在蚕食着人类和所有地球生物的生存环境。 微塑料:是指粒径很小的塑料颗粒以及纺织纤维。现在在学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料;对海水、土壤、甚至水中生物样品中的微塑料进行研究,获得颗粒数量、粒径分布、种类分布等数据,是衡量某一区域微塑料污染程度的关键过程,同时也是研究塑料迁移等研究的基础工作。在我们看不到的角落,其实奋战着无数科研人员,为了人类和千万生命宝贵的生存环境而坚持研究。 但是,要想统计浩大环境中“微观”尺寸的颗粒谈何容易?耗时费力,效率底下是多年来让科学家头疼不已,并严重影响科研进程的大难题;如果能够利用研磨仪来获得塑料的纳米级数据和微观架构就能有效的检测出某一地区的微塑料污染情况。 塑料类制品的粉碎研磨一直是比较热门的话题,环境保护中固废处理的问题?“毒跑道事件”中塑胶跑道样品的检测?以及后续固体废物的再生与治理等都是亟待解决的问题?无论是哪个议题,都离不开自上而下的样品制备过程,而塑料本身的热敏特性以及聚合物带来的韧性与弹性,使得塑料的研磨是衡量研磨仪好坏的“标尺”之一。 JXFSTPRP-II-01是专用于研磨热敏感性物质、多种动植物组织、微生物、橡胶、塑料、食品、药品、煤炭、油页岩、蜡制品、PE、PS、纺织品、树脂等及在常温下呈韧性、难以粉碎的物质的全自动液氮冷冻研磨机;具备高 准确性和重现性;拥有五大系统,液氮流量可以全程控制,在操作的过程中随时随意可以充入;人性化设计,使用寿命高耐用性强,是实验室研磨的好助手。 净信全自动液氮冷冻研磨机JXFSTPRP-II-01 研磨实例:塑胶跑道和塑料杯的研磨 为满足研磨在常温下进行,使用液氮预先脆化后再研磨, 将塑胶材料剪碎放入钢罐中,把专用研磨珠加入钢罐后把钢管拧紧,然后把钢罐放置液氮中泡制几分钟,把研磨仪相关参数调整完毕,最后把带样品钢罐放入研磨仪里进行研磨。 研磨效果对比图:
  • 便携式拉曼光谱系统,助力微塑料快速检测
    前段时间,一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,进一步引发了微塑料对人体健康长期影响的担忧。我国高度重视微塑料对环境、人体影响的监测工作,越来越多研究机构已经开始布局微塑料研究。图片来自网络微塑料是指粒径小于5 mm的塑料颗粒,往往难以肉眼分辨,而拉曼光谱作为一种分子指纹光谱技术,结合显微成像,能够在微塑料的成分定性和颗粒统计中发挥重要作用,并且无惧水分干扰、无需复杂前处理。RS2000便携式拉曼与显微镜联用鉴知RS2000便携式拉曼系统可以与高性能光学显微镜联用,实现微米级塑料颗粒的表征和鉴别,根据样品的不同,还可选配不同波长的激光光源。RS2000具有以下优势: 1. 光学性能佳,分辨率优于6 cm-1,光谱范围覆盖200-3200 cm-1,采用深度制冷探测器,信噪比(SNR)超过7000,轻松进行微塑料的成分分析 2. 高分辨光学显微镜,可以进行微米级塑料颗粒的表征分析,并能够获取微塑料的二维图像信息 3. 方便移动,可以快速搭建分析平台,支持现场分析检测任务 4. 功能多样,既可以与显微镜连接使用,也可以通过探头直接检测不可移动的样品 5. 可靠性强,能够在复杂环境条件下使用常见塑料的拉曼光谱鉴知技术作为一家的光谱分析技术供应商,可以为研究人员提供定制化拉曼光谱检测配件和专业的技术指导,满足微塑料样品的现场快速检测需求。此外还提供各类光纤光谱仪,为科学研究提供更灵活的检测工具,详情可后台咨询。 鉴知技术可为用户提供不同配置的光谱仪
  • 冠亚塑胶水分测定仪入驻中国航天八院
    冠亚塑胶水分测定仪入驻中国航天八院中国航天科技集团公司第八研究院上海复合材料科技有限公司是集团公司八院一家复合材料专业研制生产单位。 公司拥有多维纤维缠绕、热压罐成型、短切纤维模压、薄壁壳体铺层、铝蜂窝夹层结构成型、碳纤维网格面板蜂窝结构成型等多种复合材料的成型技术,配备有齐全的专业用先进设备,其中包括近日入驻的冠亚塑胶水分测定仪。冠亚塑胶水分测定仪是由深圳市冠亚公司研发并生产,该仪器具有温度设定、微调温度补偿及自动控制等功能,采用目前国际通用的热解原理研制而成的新一代卤素快速水分测定仪器。引进进口自动称重显示系统,人性化系统操作,无需特珠培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。冠亚塑胶水分测定仪操作过程简单,测试精准,数据在实际生产过程中能起到有效的指导作用,减少人力、物力的浪费,提高产品质量,得到中国航天八院高度认可。 冠亚塑胶水分测定仪可现场检测塑胶原材料来料、成品出库的水份含量,监控和模拟塑料颗粒的干燥前后过程,测试塑料颗粒进入塑料加工设备前的水份,塑胶助剂的耐热性、热失重分析,检测改性填充物料:碳酸钙、滑石粉、无机盐、复合材料、碳黑等含水率,控制各种回收料、水口料水份含量,检测各自母料,色母,色粉,颜料等含水率,常规实验用途,简单方便快捷,可根据客户实际使用要求订制。
  • 人类血液中首次发现微塑料,监控微塑料污染刻不容缓
    近日,发表在环境科学领域权威期刊《环境国际》(Environment International)上的一项研究中,来自荷兰阿姆斯特丹自由大学领导的研究团队,首次在人体血液中检测到了微塑料,研究中发现在近80%的实验受试者样本中存在微塑料颗粒,这也进一步证实微塑料已进入人类体内,成为人类健康的又一大隐患。监控微塑料污染刻不容缓目前,微塑料已经被列入国际上广泛关注的环境中新污染物四大类之一(四大类分别是持久性有机污染物、内分泌干扰物、抗生素和微塑料)。 2022年3月30日,生态环境部召开新闻发布会,生态环境部固体废物与化学品司司长任勇介绍了新污染物治理,并表示生态环境部会同发展改革委等13个部门正在研究行动方案,制定行动方案加大新污染物治理。2020年1月,国家发改委与生态环境部发布关于《进一步加强塑料污染治理的意见》,要求强化与微塑料污染防治相关的科技支撑,开展不同类型塑料制品全生命周期环境风险研究评价,加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。在生态环境部通过的《生态环境监测规划纲要( 2020-2035 年)》中,海洋微塑料专项监测的任务内容也列在其中。全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。Pyroprobe-GC-MS:快速有效的微塑料检测技术全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。目前海洋中微塑料的检测主要利用FT-IR和拉曼技术,光学方法可提高检测能力,但只是针对微塑料的类型和大小等方面,不能准确测量结构构成。而Pyroprobe-GC-MS热裂解-气质联用技术分析时间较短,在快速判断微塑料类型、评估微塑料污染程度等方面有较大优势,可为微塑料的定性和定量提供良好的解决方案,是研究分析微塑料环境污染的有效工具。使用Pyroprobe-GC-MS技术在鉴定微塑料颗粒的材料成分以及所使用的添加剂时,首先通过热裂解使高聚物在特定温度发生裂解,再利用气质联用仪鉴别裂解后短链小分子单体,就可以同时鉴定聚合物及添加剂。对于不易溶解或水解的聚合物颗粒,Pyroprobe-GC-MS联用是一个非常实用的技术,可根据聚合物在受热分解过程中形成的聚合物单体提供有关大分子聚合物的结构信息。热裂解分析流程图CDS Pyroprobe热裂解的优势CDS成立于1969年,距今已有53年历史,是一家专注于GC进样技术的公司,2015年正式加入莱伯泰科,更加及时有效的为中国客户提供支持和服务。CDS产品历经多年研发与改进,已推出多款迭代产品,于2017年推出的第6代6000系列热裂解产品,对热裂解核心部件做出了重要创新,设计出“DISC模块”,在原有的经典的电阻加热线圈的基础上,改进了加热腔并更有利于配合自动进样器自动上样。CDS 公司在丝式裂解方面具有强大的实力,其合理的的温控技术和设计理念,其科学的的高压裂解、有氧裂解、催化裂解、多步裂解(可达10步)等技术,使得CDS一直跻身全球高端裂解器之列。CDS热裂解6200CDS Pyroprobe特点:❇ 数据重现性好:RSD❇ 具有标配自动捡漏功能和选配自动流量调节控制功能❇ 不影响GC的其他进样口使用,具有更方便的加热的样品传输线与GC连接。❇ 支持载气切换及反应气模式❇ 具有三种操作模式:运行、干燥、清洗❇ 裂解调节容易调节,还可以模拟一些反应条件,应用领域广泛。
  • 经常吃外卖的注意了,李兰娟院士团队最新研究,微塑料可导致肝毒性
    微/纳米塑料(MNPs)在人类肝脏中被检测到,并对人类健康构成重大风险。口服暴露于不可生物降解塑料衍生的微/纳米塑料可诱导小鼠肝脏毒性,鼻腔暴露于不可生物降解塑料会导致小鼠气道生态失调。然而,食源性和空气中可降解微/纳米塑料引起的肝毒性尚不清楚。近年来,科学家在人类的肠胃、肺部以及胎盘等多个器官中发现了MNPs;去年,来自首都医科大学的研究学者竟在与外部环境没有接触的器官「心脏及其周围组织」中监测到MNPs,说明MNPs的污染已达到了人体最深的解剖结构。按照重量估计,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量!还真是活到老,吃塑料到老。微塑料在人体内的分布情况 李兰娟院士团队在Environmental Science and Ecotechnology上发表的文献“Polylactic acid micro/nanoplastic-induced hepatotoxicity:Investigating food and air sources via multi-omics”揭示了生物可降解聚乳酸微/纳米塑料的肝毒性作用。 本研究通过对接触微塑料和纳米塑料的小鼠的肠道、粪便、鼻、肺、肝和血液样本的多组学分析,本研究揭示了生物可降解聚乳酸微/纳米塑料的肝毒性作用。研究结果表明,食源性和空气中的生物可降解聚乳酸微/纳米塑料都会损害肝功能,破坏血清抗氧化活性,并导致肝脏病理。食源性微/纳米塑料导致肠道微生物失调、肠道和血清的代谢改变以及肝脏转录组变化。空气传播的微/纳米塑料影响鼻和肺的微生物群,改变肺和血清代谢物,并破坏肝脏转录组。 本研究共纳入了60只雄性无特定病原体的癌症研究所小鼠,用聚乳酸(PLA)纳米塑料颗粒(NP,50纳米)和微塑料颗粒(MP,5毫米)处理小鼠:PLA NPs(50纳米)和MPs(5微米)。小鼠随机分配到六个组,即食物NP组(FQ)、食物MP组(FR)、食物对照组(FNC)、空气NP组(AQ)、空气MP组(AR)和空气对照组(ANC),每组10只。它们被饲养在22℃、光照/黑暗周期为12:12的环境中,持续7天以适应新环境。 在食源性MNP部分,FQ组、FR组和FNC组的小鼠每天分别口服100毫升含有0.2毫克NPs、0.2毫克MP和0毫克MNPs的无菌水。在麻醉小鼠以收集血液、肝脏、粪便和结肠之前,每天进行口服灌胃,持续六周。 在空气传播MNP部分,AQ组、AR组和ANC组的小鼠分别通过鼻腔给予10毫升含有0.03毫克NPs、0.03毫克MP和0毫克MNPs的无菌盐水。在麻醉小鼠以收集鼻腔组织、肺、肝脏和血液之前,每三天进行一次鼻腔暴露,持续42天。 进一步对血清转氨酶(天冬氨酸转氨酶(AST)和丙氨酸转氨酶(ALT))及抗氧化生物标志物(总抗氧化能力(T-AOC)和超氧化物歧化酶(SOD))测定、对小鼠结肠肝脏组织学分析,对小鼠粪便、鼻腔和肺部样本提取DNA及转录组分析。图1:实验组和对照组血清生化参数和组织学变化 实验结果表明,相比于对照组,接触食物或空气纳米微塑料的小鼠转氨酶明显增高,食入纳米微塑料小鼠组的血清T-AOC水平降低。食入纳入微塑料小鼠肝脏中确定存在肝细胞肿胀、点状坏死、细胞空泡化和核固缩。鼻腔注入纳米微塑料小鼠组(AQ和AR组)除肝脏观察到上述变化外,肺部还观察到出血、炎性细胞浸润和渗出物。 转录组学进一步分析提示食源性纳米微塑料改变肠道微生物群组成。食入纳米塑料组和食入微塑料组的细菌科中,毛螺菌科丰度最高,而食物对照组中最丰富的细菌科是乳杆菌科。 食物NP组(FQ)、食物MP组(FR)、食物对照组(FNC)之间的肠道代谢谱存在差异,食物NP组和食物MP组分别有752个和637个肠道代谢物发生改变。FQ组、FR组和FNC组的血清代谢谱之间食物NP组(FQ)、食物MP组(FR)、食物对照组(FNC)之间也存在差异,食物NP组和食物MP组共有832种和753种血清代谢物发生改变。图2:实验组和对照组肺微生物群的主要成分及多样性指标 食物NP组(FQ)、食物MP组(FR)和食物对照组(FNC)之间的肝脏转录组谱存在某些差异。食物NP组和食物MP组分别有307和262个肝脏差异表达基因(DEGs)发生改变。鼻腔注入纳米微塑料小鼠组(AQ、AR和ANC组)之间的肺部代谢谱存在差异。AQ和AR组分别升高了864和596种肺部代谢物。AQ、AR和ANC组之间的血清代谢谱也存在差异。AQ和AR组分别有503和664种血清代谢物发生改变。在食入纳米微塑料组中,显著上调的基因富集在炎症和氧化应激相关的通路中。而在鼻腔注入纳米微塑料小鼠组中,显著上调的基因则富集在炎症和代谢相关的通路中。
  • 【安捷伦】一个“响指”,微塑料检测难题“一网打尽”
