当前位置: 仪器信息网 > 行业主题 > >

常用数字温度传感器

仪器信息网常用数字温度传感器专题为您提供2024年最新常用数字温度传感器价格报价、厂家品牌的相关信息, 包括常用数字温度传感器参数、型号等,不管是国产,还是进口品牌的常用数字温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合常用数字温度传感器相关的耗材配件、试剂标物,还有常用数字温度传感器相关的最新资讯、资料,以及常用数字温度传感器相关的解决方案。

常用数字温度传感器相关的论坛

  • 气相色谱仪常用温度传感器 —— 热敏电阻温度传感器

    气相色谱仪常用温度传感器 —— 热敏电阻温度传感器

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用温度传感器[/font][font='Times New Roman'] [font=Times New Roman]—— [/font][/font][font=宋体]热敏电阻温度传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]热敏电阻是利用金属氧化物半导体材料的电阻值随温度变化特性制成的热敏元件,与常见的热电阻相比,其电阻温度系数更高,可以获得更高的温度检测灵敏度。热敏电阻成本较低、阻值随温度变化的曲线呈非线性、不同元件之间的特性分散性较大、可测量温度范围较低,一般用于室温或者色谱仪的某些工作于较低温度的辅助单元。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]热敏电阻是金属氧化物半导体材料制成的测温元件,与热电阻(例如铂电阻)测温原理类似,温度变化会改变其电阻值。一般分为负温度系数([/font][font=Times New Roman]NTC[/font][font=宋体])热敏电阻、正温度系数([/font][font=Times New Roman]PTC[/font][font=宋体])热敏电阻和临界温度([/font][font=Times New Roman]CTR[/font][font=宋体])热敏电阻三类。[/font][/font][font=宋体][font=宋体]各类型的热敏电阻温度特性曲线如图[/font][font=Times New Roman]1[/font][font=宋体]所示,[/font][font=Times New Roman]CTR[/font][font=宋体]热敏电阻在工作温度范围内,当温度超过确定数值时,其电阻值发生急剧变化,主要用于温度开关。[/font][font=Times New Roman]PTC[/font][font=宋体]热敏电阻在工作温度范围内阻值随温度上升而增大,常用于电气设备的过热保护、电路中的限流元件或发热源的定温控制。[/font][/font][font=宋体][font=Times New Roman]NTC[/font][font=宋体]热敏电阻温度特性与[/font][font=Times New Roman]PTC[/font][font=宋体]相反,在工作温度范围内,电阻随温度升高而降低,并且其低温下电阻值较高,电阻值随温度的变化率较大,常用于温度补偿或者温度测量领域。因其较大的电阻变化率,容易得到较高的测温精度。[/font][/font][align=center][img=,264,244]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231550112039_9513_1604036_3.jpg!w551x510.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]热敏电阻温度特性曲线[/font][/font][/align][font=宋体][font=宋体]热敏电阻可根据使用要求,封装加工成各种形式的探头,例如棒状、盘装、珠装等,其尺寸较小、响应速度快、灵敏度高,典型外观如图[/font][font=Times New Roman]2[/font][font=宋体]所示。其工作温度范围为[/font][font=Times New Roman]-50~350[/font][font=宋体]℃,高精度测定温度情况下建议使用温度不超过[/font][font=Times New Roman]150[/font][font=宋体]℃。热敏电阻一般常用于数值较低范围温度的检测,例如实验室室温检测或者色谱仪内部器件散热片或仪器外壳的温度测定。[/font][/font][align=center][img=,278,132]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231550224349_7538_1604036_3.jpg!w535x253.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]热敏电阻外观[/font][/font][/align][font=宋体][font=宋体]某些分析条件需要[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的柱温箱工作温度于接近室温(例如[/font][font=Times New Roman]35[/font][font=宋体]℃),此种情况下高稳定性和高精度的温度控制较为困难,实验室室温的变化会影响柱温箱的温度稳定和控制精度。色谱控制系统需要根据室温的数值确定柱温箱温度的控制参数,此种场合下,测定室温经常会用到热敏电阻用于柱温箱温度的辅助控制。[/font][/font][font=宋体][font=宋体]某些电气或者光学部件(例如[/font][font=Times New Roman]FPD[/font][font=宋体]检测器的干涉滤光片、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的氘灯等部件)要求的工作环境温度较低,基于对部件的保护,热敏电阻一般会安装在这些部件的散热片上。当意外情况发生(例如断电或者散热风扇损坏)使部件温度超过其保护温度时,色谱系统将会自动启动散热风扇或者发出报警。[/font][/font][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]使用热敏电阻作为漏液传感器,实质利用了热敏电阻的测温原理。当[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统发生泄漏,泄漏出的液体接触热敏电阻表面,由于液体蒸发造成热敏电阻表面温度降低,色谱系统感知到其温度变化,会触发漏液报警。[/font][font=宋体][font=宋体]此外还有利用[/font][font=Times New Roman]PN[/font][font=宋体]结温度特性制成的半导体热敏元件,称为固态温度传感器或集成温度传感器。硅管的[/font][font=Times New Roman]PN[/font][font=宋体]结的结电压在温度每升高[/font][font=Times New Roman]1[/font][font=宋体]℃时下降约[/font][font=Times New Roman]2mV[/font][font=宋体],利用此特性,可以将硅二极管或者三极管制成[/font][font=Times New Roman]PN[/font][font=宋体]结温度传感器,其尺寸较小、线性良好、时间常数短、灵敏度高,测温范围一般为[/font][font=Times New Roman]-50~150[/font][font=宋体]℃。其安装位置和使用场合与热敏电阻传感器相同。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明热敏电阻和固态温度传感器的原理。[/font]

