当前位置: 仪器信息网 > 行业主题 > >

时间分辨红外光谱仪

仪器信息网时间分辨红外光谱仪专题为您提供2024年最新时间分辨红外光谱仪价格报价、厂家品牌的相关信息, 包括时间分辨红外光谱仪参数、型号等,不管是国产,还是进口品牌的时间分辨红外光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合时间分辨红外光谱仪相关的耗材配件、试剂标物,还有时间分辨红外光谱仪相关的最新资讯、资料,以及时间分辨红外光谱仪相关的解决方案。

时间分辨红外光谱仪相关的论坛

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学推出了新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。http://halmapr.com/news/halmacn/files/2012/09/nirquest512_1_9_blog.jpg

  • 傅里叶红外光谱仪的分辨率是怎样检定的?

    傅里叶红外光谱仪的分辨率是怎样检定的?按照检定规程JJG(教委)001-1996,测定分辨率方法:设定4cm-1分辨率条件下,扫描5次,测量0.03mm厚的聚苯乙烯薄膜。在2800cm-1~3150cm-1区内应有7个吸收谱带,计算2850cm-1和2924cm-1谱带的分辨程度,按图2量取X、Y值,Y/X应≤0.2。可是比值根本达不到0.2?大家一般做期间核查是,分辨率是如何检定的?谢谢大家啦

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学高分辨率近红外光谱仪扩展了波长测量范围新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。http://ng1.17img.cn/bbsfiles/images/2012/12/201212191311_413838_2432394_3.jpgNIRQuest512-1.9配置具有很高的稳定性,512像素Hamamatsu InGaAs线阵探测器,适用于多种光栅和光具座,用以优化1100至1900纳米之间的性能。标准的NIRQuest512-1.9光栅常数为150线/毫米,25微米的入射狭缝,以及一个非荧光长波通滤光器配置,可传输1000纳米以上的波长。该滤光器有助于缓和二阶效应。NIRQuest512-1.9外部配有一个硬件,通过该硬件,在出现外部情况时,用户可以通过外部触发获取相应数据信息,或者在数据获得之后再次引起触发。光谱仪操作通过SpectraSuite软件来控制,该软件是一个基于Java的模块化光谱学平台。NIRQuest的低沉噪声让其具备集成光谱仪的潜力(或者将光谱仪中的探测器暴露在光线下),从而延长使用时间,这在光线暗的环境中非常有用。满信号条件下的信噪比在每100毫秒积分时间内大于15000:1。因此,在对敏感性要求极高的应用环境中可以实现高效操作模式。

  • 红外光谱的分辨率和数据的不确定误差?

    文章中我写到红外光谱的分辨率为8波数,([i]the resolution of the FTIR analysis was 8cm-1.[/i]” )审稿人问数据分析的不确定度是多少?这个怎么算啊?没明白什么意思,数据搜集的数据间隔为2波数。(Does this FTIR resolution translate intothe measurement uncertainty for FTIR data? If so, can the authors provide abrief description of the data precision here? )

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学推出了新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。NIRQuest512-1.9配置具有很高的稳定性,512像素Hamamatsu InGaAs线阵探测器,适用于多种光栅和光具座,用以优化1100至1900纳米之间的性能。标准的NIRQuest512-1.9光栅常数为150线/毫米,25微米的入射狭缝,以及一个非荧光长波通滤光器配置,可传输1000纳米以上的波长。该滤光器有助于缓和二阶效应。NIRQuest512-1.9外部配有一个硬件,通过该硬件,在出现外部情况时,用户可以通过外部触发获取相应数据信息,或者在数据获得之后再次引起触发。光谱仪操作通过SpectraSuite软件来控制,该软件是一个基于Java的模块化光谱学平台。NIRQuest的低沉噪声让其具备集成光谱仪的潜力(或者将光谱仪中的探测器暴露在光线下),从而延长使用时间,这在光线暗的环境中非常有用。满信号条件下的信噪比在每100毫秒积分时间内大于15000:1。因此,在对敏感性要求极高的应用环境中可以实现高效操作模式。

  • 【红外参数解读】之1:如何理解红外光谱中分辨率这个参数?(小结在8楼)

    感谢大家参与[color=#DC143C]【红外光谱参数‘有奖’征集】光谱采购交流“庆元旦—仪器参数收集送积分”活动:[/color]http://www.instrument.com.cn/bbs/shtml/20091210/2262243/index.shtml现在我把收集到参数分单帖发出,我们一起逐个讨论!相同规则,参与者可得到[B]1-3个积分[/B]的奖励!本帖依然参与本版的其他优惠活动,如:[B]迎元旦—夜班奖励3个积分[/B]等(见我的博客)等。==================&=========================&=====================&======================红外光谱仪参数问题:[color=#DC143C]参数1:如何理解红外中分辨率这个参数?任何验收这个参数呢?[/color][em09505]

  • 【分享】近红外光谱分辨率对定量分析的影响

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=100969][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分辨率对定量分析的影响[/url]分享!