    曾有人计算过,到 2050 年,海洋中的塑料可能会超过鱼类总和。微塑料,正在蚕食着人类环境。对海水、土壤、甚至水中生物样品中的微塑料进行研究,获得颗粒数量、粒径分布、种类分布等数据,是衡量某一区域微塑料污染程度的关键过程,同时也是研究微塑料迁移等研究的基础工作。在我们看不到的地方,其实奋战着无数科学家,为了人类宝贵的生存环境而坚持研究。但是,要想统计浩浩环境中“微观”尺寸的颗粒谈何容易?“耗时费力”,是多年来让科学家头疼不已,并严重影响科研进程的大难题。一个“响指”,全自动获得所有统计结果传统微塑料测试流程:将颗粒样品铺展开到一个平面,然后利用显微红外等方法,对此平面进行“全扫描”,最终得到平面上所有颗粒的“图谱”,再用 Excel 进行手动统计。传统成像技术,只能实现逐“帧”扫描 — 对布满微塑料颗粒的平面上的每一个点,进行无差别光谱扫描。这个过程,光听就知道一定“长长久久”。就拿检测一个 1cm2 见方的面积来说,通常要过夜检测才能完成。而“横空出世”的 8700 LDIR,只需一个 “Click”,就能在 5min 内完成测试,并全自动获得您需要的所有统计结果。那么, 8700 LDIR 是如何做到的呢?请点击链接看如下视频:安捷伦 8700 LDIR:是什么让微塑料测试变得如此简单?方寸间的大本领有位研究微塑料的老师曾这样讲述他检测微塑料的痛苦经历:“一共 400 多个微塑料颗粒,用单点模式的红外显微镜,我用了 3 天!”。由于传统红外显微镜光源能量的限制,老师只能一个一个手动将微塑料挑出,压片,再用红外显微镜的“透射模式”逐一测试。而使用 8700 测试 5mm * 5 mm 区域中超过 1000 个微塑料颗粒,测试完成仅需 2 个小时。8700 之所以能实现时间“跨越”,主要有以下 2 个秘诀:1. 超强光源量子级联激光器(QCL)作为光源,比常规红外显微镜光源强 103-104 倍。既不用手动挑出,也不用压片,清晰度,灵敏度和测试准确度度大幅提升,直接用简单的透反模式就可以测试。在 QCL 光源的"火眼金睛"下,再小的塑料颗粒也能瞬间"现出原形"。2. “直击内核”的测试流程“一心只测塑料颗粒,其它区域不去管”。它就像一个“无限手套”,利用聚合物的红外特征波长,在数秒内“锁定目标”,对所有塑料颗粒(图 1 中白色区域)定位。接下来,对已定位的塑料颗粒扫描光谱,同时自动获得每个颗粒的定性结果。在这一过程中,您需要做的,只是将样品推进仪器,再点击一下 “Play”。图 1. 数秒后,所有塑料颗粒统统"现出原形"(图中白色区域)图 2. 8700 LDIR 微塑料全自动测试流程微塑料统计结果,全自动“一网打尽”扫描结束后,我们不光得到了每个颗粒的定性结果、尺寸、面积、重量等信息,“海量统计结果”也是必须的。不同种类塑料颗粒所占质量比、不同粒径范围颗粒的颗粒数、种类分布等等应用尽有, 不再需要 EXCEL 高手,也不再需要额外统计软件。图 3. 定性定量结果和海量统计结果全自动获得塑料检测资料下载长按识别下方二维码注册完成,即可获取安捷伦微塑料最新解决方案[本文章转自安捷伦视界公众号]
  • 安捷伦8700 LDIR:是什么让微塑料测试变得如此简单?
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px " 它是一款激光红外成像系统,具有全自动测试流程,只需单击“play”,海洋微塑料统计结果全自动获得。它拥有革命性工作流程:只对塑料颗粒扫描测试,无需扫描其他其区域,从而实现超快速成像测试,测试速度比其他手段快几个数量级! /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px " 安捷伦8700 LDIR,产品详情请查看下方视频: /span br/ /p p style=" line-height: 1.75em text-indent: 0em " br/ script src=" https://p.bokecc.com/player?vid=60E79885F44701289C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 黑体, SimHei " 安捷伦8700 LDIR 激光红外成像系统,测试5cm*5cm区域超过1000个微塑料颗粒,测试完成仅需2个小时,扫描结束后即得到测试结果,包括每个颗粒定性结果,尺寸、面积、重量等信息,并同时自动获得海量统计结果,包括不同尺寸、不同种类的塑料颗粒的个数、粒径分布,以及含量%等信息。 /span a href=" https://www.instrument.com.cn/netshow/C306278.htm" target=" _self" style=" font-family: 黑体, SimHei text-decoration: underline " span style=" font-family: 黑体, SimHei " strong span style=" font-family: 黑体, SimHei background-color: rgb(31, 73, 125) color: rgb(255, 255, 255) " 点击查看产品详情 /span /strong /span /a /p section class=" _135editor" data-tools=" 135编辑器" data-id=" 94151" data-color=" #374aae" data-custom=" #374aae" style=" white-space: normal border: 0px none " section style=" text-align: center padding: 1em 0px " section style=" display: flex justify-content: center align-items: center " section style=" display: flex justify-content: flex-end margin-top: -12px " section style=" display: inline-block width: 0.4em height: 5px background: rgb(55, 74, 174) border-radius: 5px margin-right: 3px color: rgb(255, 255, 255) " /section section style=" display: inline-block width: 0.9em height: 5px background: rgb(55, 74, 174) border-radius: 5px margin-right: -5px color: rgb(255, 255, 255) " /section /section section style=" width: 1.8em height: 5px background: rgb(55, 74, 174) border-radius: 5px margin-top: 8px margin-left: -1.6em color: rgb(255, 255, 255) " /section section style=" display: inline-block " section class=" 135brush" data-brushtype=" text" style=" background: rgb(55, 74, 174) color: rgb(255, 255, 255) letter-spacing: 1.5px padding: 10px 1.6em transform: rotate(0deg) " a href=" https://www.instrument.com.cn/netshow/SH100320/guestbook.htm" target=" _blank" textvalue=" 免费留言咨询" style=" color: rgb(255, 255, 255) text-decoration: underline " span style=" color: rgb(255, 255, 255) " strong 免费留言咨询 /strong /span /a /section section data-bgless=" spin" data-bglessp=" 280" data-bgopacity=" 80%" data-width=" 100%" style=" width: 156.188px background: rgba(55, 174, 114, 0.2) height: 40px margin-top: -34px margin-left: 6px color: rgb(255, 255, 255) " /section /section section style=" display: flex justify-content: flex-end margin-top: -12px " section style=" display: inline-block width: 0.4em height: 5px background: rgb(55, 74, 174) border-radius: 5px color: rgb(255, 255, 255) " /section section style=" display: inline-block width: 0.9em height: 5px background: rgb(55, 74, 174) border-radius: 5px margin-left: 3px color: rgb(255, 255, 255) " /section /section section style=" width: 1.2em height: 5px background: rgb(55, 74, 174) border-radius: 5px margin-top: 8px margin-left: -1.6em color: rgb(255, 255, 255) " br/ /section /section /section /section
  • 一种新型磁性材料可快速去除水环境中的微纳塑料
    从河流到湖泊,从大江到海洋,有着“白色污染”之称的塑料垃圾对人们的生活环境造成了严重的污染,而微纳尺度的塑料作为一种新兴的污染物更是对环境和人体健康具有潜在的危险性。面对这些潜在威胁,开发出高效去除水环境中微纳塑料的技术迫在眉睫。广西科学院生态环境研究所环境新型污染物综合治理与生态修复创新团队李婉赫研究实习员、黄慨研究员、王俊教授等开发了一种新型磁性材料,可对水环境中的微纳塑料进行快速去除,该项研究成果近日发表在国际期刊《整体环境科学》上。“团队开发的这种新型磁性材料主要针对安全饮水领域,尤其是纳米级塑料颗粒的处理。”黄慨说。新型磁性材料具有亲水和疏水特性作为一种人造材料,塑料被广泛应用于国民经济各个行业,在工业、农业、交通运输等多个领域发挥着不可替代的作用,但也带来了严重的环境问题。“微纳塑料在水生环境中广泛分布已是不争的事实,它会对人类健康构成潜在威胁。”黄慨表示,由于微纳塑料体积小,很容易被水生生物吸收,最终进入食物链而对终端消费者人类产生危害。同时微塑料在水中还会从周围环境中吸附其他有毒污染物(比如重金属和永久性有毒物质),这会造成微纳塑料的毒性成几何倍数放大。因此,如何解决水环境微塑料的污染问题,探索有效去除水中微塑料的策略势在必行。“塑料颗粒纳米化后,其在水体中的分散作用更强,疏水性变弱,常规的吸附材料难以在水体中有效地吸附纳米级塑料颗粒。”黄慨说。为此,团队设计并研制了一种具亲水和疏水特性的双亲性吸附材料,该材料既能在水体自由分散又能寻找并吸附塑料微粒,从而实现高效去除和实现生态环境修复的目标。李婉赫介绍,双亲性磁性材料是一种具有化学不对称性的磁性粒子,其表面具有两种或两种以上性质相反的化合物。这种不对称赋予了粒子独特的特性,使材料表面同时具备亲水/疏水、极性/非极性等特点。双亲性磁性janus粒子结构示意图,表明它具有两种亲水疏水基团结构。受访者供图“团队开发的这种新型双亲性磁性材料,以磁性微球为原料,通过皮克林乳液定向控制和磷酸基高分子定向表面修饰,得到的一种单侧花状结构的双亲性磁性粒子。这种粒子具有适宜的电动电势(Zeta电位)和接触角,亲水侧有利于在水环境中充分分散与其他粒子接触,疏水侧则表现出较强的吸附带负电荷塑料粒子的能力。在磁场中,这种双亲性磁性粒子能够实现快速分离,从而完成对水环境中微米级/纳米级塑料微粒的富集与分离。”李婉赫说。未来能广泛应用于水环境中的吸附治理与其他吸附材料相比,此次合成的这种新型磁性材料用于吸附微纳塑料有何优势?“这种新型磁性材料的优势在于对低浓度高度纳米化的微纳塑料具有更显著的吸附能力,亲水侧有利于充分分散接触,疏水侧有利于吸附目标物,在磁场作用下能快速聚集分离。目前从吸附动力学和热力学研究上看,它吸附聚苯乙烯(PS)微粒的吸附速率为每分钟0.759,吸附容量达到每克能吸附2.72克聚苯乙烯微粒,而它吸附聚乙烯(PE)微粒的吸附速率为每分钟0.539,吸附容量达到每克吸附2.42克聚乙烯微粒,这些吸附能力数据比非双亲性吸附材料都要高,因此它在处理聚苯乙烯和聚乙烯两种微纳塑料方面具有更强的竞争优势。”李婉赫说。作为该团队的最新研究成果,该新型双亲性磁性材料在许多领域具有实用价值。“我们开发的新型双亲性磁性材料,不仅可以应用于水环境中微纳塑料颗粒的吸附治理,未来也能应用于水环境中抗生素和其他永久性有机污染物的吸附治理,团队正逐步对相关应用领域开展研究工作。”黄慨说。该团队经过研究还发现,此次研究开发的新型吸附材料,对聚苯乙烯和聚乙烯两类带负电荷塑料微粒表现出强的吸附效果,而对于其他带正电荷塑料微粒的吸附效果不明显,比如吸附带正电荷(MR)的能力就很弱。“相关的甄别研究工作是下一步研究的重点。”黄慨表示,未来,团队将会设计强化亲水侧作用的吸附材料,同时完善材料甄别更多目标物的吸附能力,掌握更丰富的吸附数据,构建各类型塑料微粒的吸附数据库。同时团队与自来水厂合作开展集成设计去除塑料微粒的装置模块,为今后大规模工程化应用研究提供基础数据。
  • 美研究人员:每升瓶装水约含24万个塑料微粒
    据悉,美国哥伦比亚大学气候学院研究人员首次对瓶装水中的微小塑料颗粒进行了计数和识别。结果发现,平均每升水中含有约24万个可检测到的塑料微粒,比之前主要基于较大尺寸塑料微粒的计数高出10倍到100倍。这项研究8日发表在《美国国家科学院院刊》上。微塑料被定义为尺寸从5毫米到1微米的碎片。作为参考,人类的头发直径约为70微米。纳米塑料是指小于1微米的颗粒,以十亿分之一米为单位测量。纳米塑料可以通过肠道和肺直接进入血液,并从那里到达包括心脏和大脑等在内的器官。它们可以侵入单个细胞,并通过胎盘进入未出生的婴儿体内。全球每年塑料产量接近4亿吨,有超过3000万吨的塑料垃圾被倾倒在水中或陆地上。许多由塑料制成的产品在使用过程中会产生微小颗粒。与天然有机物不同,大多数塑料不会分解成相对无害的物质。它们只是简单地分解成化学成分相同的、越来越小的颗粒。除单分子外,理论上它们可以变得多小是没有限制的。这项新研究使用了受激拉曼散射显微镜技术。针对7种常见的塑料,研究人员创建了一种数据驱动的算法来解释结果。他们测试了在美国销售的3个受欢迎的瓶装水品牌,分析了尺寸仅为100纳米的塑料微粒。他们在每升水中发现了11万到37万个微粒,其中90%是纳米塑料,其余是微塑料。许多水瓶都是用聚对苯二甲酸乙二醇酯(PET)制成的。当瓶子被挤压或暴露在高温下时,这种材料可能会随着塑料碎片脱落而进入水中。最近一项研究表明,当反复打开或关闭瓶盖时,许多塑料微粒会随之进入水中。研究人员指出,纳米塑料与微塑料相比,它们尺寸更小,更容易进入人体内。
  • 警惕!人体47处被检出微塑料,或成健康研究下一个热点