  • 气相色谱仪常用温度传感器 —— 热电阻温度传感器

    气相色谱仪常用温度传感器 —— 热电阻温度传感器

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用温度传感器[/font][font='Times New Roman'] [font=Times New Roman]—— [/font][/font][font=宋体]热电阻温度传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]温度测量的方法较多,按照待测介质是否与测量体接触,可以分为接触式和非接触式测温法两类。接触式测温传感器包括热电偶、热电阻、半导体温度计和双金属温度计等。非接触测温传感器主要为光学温度计。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]电阻温度传感器是利用导体或半导体材料电阻值随温度变化而变化的特性进行温度测量的,使用金属材料作为感温元件的传感器,称为热电阻。热电阻传感器主要用于[/font][font=Times New Roman]-200~500[/font][font=宋体]℃温度范围的测量。[/font][/font][font=宋体][font=宋体]大部分金属材料在温度升高时电阻将增大,其温度[/font][font=Times New Roman]-[/font][font=宋体]电阻特性关系大多呈现出非线性状态,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。一般需要在特定温度范围之内将特性关系线性化以方便使用。[/font][/font][align=center][img=,212,200]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300840031596_5169_1604036_3.jpg!w690x652.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]热电阻温度[/font][font=Calibri]-[/font][font=宋体]电阻关系曲线[/font][/font][/align][font=宋体]金属热电阻的温度特性方程一般表示为:[/font][align=center][font=宋体][font=Times New Roman]R[/font][/font][sub][font=宋体][font=Times New Roman]t[/font][/font][/sub][font=宋体] [font=Times New Roman]= R[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=Times New Roman][1+[/font][font=宋体]α([/font][font=Times New Roman]t-t[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体])[/font][font=Times New Roman]][/font][/font][/align][font=宋体][font=宋体]对于大多数金属,[/font][font=宋体]α并非常数,但是在一定范围内此系数变化不大,可以近似认为是常数。[/font][/font][font=宋体][font=宋体]热电阻温度传感器测量精度高、性能稳定、灵敏度高,最常用的金属热电阻为铂电阻。不同型号铂电阻通常用分度号进行区别,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]最常用的铂电阻为[/font][font=Times New Roman]Pt100[/font][font=宋体],即在零摄氏度下,其电阻值为[/font][font=Times New Roman]100[/font][font=宋体]Ω,测温范围为[/font][font=Times New Roman]-100~650[/font][font=宋体]℃。[/font][/font][font=宋体]铂热电阻化学性质稳定,可以在氧化性介质中工作,甚至在较高温度下也能保持物理化学性质稳定、精度高、电阻率大、性能可靠,在温度传感器中的广泛应用。[/font][align=center][font=宋体]铂电阻传感器的基本构造[/font][/align][font=宋体]金属热电阻按结构分为装配式、铠装式和薄膜式,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]主要使用装配式和薄膜式。装配式热电阻由电阻丝和支架组成,并以陶瓷或者金属外壳包覆,一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口、检测器和其他金属部件中。其体积较小,温度传导速度较慢,需要将其紧密贴合在金属部件内部,有些厂家加装有金属箔或者导热硅脂以改善其导热速度。[/font][font=宋体][font=宋体]薄膜式铂电阻一般采用显微照相和平板印刷光刻技术,是铂金属膜附着在耐高温的陶瓷基座上,体积可以制作的很小,热容量小,传热速度快,如图[/font][font=Times New Roman]2[/font][font=宋体]所示。薄膜式铂电阻一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的柱温箱部分的温度测量和控制。[/font][/font][align=center][img=,259,184]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300840145810_173_1604036_3.jpg!w593x421.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]装配式铂电阻[/font][/font][/align][align=center][img=,132,133]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300840242686_9605_1604036_3.jpg!w252x252.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]薄膜式铂电阻[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中不同部件的温度控制系统,存在较大的温度传导速度差异,一般色谱柱温箱采用流动空气加热,导热速度较快,那么通常使用薄膜式铂电阻。如果在色谱柱温箱中使用导热速度较慢的装配式铂电阻,那么可能会导致色谱柱柱温发生震荡,往往会导致正弦波状态的基线扰动,影响高灵敏度分析结果。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口和常见检测器如[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]对温度细微变化不慎敏感,铂电阻一般选用装配式,但对温度敏感的检测器,例如[/font][font=Times New Roman]TCD[/font][font=宋体]、[/font][font=Times New Roman]ECD[/font][font=宋体]等,如果铂电阻不良或者导热不良,也会导致温控不良,也会导致正弦波状态的基线,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,444,96]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300840321564_7993_1604036_3.jpg!w690x148.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]温控不良导致正弦波状基线[/font][/font][/align][font=宋体]铂电阻长期工作于高温环境下,如果色谱实验室空气中存在较多腐蚀性气体杂质、或者湿度较大、或仪器实验台存在一定程度的振动,铂电阻或者其引线可能发生损坏,例如铂电阻阻值发生变化或者绝缘不良。可能会导致色谱柱部件温度不稳定,实际温度偏离设定值较大,或者色谱系统报警温度显示或控制错误。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单讲述热电阻基本原理。[/font]

  • 【原创大赛】色谱仪常用电气部件 温度传感器之二

    【原创大赛】色谱仪常用电气部件  温度传感器之二

    色谱仪常用电气部件 温度传感器之二 热电偶、热敏电阻、半导体温度传感器1 热电偶:两种不同材质的导体构成闭合回路,如果两端存在温度差,回路两端就会产生电压。这就是热电偶的基本原理,即塞贝克效应。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457066_1604036_3.jpg 图1 热电偶原理图http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457067_1604036_3.jpg图 2 热电偶图片热电偶的信号较弱,一般只有数个mV的电压。但是温度测量范围较宽,比较铂电阻更加耐高温。一般常见于高温应用场合,例如马弗炉的温度控制系统。在色谱仪器上,一般用于温度保护。2 热敏电阻有点类似热电阻,温度改变后,元件的电阻值发生变化。但是其工作机理和热电阻不同。色谱仪中常用的为负温度系数热敏电阻。下图为负温度系数热敏电阻的温度-阻值特性曲线。温度越高,元件的电阻值越小。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457068_1604036_3.jpg图3 热敏电阻的温度-电阻曲线显著的和热电阻不同的,热敏电阻的阻值比较大,室温下可能电阻值在数十k欧姆,相对于100欧姆左右的铂电阻,温度变化,热敏电阻阻值的变化十分显著。所以热敏电阻对温度有较高的灵敏度,但是热敏电阻的工作范围较窄,一般不超过150度。不同器件之间性能的重复性也比较一般。如图,液相色谱仪使用的温度传感器。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092213_457069_1604036_3.jpg实用案例:在Shimadzu的泵或者检测器模块前部右下角可以看到一个红色的小元件,是漏液传感器,其实就是负温度系数的热敏电阻。漏液传感器内使用了两个热敏电阻,有一个的位置比较低,如果系统泄漏,液体附着在热敏电阻的表面,液体的蒸发使得元件的温度降低,电阻阻值增大,系统检测到这一变化(其实是温度的变化),便认为系统泄漏。http://ng1.17img.cn/bbsfiles/images/2013/08/201308092214_457070_1604036_3.jpg3 集成电路的温度传感器集成电路的温度传感器,温度范围和热敏电阻相似。但是有较好的各器件之间的重复性和温度线性,应用场合越发广泛。小结: 简单介绍了常见的几种温度传感器原理

  • 热电传感器(常用传感器之一)