  • 近红外光谱仪的选购

    初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器最好?如何选择一台合适的近红外光谱仪器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择合适的仪器,本文将根据不同类型、不同设计方式近红外光谱仪器的特点向选用者作简要介绍,以供参考。   为了使近红外光谱获得可靠的分析结果,近红外光谱必须按照详细的技术规格设计生产。下面反应的就是现近红外光谱仪器的规范。当然也是使用者选择仪器时的主要依据。  对现代近红外光谱仪器的要求性能要求: 系统特点及对仪器的要求可靠性: 波长准确,光谱稳定性好多样性: 提供多种测样方式,波长范围宽快速性: 快速扫描系统,多功能计量学软件灵敏性: 信噪比高可分辨性: 分辨率高在线持久性: 可靠性样品导入系统,仪器无运动部件模型可转换性: 波长准确,光谱稳定  近红外光谱仪器不管按何种方式设计,一般由光源、分光系统、测样器件、检测器、数据处理系统和记录仪(或打印机)等六部分构成。  近红外光谱仪的分类比较多,但市场上分类主要还是按照仪器的分光器件不同来分,一般可分为四种主要类型:滤光片型、光栅色散型、博立叶变换型和声光调制滤光器型。其中光栅色散型又有光栅扫描单通道和非扫描固定光路多通道检测之分了。  滤光片型近红外光谱仪可分为固定滤光片和可调滤光片两种形式。固定滤光片型光谱仪是近红外光谱仪器的最早设计形式,这种仪器首先要根据测定样品的光谱特征选择适当波长的滤光片。该类型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用。但这类仪器只能在单一波长下测定,灵活性较差,如样品的基体发生变化,往往会引起较大的测量误差。可调滤光片型光谱仪采用滤光轮,可以根据需要比较方便地在一个或几个波长下进行测定。这种仪器一般作专用分析,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。  扫描型仪器通过光栅的转动,使单色光按波长高低依次通过测样器件,与样品作用后,进入检测器检测。与滤光片型的近红外光谱仪器相比,色散型近红外光谱仪器具有可实现全谱扫描、分辨率较高、仪器价位适中和便以维护等优点,其最大的弱点是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性,抗震性较差,一般不适合作为过程分析仪器使用。  博立叶变换光谱技术是利用干涩图和光谱图之间的对应关系,通过测量干涩图和对干涩图进行博立叶积分变换的方法来测定和研究光谱的技术。与传统的色散型光谱仪相比,博立叶变换光谱仪能同时测量、记录所有波长的信号,并以更高的效率采集来自光源的辐射能量,具有更高的波长精度、分辨率和信噪比。但由于干涉仪中动镜的存在,仪器的在线长久可靠性受到一定的限制,另外对仪器的使用和放置环境也有较高的要求。  声光可调滤光器(缩写AOTF)是利用超声波与特定的晶体作用而产生分光的光电器件。用AOTF作为分光系统,被认为是90年代近红外光谱仪器最突出的进展。与传统的单色器相比,采用声光调制产生单色光,即通过超声射频的变化实现光谱扫描。光学系统无移动部件,波长切换快、重现性好,程序化的波长控制使这类仪器的应用具有更大的灵活性。声光可调滤光器近红外光谱仪器的这些优点使今年来在工业在线中得到越来越多的应用。但目前这类仪器的分辨率相对较低,价格也较贵。  非扫描固定光路多通道近红外光谱仪器是因为仪器的检测器采用多通道光敏器件而得名。这类仪器的色散系统一般采用平面光栅或全息光栅,与光栅扫描型相比,光栅不需要转动即可实现确定波长范围的扫描。多通道检测器的类型主要有两种:二极管阵列(缩写PDA)和电荷耦合器件(缩写CCD)。该类型仪器测量的波长范围取决于检测器光敏元件的材料(波长范围受到一定限制),如硅基光敏元件的影响范围在短波近红外区域,由于该波i段检测到的主要是样品三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往教长。这类仪器的最大特点是仪器内部无可移动部件,仪器的稳定性和抗干扰性能好;另一个特点是扫描速度快,一般单张光谱的扫描速度只有几十毫秒。这两特点的结合,使该类仪器特别适合作为现场或在线分析仪器使用。多通道型仪器的分辨率取决于光栅性能、检测器的像素以及狭缝的尺寸。在确定波长的范围内,检测器的像素越高,所检测道的样品信息越丰富,但一般像素越高的检测器价格也越高。(选自网络,侵删)

  • 光谱仪知识-近红外光谱分析技术注意事项

    仪器的波长范围  对任何一台牛津近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域 。近红外分析技术的一个重要特点就是技术本身的成套性,即必须同时具备三个条件: (1)各项性能长期稳定的近红外光谱仪,是保证数据良好再现性的基本要求; (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具; (3)准确并适用范围足够宽的模型。 这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,避免为此付出代价。因此,一定要对厂家提供模型与技术支持情况有详细了解。   近红外分析技术分析速度快,是因为光谱测量速度很快,计算机计算结果速度也很快的原因。但近红外分析的效率是取决于仪器所配备的模型的数目,比如测量一张光谱图,如果仅有一个模型,只能得到一个数据,如果建立了10种数据模型,那么,仅凭测量的一张光谱,可以同时得到10种分析数据。   在定标过程中,标准样本数量的多少,直接影响分析结果的准确性,数量太少不足以反映被测样本群体常态分布规律,数据太多,工作量太大。另外在选择化学分析的样本时,不仅要考虑样品成分含量和梯度,同时要考虑样本的物理、化学、生长地域、品种、生长条件及植物学特性,以提高定标效果,使定标曲线具有广泛的应用范围,对变异范围比较大的样本可以根据特定的筛选原则,进行多个定标,以提高定标效果及检验的准确性。一般来讲,单类纯样本由于样本性质稳定,含化学信息量相对少,因此定标相对容易。光谱的分辨率  光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。波长准确性  光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。波长重现性  波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。吸光度准确性  吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。吸光度重现性  吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。吸光度噪音  吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。吸光度范围  吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。基线稳定性  基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。杂散光  杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。扫描速度  扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。数据采样间隔  采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。测样方式  测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。软件功能  软件是现代近红外光谱仪器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