    p style=" text-align: justify text-indent: 2em " 微塑料这一概念是在2004发表的一篇Science的文章(Lost at Sea:where is all the plastic)中首次提出。 strong 微塑料是一种会污染环境的微小颗粒,任何长度小于5毫米的塑料碎片都可以称为微塑料。 /strong /p p style=" text-align: justify text-indent: 2em " 目前微塑料可以分为大致两种,一种是进入环境前就已经小于5毫米的塑料碎片,一般来自清洗衣服后的废水。悉尼大学沿海城市生态影响研究中心发现,每洗一件衣服,就会冲洗掉1900多根纤维。其次是一些大型塑料的碎片污染,包括我们熟知的饮料瓶、渔网、塑料袋等。微塑料会通过各种方式转移到人体中,造成潜在的健康风险。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 497px height: 306px " src=" https://img1.17img.cn/17img/images/202008/uepic/de3d9add-ae58-4a8b-b79f-d9d204d8696f.jpg" title=" 企业微信截图_20200824094021.png" alt=" 企业微信截图_20200824094021.png" width=" 497" height=" 306" border=" 0" vspace=" 0" / /p p br/ /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " 微塑料已经入人体 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 近日,据外媒报道,来自美国亚利桑那州立大学的一项研究显示,在人体提取的47个组织样本,均发现了塑料颗粒。 /strong /span /p p style=" text-align: justify text-indent: 2em " 美国亚利桑那州立大学的查尔斯· 罗尔斯基(Charles Rolsky)表示, strong 现在地球上的塑料污染已经几乎无处不在,虽然有证据表明塑料正在进入人体内,还没有人研究这些材料在食用后如何在人体器官中堆积。 /strong /p p style=" text-align: justify text-indent: 2em " strong 该项研究提取了肺、肝、脾和肾中的47个组织样本,研究小组认为这些器官是最有可能遇到微塑料的器官。利用计算机编程、拉曼光谱和质谱的结合,能够从组织样本中识别和提取塑料,并生成颗粒计数数据、以及碎片的质量和表面积。 /strong /p p style=" text-align: justify text-indent: 2em " 利用这项技术,研究小组检测出数十种不同的塑料,包括聚乙烯、聚碳酸酯以及双酚A(BPA)。而所有的组织样本中都有双酚A,它曾经从矿泉水瓶、医疗器械到及食品包装的内里,可谓是无处不在,但由于潜在的健康危险引发了争议。 /p p style=" text-align: justify text-indent: 2em " 去年,世卫组织的的一项研究报告显示,人体不太可能吸收大于150微米的微塑料,估计对较小颗粒的吸收也有限。极小的微塑料颗粒的吸收和分布可能较高,但这方面的数据极其有限。 /p p style=" text-align: justify text-indent: 2em " strong 研究人员表示,虽然目前我们还不清楚这些微塑料会对人体带来什么影响,但是这项技术将有助于发现人体内的塑料并进行更深一步的研究,以揭示塑料污染对人体健康带来的危害。 /strong /p p style=" text-align: justify text-indent: 2em " strong br/ /strong /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " strong 我国微塑料污染现状 /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong 2019年,在我国发布的首部《中国海洋生态环境状况公报》中 /strong ,披露了我国海洋的污染情况和程度,其中包含针对渤海、黄海和南海海域,开展了4个断面的海面漂浮微塑料的监测工作,主要监测指标为平均密度、主要物质分类以及主要成分。此次 strong 检测到的微塑料平均密度为0.40-1.09个/立方米,主要为碎片、纤维和线,成分主要为聚丙烯、聚乙烯和聚对苯二甲酸乙二醇酯,可见我国海洋微塑料污染已逐渐严重。 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 今年,发改委和环境部联合发布《国家发展改革委 生态环境部关于进一步加强塑料污染治理的意见》 /strong /span ,其中指出:开展不同类型塑料制品全生命周期环境风险研究评价。 span style=" color: rgb(255, 0, 0) " strong 加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。 /strong /span strong 可见,国内已开始逐渐重视微塑料污染,微塑料及人体健康的相关研究,或将成为下一个热点。 /strong /p p style=" text-align: justify text-indent: 2em " strong 我国近几年对微塑料的研究也逐渐增多,但在研究中遇到诸多瓶颈及亟待解决的问题。 /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e8ce0aa5-0b79-46d6-bfe7-6055f65bac6a.jpg" title=" 12452a35-9722-4544-aa3a-17b8ebc1579b.jpg" alt=" 12452a35-9722-4544-aa3a-17b8ebc1579b.jpg" / /p p br/ /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " strong 微塑料解决方案提供仪器企业 /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong 在诸多仪器厂商中,目前赛默飞、安捷伦、珀金埃尔默、岛津、雷尼绍等均针对微塑料检测提供了仪器测试方法和解决方案。 /strong /p p style=" text-align: justify text-indent: 2em " strong 1.赛默飞 /strong /p p style=" text-align: justify text-indent: 2em " 对于微塑料的粒径大小、形状、腐蚀程度、颜色等物理形貌分析常用的方法主要是显微法和目检法。对于化学成分分析,目前常用的方法主要是显微红外法和SEM-EDX法。赛默飞显微红外光谱仪可以高效快捷的实现水体中微塑料的定性,给出区域微塑料成分含量的参考结果;SEM-EDX可对样品表明进行直接观测和分析;而拉曼光谱作为另一种重要的分子光谱技术,具有非接触、无惧水等特点,在微塑料的成分定性和颗粒统计中同样发挥着一定作用。与显微红外相比,显微拉曼在微小的塑料粒子或纤维片段分析中具有更高的空间分辨,且无需挑出样品,不受水分干扰。 /p p style=" text-align: justify text-indent: 2em " strong 2.安捷伦 /strong /p p style=" text-align: justify text-indent: 2em " 微塑料分析通常仅报告其颗粒数量。然而,塑料的易碎性使其在后续过程中很容易分解为许多尺寸更小的颗粒,因而这种方法在本质上存在缺陷且不准确。因此,报告中也应该包含颗粒的尺寸,在评估微塑料毒理学影响时,尺寸和丰度都应考虑在内。应该注意的是,微塑料对环境和健康的潜在影响随着颗粒尺寸的减小而增加。尺寸测量通常仅报告颗粒的最长尺寸而忽略了其形状,使长颗粒往往被认为与球形或其他形状的颗粒相同。为了实现更全面的了解,塑料的定量分析应该作为一个三维问题考虑:尺寸 × 形状 × 材料。 /p p style=" text-align: justify text-indent: 2em " 安捷伦激光红外成像系统、傅里叶变换红外光谱仪均可对微塑料进行检测。其中,激光红外成像系统可测试5cm*5cm区域超过1000个微塑料颗粒,测试完成仅需2个小时,扫描结束后即得到测试结果,包括每个颗粒定性结果,尺寸、面积、重量等信息,并同时自动获得海量统计结果,包括不同尺寸、不同种类的塑料颗粒的个数、粒径分布,以及含量%等信息。 /p p style=" text-align: justify text-indent: 2em " strong 3.珀金埃尔默 /strong /p p style=" text-align: justify text-indent: 2em " 要对海洋中的微塑料进行管控,第一步是要对这些微塑料的成分和含量进行检测,从而对污染的严重性和主要来源进行评判,对下一步的治理提供依据。PerkinElmer红外光谱及红外显微成像系统可为检测过程提供有力的支持。 /p p style=" text-align: justify text-indent: 2em " 红外光谱仪已经广泛用于鉴别大尺寸的高分子材料,对于较大的塑料样品可以选择不怕潮可电池供电的珀金埃尔默红外光谱仪放到船上做快速塑料的鉴别 而对于肉眼无法识别的微小的塑料颗粒,就需要选择红外显微镜成像系统用于这些微塑料的检测和鉴别。 /p p style=" text-align: justify text-indent: 2em " 珀金埃尔默常规红外ATR方法可直接快速测试肉眼可见的大尺寸微塑料,对于肉眼不可见的小尺寸微塑料可采用珀金埃尔默Spotlight+ATR成像附件进行测试。珀金埃尔默实现了微塑料的原位测试,测试最小尺寸可达1.56um。原位ATR成像技术分析的微塑料尺寸更小、速度更快、操作更简单而且还不会丢失微塑料样品。 /p p style=" text-align: justify text-indent: 2em " 除此以外,傅里叶化学成像/显微技术可分析微塑料化学成分及空间分布等信息 /p p style=" text-align: justify text-indent: 2em " 功率补偿型DSC的HyperDSC技术可辅助红外显微/成像进行塑料单微粒结构定性,可对复合微塑料半定量研究 /p p style=" text-align: justify text-indent: 2em " 逸出气体联用技术全模块均可用于研究微塑料的成分定性/半定量及降解机理等信息 /p p style=" text-align: justify text-indent: 2em " LCMSMS串级质谱技术不仅可以用于定量塑料含量,还可以测定微塑料内部增塑剂等环境激素的含量,便于开展环境毒理学工作 /p p style=" text-align: justify text-indent: 2em " ICPMS单细胞直接进样技术,可用于研究微塑料负载重金属对于单个细胞毒理学的研究工作 /p p style=" text-align: justify text-indent: 2em " TGA-ICP联用技术可评价焚化过程产品微塑料/重金属的结合过程研究 /p p style=" text-align: justify text-indent: 2em " TGA-GCMS联用技术可以用研究微塑料对持久性有机污染物环境迁移的输运机理等。 /p p style=" text-align: justify text-indent: 2em " strong 4.岛津 /strong /p p style=" text-align: justify text-indent: 2em " (1)红外显微镜 /p p style=" text-align: justify text-indent: 2em " 傅里叶变换-红外光谱分析法(FTIR)是目前最常用的化学组分鉴定方法。岛津红外显微镜可实现对微塑料的观察、定义测量位置、测量、鉴别结果,全部操作都能自动执行,并提供高灵敏度结果。 /p p style=" text-align: justify text-indent: 2em " (2)热分析-红外联用系统(TG-FTIR) /p p style=" text-align: justify text-indent: 2em " 岛津热分析-红外联用仪,可以将TGA过程产生的气体通过可加热管线引入到红外光谱仪中,分析聚合物等材料热裂解过程产生的气体成分,从而得到聚合物的组成,更好的对热重结果进行分析;和红外联用,实现材料的定性及定量分析。 /p p style=" text-align: justify text-indent: 2em " (3)能量色散型X射线荧光光谱仪 /p p style=" text-align: justify text-indent: 2em " 岛津能量色散型X射线荧光分析仪,采用新型硅漂移检测器(SDD),具有高灵敏度、高分辨率的优点,能够进行快速无损定性-定量分析,方便快捷,无须化学前处理。 /p p style=" text-align: justify text-indent: 2em " 通过EDX能量色散型X射线荧光光谱仪对微塑料的定性和定量分析,就可初步知道该微塑料可能的材质塑料(也可进一步使用PY-GCMS有机化合物快速筛查系统进行塑胶材质的确认),同时可以确认该微塑料中的有害元素。 /p p style=" text-align: justify text-indent: 2em " (4)热裂解-气相色谱质谱联用系统(PY-GCMS) /p p style=" text-align: justify text-indent: 2em " 热裂解-气相色谱质谱联用技术(PY-GCMS)可以用来鉴定微塑料类型。PY-GCMS是通过不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入GCMS检测,从而推断高聚物类型的一种方法,同时可鉴定聚合物及添加剂。 /p p style=" text-align: justify text-indent: 2em " POPs、全氟类化合物、多环芳烃、农药等有机污染物易富集在微塑料表面,岛津全面的色谱质谱分析手段,亦可提供全面的毒理效应研究方案。 /p p style=" text-align: justify text-indent: 2em " (5)电子探针 /p p style=" text-align: justify text-indent: 2em " 岛津电子探针可实现微塑料表面的元素及形貌分析研究。通过电子探针分析微塑料表面,在检测出K、Na、Ca、Mg、Al的同时,还可检测Cl、S、Cr和Fe等元素。 /p p style=" text-align: justify text-indent: 2em " strong 5.雷尼绍 /strong /p p style=" text-align: justify text-indent: 2em " 传统的实验室技术,如气相色谱/质谱(GC-MS),可以量化塑料量,但不提供有关颗粒大小或数量的信息,这两种方法预计同等重要。红外显微镜可以做到这两点,但不适合分析非常小的颗粒,也受到颗粒形态的挑战。雷尼绍针对微塑料提供了其共焦拉曼显微镜作为检测手段。雷尼绍共焦拉曼显微镜可自动定位粒子并确定它们的大小和统计,然后产生颗粒的拉曼图,使用高度跟踪保持良好的焦点,并使用高级光谱分析来识别塑料和无机物,其结果是关于颗粒的数量、大小、形状和化学组成的全面数据。 /p p style=" text-align: justify text-indent: 2em " 在英国广播公司(BBC)《食物:真相还是恐惧》节目中,雷尼绍共焦拉曼光谱仪被格拉斯哥大学(University of Glasgow) 用于鱼类中的微塑料研究。 /p p style=" text-align: justify text-indent: 2em " strong 6.布鲁克 /strong /p p style=" text-align: justify text-indent: 2em " 分析微塑料颗粒(MPP)有许多方法,如采用不同的光谱技术以达到不同的分析要求。 /p p style=" text-align: justify text-indent: 2em " 红外显微镜是MPP分析的主要技术。它可以对微颗粒进行化学鉴定,并且非常易于使用。在MPP分析中,拉曼显微镜虽然不如红外显微镜常用,但它具有的独特优势,如可通过透明材料测量,比红外显微镜更高的空间分辨率等,使得拉曼显微镜适用于分析非常小的颗粒。 /p p style=" text-align: justify text-indent: 2em " Alfred Wegener 研究所(AWI)作为亥姆霍兹极地和海洋研究中心,选择了具有焦平面阵列(FPA)检测器的布鲁克红外显微镜作为MPP表征的解决方案。他们近期发表在《科学进展》的研究中采用了具有FPA检测器的红外显微镜,在北极积雪中检测出大量的微塑料颗粒。FPA检测器实现了在单次扫描中以最佳光谱分辨率收集大量的光谱数据。这项技术具有自动化分析,高精确度,极其快速,将人为错误降至最低等优点。 /p p style=" text-align: justify text-indent: 2em " 布鲁克提供红外,FPA和拉曼的全套解决方案,实现了对微塑料的观察、测量和鉴别。 /p p style=" text-align: justify text-indent: 2em " br/ /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " 延伸阅读: /span /h1 p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190529/486131.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 首部《中国海洋生态环境状况公报》发布 含海洋微塑料监测情况 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200522/539216.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 发改委& amp 环境部:加强江河湖海微塑料污染机理、监测等研究 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190821/491686.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 微塑料的“全球化”亟需解决方案 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190820/491533.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 北极微塑料从哪儿来?科学家又发现新证据 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190704/488323.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 微塑料:一场不知不觉的污染 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190613/486919.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 微塑料研究:精确的分析方法是关键——访浙江工业大学潘响亮教授 /span /strong /a /p
  • 兰光发布塑料包材水蒸气透过率测试仪新品
    塑料包装水蒸气透过率测试仪 C360H水蒸气透过率测试系统——本产品基于重量法水蒸气透过的测试原理,参照ASTME96,GB 1037标准设计制造,为低、中、高水蒸气阻隔性材料提供宽范围、高效率的水蒸气透过率检测试验。适用于食品、药品、医疗器械、日用化学等领域的薄膜、片材、纸张、织物、无纺布及相关材料的水蒸气透过性能测试。塑料包装水蒸气透过率测试仪产品优势:只为精准——先进流体力学和热力学设计的专利测试舱和透湿杯;立体空间恒温技术;精密科学的测试条件调节计算;高效合规——12个测试工位;支持增重法和减重法测试模式;节省人力——风速自动调节;湿度自动调节;无需更换内芯的气体干燥装置和高效水蒸气发生装置;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。4、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接入第三方软件。5、先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。塑料包装水蒸气透过率测试仪测试原理:在预先处理好的测试杯中放置水或者干燥剂,然后将预先处理好的试样夹紧在测试杯上,测试杯放置于测试舱当中。测试舱根据指定测试条件生成稳定的温度、湿度和气流吹扫环境。水蒸气通过试样进入干燥一侧,通过测定测试杯整体重量随时间的变化量,计算试样水蒸气透过量等结果。参照标准:ASTM E96、GB 1037、GB/T 16928、ASTM D1653、ISO 2528、TAPPIT464、DIN 53122-1、YBB00092003-2015塑料包装水蒸气透过率测试仪技术参数:最大量程:减重法:10000/n(1-12件)g/(m2day);645/n(1-12件)g/(100in2day)增重法:每件1200 g/(m2day);每件77g/(100in2day)测试工位:12个测试温度:20℃~55℃±0.2测试湿度:10%RH~90%RH±1%扩展功能:DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:样品尺寸:Φ74mm样品厚度:≤3mm测试方法:增重法,减重法标准测试面积:33cm2载气规格:压缩空气载气干燥:长寿命干燥装置,不需要更换内芯载气加湿:内置高效无水雾加湿气源压力:≥0.6MPa接口尺寸:Φ6mm聚氨酯管创新点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。 2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。 3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。 塑料包材水蒸气透过率测试仪
  • 微塑料检测标准盘点:多项团标在进程中
    微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。早在2004年,英国普利茅斯大学Thompson等在《科学》杂志上就首次提出了“微塑料”的概念。作为一类重要的新污染物,微塑料近年来多次引起业界的热议。据发表在《冰冻圈》杂志上的一篇论文称,新西兰坎特伯雷大学研究人员在南极洲的新降雪中首次发现了微塑料 ;发表在《整体环境科学》上研究显示,德国研究人员在城市收集的蜘蛛网中检测出了微塑料颗粒,并且蜘蛛网“捕获”的微塑料颗粒占整个蜘蛛网重量的10%,由多种不同的种类组成;一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,引发微塑料对人体健康长期影响的担忧;今年,来自美国国家标准与技术研究院 (NIST) 的化学家Christopher Zangmeister团队开展的一项新研究,带有防水涂层——低密度聚乙烯(LDPE)内衬的一次性纸杯,在接触 100 ℃ 热水短短 20 分钟后,释放的微塑料颗粒密度可达 1012/L。这意味着喝下一杯 300 ml 的外带热咖啡,将有上千亿微塑料颗粒进入体内,研究人员推算,这意味着平均每 7 个身体细胞就会吸收一个微塑料颗粒… … 不得不说,以上研究让大家细思极恐,与“白色污染”塑料相比,微塑料的危害体现在其颗粒直径微小上,这是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因,其治理迫在眉睫!(更多阅读:南极雪中惊现微塑料 新污染物治理迫在眉睫)作为一种新型环境污染物,目前微塑料相关研究如火如荼,但是对其科学客观评判迫切需要建立标准化的分析测试方法和生态健康风险评估技术。由于微塑料物理特性以及化学组分等的差异,不同类型微塑料在不同环境中流动过程的时间均不相同,使微塑料检测变成一大难题。近年来发展的微塑料检测方法主要有傅立叶红外光谱法(FT-IR)、拉曼光谱法、热裂解气质联用法(Pyr-GCMS),以及其他方法等,大大提高了微塑料定量分析的准确性。(更多阅读:微塑料治理持续加码 这些仪器采购正当时)同时,相关标准也在完善过程中,据不完全统计,现行的地方标准有两项:DB21/T 2751-2017海水中微塑料的测定 傅立叶变换显微红外光谱法 ;DB37/T 4323-2021海水增养殖区环境微塑料监测技术规范 ;作为标准体系的一个重要部分,团体标准越来越吸引大家的关注。近年来,一系列微塑料相关的团体标准也在陆续立项或者发布中。其中,2020年6月,上海市环境科学学会批准立项了上海锐浦环境技术发展有限公司申报的《环境水体中微塑料的测定傅里叶变换显微红外光谱法》团体标准;2020年12月,中国材料与试验团体标准委员会批准CSTM标准《景观水中微塑料的测定 显微红外光谱法》立项;2021年5月,中国纺联标准化技术委员会发布关于下达21项团体标准计划项目的通知(中国纺联标委函[2021]3号),其中包括《纤维微塑料术语、定义和分类》、《纤维微塑料鉴别试验方法》、《地表水环境纤维微塑料分析测试方法》。序号项目编号标准项目名称标准类别制定/修订完成年限申报单位1202102-CNTAC001纤维微塑料术语、定义和分类基础制定2022东华大学2202102-CNTAC002纤维微塑料鉴别试验方法方法制定2022东华大学3202102-CNTAC003地表水环境纤维微塑料分析测试方法管理制定2022东华大学其中,《T/CSTM 00563—2022 景观环境用水中微塑料的测定 傅里叶变换显微红外光谱法》已经于2022年2月21日公布,2022年05月21日实施。该文件规定了傅里叶变换显微红外光谱法测定景观环境用水中微塑料的术语和定义、方法原理、仪器设备与试剂、测试样品制备、测定步骤、结果分析与计算等,适用于景观环境用水中尺寸范围在50 μm-5 mm之间的微塑料的形状、颜色、尺寸、数量和聚合物种类的测定。其他水环境中微塑料的测定可参考本方法。此外,2021年4月13日,中国水利企业协会发布通知,对《地表水中微塑料的测定(征求意见稿)》征求意见,标准中涉及了显微拉曼成像光谱法、傅立叶变换显微红外光谱法、傅立叶变换红外光谱法等。2022年初,“中国材料试验团体标准委员会/基础与共性技术领域委员会/微塑料及其环保试验技术委员会(CSTM/FC00/TC03)成立暨专题报告会”召开期间,CSTM 标准委员会批准同意在基础与共性技术领域委员会(CSTM/FC00)下设立微塑料及其环保试验技术委员会。与会专家、委员组成评审组召开团体标准立项答辩会,对《饮用水中微塑料的测定 傅里叶变换显微红外光谱法》、《地下水中微塑料的测定 傅里叶变换显微红外光谱法》、《污水中微塑料的测定 傅里叶变换显微红外光谱法》、《海产品中微塑料的测定 傅里叶变换显微红外光谱法》、《土壤中微塑料的测定 傅里叶变换显微红外光谱法》等5项CSTM团体标准进行立项评审,经全面论证后一致同意立项。2022年7月19-22日,仪器信息网联合江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等共同举办“第十一届光谱网络会议(简称iCS2022) ”。其中,针对微塑料的热点话题,特别邀请了中国地质调查局南京地质调查中心沈小明高级工程师和中国科学院烟台海岸带研究所王运庆研究员,分别就《激光共聚焦显微拉幔光谱分析技术在海岸带沉积物微塑料检测中的应用》、《SERS标记纳米塑料及其在典型模式生物体内分布研究》主题发表演讲。立即报名》》》
  • 微塑料的“全球化”亟需解决方案