    热电传感器是常用传感器之一 热电传感器是一种将温度转换成电量的装置,包括电阻式温度传感器、热电偶传感器、集成温度传感器等。 电阻式温度传感器是利用导体或半导体的电阻值随温度变化的原理进行测温的。电阻式温度传感器分为金属热电阻和半导体热电阻两大类,一般把金属热电阻称为热电阻,而把半导体热电阻称为热敏电阻。目前最常用的热电阻有铂热电阻和铜热电阻,铂热电阻的特点是梢度高,性能稳定,工业上广泛应用铂热电阻进行一200^-+850℃范围的温度侧量,还作为复现国际温标的标准仪器;铜热电阻的电阻沮度系数高.线性度好,且价格便宜,应用于一些侧量精度要求不高且温度较低的场合,其侧温范围为一50-+1501C,但由于铜易氧化,热惯性大,不适宜在腐蚀性介质中或高温下工作.热敏电阻的电阻温度系数大,灵敏度高,尺寸小,响应速度快,电阻值范围大((0. 1^-100kS1),使用方便,但温度特性为非线性.互换性差,测温范围小(一般在一50-200). 热电偶传感器是工程上应用最广泛的温度传感器。它构造简单.使用方便,具有较高的准确度、稳定性及复现性,温度测量范围宽(-200^-+3500'C ),动态性能好,在温度测最中占有重要的地位。 集成温度传感器是利用晶体管PN结的电流电压特性与温度的关系.把感温PN结及有关电子线路集成在一个小硅片上.构成一个专用集成电路芯片。它具有体积小、反应快、线性好、价格低等优点,但受耐热性能和特性范围的限制,只能用来测150℃以下的温度。如AD590是应用最广泛的一种集成温度传感器.它具有内部放大电路,再配上相应的外电路,可方便地构成各种应用电路.来源——中国仪器仪表网

  • 【原创大赛】色谱仪的常用电器部件 温度传感器之铂电阻

    【原创大赛】色谱仪的常用电器部件    温度传感器之铂电阻

    色谱仪的常用电器部件 温度传感器之铂电阻概述:简单介绍色谱仪常用的温度传感器原理 铂电阻温度是色谱仪运行中极为重要的控制参数。尤其是气相色谱仪,柱温的变化会极大的影响待分析物质的色谱保留性能。精确、稳定的温度控制,对良好的色谱分析结果具有重要的意义。温度控制系统最为关键的是温度传感器,其可以将温度信号转换成电信号,传送给控制部件。色谱仪中常见的温度传感器有热电偶、热电阻、热敏电阻、集成电路温度传感器等等。1 铂电阻常见的铂电阻外观如图。http://ng1.17img.cn/bbsfiles/images/2013/08/201308072156_456738_1604036_3.jpg内部结构如图:http://ng1.17img.cn/bbsfiles/images/2013/08/201308072156_456739_1604036_3.jpg铂电阻测温的基本原理是:在一定温度范围内,金属导体的温度越高,电阻越大。色谱仪中常用铂电阻是Pt100,在0摄氏度时,该电阻的阻值为100欧姆,随着温度升高,阻值逐渐增大。具体的数学公式,因为篇幅的问题,不做赘述。http://ng1.17img.cn/bbsfiles/images/2013/08/201308072156_456740_1604036_3.jpg图: 铂电阻温度-电阻值曲线但是在代换铂电阻的时候,要注意铂电阻的封装形式,不要只考虑阻值。铂电阻的时间常数比较重要。阻值相同的铂电阻,不能简单的来代换。否则会出现温度控制不稳定的现象。气相色谱仪柱温箱温度惯性较小,那么就需要较小温度系数的铂电阻。小时间常数的铂电阻一般会有较小的封装体积。如图,薄膜式的铂电阻:http://ng1.17img.cn/bbsfiles/images/2013/08/201308072156_456741_1604036_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/08/201308082214_456942_1604036_3.jpg(补充图片)案例:Shimadzu的GC-14C,柱温不能良好控制,柱温波动较大,造成系统报警。其原因就是用户自行维修时使用了“惯性”较大的金属封装铂电阻。为了解释这个现象,我们需要大致理解一下柱箱温度控制的原理。温度控制的一般基于负反馈原理。例如,某个瞬间铂电阻检测到温度下降,将温度下降的变化传输给主控单元,主控单元发指令使得加热部分工作,于是温度升高。反之亦然。但是温度信号有自己的特点,温度不会像电信号那样发生迅速的变化。铂电阻感知到温度变化需要一定的时间,加热单元工作,使得柱箱温度上升也需要一段时间,这就是所谓的“惯性”。如果时间配合不合适,就会发生温度振荡。柱箱本身温度变化的热惯性较小,而金属封装的铂电阻有较大的热惯性。铂电阻的时间常数不匹配,最终导致了柱箱温度的振荡。

  • 智能温度传感器的发展趋势

    智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。   能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化   目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计   传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。   为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。   LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。   为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。   最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器   虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器   网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统   单片系统(

  • 关于集成化与数字化传感器的应用

    关于集成化与数字化传感器的应用集成传感器概述 集成传感器(integrated sensor)是在半导体集成技术、分子合成技术、微电子技术及计算机技术等基础上发展起来的。集成传感器的种类很多,可大致归为以下两种类型‘传感器本身的集成化和传感器与后续电路的集成化。 1.传感器本身的集成化 传感器本身的集成化可分为两种情况: 一种是具有同样功能的传感器的集成化。如电荷藕合器件(CCD)就是在一块半导体芯片上集成了许多光电传感器的集成化器件,又如将多个相同的光敏二极管“集成”在同一芯片上成为摄像仪中的光敏器件。这种集成化的特点是把对一个点的测量扩展成对一条线、一个平面或对空间的测量。 另一种是不同功能传感器的集成化,使一个传感器具有多种功能。如把温度变送器和湿度传感器集成在一起,可同时枪测温度和湿度。2.传感器与后续电路的集成化 此类集成化也可分为两种情况· ·一种是传感器和输出电路的集成化。如光电传感器和其放大电路集成在一起,可减少干扰.提高灵敏度;在硅片上制造薄膜传感器及放大器而构成的加速度传感器等。 另一种是将传感器和后续数据处理电路集成在一起.如微机化的传感器,既具备传感器的功能,又具有记忆及运算的功能、信息处理及非线性滤波的功能、多重翰人系统的构成一与同一数据的周期重复处理功能,以及系统的调节与控制的功能等。因此,这种传感器是一种多功能化的传感器. 总的来说,集成传感器具有如下特点: (”成本低.由于集成电路工艺已十分完善,利用这种技术可降低产品的成本。 (2)小型化.以硅技术为基础,将多个相同或不同的器件集成在一起,使许多引线变为芯片的内部连线,可使体积大大缩小. (3)性能改善。集成传感器可以把温度补偿、信号放大及处理电路做在同一块芯片上,这样就使环境沮度变化和电源波动等外界因素对输出信号的影响减至最小。 (4》可靠性提高.由于集成化的结果,使外引线变为内引线,器件的焊点大大减少,可靠性得以提高。 (5)接11灵活性增加。可在传感器芯片上设计阻抗变换电路、电平变换电路等,以适应不同的要求,便于与外电路连接。来源:中国仪器仪表网