  • 红外光谱仪的种类和工作原理

    一、红外光谱仪的种类  红外光谱仪的种类有:  ①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。  ②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。  当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:  ①多通道测量,使信噪比提高。  ②光通量高,提高了仪器的灵敏度。  ③波数值的精确度可达0.01厘米-1。  ④增加动镜移动距离,可使分辨本领提高。  ⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。  近红外光谱仪种类繁多,根据不用的角度有多种分类方法。  从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模式是依据仪器的分光形式进行的分类,可分为滤光片型、色散型(光栅、棱镜)、傅里叶变换型等类型。红外光谱仪的原理在下面分别加以叙述。  二、滤光片型近红外光谱仪器:  滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。  仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。  该类型仪器优点是:仪器的体积小,可以作为专用的便携仪器;制造成本低,适于大面积推广。  该类型仪器缺点是:单色光的谱带较宽,波长分辨率差;对温湿度较为敏感;得不到连续光谱;不能对谱图进行预处理,得到的信息量少。故只能作为较低档的专用仪器。  三、色散型近红外光谱仪器:  色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。  该类型仪器的优点:是使用扫描型近红外光谱仪可对样品进行全谱扫描,扫描的重复性和分辨率叫滤光片型仪器有很大程度的提高,个别高端的色散型近红外光谱仪还可以作为研究级的仪器使用。化学计量学在近红外中的应用时现代近红外分析的特征之一。采用全谱分析,可以从近红外谱图中提取大量的有用信息;通过合理的计量学方法将光谱数据与训练集样品的性质(组成、特性数据)相关联可得到相应的校正模型;进而预测未知样品的性质。  该类型仪器的缺点:是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性;由于机械部件较多,仪器的抗震性能较差;图谱容易受到杂散光的干扰;扫描速度较慢,扩展性能差。由于使用外部标准样品校正仪器,其分辨率、信噪比等指标虽然比滤光片型仪器有了很大的提高,但与傅里叶型仪器相比仍有质的区别。  四、傅里叶变换型近红外光谱仪器:  傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品 信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采样系统,通过数模转换器把检测器检测到的干涉光数字化,并导入计算机系统;⑤计算机系统和显示器,将样品干涉光函数和光源干涉光函数分别经傅里叶变换为强度俺频率分布图,二者的比值即样品的近红外图谱,并在显示器中显示。  在傅里叶变换近红外光谱仪器中,干涉仪是仪器的心脏,它的好坏直接影响到仪器的心梗,因此有必要了解传统的麦克尔逊干涉仪以及改进后的干涉仪的工作原理。  ⑴ 传统的麦克尔逊(Michelson)干涉仪:传统的麦克尔逊干涉仪系统包括两个互成90度角的平面镜、光学分束器、光源和检测器。平面镜中一个固定不动的为定镜,一个沿图示方向平行移动的为动镜。动镜在运动过程中应时刻与定镜保持90度角。为了减小摩擦,防止振动,通常把动镜固定在空气轴承上移动。光学分束器具有半透明性质,放于动镜和定镜之间并和它们成45度角,使入射的单色光50%透过,50%反射,使得从光源射出的一束光在分束器被分成两束:反射光A和透射光B。A光束垂直射到定镜上;在那儿被反射,沿原光路返回分束器;其中一半透过分束器射向检测器,而另一半则被反射回光源。B光束以相同的方式穿过分束器射到动镜上;在那儿同样被反射,沿原光路返回分束器;再被分束器反射,与A光束一样射向检测器,而以另一半则透过分束器返回原光路。A、B两束光在此会合,形成为具有干涉光特性的相干光;当动镜移动到不同位置时,即能得到不同光程差的干涉光强。  ⑵改进的干涉仪:干涉仪是傅里叶光谱仪最重要的部件,它的性能好坏决定了傅里叶光谱仪的质量,在经典的麦克尔逊干涉仪的基础上,近年来在提高光通量、增加稳定性和抗震性、简化仪器结构等方面有不少改进。  五、传统的麦克尔逊干涉仪工作过程中,当动镜移动时,难免会存在一定程度上的摆动,使得两个平面镜互不垂直,导致入射光不能直射入动镜或反射光线偏离原入射光的方向,从而得不到与入射光平行的反射光,影响干涉光的质量。外界的振动也会产生相同的影响。因此经典的干涉仪除需经十分精确的调整外,还要在使用过程中避免振动,以保持动镜精确的垂直定镜,获得良好的光谱图。为提高仪器的抗振能力,Bruker公司开发出三维立体平面角镜干涉仪,采用两个三维立体平面角镜作为动镜,通过安装在一个双摆动装置质量中心处的无摩擦轴承,将两个立体平面角镜连接。  三维立体平面角镜干涉仪的实质是用立体平面角镜代替了传统干涉仪两干臂上的平面反光镜。由立体角镜的光学原理可知,当其反射面之间有微小的垂直度误差及立体角镜沿轴方向发生较小的摆动时,反射光的方向不会发生改变,仍能够严格地按与入射光线平行的方向射出。由此可以看出,采用三维立体角镜后,可以有效地消除动镜在运动过程中因摆动、外部振动或倾斜等因素引起的附加光程差,从而提高了一起的抗振能力

  • 【分享】傅里叶变换红外光谱仪新进展

    1. 仪器日益智能化,实际上是光谱仪的高度自动化由于计算机技术和自动化技术在仪器中的广泛使用,使得红外光谱仪的调整、控制、测试及结果的分析大部分由计算机程序控制和完成,如显微红外光谱中的图像技术。各公司的显微红外光谱仪均能对样品的某一区域进行扫描,并最后给出该区域化学成分的分布图,如AIM8800(Shimadzu)、Continuum(Nicolet)、EquinoxTM 55 (Brucker)、Spectrum 2000(Perkin Elmer)和Stingray lmaging (Bio-Rad)等显微红外光谱仪均有此功能。Continuum和EquimoxTM 55在对某一点样品进行测量时,可同时观察样品状况。AIM8800可自动记录样品检测点及北京的位置。红外显微镜可在测量时自动寻找设定的位置并调整到最佳状态进行测量。Stingray lmaging将步进扫描功能与焦平面阵列式检测器结合起来,可在短时间内测定红外化学图像。2.随着仪器精密度的提高,部分公司在分辨率,扫描速度等方面达到了很高的指标如Bruker IFS120H 最佳分辨率为0.0008 cmˉ1,Bomen公司DA系列可达0.0026 cmˉ1。而扫描速度Bruker可达117张谱图/秒,利用步进扫描技术可达到250皮纳秒时间分辨光谱。Nicolet Nexus 可达70次扫描/秒,利用步进扫描技术可达优于10纳秒的时间分辨光谱。使用多种分束器后光谱范围Bruker为50000-4 cmˉ1,Bomen为50000-4 cmˉ1,Nicolet为25000-20 cmˉ1。这些很高的技术指标,标志材料、光路设计、加工技术和软件都达到了很高的水平。但这不是傅里叶变换红外光谱仪水平的唯一标志,其他如仪器的稳定性,抗震性,光源的稳定和使用寿命,监测器的灵敏度和稳定性等均反映仪器的水平(如AIM8800选用玻璃密封的MCT检测器,密封效果好,无需定期抽真空)。用户必须根据自己的测试要求及性能价格比来选择适当的仪器。3.不同类型的专用仪器及多功能联用技术的发展各公司为适应不同用途的需要,设计了各种不同类型的仪器。如Bruker公司不同类型的傅里叶变换红外仪器达17种之多,他们与制造热重分析仪的Netisch公司共同设计了光谱仪与热重分析仪的接口,使联用测试的灵敏度大大提高,并可同时采集热重和红外数据。Nicolet公司又研究型、分析型和普及型等不同类型的仪器,他们的Nexus光谱仪,除了它的高度自动化外,还配上不同类型的附件,用于不同的测量要求。BIO-Rad公司为适应学校教学需要,仪器窗盖用透明材料制成。有些公司将同一仪器增加外光路出口,增加联用功能。如Bruker的EquinoxTM 55多达6个外光路,可与拉曼附件、GC、TC和红外显微镜四机联用。Nicolet的Nexus有5个外光路,可提供多机联用及发射光谱的分析。Perkin Elmer 公司的Programm 2000 有4个外光路接口,用于不同类型的联机。目前许多公司又专用的仪器,如[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],红外气体分析仪,红外油品分析仪,红外半导体分析仪,遥感红外光谱仪(如用于气象),各种工业在线红外光谱分析仪,专用红外显微镜(干涉仪与显微镜一体化,JASCO)等。对于特定目的的用户,不必购置通用红外光谱。4各种实用附件的发展 岛津红外显微镜AIM8800样品处理器MMS-77D,它安装在红外显微镜上,可对各种微量样品进行处理。能切割出胶片中几μ到几百μ的异物,用微量点滴器将某些器件上的杂物溶解并吸出后进行红外显微测定,此附件很大提高了显微红外光谱仪测定的样品种类和测定的效率。Bruker为Vector22/N[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]专门设计的近红外积分球,光斑为10~20mn,并配有样品旋转器,它对大颗粒的样品(如玉米)仍能进行较好的定量分析。Perkin Elmer公司红外光谱仪采用AVI技术,在仪器中置一标准甲烷气,对测定的光谱波数进行校正,提高了测定光谱吸收峰位置波数的准确度;该仪器还以水汽和二氧化碳的高分辨光谱为基础建立相关软件,自动模拟各种测量条件下的水汽和二氧化碳的光谱,对光谱进行水汽和二氧化碳的校正;在进行ATR等测量中,能自动显示样品与ATR晶体之间的压力情况,保持两者的最佳接触面又不会损坏晶体。Nicolet的欧米采样器(Omni-Sampler)可进行接触式采样,它适用于微量样品,硬度较大的样品及红外不透过的样品,如单纤维,高聚物颗粒等