    p    strong 仪器信息网讯 /strong 微塑料这一概念是在2004发表的一篇Science的文章(Lost at Sea:where is all the plastic?)中首次提出。微塑料是一种会污染环境的微小颗粒,任何长度小于5毫米的塑料碎片都可以称为微塑料。由于微塑料在海洋环境中的广泛存在以及对生物产生的各种确定的以及不确定的危害,得到了各界的广泛关注。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 406px " src=" https://img1.17img.cn/17img/images/201908/uepic/6fb1f603-9c71-47a6-a648-684eb72ef8ac.jpg" title=" 微塑料.jpg" alt=" 微塑料.jpg" width=" 400" height=" 406" border=" 0" vspace=" 0" / /p p   目前微塑料可以分为大致两种,一种是进入环境前就已经小于5毫米的塑料碎片,一般来自清洗衣服后的废水。悉尼大学沿海城市生态影响研究中心发现,每洗一件衣服,就会冲洗掉1900多根纤维。其次是一些大型塑料的碎片污染,包括我们熟知的饮料瓶、渔网、塑料袋等。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/5dd58359-6b4c-4fca-9868-9dc21fc1b8af.jpg" title=" 微塑料的种类.jpg" alt=" 微塑料的种类.jpg" / /p p   在我们的印象中,塑料污染多是大型的塑料物品漂浮于海中,然后给海洋生物造成困扰。然而根据媒体VOX给出的数据示意图,大块塑料的数量远没法和微塑料相比。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 295px " src=" https://img1.17img.cn/17img/images/201908/uepic/c6183cda-eb6b-4d10-8890-e93bc402a317.jpg" title=" VOX.jpg" alt=" VOX.jpg" width=" 500" height=" 295" border=" 0" vspace=" 0" / /p p   微塑料污染似乎已经在不知不觉中完成了 “全球化”。 /p p   美国科罗拉多州这几天下起了‘塑料雨’。经过科学家调查发现,90% 的雨水样品中都含有塑料,大部分是纤维形式的,而且有各种颜色,其中以蓝色最为常见。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 214px " src=" https://img1.17img.cn/17img/images/201908/uepic/b2349eda-688a-4144-aadb-6594854f4616.jpg" title=" 塑料雨.jpg" alt=" 塑料雨.jpg" width=" 500" height=" 214" border=" 0" vspace=" 0" / /p p   高山上也有微塑料的痕迹。今年4月,同样人迹罕至的比利牛斯山脉偏远地区也发现了塑料微粒。甚至相关研究小组认为这些微塑料是至少从100公里以外的地方飘过来的。 /p p   国家海洋环境监测中心王菊英副主任表示,不管是在海水中,以及海底和海底沉积物当中,都发现有微塑料的存在。去年二月,一项研究发现,在实验过程中从大西洋西北部捕获的中层鱼类里,73%的鱼胃里存在微塑料。今年6月左右,海洋生物学家Anela Choy在加利福尼亚海岸蒙特雷湾进行了一次调查发现,一些以过滤水中微小生物为食的生命会误吞微塑料。而在食物链中更大一些的海洋生物的胃里,同样会发现某种塑料存在。 /p p   探险家Victor Vescovo在5月探索了马里亚纳海沟,这里也是地球最深的地方,而在达到10928米时发现了来自地面的垃圾。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/201908/uepic/ed910959-4f6d-4756-b585-6949555bb798.jpg" title=" 马里亚纳海沟.jpg" alt=" 马里亚纳海沟.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p   近期在北极的研究同样发现了大量微塑料。一项发表在《科学进展》的研究指出,研究人员在北极的积雪中发现了大量微小的塑料颗粒。同时这项研究表明,北极雪中的微塑料可能是通过空气传播到极地的。 /p p   据研究显示,一块来自弗拉姆海峡的积雪样本中,污染浓度达到了每升大约14000个微塑料颗粒,同时一份欧洲积雪样本中,每升含有超过15万颗微塑料,另外发现的塑料颗粒大小在0.011到0.475毫米之间。主要研究人员之一的Melanie Bergmann表示,尽管对比欧洲的样本,北极受到的污染还算是较少的,但这个结果也出乎他们的预料。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/2727d0b8-fbbc-4f9e-a2af-faa4faecaee6.jpg" title=" 积雪样本.jpg" alt=" 积雪样本.jpg" / /p p style=" text-align: center " (粉色点是北极取样滴点,来自弗拉姆海峡) /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1b9f217a-e94a-4a17-af01-fe0d776f7c85.jpg" title=" 糟蹋.png" alt=" 糟蹋.png" / /p p   微塑料对人类的威胁可能更为直接。目前已经有研究发现,部分人类粪便中存在塑料成分。去年10月,在维也纳举行的欧洲胃肠病学会议上,有研究人员公布了一项关于人类粪便中含有微塑料成分的实验结果。在最近举行的欧洲肠胃病学会上,研究人员报告称,首次在人体粪便中检测到多达9种微塑料,它们的直径在50到500微米之间。根据参与这项研究的8位不同国家的被试提供的日志,他们都吃了塑料包装的食物,饮用了瓶装水,其中六位还吃过海鲜。每10克粪便样品中含有20颗微粒,最常见的微粒是聚丙烯(PP)和聚对苯二甲酸乙二酯(PET),它们是塑料瓶和瓶盖的主要成分。 /p p   微塑料污染已经侵入到人类体内,全球人均每周摄入将近5克的微塑料,这等同于一张信用卡所用的微塑料。人类摄入微塑料的最大来源是饮用水,世界范围内的瓶装水、自来水、地表和地下水中都含有微塑料。在食物中,甲壳类海鲜、啤酒和盐的微塑料颗粒含量最高。 /p p   人类也能吸入从空中掉落的微纤维。已知空气微粒可以寄居在肺部深处,从而导致癌症在内的各种疾病。已有证据表明,与尼龙和聚酯纤维打交道的工人,其接触有害纤维的程度远高于普通人群,他们的肺部会受到刺激,肺容量也会降低。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/2cd6fae7-7ac6-48ba-b3e9-e0226c63e4a1.jpg" title=" 呼吸塑料.png" alt=" 呼吸塑料.png" / /p p   微塑料会对器官产生物理伤害,其过滤出的有毒化学物质,如内分泌干扰素BPA和农药,也能破坏免疫功能,并危害生物的生长和繁殖。微塑料和有毒物质还可能积累到食物链中,对整个生态系统带来潜在影响,例如种植土壤的健康状况。此外,空气和水中的微塑料也可以直接影响到人类。 /p p   在2008年以前,很多研究人员认为,动物可以排泄掉摄入的任何微塑料。然而,生态毒理学家马克· 布朗(Mark Browne)对此并不完全确信。他做了一个实验:先把蓝蚌放进水槽,再放入涂有发光材料、比人类血细胞更小的微塑料,在蓝蚌摄入这些微塑料之后,再把它们放进干净的水中。6周之后,他把这些蓝蚌打捞起来,发现微粒仍然在它们体内。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/d5d1efbe-898a-4217-89c1-9442a17e6935.jpg" title=" 蓝蚌体内的微塑料.jpg" alt=" 蓝蚌体内的微塑料.jpg" / /p p style=" text-align: center " 蓝蚌体内的微塑料 图片来源:Mark Anthony Browne /p p   鱼类、蚯蚓和其他动物的体内出现微塑料,这种现象足够让人不安了,但如果这些微粒一直留在体内,尤其是从内脏转移到血液循环系统和其他器官,就会造成真正的伤害。科学家已经观察到身体伤害的迹象,比如由微粒撞击和摩擦器官壁引发的炎症。 /p p   研究人员还发现,微塑料能过滤出有毒化学物质,这些物质来自塑料生产过程中添加的聚合物和环境污染物(如吸附在塑料表面的农药),它们都能伤害肝脏等器官。 /p p   湖水和土壤中的微塑料的总量,堪比漂浮在海洋表面的微塑料的总量——它们可能超过15万亿吨。然而,微塑料颗粒如此之小,如何对其进行检测? /p p   目前赛默飞、安捷伦、珀金埃尔默、岛津、雷尼绍等均针对微塑料检测提供了仪器测试方法和解决方案。 /p p    a href=" https://www.instrument.com.cn/netshow/SH100650/" target=" _self" strong 1.赛默飞 /strong /a /p p   对于微塑料的粒径大小、形状、腐蚀程度、颜色等物理形貌分析常用的方法主要是 strong span style=" color: rgb(255, 0, 0) " 显微法 /span /strong 和 strong span style=" color: rgb(255, 0, 0) " 目检法 /span /strong 。对于化学成分分析,目前常用的方法主要是 strong span style=" color: rgb(255, 0, 0) " 显微红外法 /span /strong 和 strong span style=" color: rgb(255, 0, 0) " SEM-EDX法 /span /strong 。 a href=" https://www.instrument.com.cn/netshow/C47493.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 赛默飞显微红外光谱仪 /span /strong /a 可以高效快捷的实现水体中微塑料的定性,给出区域微塑料成分含量的参考结果;SEM-EDX可对样品表明进行直接观测和分析;而 a href=" https://www.instrument.com.cn/netshow/C47634.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 拉曼光谱 /span /strong /a 作为另一种重要的分子光谱技术,具有非接触、无惧水等特点,在微塑料的成分定性和颗粒统计中同样发挥着一定作用。与显微红外相比,显微拉曼在微小的塑料粒子或纤维片段分析中具有更高的空间分辨,且无需挑出样品,不受水分干扰。 /p p    a href=" https://www.instrument.com.cn/netshow/SH100320/" target=" _self" strong 2.安捷伦 /strong /a /p p   微塑料分析通常仅报告其颗粒数量。然而,塑料的易碎性使其在后续过程中很容易分解为许多尺寸更小的颗粒,因而这种方法在本质上存在缺陷且不准确。因此,报告中也应该包含颗粒的尺寸,在评估微塑料毒理学影响时,尺寸和丰度都应考虑在内。应该注意的是,微塑料对环境和健康的潜在影响随着颗粒尺寸的减小而增加。尺寸测量通常仅报告颗粒的最长尺寸而忽略了其形状,使长颗粒往往被认为与球形或其他形状的颗粒相同。为了实现更全面的了解,塑料的定量分析应该作为一个三维问题考虑:尺寸 × 形状 × 材料。 /p p    span style=" color: rgb(0, 0, 0) " 安捷伦 /span a href=" https://www.instrument.com.cn/netshow/C306278.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 激光红外成像系统 /span /strong /a 、 a href=" https://www.instrument.com.cn/netshow/C142612.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 傅里叶变换红外光谱仪 /span /strong /a 均可对微塑料进行检测。其中,激光红外成像系统可测试5cm*5cm区域超过1000个微塑料颗粒,测试完成仅需2个小时,扫描结束后即得到测试结果,包括每个颗粒定性结果,尺寸、面积、重量等信息,并同时自动获得海量统计结果,包括不同尺寸、不同种类的塑料颗粒的个数、粒径分布,以及含量%等信息。 /p p    a href=" https://www.instrument.com.cn/netshow/SH100168/" target=" _self" strong 3.珀金埃尔默 /strong /a /p p   要对海洋中的微塑料进行管控,第一步是要对这些微塑料的成分和含量进行检测,从而对污染的严重性和主要来源进行评判,对下一步的治理提供依据。 span style=" color: rgb(0, 0, 0) " PerkinElmer /span a href=" https://www.instrument.com.cn/zc/31.html?AgentSortId=11283& SampleId=& IMShowBigMode=& IMCityID=& IMShowBCharacter=& SidStr=" target=" _self" span style=" color: rgb(255, 0, 0) " strong 红外光谱及红外显微成像系统 /strong /span /a 可为检测过程提供有力的支持。 /p p   红外光谱仪已经广泛用于鉴别大尺寸的高分子材料,对于较大的塑料样品可以选择不怕潮可电池供电的珀金埃尔默红外光谱仪放到船上做快速塑料的鉴别 而对于肉眼无法识别的微小的塑料颗粒,就需要选择红外显微镜成像系统用于这些微塑料的检测和鉴别。 /p p   珀金埃尔默常规红外ATR方法可直接快速测试肉眼可见的大尺寸微塑料,对于肉眼不可见的小尺寸微塑料可采用 a href=" https://www.instrument.com.cn/netshow/C73048.htm" target=" _self" 珀金埃尔默Spotlight+ATR成像附件 /a 进行测试。珀金埃尔默实现了微塑料的原位测试,测试最小尺寸可达1.56um。原位ATR成像技术分析的微塑料尺寸更小、速度更快、操作更简单而且还不会丢失微塑料样品。 /p p   除此以外,傅里叶化学成像/显微技术可分析微塑料化学成分及空间分布等信息 /p p   功率补偿型DSC的HyperDSC技术可辅助红外显微/成像进行塑料单微粒结构定性,可对复合微塑料半定量研究 /p p   逸出气体联用技术全模块均可用于研究微塑料的成分定性/半定量及降解机理等信息 /p p   LCMSMS串级质谱技术不仅可以用于定量塑料含量,还可以测定微塑料内部增塑剂等环境激素的含量,便于开展环境毒理学工作 /p p   ICPMS单细胞直接进样技术,可用于研究微塑料负载重金属对于单个细胞毒理学的研究工作 /p p   TGA-ICP联用技术可评价焚化过程产品微塑料/重金属的结合过程研究 /p p   TGA-GCMS联用技术可以用研究微塑料对持久性有机污染物环境迁移的输运机理等。 /p p    a href=" https://www.instrument.com.cn/netshow/SH100277/" target=" _self" strong 4.岛津 /strong /a /p p   (1) a href=" https://www.instrument.com.cn/netshow/C260864.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 红外显微镜 /span /strong /a /p p   傅里叶变换-红外光谱分析法(FTIR)是目前最常用的化学组分鉴定方法。岛津红外显微镜可实现对微塑料的观察、定义测量位置、测量、鉴别结果,全部操作都能自动执行,并提供高灵敏度结果。 /p p   (2) a href=" https://www.instrument.com.cn/netshow/C132513.htm" target=" _self" span style=" color: rgb(255, 0, 0) " strong 热分析-红外联用系统(TG-FTIR) /strong /span /a /p p   岛津热分析-红外联用仪,可以将TGA过程产生的气体通过可加热管线引入到红外光谱仪中,分析聚合物等材料热裂解过程产生的气体成分,从而得到聚合物的组成,更好的对热重结果进行分析;和红外联用,实现材料的定性及定量分析。 /p p   (3) a href=" https://www.instrument.com.cn/netshow/C242324.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 能量色散型X射线荧光光谱仪 /span /strong /a /p p   岛津能量色散型X射线荧光分析仪,采用新型硅漂移检测器(SDD),具有高灵敏度、高分辨率的优点,能够进行快速无损定性-定量分析,方便快捷,无须化学前处理。 /p p   通过EDX能量色散型X射线荧光光谱仪对微塑料的定性和定量分析,就可初步知道该微塑料可能的材质塑料(也可进一步使用PY-GCMS有机化合物快速筛查系统进行塑胶材质的确认),同时可以确认该微塑料中的有害元素。 /p p   (4) span style=" color: rgb(255, 0, 0) " strong 热裂解-气相色谱质谱联用系统(PY-GCMS) /strong /span /p p   热裂解-气相色谱质谱联用技术(PY-GCMS)可以用来鉴定微塑料类型。PY-GCMS是通过不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入GCMS检测,从而推断高聚物类型的一种方法,同时可鉴定聚合物及添加剂。 /p p   POPs、全氟类化合物、多环芳烃、农药等有机污染物易富集在微塑料表面,岛津全面的色谱质谱分析手段,亦可提供全面的毒理效应研究方案。 /p p   (5) a href=" https://www.instrument.com.cn/netshow/C11887.htm" target=" _self" span style=" color: rgb(255, 0, 0) " strong 电子探针 /strong /span /a /p p   岛津电子探针可实现微塑料表面的元素及形貌分析研究。通过电子探针分析微塑料表面,在检测出K、Na、Ca、Mg、Al的同时,还可检测Cl、S、Cr和Fe等元素。 /p p    strong a href=" https://www.instrument.com.cn/netshow/SH100480/" target=" _self" 5.雷尼绍 /a /strong /p p   传统的实验室技术,如气相色谱/质谱(GC-MS),可以量化塑料量,但不提供有关颗粒大小或数量的信息,这两种方法预计同等重要。红外显微镜可以做到这两点,但不适合分析非常小的颗粒,也受到颗粒形态的挑战。雷尼绍针对微塑料提供了其 a href=" https://www.instrument.com.cn/netshow/C150767.htm" target=" _self" span style=" color: rgb(255, 0, 0) " strong 共焦拉曼显微镜 /strong /span /a 作为检测手段。雷尼绍共焦拉曼显微镜可自动定位粒子并确定它们的大小和统计,然后产生颗粒的拉曼图,使用高度跟踪保持良好的焦点,并使用高级光谱分析来识别塑料和无机物,其结果是关于颗粒的数量、大小、形状和化学组成的全面数据。 /p p   在英国广播公司(BBC)《食物:真相还是恐惧》节目中,雷尼绍共焦拉曼光谱仪被格拉斯哥大学(University of Glasgow) 用于鱼类中的微塑料研究。 /p p strong    /strong a href=" https://www.instrument.com.cn/netshow/SH100194/" target=" _self" strong 6.布鲁克 /strong /a /p p   分析微塑料颗粒(MPP)有许多方法,如采用不同的光谱技术以达到不同的分析要求。 /p p   红外显微镜是MPP分析的主要技术。它可以对微颗粒进行化学鉴定,并且非常易于使用。在MPP分析中,拉曼显微镜虽然不如红外显微镜常用,但它具有的独特优势,如可通过透明材料测量,比红外显微镜更高的空间分辨率等,使得拉曼显微镜适用于分析非常小的颗粒。 /p p   Alfred Wegener 研究所(AWI)作为亥姆霍兹极地和海洋研究中心,选择了具有焦平面阵列(FPA)检测器的布鲁克 a href=" https://www.instrument.com.cn/netshow/C235440.htm" target=" _self" strong span style=" color: rgb(255, 0, 0) " 红外显微镜 /span /strong /a 作为MPP表征的解决方案。他们近期发表在《科学进展》的研究中采用了具有FPA检测器的红外显微镜,在北极积雪中检测出大量的微塑料颗粒。FPA检测器实现了在单次扫描中以最佳光谱分辨率收集大量的光谱数据。这项技术具有自动化分析,高精确度,极其快速,将人为错误降至最低等优点。 /p p   布鲁克提供红外,FPA和拉曼的全套解决方案,实现了对微塑料的观察、测量和鉴别。 /p p   (文中图片素材均来源自网络) /p p   参考资料: /p p   https://advances.sciencemag.org/content/5/8/eaax1157 /p p   https://en.wikipedia.org/wiki/Fram_Strait /p p   https://www.cell.com/matter/fulltext/S2590-2385(19)30056-6 /p p   https://www.youtube.com/watch?v=mbBNR0PRD9Y /p p   https://www.euronews.com/2019/08/14/plastic-microbeads-found-in-ice-floes-in-remote-corner-of-arctic /p p   https://www.sciencedaily.com/releases/2018/02/180216110513.htm /p p   https://www.ft.com/content/ecf5bf52-bd21-11e9-b350-db00d509634e /p p   https://pubs.usgs.gov/of/2019/1048/ofr20191048.pdf /p p   https://www.livescience.com/63893-microplastics-poop.html /p p   https://en.wikipedia.org/wiki/Microplastics#China /p p   https://www.npr.org/sections/thesalt/2019/06/06/729419975/microplastics-have-invaded-the-deep-ocean-and-the-food-chain /p p   https://www.npr.org/sections/thesalt/2019/06/06/729419975/microplastics-have-invaded-the-deep-ocean-and-the-food-chain /p p   https://www.euronews.com/2019/08/14/plastic-microbeads-found-in-ice-floes-in-remote-corner-of-arctic /p p   https://www.youtube.com/watch?v=qVoFeELi_vQ& amp t=68s /p p br/ /p
  • 每月可释放1.55万亿微塑料!亚微米红外拉曼同步测量系统,助力东南大学新成果
    导读:近日,东南大学苏宇老师团队和合作者利用非接触亚微米分辨红外拉曼同步测量系统—mIRage研究发现清洁海绵在擦除顽固污渍受磨损时,每月可释放1.55万亿微塑料,这些微塑料可能会污染环境进入食物链。该成果以“Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges”为题,发表于环境领域高水平期刊《Environmental science technology》上。 文中使用的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,因其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量对样品无污染等优势,为本研究提供了关键性技术支持。研究概述:微塑料(MPs)是指小于5 毫米的塑料颗粒,与常见的塑料袋和饮料瓶等塑料制品不同,微塑料常常难以用肉眼观察,而其一旦释放到环境中,就可能会进入食物链,对人体造成未知的健康风险。日常使用的清洁海绵由三聚氰胺和甲醛的聚合物制成,在使用过程中,会磨损产生环境微塑料纤维(MPFs)。苏宇老师和其合作者购买了三个知名品牌的清洁海绵,反复在不同粗糙度的金属表面摩擦,通过非接触亚微米分辨红外拉曼同步测量系统—mIRage等多种技术手段表征了海绵的结构组成和释放的MPF。结果发现,海绵的密度对微塑料释放有显著的影响,密度越大,微塑料纤维的释放量越少。 实验详情:研究团队使用基于O-PTIR基于光学光热红外全新技术的非接触亚微米分辨红外拉曼同步测量系统—mIRage观察了磨损海绵释放的MPF(直径为7.4 ± 1.2 μm)上的原始聚合物分子结构的变化。获得了亚微米尺度下聚合物的组成和微结构参数。O-PTIR光谱点1 - 4与未磨损海绵的O-PTIR光谱不同。海绵的碳氮双谱带(1558和1506 cm&minus 1)在MPFs(范围从1600到1456 cm&minus 1)中表现出增宽,相对强度略有变化。MPF上1340 cm&minus 1(芳基C-N带)与1558 cm&minus 1(C-N带)的吸收强度之比增加或减少。此外,在磨损海绵的洗涤沃茨中检测到较小的微塑料碎片(3 - 10 μm)(图e),其O-PTIR光谱(图d,点5和6)与长I型MPF(图d,点1)相似。摩擦热不会导致MPF上的聚合物分解,因为海绵磨损期间金属表面的温度升高(从21.5 ° C至24.9 °C)低于三聚氰胺热解引发的阈值(379&minus 387°C。然而,在海绵中存在水和甲醛残留物的情况下,机械能可能通过缩醛胺基团(&minus NH-CH2-NH-)和羟甲基基团(&minus NH-CH2-OH)之间的交替水解和缩合反应,诱导破坏或形成三聚氰胺-三聚氰胺交联。从磨损海绵中释放的微塑料图示。其中 (a)为沉积的海绵磨损颗粒的全景和局部投影图像。(b) 和(c)为S1-S3样品的放大图像(I、II和III型MPF),S4-S6的反射光图像。(d) c和e中位置1 - 6的归一化O-PTIR红外光热光谱。(e)从磨损海绵释放的小微塑料碎片(直径5.8和8.3 μm)的投影、反射光、可见激光和OPTIR光热红外光谱图(1340 cm&minus 1,芳基C-N吸收带)。 基于O-PTIR技术的mIRage产品: 非接触亚微米分辨红外拉曼同步测量系统—mIRage,采用光热诱导共振技术(O-PTIR),突破了传统红外光谱衍射极限,空间分辨率可达500 nm且无散射伪影。创新性的技术使其具备了以下优异的科研级别分析优势:☛ 500nm左右的空间分辨率,无散射伪影;☛ 基本无需样品前处理,样品即放即测;☛ 光源“探针”对样品无污染、无损伤;☛ 可分析固体、液体等多物态样品;☛ 同时、同位置红外、拉曼光谱共表征,提供相互佐证的分析结果;☛ 光谱表征、光学成像共表征,提供多维度科研分析信息;☛ 微塑料颗粒分析功能,自动搜索微塑料颗粒、自动测量微塑料颗粒尺寸、自动微塑料光谱表征。非接触亚微米分辨红外拉曼同步测量系统—mIRage 样机体验为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,期待与您的合作! 欢迎您通过电话:010-85120277/78、邮箱:info@qd-china.com或扫描下方二维码联系我们。扫描上方二维码,即刻咨询产品详情!参考文献[1]. Yu Su, Chenqi Yang, Songfeng Wang, Huimin Li, Yiyu Wu, Baoshan Xing,* and Rong Ji. Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. Environ. Sci. Technol. 2024, 58, 10764&minus 10775
  • 布鲁克技术指南 | 分析微塑料仪器怎么选?