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 气相色谱仪常用温度传感器 —— 热电偶温度传感器

    气相色谱仪常用温度传感器 —— 热电偶温度传感器

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用温度传感器[/font][font='Times New Roman'] [font=Times New Roman]—— [/font][/font][font=宋体]热电偶温度传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]热电偶传感器([/font][font=Times New Roman]Thermocouple[/font][font=宋体])是工业生产中常用的接触式测温装置,具有性能稳定、测温范围大、信号可以远距离传输、结构简单、使用方便等特点。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者外围设备中用作温度测定或者温度保护器件。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]将两种不同材料的导体组成一个闭合环路时,只要两个结合点[/font][font=Times New Roman]T[/font][font=宋体]和[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的温度不同,在该回路中就会产生电动势,此种现象称为塞贝克效应([/font][font=Times New Roman]Seebeck effect[/font][font=宋体],属于热电效应),回路产生的相应电动势称为热电势。[/font][font=Times New Roman]T[/font][font=宋体]结合点温度较高,称为测量端或工作端,测温时被置于被测介质(或温度场)中,[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体]结合点温度较低,称为参考端或自由端。[/font][font='Times New Roman'] [/font][align=center][img=,312,86]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300838430433_9363_1604036_3.jpg!w468x129.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]热电偶原理图[/font][/font][/align][font=宋体][font=宋体]这两种不同材料导体的组合即称为热电偶,[/font][font=Times New Roman]A[/font][font=宋体]与[/font][font=Times New Roman]B[/font][font=宋体]两种不同材料的导体称为热电极。[/font][/font][font=宋体][font=宋体]实验证明,回路的总电势[/font][font=Times New Roman]E[/font][/font][sub][font=宋体][font=宋体]α[/font][/font][/sub][font=宋体]与热电偶两端的温差成正比:[/font][align=center][font=宋体][font=Times New Roman]E[/font][/font][sub][font=宋体][font=宋体]α[/font][/font][/sub][font=宋体][font=宋体]([/font][font=Times New Roman]T[/font][font=宋体])[/font][font=Times New Roman]=[/font][/font][sub][font=宋体] [/font][/sub][font=宋体][font=宋体]α([/font][font=Times New Roman]T - T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体])[/font][/align][font=宋体][font=宋体]式中[/font] [font=宋体]α为与材料有关的系数。[/font][/font][font='Times New Roman'][font=宋体]在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即[/font][/font][font=宋体]热电偶工作[/font][font='Times New Roman'][font=宋体]不受第三种金属接入回路中的影响[/font][/font][font=宋体],称为热电偶的中间导体定律[/font][font='Times New Roman'][font=宋体]。因此,在热电偶测温时可接入测量仪表,[/font][/font][font=宋体]通过[/font][font='Times New Roman'][font=宋体]测得热电动势后[/font][/font][font=宋体]获知[/font][font='Times New Roman'][font=宋体]被测介质的温度。[/font][/font][align=center][img=,278,113]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300838517478_4227_1604036_3.jpg!w444x181.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]热电偶实际工作状态图[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]理论上任何两种不同材料导体均可以组成热电偶,但为了准确可靠的测量温度,对组成热电偶的材料必须进过严格的选择。良好性能热电偶材料一般需要满足以下条件:热电势变化较大、热电势[/font][font=宋体]——温度关系尽量接近线性关系、物理化学性质稳定、容易加工、重现性好、有良好的的互换性、易于批量生产。常见的热电偶材质一般有铂铑合金、铁[/font][font=Times New Roman]-[/font][font=宋体]康铜、铬[/font][font=Times New Roman]-[/font][font=宋体]康铜、镍铬硅[/font][font=Times New Roman]-[/font][font=宋体]镍硅和钨[/font][font=Times New Roman]-[/font][font=宋体]铼等。[/font][/font][font=宋体][font=宋体]热电偶温度测量范围较宽,不同电极材料热电偶的温度测量范围不同,一般温度范围为[/font] [font=Times New Roman]0[/font][font=宋体]℃[/font][font=Times New Roman]~1800[/font][font=宋体]℃,钨[/font][font=Times New Roman]-[/font][font=宋体]铼材料制成的热电偶测量温度可达[/font][font=Times New Roman]2300[/font][font=宋体]℃。由于影响其工作因素较多,与热电阻传感器相比,热电偶实现高精度的温度测定难度较大,但热电偶可以测定更高的温度。[/font][/font][font=宋体][font=宋体]热电偶结构形式有普通型、铠装型和薄膜热电偶,图[/font][font=Times New Roman]3[/font][font=宋体]所示为套管热电偶(铠装型),可以制作成细长的形态,使用中可以任意弯曲,测温热容量小、动态响应快、机械强度高、可安装于机构复杂的装置上。[/font][/font][align=center][img=,196,123]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300838586054_4890_1604036_3.jpg!w690x433.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热电偶外观[/font][/font][/align][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统中,经常采用热电阻(铂电阻)做为高精度温度测量和控制器件,热电偶用作温度保护器件。当意外情况发生,造成色谱仪某部件严重超温,热电偶仍旧可以正常工作,启动色谱系统断开加热。[/font][font=宋体]某些[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]外围设备,例如热解析或吹扫捕集进样器内部温度测量和控制也会使用到热电偶传感器,可以实现高响应速度和宽温度范围的测控。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和外围设备在进行计量检定时,测定柱箱、顶空炉温等部件的电子温度计,也经常会使用到热电偶传感器,可以准确迅速的测定色谱仪柱温箱的温度变化。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]热电偶传感器的原理和使用注意事项。[/font]