  • 【原创】傅里叶变换红外光谱仪和红外光栅分光光度计比较如何?

    傅里叶变换红外光谱仪和红外光栅分光光度计的对比如何? 傅里叶变换红外光谱仪与红外光栅分光光度计相比,具有:光通量大、测量速度快、测量精度高、分辨率高、信噪比高、可以一次取得全波段光谱等特点。 其二者的性能相比,傅里叶红外光谱仪和其他类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测量原理却不相同。在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得光谱。但在傅里叶变换红外光谱仪中,首先是把光源发出的光经干涉仪变成干涉光,再让干涉光照射样品。经检测器获得干涉图,得不到我们常见的红外吸收光谱,实际吸收光谱是由计算机将干涉图进行傅里叶变换得到的。 从两类红外光谱仪的原理比较可知,傅里叶变换红外光谱仪有其独到之处,它与一般色散型红外光谱仪截然不同,它没有分光系统,测量时是应用经干涉仪调制了的干涉光,可一次取得全波段光谱信息。与红外光栅分光光度计相比具有高光通量,测量速度快、测量准确度高、信噪比高、操作简便等特点,已逐渐替代了早期的红外光栅分光光度计,应用前景十分广泛。

  • 【分享】------近红外光谱仪器的主要性能指标!!!!!

    [color=#DC143C]在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍1、仪器的波长范围 对任何一台特定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的波长范围通常分两段,700~1100nm的短波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域和1100~2500nm的长波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域。2、光谱的分辨率 光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。3、波长准确性 光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。4、波长重现性 波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。5、吸光度准确性 吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。6、吸光度重现性 吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。7、吸光度噪音 吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。8、吸光度范围 吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。9、基线稳定性 基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。10、杂散光 杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。11、扫描速度 扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。12、数据采样间隔 采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。13、测样方式 测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。14、软件功能 软件是现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要.扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2[/color]次/s左右。

  • [转帖]红外光谱原理概述

    红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。  红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。  由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。  分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。  人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。  另外,随着电子技术的日益进步,半导体检测器已实现集成化,焦平面阵列式检测器已商品化,它有效地推动了红外成像技术的发展,也为未来发展非傅里叶变换红外光谱仪创造了契机。随着同步辐射技术的发展和广泛应用,现已出现用同步辐射光作为光源的红外光谱仪,由于同步辐射光的强度比常规光源高五个数量级,这能有效地提高光谱的信噪比和分辨率,特别值得指出的是,近年来自由电子激光技术为人们提供了一种单色性好,亮度高,波长连续可调的新型红外光源,使之与近场技术相结合,可使得红外成像技无论是在分辨率和化学反差两方面皆得到有效提高。