    据新闻报道,首次确认,人体已被微塑料污染,污染源不仅是海洋。人类平均每年制造800万吨塑料废物。然而,这些急速增加的塑料要等1000多年才能降解。等不及降解,它们很快就会碎裂成被称为“微塑料”的微小碎片,无处不在。除了出现在人们餐桌上,甚至还出现在了人体内。微塑料对人类的威胁正在日益影响到我们的正常生活。 分析微塑料颗粒 (MPP) 有许多方法,采用不同的光谱技术以达到不同的分析要求。布鲁克作为红外光谱技术的领导者,一直以来为研究者提供最为全面和最为先进的微塑料分析的解决方案,我们从肉眼可见的微小颗粒到低至0.5um的微塑料样品都能为研究者提供最佳的分析方法。微塑料(MPP)分析方案分析方法可测颗粒大小样品滤膜要求自动化程度测量速度价格比较布鲁克仪器ATR FT-IR spectroscopy 500 μm不用滤膜低慢¥ALPHA IIINVENIOFT-IR microscopy 10 μm红外透明高快¥¥LUMOS IIHYPERIONATR FT-IR microscopy 5 μm任何滤膜 任何基底材料高中¥¥LUMOS IIHYPERIONFT-IR imaging 5 μm红外透明非常高非常快¥¥¥LUMOS IIHYPERIONATR FT-IR imaging 2 μm任何滤膜 任何基底材料高中¥¥¥LUMOS IIHYPERIONRaman imaging 0.5 μm无荧光非常高快¥¥¥SENTERRA II布鲁克为研究者提供微塑料样品处理附件样品夹宏附件过滤装置强大的OPUS软件结合我们的OPUS数据处理软件(或者选用专业的微塑料分析软件),帮助您轻松应对微塑料的分析难题。FT-IR显微技术已经成为分析微塑料的标准方法 它适用于任意来源的微塑料样品并且能够轻松识别所有的聚合物类型。采用面扫或者先进的FPA成像技术,可以实现全自动化的测量整个滤膜上的数千个MPP。BRUKER FTIR/RAMAN显微镜系列(LUMOS II、HYPERION、SENTERRA II)提供了微塑料分析所有的必要能力,结合我们的分析方案,为您的研究助推加力。BRUKER是您在微塑性分析领域的得力伙伴和支持者,我们正在不断地加强技术,为推动微塑料污染物分析与研究的前沿科研上贡献着自己的一份力量。
  • 葛利云教授团队:用餐/饮水是人类摄入大气沉积微塑料的途径之一
    微塑料(MPs)带来的人类健康风险已经引起了广泛关注,但对人类接触途径和强度知之甚少。此前,人们发现这些塑料微颗粒只会积聚在废水、河流和海洋中。2020年6月12日美国犹他州立大学的首席研究员、环境科学家贾尼斯布拉尼(Janice Brahney)发表在美国《科学》杂志上的一篇研究报道中表明,这些塑料污染物遍布美国西部11个国家公园和野生保护地区,其中包括著名的科罗拉多大峡谷和落基山国家公园,而尤以落基山国家公园的数量最多,预计这种塑料微颗粒会在世界各地发现。这样表明塑料已经无处不在,它能进入大气循环、伴随降雨,遍布人迹罕至之地。大气中无处不在的微塑料以及随后在遥远的陆地和水生环境中的沉积,应当引起广泛的生态和社会关注。由Journal of Hazardous Materials最近发表的来自温州医科大学葛利云教授团队的研究发现,在用餐/饮水活动中会摄入大气沉积的MPs,并且饮食中大气沉积的MPs的摄取量大于直接来自食物来源的MPs。“有几项研究试图量化全球塑性循环,但没有意识到大气层的边缘。我们的数据显示,塑料循环最先发现在全球水循环,但也有着大气、海洋和陆地的生命周期。”葛利云说。该项研究主要成果为:吸入大气中的MPs(微塑料)是人类主要的MPs接触途径,而另一重要暴露途径是日常饮食的沉积物中吸入MPs 餐饮场所中MPs多达105种,其中90%小于100µm的碎片是非晶态碎片的大气沉积MPs 典型的工作生活场所每年约有1.9 ×105至1.3 ×106个微塑料,通过大气沉积在饮食上被摄入,沉积在饮食中的大气层MPs的接触强度在室内高于室外 饮食中摄入大气MPs比从食物来源摄入高2-3个数量级 覆盖和清洗餐具可减少饮食中大气沉积MPs的暴露。葛利云教授团队一直从事新型污染物在自然界中的迁移转化及环境污染治理技术研发。在国际权威期刊Journal of Hazardous Materials、Photochemical & Photobiological Sciences、Journal of Chemical Technolog and Biotechnolog等发表多项成果,为新污染物的降解处理技术、环境分布特征及迁移转化行为方面提供了理论依据。“微塑料是尺寸为5~100 mm的塑料颗粒,其体积较小、毒性大,随着食物链的传递,影响生物体营养膳食、生长发育、繁殖生存。为了保护和修复水体环境,对水体中微塑料进行收集、检测和去除尤为重要。从水体样品中收集微塑料和准确鉴别种类,是分析和去除微塑料的基础。”葛利云说。2022 年8月,葛利云团队授权一项实用新型专利:一种海洋微塑料检测取样装置(ZL2022 2 2262030.2)。该专利涉及环境监测技术领域,解决了微塑料样品测试结果准确性不足的问题,海洋微塑料检测取样装置包括外壳体和控制室,外壳体设有进水道,控制室内设有发电装置、锂电池、电机和控制器,控制器与发电装置、电机和锂电池电性连接。这种海洋微塑料检测取样装置可以获取多组样品,提高样品的准确性,还可以利用水流作用进行充电,提高在待测水域的使用时间,满足不同条件下的海水取样工作。吃进去的微塑料对健康有害吗?面对处处存在的微塑料污染,很多人会困惑,吃进去的微塑料对健康有多少危害。作为温州市第十一届、十二届政协委员,葛利云教授在今年温州市两会中汇报道,“微塑料是否会产生危害,主要考虑两点,一是微塑料本身没有毒性,但它会携带环境毒素 二是微塑料的环境累积不可逆,它可能在某些局部产生超高浓度,并经由食物链富集,对人体产生(潜在的)危害。”同时也建议大家:“从风险规避的角度出发,建少吃大型食肉类海鱼,用岩盐替代海盐,不要重复使用纯度较低的塑料瓶(如饮料瓶)装油性食物,少吃塑料盒装的地沟油概率高的外卖。
  • 探微知著:微塑料多维检测技术的发展与应用
    微塑料(Microplastic)的定义是指尺寸小于5 mm 的塑料颗粒、微纤维或者薄膜等。从目前的研究报道看,微塑料在环境中的分布已极为广泛,从深海到高山,从极地到赤道地区,几乎无处不在。近几年微塑料的环境影响引起了全球的关注,它们能够被多种生物摄取,通过食物链的传递可能对生态系统造成长期且复杂的影响。此外,微塑料还能吸附水中的有毒物质,如重金属和有机污染物,这些物质可能通过食物链累积并放大,最终对人类健康构成潜在风险。微塑料逐渐成为一种需特别关注的潜在环境污染物,越来越受到研究人员和公众的关注。 “微塑料”的概念最早于2004年《Lost at Sea: Where Is All the Plastic? 》文章中被首次提出。2012年《The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments》文章发表,红外光谱技术被引入微塑料的定性表征检测,很荣幸珀金埃尔默的Spotlight红外显微成像系统担任了文章中检测微塑料光谱信息的任务。 2017年中国重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”启动,同年3月份辽宁省海洋水产科学研究院起草发布了国内首个微塑料的检测标准《DB21/T 2751-2017 海水中微塑料的测定 傅立叶变换显微红外光谱法》。 △ 点击可查看大图 在微塑料科研和检测方法的发展过程中,珀金埃尔默始终和各行各业的客户合作,助力客户的科研和检测工作,改进完善微塑料的检测方案。 2018年,一项由新闻机构Orb Media组织的研究对全球11个国家的259瓶瓶装水进行了测试,结果显示其中93%的瓶装水样本含有微塑料。微塑料污染问题引起了国际社会的广泛关注,成为全球环境和健康议题的一部分。 微塑料相关领域的研究人员,采用了各种测试方法来确定微塑料在环境中的分布和来源。其中红外及显微红外光谱法,被用作检测和鉴别各种环境和样品基质中的微塑料的标准方法。珀金埃尔默的红外及显微红外已有完善的准确可靠检测方案,另外还充分挖掘不同检测设备的优势,将热分析-红外光谱-色谱质谱联用方法和单颗粒ICPMS方法引入微塑料研究,以提供微塑料多维检测数据,更好的服务于行业客户对全面表征数据的需求。 Part.1 ✦ ✦ 微塑料的红外及显微红外 光谱检测方案 ✦ △ 点击可查看大图 多尺寸 提供1.56微米以上多尺寸全光谱范围的微塑料的红外光谱法检测方案,可以根据测试尺寸要求的下限,自由选择不同的检测手段。现场检测大尺寸的微塑料,比如在船上直接检测拖网上的颗粒,可以直接使用红外光谱仪Spectrum 3或Spectrum 2。在实验室测试肉眼不可见的微米级别的微塑料,可使用Spotlight200i红外显微镜或Spotlight400红外显微成像系统。采用Spotlight200i红外显微镜,配合珀金埃尔默自主开发的微塑料自动分析统计软件,可以快速得到整张滤膜的微塑料的测试数据和尺寸统计等信息。下图是自来水样品过滤到滤膜上之后,整个滤膜全自动扫描微塑料光谱和微塑料自动计数的数据。 △ 点击可查看大图 测试10微米以下尺寸的微塑料,采用Spotlight400红外显微成像系统,配合ATR成像附件,最小可以原位测到1.56微米尺寸的微塑料。下图是海洋中贝类样品的小尺寸微塑料的ATR成像原位测试的数据。 △ 点击可查看大图 全光谱 珀金埃尔默方案提供微塑料完整的红外光谱图定性结果,光谱范围至少覆盖7800cm-1~600cm-1波段,保证谱图符合光谱学的定性三要素(特征峰位置、峰形状和峰强度),确保微塑料定性结果的准确无误。 其他使用局部波段的检测技术,会出现微塑料光谱图的误判情况,导致微塑料成分鉴定是不准确的。 △ 点击可查看大图 上图是高密度PE微塑料和ABS微塑料的全波段红外光谱图,在1900cm-1以上和900cm-1以下的波段有非常关键的特征官能团和指纹吸收峰(标阴影区域),如果只是采集中间局部光谱图,比如1900-900cm-1的谱图来定性微塑料,会缺少待测物质的特征信息,不符合光谱学的定性三要素,不能始终给出可靠的光谱学定性结果。 Part.2 ✦ ✦ 微塑料的热重-红外-GCMS 联用技术检测方案 ✦ 微塑料通常悬浮在水面,被生物摄入后进入食物链,并在体内蓄积。随着微塑料带来的环境问题越来越受关注,除了微塑料颗粒、纤维的定性定量研究外,越来越多的研究人员,也在研究微塑料吸附的污染物以及微塑料降解产物的成分相关信息。在研究开始早期,微塑料的热裂解气相色谱-质谱联用技术,被用于分析和鉴定微塑料及其裂解产物的分析。但是随着研究方法使用的深入,暴漏了一些方法的弊端,比如无法获得关于降解产物特性的充分信息,几乎无法获得关于降解产物形成时间的信息。 △ 点击可查看大图 珀金埃尔默将热重分析(TGA)-红外(IR)-气相色谱-质谱(GC/MS)联用方案引入微塑料研究,可以程序控制样品升温速率,实时分析微塑料基质中微塑料PE、PP、PS的总离子色谱图(TIC)数据热分解产生的产物,对逸出气体进行深入表征,获得更多关于降解产物特性的信息以及关于降解产物形成时间的详细信息。 下图为珀金埃尔默联用技术TGA-GCMS模式,悬浮液体中的微塑料(聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS))成分分析数据。 △ 点击可查看大图 另外珀金埃尔默联用技术的TG-IR模式,可快速的对可降解性塑料的成分进行界别,下面是可降解性塑料餐盘(上)和不可降解性塑料(下)的对比热红联用数据。 △ 点击可查看大图 Part.3 ✦ ✦ 微塑料的TGA-ICPOES 及单颗粒ICPMS技术检测方案简述 ✦ 微塑料吸附的污染物,有机污染物部分可以用前面所述的联机技术进行检测。可能吸附的无机污染物部分,可采用珀金埃尔默开发的TGA-ICPOES联用技术,对微塑料上吸附的重金属等无机污染物进行定性表征,如下图为微塑料的热失重和热重逸出气体的实时ICPOES响应曲线数据。 △ 点击可查看大图 单颗粒ICPMS(SP-ICP-MS)技术,也可作为一种快速筛选方式,作为微塑料表征手段的一种补充工具。 相比其他分析手段,SP-ICP-MS分析速度较快,可以在更短的时间内采集更多颗粒,并能提供粒度分布和颗粒浓度的更多信息。通过监测C13的信号,使用NexION系统的SP-ICP-MS,可以成功用作微塑料测定的筛选工具或补充技术。利用单颗粒ICP-MS分析技术采用的快速瞬时采集能力(NexION 系列ICP-MS高达100000点每秒),C13背景得以大大降低,从而实现纳微塑料颗粒的准确分析。将SP-ICP-MS与可鉴别微塑料成分的红外光谱技术相结合,可以获得有关微塑料的更全面信息。右图为SP-ICP-MS筛选塑料茶包中微塑料颗粒的分析数据。 △表1:塑料茶包中含碳颗粒结果 综上,珀金埃尔默仪器与解决方案,在微塑料检测技术的发展中扮演着关键的角色,不断推动各项测试技术的创新与更新。我们的微塑料检测方法开发团队不仅积极参与当前的研究工作,而且与不同行业的合作伙伴携手,共同推动检测标准的建立与完善。我们坚信,微塑料问题所在之处,正是珀金埃尔默技术和解决方案发挥作用的地方。珀金埃尔默的使命是致力于创造一个更加美好的未来,我们期望能够支持和帮助更多投身于微塑料研究和检测的科研工作者。我们共同努力,为了我们共同生存的地球环境的改善和可持续发展贡献力量。 关注我们
  • 微塑料登上世界最高峰|上海净信冷冻研磨仪解决塑料难题
    珠峰是一个遥远、纯净的地方,在世界之巅却发现了微塑料的痕迹!    据英国《新科学家》周刊网站11月20日报道,首次在珠峰上发现直径不足5毫米的塑料微粒。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。       报道称,“污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。“    在过去的几年里,我们在全球各地收集的样本中都发现了微塑料,足迹遍布从北极到河流、深海。那么,什么是微塑料?    微塑料是指粒径很小的塑料颗粒以及纺织纤维。由于学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。相比于“白色污染”塑料,因微塑料体积小,意味着就有更大的比表面积(比表面积是指多孔固体物质单位质量所具有的表面积)。而比表面积越大,吸附污染物的能力越强,这就是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因。    它的污染分布如何呢?这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。    大气中:纺织产品生产使用过程中产生的超细合成纤维、工业上材料切碎和磨削等加工产生;质轻,可作为污染物载体,通过呼吸道进入人体。    水域中:塑料污染主要来源,海洋、地表河流、湖泊、水库、居民饮用水中均已发现;市政污水排放、大气微塑料干湿沉降、工业产生塑料废弃物、纺织行业废水排放、个人日用护理品及其包装等。    土壤中:市政污泥的土地利用、有机肥的长期施用、农用地膜的残留分解、大气微塑料的沉降、地表径流和农用灌溉水的带入等;通过食物链传递并富集。    上至世界之巅,下至世界最深的海沟,微塑料可谓无处不在。有研究指出,每年每人平均会摄入70000颗微塑料。目前微塑料对人体的危害如何还需要深入的研究,但这类无孔不入的物质无疑为我们人类敲响了警钟!我们必须加强对微塑料的研究,尽早提出可行的塑料减排和处理方案。    提到塑料研究,不得不提塑料的前处理。由于塑料制品对温度极其敏感,且加热后会变形、变性,只有在超低温环境下,才能保证样品的完整性。所以,在样品前处理这块着实让科研工作者头疼,因为常规的仪器根本搞不定它。    上海净信浸入式液氮冷冻研磨仪(JXFSTPRP-MiniCL),却完全可以做到!    这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻,全程-196度低温下研磨粉碎。保持了生物物质活性,确保易挥发物质的保留;防止热不稳定化合物的受热降解,对热和机械压力敏感的代谢物、异构体和复杂化合物保持原有的敏感特性物质。传统需要五分钟的粉碎研磨,而本设备只需要三十秒,称得上是研磨界的终极手段!