  • 色谱仪器常用传感器 气敏传感器

    色谱仪器常用传感器  气敏传感器

    [align=center][font=宋体][font=宋体]色谱仪器常用传感器[/font] [font=宋体]气敏传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]气敏传感器是用来检测气体类别、浓度和成分的传感器,对于环境保护和安全监督方面起着极重要的作用。气敏传感器可鉴别和检测的气体种类繁多,型号和工作原理差异也比较大。气敏传感器的应用主要有:酒后驾驶的现场速测、一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂([/font][font=Times New Roman]R11[/font][font=宋体]、[/font][font=Times New Roman]R12[/font][font=宋体])的检测、人体口腔口臭的检测等。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]简介[/font][/align][font=宋体]气敏传感器又称气体传感器,是将气体成分与浓度变化等信息转变成相对应的电信号,以此达到对气体成分与浓度测量的设备。气敏传感器是传感器领域的非常重要的一个方向,在大气环境、气体监测、航天航空、工业生产、汽车排放监控、食品安全等诸多领域有着广泛的应用。[/font][font=宋体]由传感器的组成及其工作特性,可以将气体传感器分成:半导体型气体传感器、接触燃烧型气体传感器、固体电解质型气体传感器、表面声波型气体传感器、光学型气体传感器、石英型振荡型气体传感器、电化学型气体传感器等。[/font][font=宋体][font=宋体]气敏传感器需要直接接触待测的气体环境,外观特征较为明显,一般情况下带有金属网格外壳以利于气体流通和感知,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,207,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300831065877_198_1604036_3.jpg!w672x363.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]气敏传感器外观[/font][/font][/align][font=宋体][font=宋体]气敏传感器允许温度环境较低,一般不高于[/font][font=Times New Roman]150[/font][font=宋体]℃。色谱工作者或者维修员,可以在某些型号的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]柱温箱中找到此部件。[/font][/font][font=宋体]常规[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]模块的漏液检测,经常采用热敏电阻传感器。当色谱系统泄漏的液体流动相接触传感器表面,由于液体流动相的蒸发,热敏电阻阻值发生变化,色谱系统感知到此电阻变化即确认系统泄漏。对于柱温箱,热敏电阻的检测方式不太适用,如果柱温较高,泄漏的少量流动相可能会较快气化,不能接触热敏电阻表面,而采用气敏传感器可以良好解决这一问题。[/font][font=宋体]对于工作在一定温度下的柱温箱,少量的有机溶剂渗漏和蒸发,都可以迅速被气敏传感器感知到,并发出报警,提醒色谱工作者进行检查和处理。[/font][font=宋体]但是需要注意气敏传感器对于不同化学组成的流动相泄漏,其检测敏感程度不同。一般挥发性较强的有机流动相,气敏传感器的灵敏度较高,水相检测灵敏度相对较低。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明气敏传感器的基本原理。[/font]

  • 花制冰机的温度传感器的作用及温控原理

    制冰机是一种将水通过蒸发器由制冷系统冷却后生成冰的制冷机仪器。雪花制冰机的温度传感器有三个,分别设置在搅冰机构上、冷凝器上、冰桶上。 搅冰机构上的温度传感器是用来感受温度是否比较低,甚至是传动机构阻力太大,也就是说当温度比较低时,水流受阻,搅冰机构需要的扭矩变大,电机输入电流猛增,这时候需要冲冰,打开电磁阀,让压缩机的冷媒直接进入搅冰机构,而不是经过冷凝器后再进入搅冰机构,这样的一些列工作的完成是由温度传感器来检测和控制系统进行的。 在冷凝器上的温度传感器是这样工作的,当冷凝器上的温度过高时,风扇电机产生的冷却效果来不及冷却,这时候温度传感器感受到的温度过高,通过A/D转换,把模拟信号转换成数字信号,通过程序进行判断,发出指令,控制压缩机电机的继电器是否做出相应,最终控制着压缩机的工作状态。 冰桶上的温度传感器的作用是控制着冰块是否达到一定的高度,当冰块达到一定的高度后,感温传感器感受到,温度比较低时,一般设置的温度为7度,也是通过A/D模块进行模数转换,通过程序判断,作出相应的指令,指令发出,控制着整个系统的通断判断,最终控制着系统的运行与否。

  • 基于温度传感器的新型多点测温系统设计

    1、温度传感器DS18B20介绍    DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。    DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。    2、系统硬件结构    系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。    系统各模块分析如下:    2.1DS18B20与单片机的接口电路    DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。    2.2键盘及显示    键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。    2.3报警电路    当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。    3、软件设计及流程    3.1下位机软件    系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。    3.2上位机软件    系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。    4、结论    本系统具有如下特点:    a.结构简单,成本低廉,维护方便。    b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。    c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。    d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。    e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 插入深度如何影响影响热电偶温度传感器

    热电偶是最常用的测温器件之一,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。因为热电偶温度传感器具有测量范围宽、精度高以及响应时间快等优点,所以得到广泛的使用。本篇文章主要探讨插入深度对热电偶温度传感器的影响。 热电偶测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶温度传感器与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些,陶瓷材料绝热性能好,可插入浅一些。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。

  • 【资料】解析传感器的基本知识应用

    一、传感器的定义  国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。  二、传感器的分类  目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:  1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器  2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。  3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。  关于传感器的分类:  1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;  2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;  3.按照传感器转换能量的方式分:  (1)能量转换型:如:压电式、热电偶、光电式传感器等;  (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;  4.按照传感器工作机理分:  (1)结构型:如:电感式、电容式传感器等;  (2)物性型:如:压电式、光电式、各种半导体式传感器等;  5.按照传感器输出信号的形式分:  (1)模拟式:传感器输出为模拟电压量;  (2)数字式:传感器输出为数字量,如:编码器式传感器。  三、传感器的静态特性  传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。  四、传感器的动态特性  所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。  五、传感器的线性度  通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。  拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。  六、传感器的灵敏度  灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。  它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。  灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。  当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。  提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。  七、传感器的分辨力  分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。  通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。  八、电阻式传感器  电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。  九、电阻应变式传感器  传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。  十、压阻式传感器  压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。  用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。  十一、热电阻传感器  热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。  十二、传感器的迟滞特性  迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。  迟滞可由传感器内部元件存在能量的吸收造成。   压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过 外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是 这样的,所以这决定了压电传感器只能够测量动态的应力。

  • 【分享】电量隔离传感器在数字化技术中的应用

    一、概述 电量隔离传感器变送器是针对工程中的电量检测(监测),提高系统的整体抗干扰能力,而研制开发的一种小体积、高性能的电量测试部件(产品)。 电量隔离传感器变送器可以对现场的大电流、高电压、功率、频率、相角、电度等电参量进行隔离测量和变换,也可以对各种微弱信号(如各种桥路信号)进行隔离放大和变换,将其调理后,变换成符合国际通用标准的电压、电流、频率等模拟信号或变换成数字量、开关量状态等信号输出。这些输出信号可以和传统的指针式仪表相接,也与现代的数字式自控仪表、各种AD转换器以及计算机系统直接配接,从而可以形成一个高可靠的工业检测(监测)或控制系统。 由于电量隔离传感器在应用中,用户不需做二次开发工作,高电压或大电流信号可以直接接入产品,(通过端子、插针输入或穿孔方式输入),就可以得到相应的输出信号。因此电量隔离传感器作为信号调理、隔离和变换功能摸块,是工业控制和数据采集系统中比较理想的变送器产品。 随着科学技术的不断发展,工业控制或检测(监测)系统对电量隔离传感器的要求也越来越高,特别是在产品的稳定性、检测精度和功能方面。由于数字化产品不论其性能还是功能,如非线性校正和小信号处理方面,模拟产品是不可比拟的。因此,电量隔离传感器的数字化是一种必然趋势。 下面就电量隔离传感器的工作原理和其数字化技术问题作一个简述,供大家参考。 二、电量隔离传感器基本工作原理 由于电量隔离传感器产品的被检测对像主要是电流和电压信号,所以下面主要介绍电流和电压信号的检测原理。 1、交流信号检测原理 交流信号又分为交流电压和电流信号。图1为交流电流信号的检测原理框图,图2为交流电压信号的检测原理框图,由CT和PT对信号进行隔离,电流为穿孔输入方式,电压为端子接线输入方式。 [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291744_192765_1636985_3.gif[/img]图1 交流电流信号检测原理框图[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291744_192766_1636985_3.gif[/img]图2 交流电压信号检测原理框图其中,CT为电流互感器,PT为电压互感器,输出一般为0~5V或4~20mA。