  • 【转帖】傅里叶红外光谱仪的市场现状及技术进展

    ——转自本网《采购指南》。傅里叶红外光谱仪的市场现状及技术进展  红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即红外光谱。  红外光谱属于分子光谱,分子光谱属于四大谱学之一。红外光谱是可以确定分子组成和结构的有力工具,我们可以根据未知物红外光谱中吸收峰的强度、位置和形状,来确定未知物分子中包含的基团,从而推断该未知物的内部结构。  红外光谱可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析。红外光谱应用范围非常广,对固体、液体或气体样品,对单一组分的纯净物和多组组分的混合物都可以用红外光谱法进行测定。红外光谱可以对有机物、无机物、聚合物、配位化合物的分析,也可以用于对复合材料、饰物、土壤、岩石、各种矿物、包裹体等的分析,可广泛的应用于化工、制药、地矿、石油、宝石鉴定、质检等领域,是教学和科研的有力手段,也是常规应用分析和生产不可缺少分析技术。  1 傅里叶变换红外光谱仪的发展历程  红外光谱仪的发展主要经历了以下三个阶段:  第一阶段是棱镜色散型红外分光光度计, 它是基于棱镜对红外辐射的色散而实现分光的, 其缺点是光学材料制造麻烦, 分辨本领较低, 而且仪器要求严格的恒温降湿。  第二阶段是光栅色散型红外分光光度计(如港东WGH-30A), 它是基于光栅的衍射而实现分光的, 与第一代相比, 分辨能力大大提高, 且能量较高, 价格便宜, 对恒温、恒湿要求不高, 是红外分光光度计发展的方向,  第三阶段是基于干涉调频分光的FTIR红外光谱仪(如港东FTIR-650), 它的出现为红外光谱的拓展应用开辟了新的方向,相比之前色散型红外来说,傅里叶变换型红外具有分辨能力高、扫描时间快、光通量大、高扩展性等优点,但对湿度和温度有要求,尤其是湿度,通常要求不能超过70%。  2 傅里叶变换红外光谱仪的基本原理  光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器。动镜以一恒定速度vm作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,然后被检测。  傅里叶变换红外光谱仪的基本原理,通俗的讲,就是光源发出的红外光经干涉仪转变成干涉光,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅立叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。  3、傅里叶变换红外光谱仪的应用  从上个世纪70年代到现在的几十年中,傅里叶变换红外光谱技术(FTIR)发展非常迅速,FTIR光谱仪的更新换代速度很快。世界上主要的FTIR生产商,一般每三到五年就推出新型号的FTIR光谱仪。随着傅里叶变换红外光谱技术的不断发展,红外光谱仪的附件也在不断的发展,不断的更新换代。新的、先进的红外光谱仪附件的出现,促使红外光谱仪附件的功能和性能不断的得到加强和提高,进一步使红外光谱技术得到了更加广泛的应用。  傅里叶变换红外光谱仪目前比较集中的应用领域有以下几个方面:  (1)傅里叶变换红外光谱在医药化工行业上的应用  (2)傅里叶变换红外光谱在高分子材料研究上的应用  (3)傅里叶变换红外光谱在石油化工行业上应用  (4)傅里叶变换红外光谱在矿物学领域的应用  (5)傅里叶变换红外光谱光学材料生产领域上的应用  (6)傅里叶变换红外光谱在生物医学研究方面的应用  (7)傅里叶变换红外光谱在半导体材料领域上的应用  (8)傅里叶变换红外光谱在刑侦鉴定上的应用  (9)傅里叶变换红外光谱在气体分析方面的应用  (10)傅里叶变换红外光谱在大气环境监测上的应用  4、傅里叶变换红外光谱仪的进展情况  (1)国产FTIR光谱仪的进展  不可否认,国内的FTIR厂家(如北京瑞利、天津港东)的技术和世界主流公司相比还是有一定的差距,但是这个差距正在不断缩小。天津港东作为国内第一家自主研发FTIR的厂家,这几年来,一直非常重视FTIR的技术发展,并不断开拓应用市场。如天津港东的FTIR-650型傅里叶变换红外光谱仪,它采用立体角锥镜干涉光路,有效地降低了振动和导轨偏移引起的干涉变形,同时新型的红外光源设计,可以有效提高指纹区的能量,大大提高了仪器整体的信噪比,产品上市后,根据用户的意见反馈,产品不断得到完善,根据客户的需求开发完成了许多新型红外附件,以满足不同行业用户的需求。在新兴市场开拓上,目前该产品已经走出国门,远销欧美和东南亚。  天津港东正在研发更高分辨率且带有动态准直和自动除湿功能的FTIR,目前进展顺利。这些都显示出国产FTIR生产厂家的强大生机和活力,国产仪器已经不再满足低端市场,正在向更高级的市场发出挑战。  (2) 国外FTIR光谱仪的进展  国外有代表性的FTIR生产厂商,经过几十年的技术积累,研发出来的产品在附件和主机集成上、产品联用上、产品专用化上及产品小型化上的优势比较明显。如赛默飞世尔科技公司生产的Nicolet in10显微红外光谱仪将显微镜和红外光谱仪集成于一体,一体化的设计显著提高了红外显微镜的光学效率;Nicolet FT-SPR综合检测仪将傅立叶变换红外光谱仪在多通道技术与波数精度方面的优势和SPR技术的高灵敏度进行了很好的结合;Nicolet AntarisIGS气体分析仪专门用于实验室及工业现场的在线和旁线分析;手持式傅立叶红外光谱仪TruDefender FT可以在现场对包括药品原料及成品、工业原材料、爆炸物、毒品、白色粉末在内的化学物质进行鉴定。  整体而言,最近几年FTIR技术发展非常之快,无论是从产品的智能化程度、产品联用、应用领域专用上还是产品的小型化上都显示出很强的发展势头,未来FTIR技术会随着客户对产品的不同需求,朝着更加智能化、更加专用化、更加小型化的方向发展。  参考文献:  范松灿. 傅里叶变换红外光谱仪的原理与特点.高分子材料研究,2007,11  吴瑾光. 近代傅里叶变换红外光谱技术及应用(下).北京:科学技术文献出版社,1994.  翁诗甫. 傅里叶变换红外光谱仪.北京:化学工业出版社,2005.

  • 【分享】红外光谱发展史

    红外光谱发展史雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年Plank在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

  • 傅立叶变换红外光谱仪

    光源发出的光进入干涉仪,然后经样品吸收后,测定光强随动镜移动距离的变化,再经傅立叶变换得到物质的红外光谱的仪器。具有高灵敏度、高分辨率等优点。

  • 【资料】-近红外光谱仪器的主要性能指标

    在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。 1、仪器的波长范围对任何一台特定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的波长范围通常分两段,700~1100nm的短波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域和1100~2500nm的长波[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区域。 2、光谱的分辨率光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1] 3、波长准确性光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。[1] 4、波长重现性波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。[1] 5、吸光度准确性吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。 6、吸光度重现性吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。 7、吸光度噪音吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。 8、吸光度范围吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。 9、基线稳定性基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。 10、杂散光杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。[1] 11、扫描速度扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。[1] 12、数据采样间隔采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。 13、测样方式测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。 14、软件功能软件是现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