  • 上海禾工塑料粒子行业水分仪技术交流培训
    日前,上海禾工在广东东莞群安塑胶实业有限公司安排了一场安调培训、技术交流会,东莞群安塑胶生产的离子型中间膜可广泛的应用在光伏、航天、国防、建筑、汽车等众多领域。 而在生产过程中。如果使用水分含量过多的塑料粒子进行生产,则会产生一些加工问题,并最终影响成品质量,如:表面开裂、反光,以及抗冲击性能和拉伸强度等机械性能降低等。因此,水分含量的控制对于生产高质量的塑胶产品是至关重要的。 在之前的很多产品选购指南中也提到,如果需要检测的塑料样品水分含量在0.1%以上,加热温度在200度以内,而且加热之后除了水分之外没有其他挥发性成分,可以选择方便快捷的加热失重法水分测定仪器,如果这三个条件有一个不符合您的测量要求,那么就建议选择卡尔费休滴定的测水方法,而且,一定要选择带卡式加热炉的卡尔费休滴定仪器。在离子型中间膜生产中东莞群安塑胶选择了禾工AKF-PL2015C卡尔费休塑料粒子专用水分测定仪,在仪器的培训过程中,禾工技术员在现场协助客户使用AKF-PL2015C塑料粒子专用水分仪检测了四组数据,根据计算结果得出平均值及RSD值较好。 卡式炉测定塑料水分含量建议温度ABS/160℃已内酰胺/100-120℃环氧树脂/120℃三聚氰胺甲醛树脂/160℃尼龙6(尼龙66)160-230℃苯酚甲醛树脂/200℃聚苯稀酰胺/200℃聚酰胺/160-230℃聚碳酸二酰亚胺/150℃聚碳酸酯/140-160℃聚酯/140-240℃聚醚/150℃聚异丁烯/250℃聚酰亚胺/160℃聚甲酯/160℃聚对苯二甲酸乙二醇酯/180-200℃聚乙烯/200℃聚甲基丙烯酸甲酯/180℃聚丙烯/160-200℃聚苯乙烯/120℃聚氨酯/180℃多乙酸乙烯酯 /170℃聚乙烯醇缩丁醛PVB/150℃聚四氟乙烯PTFE/250℃橡胶塞/250℃哇橡胶/250℃软PVC /140-160℃苯乙烯丙烯酸酯/170℃特氟隆/250℃对苯二酸酯 /150℃尿素甲醛酯 /100℃
  • 关注微塑料污染,安捷伦打出定性定量“组合拳”
    塑料是一种质轻耐磨、可塑性能良好且不易被腐蚀的有机合成高分子材料,由于其成本较低且化学性质稳定而被工业领域广泛应用。但正因其不易被降解的特性,塑料垃圾在自然界中会造成持久的污染。据了解,被丢弃后的塑料制品在自然界中被完全降解至少需要上百年,塑料垃圾的“消失”多指其在物理形态上变成人眼不可见的碎片,粒径低于5 mm 的塑料碎片则被学术界定义为微塑料(Microplastics, MPs)。尽管肉眼很难辨别,微塑料已被证实在海洋、土壤及大气圈中持续存在并扩散着,其被生态圈中的生物吸入或食用后易造成不可逆的负面影响。微塑料这一概念最早在2004年由英国普利茅斯大学的理查德汤普森(Richard Thompson)在《Science》上提出。近期,《环境国际》(Environment International)上的一项研究指出,人体血液中同样存在微塑料,证实这种新污染物已进入人类体内,成为人类健康的又一大隐患。目前,在不同领域,国际上对于微塑料已经有了多种方向的研究,其对生态环境和人类的长期影响正在被科学家们逐步揭开,相关选题也快速变成国际学术热点。基于此,仪器信息网特别策划《新污染物检测迫在眉睫:微塑料专场》主题约稿,就微塑料相关的检测方法、解决方案、技术难题等采访业内多家著名厂商。日前,安捷伦科技(中国)有限公司(以下简称“安捷伦”)以微塑料的定性手段开篇,详解该公司在微塑料检测领域的优势。安捷伦是生命科学、诊断和应用化学市场领域的领导者,为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。其专业技术聚焦于食品、环境与法医、药物、诊断、化工与能源、研究六个关键领域。仪器信息网:目前,国际上对于微塑料的检测存在怎样的困难?安捷伦采用了怎样的技术?安捷伦:微塑料研究的最大困扰在于,国际上对微塑料样品前处理和检测还没有统一的标准,各国、各领域对于微塑料的检测手段仍然是多样的。但是,多样中仍然存在着相对的统一,目前已经有大量学者的研究表明:红外光谱是一种有效的微塑料定性手段。仪器信息网:红外光谱的原理是什么?在微塑料领域是怎样被应用的?安捷伦:红外光谱非常适合化合物的定性鉴别。其原理是化合物吸收红外光后引起分子化学键振动和转动能级跃迁而产生吸收光谱。由于不同化合物分子中所含官能团可能有差异,以及官能团所处的微观环境不同,每种化合物的红外光谱都是独一无二的,因此红外光谱又称为分子的指纹谱图。在微塑料领域,检测不同高分子聚合物产生的红外光谱可对官能团进行定性分析,判别粒子的化学式组成。同时,结合一些数据分析软件,可以实现大量微塑料颗粒的统计分析。仪器信息网:具体来说,安捷伦对于微塑料检测的解决方案采用什么样的红外光谱技术?安捷伦:安捷伦对微塑料相关应用方案的开发已经持续了十几年,期间经过了多次技术革新。主要路线是从傅里叶变换显微红外到傅里叶变换焦平面红外成像,再到激光红外成像的技术迭代。傅里叶变换显微红外测试微塑料通常有两种方式:1. 透射模式:在高倍可见光显微镜下用镊子将滤膜上的微塑料颗粒逐一挑出,放置在钻石池附件里将颗粒物压扁,采集样品的透射光谱。该方法的优点是能够获得较高信噪比的谱图,缺点是分辨率较低仅能测试150um以上的颗粒,逐一手动挑取工作效率低下,以及肉眼挑取可能导致的主观误差等。2. ATR(衰减全反射)模式:用显微镜的ATR探头直接压在滤膜上的颗粒物进行检测。相对于透射模式,分辨率和效率有所提升,但是微塑料样品来源复杂,压到一些泥沙颗粒非常容易导致ATR晶体损坏,测试成本很高;ATR晶体与滤膜的接触面积约为直径80微米的圆形,对于在滤膜上分布密度较大的小尺寸颗粒,ATR容易一次测到多个颗粒,导致定性错误和颗粒物数量统计错误,此外,每次测试之间ATR晶体的清洁和防止交叉污染也是一个无法回避的问题。傅里叶变换焦平面红外成像微塑料测试方案基本也可以实现微塑料的自动化检测。该方法是将滤膜上的微塑料颗粒通过乙醇超声萃取并全部转移到窗片上,红外成像系统通过拼图(mapping)的方式,完成整个窗片的扫描,软件自动提取出其中颗粒物的红外谱图,完成所有颗粒物的定性和统计分析。该方法的优点是基本上可以实现仪器自动化,无需接触样品即可完成测试,分辨率较高。但缺点也很明显,如无效数据量太大,以及可以自动拼图的面积太小,通常超过1cm窗片的拼图非常容易由于拼图时间太长,数据量太大导致电脑系统崩溃等。安捷伦对微塑料研究工作者进行了大量的市场调研,大家对测试效率、自动工作化流程、系统智能化和易用性提出了更高的要求。在此基础上,安捷伦公司基于8700LDIR激光红外成像系统开发了专门的微塑料测试流程。图1 安捷伦8700LDIR 激光红外成像光谱仪仪器信息网:8700LDIR激光红外成像系统有何技术亮点?安捷伦:8700LDIR激光红外成像系统采用量子级联激光器(QCL)为光源,其能量是传统傅立叶变换红外显微/成像系统光源的10000倍以上,准直的激光经过光路反射后直接照射到样品上,即使对于um级别的小样品也能得到信噪比足够好的红外光谱图,实现样品准确定性及定量分析。微塑料全自动测试方法包可以提高微塑料样品检测效率,应对海量样品的测试需求。用户将样品置入样品仓后,点击鼠标,系统即可自动完成样品的测试并得到统计报告。即使没有任何化学和仪器操作经验的工作人员,也可以在短时间内熟练掌握。8700LDIR提供两种微塑料测试流程:基质比较简单且颗粒数比较少的样品,直接在滤膜上测试;基质较复杂,且颗粒数比较多的样品,为尽可能降低颗粒堆叠对测试结果的影响,可采用将颗粒从滤膜上洗脱下来,转移到反射窗片上再测试。该方法需要首先将滤膜浸入乙醇中超声,将滤膜上所有的颗粒洗脱到乙醇溶液中进行浓缩,然后将乙醇溶液滴到反射窗片上,待乙醇自然挥发后,通过8700LDIR的透反模式(即激光穿过样品到达窗片,并反射回来达到检测器)进行全自动非接触式测量。图2 激光红外成像微塑料测试工作流程图8700LDIR首先对整个窗片进行全扫描并自动识别、定位上面的所有颗粒,然后对识别出的颗粒依次进行全谱图扫描。与传统焦平面红外成像系统扫描所有区域不同,激光红外成像系统仅对识别出的颗粒进行谱图采集,因此不会浪费任何时间在无效区域采集上。每个颗粒从定位、图像采集、谱图采集以及数据处理的平均总时间仅为8s,最快可达1s。以检测某样品为例,871个颗粒的测试时间仅需2小时,包括从样品放入到获得完整的统计报告,结果如图3所示。图3 激光红外成像测试报告从左至右依次为:窗片上颗粒分布图;单个样品信息(照片/尺寸/定性结果);颗粒数及定性结果统计;粒径分布统计8700LDIR 激光红外成像可以更简单、高效、自动地测试微塑料,基本消除了人为误差的影响,为未来微塑料测试方法的标准化奠定了基础。我们也很期待8700LDIR 激光红外成像技术的独特优势在微塑料研究中发挥更加重要的作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制