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 【转帖】线性温度传感器使用指南

    1.什么是线性NTC温度传感器?   线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通以工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。 2.线性NTC温度传感器的主要特点是什么?   这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。 3.线性NTC温度传感器的测温范围是如何规定的?   就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路的温度补偿之用。 4.延长线的选用应遵循什么原则?   一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。 5.基准电压的含义是什么?   基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。其计算公式为:V(T)=V(0)+S×T示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。这一点正是线性温度传感器优于其它温度传感器的可贵之处。 6.温度系数S的含义是什么?    温度系数S是指在规定的工作条件下,传感器的输出电压值的变化与温度变化的比值,即温度每变化1℃传感器的输出电压变化之值: S=△V/△T(mV/℃)。温度系数是线性温度传感器做为温度测量元件的物理基础,其作用与热敏电阻的B值相似,这个参数在整个工作温度范围内是同一值,即-2mV/℃,而且各种型号的传感器也是同一值,这一点传统的热敏电阻温度传感器是无可比拟的。 7.互换精度这一参数有什么意义?   互换精度是指在同一工作条件下(同一工作电流、同一温场)对于同一个确定的理想拟合直线,每一只传感器的电压V(T)—温度T曲线与该直线的最大偏差,这个偏差通常按传感器的温度—电压转换系数S折合成温度来表示。由于传感器的输出线性化及温度—电压转换系数相同,即在测温范围内全程互换,所以互换精度表示了基准电压值的离散程度,即用基准电压值的离散值折合成温度值的大小来描述整批传感器之间的互换程度。一般分为三级:I级的互换偏差不大于0.3℃;J级不大于0.5℃;K级不大于1.0℃。 8.线性度的意义是什么?   线性度是描述传感器的输出电压值随温度变化的线性程度,实际上也就是传感器输出电压在工作温度范围内相对于理想拟合直线的最大偏差。一般情况下,其线性度的典型值为±0.5%,很显然传感器的线性度越高(其值越小),对于仪表的设计就越简单,在仪表的输入级完全不必采用线性化处理。 9.为什么说线性温度传感器是规范化输出?   所谓规范化输出,就是在0℃温度点上传感器在规定的工作条件下,输出的电压值仅限于某一小范围内,即使不互换,其基准电压值仅限定在690-710mV之间,这样在电路设计时,易于在宏观上把握传感器的输出情况,不论在桥路设计还是温度补偿,只要在690-710mV之间考虑,在调试中稍加调整即可。而不象普通的热敏电阻由于型号不同,其阻值也不同,针对不同的型号,需进行不同的设计计算。所以线性温度传感器的规范化输出,可以使仪表电路实现规范化设计。 10.用户如何检验线性温度传感器?   用户在购买传感器后,可在恒流的条件下,依温区的大小,采用两点或三点测试,以检验互换精度、线性度和温度系数。一般情况下,最简单的检验方法只要检验基准电压值即可。而所有电气参数,在交货时均有随货参数表(合格证),以提供该批传感器的详细参数指标。对测试条件有如下要求:恒流源:100μA±0.5%;恒温温场:波动度:≤±0.05℃;测试仪表:41/2或51/2数字电压表。 11.实际使用温度传感器是否一定要采用恒流源供电?   一般情况下是不必要的,桥路恒压供电完全可以(参见图1、图2)。这是因为在100μA左右的电流条件下,传感器的温度—电压转换系数变化量很小,可以给一个实测数量级的概念:在100μA时 S=-2mV/℃在40μA 时 S=-2.1mV/℃在1000μA时S=-1.9mV/℃而在实际的桥路恒压供电时,其电流变化不会有如此大的幅度。恒压供电时,传感器负载电阻值如何确定?   恒压供电时,负载电阻接在电源与传感器正极之间,信号从传感器正极与负极之间输出,设计电阻值R时,以在0C时使传感器工作电流为100μA即可。如传感器的基准电压为V(0)(mV),恒压源为VDD(mV),则R=(VDD-V(0))(mV)/0.1(mA)。对于计算出的电阻值R,如果实际的电阻没有这种阻值,可就近阻值选用,对测温精度没有影响。 12.线性温度补偿元件做为电路温度补偿有什么优越性?   这主要考虑热敏元件的输出规范化及温度系数的一致性,便于设计。另外,由于温度系数与晶体管电路中的晶体管基、射极电压的温度系数相同,做为稳定晶体管电路的工作点的基极偏流元件是非常合适的。而将几只元件串联使用,可以通过并联电位器方式,通过电位器的调节出不同的温度系数,以实现精确的温度补偿作用(参见图3)。这种温度系数可调的补偿元件,无须繁杂设计,对元件的工作电流也无严格要求,这也是这种线性热敏元件用于温度补偿的一大优点。 13.稳定性的含义是什么?   稳定性是指传感器的基准电压值年漂移量,这个漂移量再按温度—电压转换系数折合成温度值,即稳定性=±△V/S/年。线性温度传感器的稳定性为±0.05℃/年。这一参数描述了传感器在各种使用条件下保持原有特性的能力。 14.长线传输对传感器信号是否有影响?   应当说影响不大,一般情况下传输距离可达1000米以上。如果距离再远,可以考虑将传感器输出的信号在当地转换成数字量,这样可以方便地实现更远距离的传输。