  • 二维相关近红外光谱的应用发展

    以下内容摘自《土壤近红外光谱检测》宋海燕著|化学工业出版社二维相关光谱分析技术提高了光谱分辨率,增强了其对谱图的分辨能力,并在揭示分子内和分子间的相互作用及判断分子中各官能团反应的先后顺序的研究中发挥了重要作用,因此该技术在各个研究领域均得到广泛的应用。如:Krzysztof Zdzislaw Haufa等,采用二维相关近红外光谱分析了不同水分含量对1,2-丙二醇和1,3-丙二醇结构的影响。结果发现在浓度低的时候,OH基团呈明显非结合状态,当浓度高并且位于纯液体状态时,二醇结构就由分子间的氢键决定。Chunli Mo等用二维相关近红外光谱分析了不同水分含量对桑蚕丝素蛋白的影响。结果发现采用近红外光谱结合二维相关光谱技术跟踪分析水丝蛋白结构的动态变化可行。二维相关光谱将谱图信息由一维扩展到了二维,其关注的是困扰引起的细微特征的光谱变化,因此可以解释一维光谱中很难解释的现象,如谱峰重叠或外界干扰下理化指标变化等现象。若能将二维光谱与一维光谱协同分析将会更有助于对被测物质特性的检测和定量分析。

  • 想采购红外光谱仪,各位大神,什么品牌更好?

    各位大神,我们公司现想采购一台红外光谱仪,天津港东、岛津、PE、热电哪一种更加稳定,使用寿命更长呢?另外据说国内红外技术也发展的很好了,特别的,想问港东的650G,跟国外进口的设备有区别吗,分辨率、灵敏度、稳定性等与热电的设备相比怎么样?谢谢各位了~

  • 近红外光谱仪器的发展现状

    现代近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换和声光可调滤光器(AOTF)四种类型。光栅色散型仪器根据使用检测器的差异又分为扫描式和固定光路两种。在各种类型仪器中,光栅扫描式是最常用的仪器类型,采用全息光栅分光、PbS 或其他光敏元件作检测器,具有较高的信噪比。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太合适于在线分析。 傅立叶变换近红外光谱仪是目前近红外光谱仪器的主导产品,具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动部件,且需要较严格的工作环境。AOTF 是90年代初出现的一类新型分光器件,采用双折射晶体,通过改变频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快,具有较好的仪器稳定性,特别适合在线分析。但目前这类仪器的分辨率相对较低,AOTF 的价格也较高。随着多通道检测器件生产技术的日趋成熟,采用固定光路、光栅分光、多通道检测器构成的NIR 仪器,以其性能稳定、扫描速度快、分辨率高、性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的多通道检测器中,常用的有二极管阵列(Photodiode-array 简称PDA)和电荷耦合器件(Charge Coupled Devices 简称CCD)两种类型。 国外NIR 光谱仪发展状况:国外便携式近红外光谱仪的研制工作开展的较早,技术也比较成熟。从厂家的网上材料看,NIR 仪器不断向小型化、固态化、模块化和快速实时方向发展。其中典型的有美国的ASD公司的可见/近红外便携式光谱分析仪Labspec Pro 系列,可选择光谱测量范围1000-1800nm、1000-2500nm、350-2500nm,光纤探头,并配以用于化学计量学模型编程的 Unscrambler 标准软件。澳大利亚Integrated Spectronics Pty Ltd 的PIMA (Portable Infrared Mineral Analyzer)是典型的便携式野外岩石矿物NIR 分析仪器。PIMA 系光栅扫描型,光谱范围1 300~2500 nm,仪器重2.5Kg,野外电池供电,外接笔记本电脑。 Ocean Optics Inc.研制生产的USB2000 微型光纤光谱仪(USB2000 Miniature Fiber Optic Spectrometer), 有标准组件的光谱仪系统,配以不同的光栅、狭缝、不同的光纤设备等,可检测吸收、反射、发射光谱等,范围200-1100nm。USB2000 整体尺寸为89mm×64mm×34mm,重量在270克左右。 我国NIR仪器的研制起步较晚,90 年代中期,有的厂家在生产傅立叶变换红外光谱仪的基础上,开发生产了傅立叶变换近红外光谱仪器。北京北分瑞利分析仪器有限责任公司(原北京第二光学仪器厂)研制出傅立叶变换型NIR 光谱仪。在多通道近红外光谱仪器的研制方面,石油化工科学研究所研制、深圳英贤仪器公司生产的NIR-2000 型近红外光谱仪已于1998 年9 月通过中国石油化工集团公司鉴定,并进入批量生产。该仪器采用硅基2048 像素CCD 作检测器,波长范围700~1100nm,主要用于多种石油产品组成和性质的分析。

  • 包装材料红外光谱测定法

    YBB60012012包装材料红外光谱测定法Baozhuangcailiao Hongwaiguangpu CedingfaThe Test Method for Infrared Spectrum in Packaging Material红外光谱测定法是鉴别和分析物质化学结构的有效手段。化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱。以中红外区(4000~400 cm-1)为常用区域。包装材料的红外光谱测定技术:包括检测方法和制样技术。检测方法有透射和衰减全反射(ATR)等。透射是指通过测定透过样品前后的红外光强度变化,得到红外透射光谱。衰减全反射是指红外光以一定的入射角度通过ATR 晶体后,在与晶体紧贴的样品表面经过多次反射而得到反射光谱图,可分为单点衰减全反射和平面衰减全反射。制样技术有热敷法、薄膜法、热裂解法、衰减全反射法、显微红外法等。仪器校正:用聚苯乙烯薄膜(厚度约为0.05mm)校正仪器,绘制其光谱图,用3027cm-1、2851cm-1、1601cm-1、1028cm-1、907cm-1 处的吸收峰对仪器的波数进行校正。傅立叶变换红外光谱仪3000cm-1 附近的波数误差应不大于±5cm-1,在1000 cm-1 附近的波数误差应不大于±1cm-1。用聚苯乙烯薄膜校正时,仪器的分辨率在3110~2850 cm-1 范围内应能清晰分辨出7 个峰,峰2851cm-1 与谷2870 cm-1 之间的分辨深度不小于18%透光率,峰1583 cm-1 与谷1589 cm-1 之间的分辨率深度不小于12%透光率。仪器的标称分辨率,除另有规定外,应不低于2cm-1。环境条件:温度应在15~30℃,相对湿度应小于65%。适当通风换气,以避免积聚过量的二氧化碳和有机溶剂蒸汽。测定法第一法 热敷法本法适用于粒料、塑料瓶、单层薄膜的红外光谱测定。将溴化钾晶片或氯化钠晶片在酒精灯或控温电炉(温度接近材料熔点)上加热,趁热将样品轻擦于热溴化钾晶片或氯化钠晶片上(以不冒烟为宜),通过透射绘制光谱。第二法 薄膜法本法适用于粒料、塑料瓶、单层薄膜的红外光谱测定。取样品约0.25g(可剪切成小碎块),加适宜的溶剂约10ml,高温回流使样品溶解,用毛细管趁热将回流液涂在溴化钾晶片或氯化钠晶片上,加热挥去溶剂后,通过透射绘制光谱。第三法 热裂解法本法适用于橡胶产品的红外光谱测定。取样品约3g切成小块,用丙酮或适宜的溶剂抽提8小时后,在80℃烘干,取0.1~0.2g置于玻璃试管的底部,然后用试管夹水平地将玻璃试管移到酒精灯上加热,当出现裂解产物冷凝在玻璃试管冷端时,用毛细管取裂解物涂在溴化钾晶片或氯化钠晶片上,立刻通过透射绘制光谱。第四法 衰减全反射法(ATR 法)本法适用于粒料、塑料瓶、薄膜、硬片、橡胶产品的红外光谱测定。取表面清洁平整的样品适量,将其紧压在ATR附件所使用的晶片上,通过反射直接绘制光谱。第五法 显微红外法本法适用于多层膜、袋、硬片的红外光谱测定。用切片器将样品切成厚度适宜(小于50μm)的薄片,置于显微红外仪上观察样品横截面,选择所需检测的区域,通过透射绘制光谱。

  • 【转帖】如何选择近红外光谱仪

    【转帖】如何选择近红外光谱仪

    如何选择[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][ 作者:北京英贤仪器有限公司 王艳岭 | 转贴自:《仪器快讯》第12期 初从事[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的人员常常会提出这样的问题:什么样的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器最好?如何选择一台合适的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择合适的仪器,本文将根据不同类型、不同设计方式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的特点向选用者作简要介绍,以供参考。 为了使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得可靠的分析结果,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器必须按照详细的技术规格设计生产。表1[1]反应的就是现[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的规范。当然也使用者选择仪器时的主要依据。 [img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806251525_95025_1604460_3.jpg[/img] [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器不管按何种方式设计,一般由光源、分光系统、测样器件、检测器、数据处理系统和记录仪(或打印机)等6部分构成。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的分类方式比较多,但市场上分类主要还是按照仪器的分光器件不同来分,一般可分为4种主要类型:滤光片型、光栅色散型、傅立叶变换型和声光调制滤光器型。其中光栅色散型又有光栅扫描单通道和非扫描固定光路多通道检测之分了。 滤光片型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器可分为固定滤光片和可调滤光片两种形式。固定滤光片型光谱仪是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的最早设计形式,这种仪器首先要根据测定样品的光谱特征选择适当波长的滤光片。该类型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用。但这类仪器只能在单一波长下测定,灵活性较差,如样品的基体发生变化,往往会引起较大的测量误差。可调滤光片型光谱仪采用滤光轮,可以根据需要比较方便地在一个或几个波长下进行测定。这种仪器一般作专用分析,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。 扫描型仪器通过光栅的转动,使单色光按波长高低依次通过测样器件,与样品作用后,进入检测器检测。与滤光片型的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器相比,色散型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器具有可实现全谱扫描、分辨率较高、仪器价位适中和便于维护等优点,其最大的弱点是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性,抗震性较差,一般不适合作为过程分析仪器使用。傅立叶变换光谱技术是利用干涉图和光谱图之间的对应关系,通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱的技术。与传统的色散型光谱仪相比,傅立叶变换光谱仪能同时测量、记录所有波长的信号,并以更高的效率采集来自光源的辐射能量,具有更高的波长精度、分辨率和信噪比。但由于干涉仪中动镜的存在,仪器的在线长久可靠性受到一定的限制,另外对仪器的使用和放置环境也有较高的要求。声光可调滤光器(Acousto-optic Tunable Filter,缩写为 AOTF)是利用超声波与特定的晶体作用而产生分光的光电器件。用AOTF作为分光系统,被认为是90年代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器最突出的进展。与传统的单色器相比,采用声光调制产生单色光,即通过超声射频的变化实现光谱扫描。光学系统无移动部件,波长切换快、重现性好,程序化的波长控制使这类仪器的应用具有更大的灵活性。声光可调滤光器[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的这些优点使其近年来在工业在线中得到越来越多的应用。但目前这类仪器的分辨率相对较低,价格也较贵。非扫描固定光路多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器是因为仪器的检测器采用多通道光敏器件而得名。这类仪器的色散系统一般采用平面光栅或全息光栅,与光栅扫描型相比,光栅不需要转动即可实现确定波长范围的扫描。多通道检测器的类型主要有两种:二极管阵列(P- hotodiode Array,缩写为PDA)和电荷耦合器件(Charger Coupled Device,缩写为CCD)。该类型仪器测量的波长范围取决于检测器光敏元件的材料(波长范围受到一定限制),如硅基光敏元件的影响范围在短波近红外区域,由于该波i段检测到的主要是样品的三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往较长。这类仪器的最大特点是仪器内部无可移动部件,仪器的稳定性和抗干扰性能好;另一个特点是扫描速度快,一般单张光谱的扫描速度只有几十毫秒。这两个特点的结合,使该类仪器特别适合作为现场或在线分析仪器使用。多通道型仪器的分辨率取决于光栅性能、检测器的像素以及狭缝的尺寸。在确定波长的范围内,检测器的像素越高,所检测到的样品信息越丰富,但一般像素越高的检测器价格也越高。