  • 你见过哪些常用的微型传感器呢

    [align=left]微型传感器是一种高科技传感器。与以前的传感器相比,该微型传感器在使用时具有非常好的效果。对人们的帮助可以说是非常大的。目前,市场上可以看到许多微型传感器,它们可以适应不同的需求领域。、的耐用性也很强。[/align](1)微型传感器的概念微型传感器指的是经过精密加工的传感器。它具有非常好的灵敏度和处理能力,可以在芯片上形成一个相对强大的集成传感器。它可以在使用时独立工作,有效地实现传感器网络的组成。(二)微型传感器的特点与其他传感器相比,微型传感器在体积和质量上有很大提高,重量轻,重量轻,便于日常使用。由于其高质量配置,其功耗相对较低。它对制造商来说也非常方便,因为它具有低成本、以便于存储。、适合批量生产。最特别的是这种微型传感器的智能性相对较强,在市场上具有很好的竞争优势。(三)常见的微型传感器1化学微型传感器:最常见的传感器类型是离子传感器。它主要依赖于溶液的离子活性转化为电信号。使用时具有良好的识别性和选择性,可以很好地适应化学。、医疗和食品行业的要求。2生物微型传感器:生物微型传感器更常用于基因传感器。它们主要依靠传感器上形成的双链DNA来分辨和传输信号。实际上,对于诸如、光、和声音之类的物理信号来说,它是快速的。反应。3物理微型传感器:物理微型传感器的主要代表是表面声波传感器,它使用声学表面技术和MEMS技术快速处理非电信息。它的变换能力也很强。微型传感器在开发过程中得到了极大的改进,结合了许多新技术和使用了许多新材料,因此其适用性和使用范围也在不断扩大,而且应用程序也大大提高了员工的工作效率。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]压电薄膜传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨[/color][color=#333333]传感器https://mall.ofweek.com/category_5.html丨[/color][color=#333333]气压传感器丨[/color][color=#333333]硫化氢传感器丨一氧化碳传感器丨光离子传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]bm传感器丨电流传感器丨[/color][color=#333333]位置传感器丨[/color][color=#333333]风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 常用的风速传感器的基本安装方法

    [align=left]风速传感器固定在横臂上并安装在气杆上。存在许多类型的风撑杆,并且通常使用可通过连接三个金属管放置的普通类型的可跌落测试杆。安装在横臂两端的气缸上方的七芯和十二针插头分别用于连接风速传感器和风速传感器。在十字臂一端的气缸下方放置一个十二芯电缆插头,用于连接集电极的十二芯风向电缆。风速传感器的安装按以下顺序进行 [/align]1、组装风速传感器阅读风速传感器制造商准备的传感器使用说明书,按照说明组装拆卸后的包装风速传感器。然后,风速传感器安装在室内相应的横臂上。2、组装风速传感器风杆a、将铰接支架安装在风轴底座上,调节水平并用两个M20螺母固定 b、按地面厚度的顺序排列三根金属圆棒,并将风速传感器电缆穿过铰接式底座3、安装风速传感器a、将固定风速传感器的底座安装在风杆顶部 b、将风速传感器安装在空气杆顶部的底座上。如果横臂与地面齐平,则横臂为南北。如果要考虑盛行风,则应计算横臂与地面的角度,以便风速传感器可以指向北方。4、安装防雷装置将避雷针安装在挡风玻璃顶部,并用铜螺钉将下导体固定在避雷针上。如果接地装置位于挡风玻璃下方,则导线将沿着挡风板向下 如果接地装置位于电缆底座下方,则导电线将跟随电缆。每隔1米,系上一根电线。5、垂直风杆当使用垂直风杆时,很多人应该一起工作,风杆不能站在倒伏方向。6、方向检查使用镜像的北向箭头检查风速传感器上的北指是否指向北方。如果出现轻微错误,请松开脚螺钉并稍微转动整个风杆,使风速传感器上的北箭头指向北方。如果误差很大,请将其放在风杆上并转动横臂。风向正确后,检查风杆是否垂直,拧紧或松开电缆进行调整。7、完成检查应该没有特别紧密或特别松散的电缆,所有螺钉都拧紧。手持式气象站XCX-2-C手持式气象站XCX-2-D手持式风速和风向仪XC-HW降雨传感器XC-YL自动降雨站XCZ-YL温湿度常压传感器XC-BYX风速传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器https://mall.ofweek.com/category_44.html丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器[color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 温度传感器的标定方法

    温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。  由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。  由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。  温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。

  • 温度传感器

    哪个大侠对温度传感器很了解,谁能给接收一下?有没有分辨率达到0.005K的温度传感器,有的话,推荐一下。谢谢

  • 常用的光电传感器有哪些

    常用的光电传感器有哪些

    [font=宋体][back=white]光电传感器是一种能够将光信号转化为电信号的传感器,广泛应用于工业自动化领域。常用的光电传感器主要包括一体式光电传感器、分离式光电传感器和管道光电传感器。[/back][/font][font=宋体][back=white]一体式光电传感器具有结构简单、安装方便的特点,采用的是光电原理,需要在水箱上开孔安装,适合水箱不需要移动的设备。[/back][/font][back=white] [/back][font=宋体][back=white]分离式光电传感器是在传统结构上,将棱镜部位与电子元件分离,棱镜涉及到水箱上,外置感应无接触式,无机械运动寿命长,从而可以移动水箱,随时加水,不容易藏污纳垢,容易清洁。[/back][/font][align=center][img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/09/202309091352378805_6810_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][back=white]管道光电传感器是一种专门用于检测管道内缺水的的传感器。管道光电传感器具有结构紧凑、安装方便、响应速度快的特点,适用于管道缺水检测的场景。[/back][/font][font=宋体]光电管道传感器有效解决了浮球式光电传感器低精度卡死的问题。也解决了电容式的感度衰减导致的不可控性失效。[/font][font=宋体][back=white][url=https://www.eptsz.com]光电传感器[/url]在小家电领域起着重要的作用,可以随时检测液位的变化,从而提醒用户,给我们的生活带来了很大的便利。根据不同的应用需求,可以选择适合的光电传感器类型,以实现精确、可靠的检测。[/back][/font]

  • 数字高精度太阳净辐射传感器

    数字高精度太阳净辐射传感器

    数字高精度太阳净辐射传感器太阳辐射是地球一大气系统重要的能量来源,也是产生大气运动的主要动力,它从根本上决定着地球一大气的热状况。太阳辐射在地球上的分布和变化,在气候变化及气候模式研究中有重要意义。太阳辐射的计算方法之一就是利用有限的地面辐射观测站资料与影响太阳辐射的各类因子建立统计模型来实现的。太阳总辐射与大气组成、气体吸收、分子和粒子散射以及辐射传输理论研究密切相关。世界气象组织《气象仪器和观测方法指南》给出了6种太阳净辐射传感器灵敏度的校准方法,用太阳或用实验室辐射源校准太阳净辐射传感器:①在直接太阳光束下,与标准直接辐射表(简称标准直表)比对和与有遮挡的总表进行散射部分的比较(简称成分和法);②用太阳作为太阳净辐射传感器辐射源,与标准直表比对,此时太阳净辐射传感器应有一可移动的遮光盘(简称遮/不遮法);③用太阳作为辐射源,使用标准直表和2台被校准的总表交替测量总辐射和散射辐射(简称迭代法);[img=太阳净辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211150923452770_8442_4136176_3.jpg!w690x690.jpg[/img]④用太阳作为辐射源,在其他的自然的暴露状态下(例如,均匀的多云天空),与标准太阳净辐射传感器比较(简称平行比对法);⑤在实验室中,在人造光源光台上,以垂直入射方式或以某特定的方位角和高度角入射的方式,与预先在室外检定过的相似的太阳净辐射传感器比对(简称太阳模拟器法);⑥在实验室中,借助于一个模拟天空散射辐射的积分球腔体,与预先在室外检定过的相似的太阳净辐射传感器比对(简称积分球法)。太阳净辐射传感器的校准包括确定其灵敏度系数及其对环境条件的依从关系,如:温度、辐照度的强弱、光谱分布、角度分布、时间变化、仪器倾斜等。随着科学技术的发展,对太阳辐射测量数据准确度的要求也更加多样化,也就是说,不同的目的,对应着使用不同级别的太阳净辐射传感器,也就需要不同的量值传递方法。[img=太阳净辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211150924064203_4797_4136176_3.jpg!w690x690.jpg[/img]