  • 【原创】【近红外光谱分析技术系列讲座一】近红外光谱仪器的主要性能指标

    [color=#00008b]前言:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析属于弱信号分析技术,他的应用没有液相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]那么广泛,许多朋友还不怎么了解。因此,我们特推出[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]知识系列讲座,希望大家对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析有个更深的了解,对您的分析工作有所帮助。[/color] [color=#dc143c][size=4]【近红外知识普及系列一】[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的主要性能指标[/size][/color] 在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的使用过程中,如何对其各项性能进行客观的评价是分析工作者要考虑的问题,在对一台[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]进行客观评价时,要注意下列的性能指标。 [b]一、波长范围:[/b] 仪器的波长范围是指[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]所能记录的光谱范围。对任何一台特定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,都会有其特定的光谱范围,光谱范围主要取决于仪器的光路设计、分光种类、检测器的类型以及光源。通用型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器往往覆盖了整个近红外的光谱范围12000-4000cm-1(800-2500nm)。 [b]二、分辨率(Resolution):[/b] [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的分辨率是指仪器对于紧密相邻的峰可以分辨的最小波长间隔,表示仪器实际分开相邻峰的能力,即ν/△ν或(λ/△λ),ν为两峰中任一峰的波数,△ν为两峰波数之差。它是最主要的仪器指标之一,也是仪器质量的综合反映。仪器的分辨率主要取决于仪器分光系统的性能。对于色散型仪器而言,其分辨率取决于分光后狭缝截取的波段精度,狭缝越小截取的波段越窄,分辨率越高。但随之而来的是能量急剧下降,灵敏度不断降低,为了兼顾检出灵敏度,就不能让狭缝无限制地缩小来提高分辨率,因此,要想让色散型的仪器分辨率达到0.1cm-1,又能得到一张质量良好的谱图是很困难的事。而对于傅里叶型的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],由于有多路通过的特点,无狭缝的限制,因此仪器的分辨率仅取决于干涉采样数据点的多少,即取决于动镜移动的距离,由于动镜的移动由激光控制,因此可以很轻松地得到一张高质量、高分辨率的谱图。 [b]三、准确性(Accuracy):[/b] [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的准确性包括波长准确性和光度准确性两部分。 波长准确度指测定时仪器显示的波长值和分光系统实际输出的单色光的波长值之间的符合程度。波长准确度一般用波长误差,即上述两值之差来表示。由于近红外分析是用已知样品所建立的模型来分析未知样品的,如果仪器的波长准确度不能保证,则不同测定光谱就会因仪器波长的移动(即X轴发生了平移),而使整组光谱数据产生偏移,进而造成分析结果的误差。因此保证波长准确度不仅是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]能够准确测试样品的前提,也是保证分析结果准确的前提,更是保证模型能够准确传递的前提。仪器的波长准确度主要取决于其光学系统的结构,此外还会受到环境温度的影响。滤光片型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]和色散型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]受其关心光学系统结构的限制,其波长准确度较低,使用中需要经常用已知波长且性质稳定的标准物质对仪器进行校正。相比之下,傅里叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的光学系统结构简单,干涉仪单色性能极好的氦-氖干涉系统作为采样标尺,且内部一般还装有波长校准系统,因此仪器的波长准确度一般都非常高。 光度准确性指仪器对某物质进行测量时,测得的光度值与该物质真实值之差。仪器ideas光度准确性主要由检测器、放大器、信号处理电路的非线性引起,在光谱图中表现为Y轴的误差,通常直接影响近红外定量分析结果的准确性。 [b]四、精密度(Precision):[/b] 精密度反映不同次实验的重现程度,但不一定是正确值。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的波长精密性是体现仪器稳定性的最重要指标。波长精密度又被称为波长重复性,是表征对同一样品进行多次扫描测定时,样品光谱峰位置的差异或重复性。通常用规定的测试条件下,对某一样品多次测量所得到的谱峰波长的标准差来表示。波长精密度主要取决于仪器光学系统的可动部件越少,仪器的波长精密度越高。 [b] 五、信噪比(Signal to noise ratio):[/b] 信噪比是指样品吸光度与仪器吸光度噪声的比值。仪器吸光度噪声可通过在一定的测试条件下,在确定的波长范围内对空白相应变化的分析获得,用其最大噪声峰值或该波长范围内所有噪声峰值的均方根值(RMS)表征,通常采用峰值表征更为直观。当在确定的波长范围内对同一样品进行多次测量时,仪器吸光度噪声表现为测得的样品吸光度的标准差。仪器的噪声主要取决于仪器光源的稳定性、电子系统的噪声、检测器产生的噪声以及环境影响所产生的噪声,如电子系统设计不良、仪器接地不良、外界电磁干扰等因素都会使仪器的噪声增大。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是一门弱信号分析技术,即从一个很强的背景信号中提取出相对较弱的有用信息,得到分析结果,因此信噪比是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器非常重要的指标之一,直接影响分析结果的准确度和精确度。 [b]六、杂散光(Stray radiation)[/b] 杂散光是指达到检测器的除去所需波长的分析光以外的其他波长的光。通常以没有吸收样品时达到检测器的总能量或总功率的百分率来表示。杂散光主要是由于光学器件表面的缺陷、光学系统设计不良以及机械零件表面处理不佳等因素引起,尤其在色散型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的设计中,对杂散光的控制非常关键,其往往是导致仪器测量出现非线性的主要原因。杂散光的存在,使测出的吸光值比真实值低。在强吸收谱带处,杂散光造成的影响是严重的,甚至导致错误的结论,但其对高透过率的弱谱带的影响较小。由于光源长波部分的辐射能量小,因而光源辐射能量大的短波部分的散射光会在长波区造成较大的影响。抗杂散光能力越强,仪器的灵敏度越高。傅里叶型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]检测器上检测到的信号,不是光的实际信号,而是按照f=2vν(其中f—调制频率;v—动镜移动速度;ν—波数)调制的声频信号,故外界的高杂散光不会干扰检测,可当作直流分量处理。一般情况下,傅里叶型仪器的杂散光信号可以忽略不计,只有在考察光栅型仪器时才需要考虑这个指标。 [b]七、软件功能以及数据处理能力:[/b] 软件是现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的重要组成部分,软件一般由光谱采集软件和化学计量学处理软件两部分组成。光谱采集软件通常由仪器的设计所决定,而化学计量学软件和使用者的日常工作关系密切。光谱化学计量学软件一般由谱图的预处理、建立定性或定量校正模型和未知样品的预测三大部分组成。不同公司的仪器装载的化学计量学软件差异较大。有些软件的智能化程度较高,可以推荐最佳主成分维数等指标,适合初学者和从事科研的科学工作者使用;有些软件的智能化程度则差些,仅仅适合经验丰富的使用者。(参考资料:胡昌勤/冯艳春*著《[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法快速分析药品》化学工业出版社)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制