  • 【原创】温度压强传感器出故障了

    10月份我们实验室的微波消解仪的温度压强传感器由于我们使用不当导致温度传感器异常,之后拿去供货商那里校准可以用了,之前的问题是1号罐的外管温度比内管温度高,现在温度是正常的,但是压强升不上去,直接导致温度升不上去,但是温度传感器是正常的,所以现在很郁闷啊,只有把温度压强传感器寄到总部请求帮忙,所以大家以后使用温度压强传感器的时候一定要小心使用,以免出现故障

  • 高低温环境测试箱的温度传感器安装和使用

    高低温环境测试箱的温度传感器安装和使用

    在[b]高低温环境测试箱[/b]中只有一个温度传感器,主要作用就是感应温度的变化,并转变成可输出的数字信号 关于高低温环境测试箱的温度传感器显示精度问题,主要是体现在安装和使用的环节上:[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/06/202106091647210732_1415_1037_3.jpg!w469x469.jpg[/img][/align]  1、传热系数导入的偏差,因为电偶的传热系数使仪表盘的标示值落伍于被测温度的转变,在开展迅速精准测量时这类危害尤其突显。因此应当尽量选用热电级偏细、电缆保护管直径较小的热电阻。  2、高低温环境测试箱传热系数偏差高溫时,假如电缆保护管上带一层粉煤灰,浮尘附在上边得话,则传热系数提升,阻拦热的传输,这时候溫度量程会比被测温度的真值要低。应维持热电偶保护管外界的清理,以降低偏差。  3、如高低温环境测试箱安裝不那时候导入的偏差,热电阻不可以装在太挨近门和加温的地区,插进的深层至少应是电缆保护管直径的8~10倍 热电偶保护管和炉壁孔中间的间隙运用发泡聚氨酯,或石绵等隔热化学物质阻塞,以防热冷气体热对流而影响温度测量的精准性。  4、绝缘变差而引入的误差如热电偶绝缘,保护管和拉线板污垢或盐渣过多,会致使热电偶极间与炉壁间绝缘不良,在高温的情况下会更为严重,这不仅会引起热电偶的损耗而且还会引入干扰。

  • 【原创】温度传感器DS18B20的使用方法

    DS18B20温度传感器是DALLAS公司生产的单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。 由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。 传感器18B20有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

  • 气相色谱仪常用传感器——磁敏传感器

    气相色谱仪常用传感器——磁敏传感器

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用传感器[/font][font=宋体]——磁敏传感器[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]磁敏传感器可以接收磁场信号,将其转换为相应的电信号或者电参量。磁敏传感器可以实现无接触测量,内部结构简单、体积小、动态性能好和寿命长,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械系统部件的位移测量。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]磁敏传感器种类繁多,按作用原理可以分为电磁感应式、半导体[/font][font=宋体]PN结磁敏特性式、洛伦兹力和霍尔效应、磁致伸缩效应等。[/font][/font][font=宋体]1 霍尔传感器[/font][font=宋体][font=宋体]处于磁场中的静止载流导体,当它内部的电流方向与磁场方向不同时,载流导体平行于磁场和电流方向的两个平面之间会产生电动势,这种现象称为霍尔效应,该电动势称为霍尔电势。如图[/font][font=宋体]1所示,载流导体中的电流使其内部自由电子做定向移动,期间收到洛伦兹力f[/font][/font][sub][font=宋体][font=宋体]L[/font][/font][/sub][font=宋体]的作用,结果使载流导体的两个侧面积累电子和正电荷,从而形成霍尔电势。[/font][align=center][img=,327,176]https://ng1.17img.cn/bbsfiles/images/2023/07/202307142252575886_7215_1604036_3.jpg!w690x372.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]1 霍尔效应的原理[/font][/font][/align][font=宋体]霍尔元件可以用来测定磁场强度或者测定带有磁性物体的位移。例如某些型号[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的柱箱门或者进样针的识别线路中采用了磁敏传感器,用于感知柱箱门的开关和进样针。[/font][font=宋体]CTC Analysis公司的PAL系列自动进样器中使用霍尔元件阵列识别进样针的有无和不同的型号,某些厂家的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的柱箱门也采用了类似的传感器。利用霍尔元件制作的接近开关,称为霍尔型接近开关。当磁性物体(铁质的柱箱门或者门中内嵌的磁铁)接近霍尔元件时,由于霍尔效应的云因,使得检测线路的输出信号发生变化,系统可以感知磁性物体的位移。这种接近开关的检测对象必须是具有磁性的物体。[/font][align=center][img=,307,140]https://ng1.17img.cn/bbsfiles/images/2023/07/202307142253064558_9407_1604036_3.jpg!w690x314.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]2 霍尔感应接近开关结构[/font][/font][/align][font=宋体]与常见的微动开关式接近开关、光电式接近开关相比,霍尔式接近开关的[/font][font=宋体]内部结构简单、体积小、动态性能好和寿命长。[/font][font=宋体]2 其他磁敏传感器[/font][font=宋体][font=宋体]其他磁敏传感器包括半导体磁阻器件、[/font][font=宋体]PN结型磁敏器件、铁磁性磁阻器件、压磁式传感器等。[/font][/font][font=宋体]当半导体收到与电流方向垂直的磁场作用时,不仅产生霍尔效应,还出现电流密度下降、电阻率上升的现象,此现象称为磁阻效应。[/font][font=宋体][font=宋体]利用半导体工艺制作特殊结构的[/font][font=宋体]P-N结,在洛伦兹力作用下,可以感知磁场的强度和方向的传感器为PN结型磁敏器件,例如磁敏二极管和磁敏三极管。[/font][/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简介[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分析系统常用的磁敏传感器原理。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font]

  • 如何看待温度传感器

    如何看待温度传感器的作用PH和EC都应该有的我今天看下了EC接不接 数值没变化http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif温度传感器说有什么温度补偿功能我怎么没体会到

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制