当前位置: 仪器信息网 > 行业主题 > >

植物污染胁迫监测仪

仪器信息网植物污染胁迫监测仪专题为您提供2024年最新植物污染胁迫监测仪价格报价、厂家品牌的相关信息, 包括植物污染胁迫监测仪参数、型号等,不管是国产,还是进口品牌的植物污染胁迫监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物污染胁迫监测仪相关的耗材配件、试剂标物,还有植物污染胁迫监测仪相关的最新资讯、资料,以及植物污染胁迫监测仪相关的解决方案。

植物污染胁迫监测仪相关的资讯

  • 监测前沿交流 | 高风险的微污染物——多重人为胁迫增加了大型城市淡水生态系统的风险
    第一作者:陈苗通讯作者:金小伟、徐建通讯单位:中国环境监测总站、中国环境科学研究院图片摘要成果简介近日,中国环境监测总站金小伟教授级高工团队与中国环境科学研究院徐建研究员团队合作在环境领域著名学术期刊Journal of Hazardous Materials上发表了题为“Micropollutants but high risks: Human multiple stressors increase risks of freshwater ecosystems at the megacity-scale”的研究论文。该文研究了大型城市(北京市)淡水生态系统中包含农药、PPCPs、非法药物和工业化学品在内的133种微污染物对不同营养级水生生物的生态风险,考查了不同空间尺度土地利用对生态风险的影响,并利用结构方程模型(SEM)分析了多重胁迫对微污染物生态风险的效应,定量了人类活动和气候条件对微污染物风险效应的相对权重。该结果说明淡水生态系统中微污染物的生态风险不可忽略,气候、土地利用、水文条件等因素均会影响微污染物的生态风险,在进行水域管理时必须综合考虑多重胁迫因素。引言人类世以来,淡水生态系统越来越多的受到人类活动的直接或间接影响。气候变化、水文调节、土地利用和化学污染物是威胁河流生态系统结构和功能的主要因素。同时,随着土地利用和城市化的加剧,许多淡水生态系统正面临着生物多样性丧失和功能改变。除土地利用外,水环境中的有机微污染物也因其普遍分布和潜在的生态风险而引起广泛关注,长期接触微污染物会对水生生物和人类健康构成重大风险。在流域尺度的自然环境中,多种复杂的胁迫因素相互作用,对淡水生态系统造成破坏,很难确定其主要驱动因素。已知有机污染物与城市、耕地等人类土地利用有关,然而,以前的研究侧重于定性探索,缺乏对土地利用与多种微污染物暴露模式或生态风险之间的定量研究。以往对流域微污染物的研究主要集中在环境暴露、毒性和潜在生态风险。部分研究侧重于单一类别微污染物或某类污染物与土地利用之间的定性关系,而忽略了土地利用的多尺度影响。先前的研究没有确定土地利用和气候条件对多类型微污染物风险效应的相对权重。本研究主要关注大型城市淡水系统中微污染物的分布模式、生态风险及其受气候和人类活动的影响效应,特别是土地利用的多尺度效应及多重胁迫的影响,以期为流域尺度水域治理和管控提供有效的保护策略。图文导读微污染物的分布特征图1 北京市地表水中13类微污染物的浓度(a,*:P枯水期;c,e.平水期),不同字母表示显著差异(P有机磷酸酯(OPEs)抗病毒药(ANVIs),枯水期平均浓度分别为483、225和150 ngL−1。不同行政区域和河流中微污染物的分布和相对组成不同。南部区域的浓度明显高于北部区域,这与人类活动和污水处理厂分布显著相关。微污染物的生态风险图2 不同类别微污染物对不同营养级水生生物造成风险的比例(a.枯水期,b.平水期)。根据平均浓度(c)和最大浓度(d)确定的优控污染物(TUs1)在平水期,96.7%、100%和100%区域的藻类、无脊椎动物和鱼类受微污染物的慢性影响,这一比例高于枯水期(分别为41.7%、98.3%和100%)。在平水期,8.3%、33.3%和1.7%区域的藻类、无脊椎动物和鱼类处于高风险,而枯水期的比例分别为11.7%、3.3%和0%。有机磷农药(OPPs,杀虫剂)、三嗪类农药(TPs,除草剂)和OPEs占鱼类、藻类和无脊椎动物风险的最大比例,在枯水期分别占47.9%、46.6%和 56.5%。与平水期相比,不同的是拟除虫菊酯对鱼类风险的占比最大(图2a-2b)。这些结果表明,微污染物是威胁水生生物和生态系统的重要因素。根据微污染物的平均浓度,对其生态风险进行排序(图2c-2d)。18种微污染物被确定为优控污染物,其中高风险和中风险分别有7种和11种。TU分别为445.9、300和182.4的λ-氯氟氰菊酯、六嗪酮和磷酸三(2-乙基己基)酯(TEHP)的风险最大,验证了农药和OPEs的潜在风险。此外,敌敌畏、吡虫啉、毒死蜱和三(1-氯-2-丙基)磷酸酯(TCPP)表现出较高的环境风险。该优控清单有助于管理和控制北京市甚至其他类似大型城市地表水中的微污染物。不同空间尺度土地利用对生态风险的影响图3 枯水期(a、b和c)和平水期(d、e和f)河岸带不同尺度(0.1~15km)内耕地、不透水表面和植被地与藻类、无脊椎动物和鱼类生态风险的关系研究了不同空间尺度土地利用对不同营养级水生生物慢性风险的影响(图3)。当河岸带缓冲区分别超过5 km和2 km时,耕地对无脊椎动物和藻类的慢性风险有显著影响(p)(图3b和3c),平水期影响最大的是缓冲区范围分别为1 km、2 km和5 km(图3e)。对于植被地,所有尺度缓冲区的土地利用(宽度为0.1 km的缓冲区除外)对慢性风险表现出显著的负效应(p和3f)。河岸带缓冲区中大于2 km的土地利用类型对三类水生生物的慢性风险有显著影响,表明太宽泛的河岸带缓冲区范围并不能解释当地的污染状况。在规划土地利用策略时,必须考虑最佳河岸带缓冲区,这有利于以较低成本获得理想的生态效益。图4 结构方程模型显示的气候条件和人类土地利用对藻类、无脊椎动物和鱼类慢性风险的直接和间接效应(a)及相应的直接效应、间接效应和总效应系数(b)利用SEM确定了人类土地利用和气候条件对三种不同营养级水生生物生态风险的直接和间接效应(图4,χ2=14.784,df=17,CFI=1,RMSEA=0.000)。人类土地利用对水质参数(WQPs)和新污染物浓度有显著的正效应,尤其是对NH3-N(标准化路径系数β = 0.40, Pβ = 0.87, Pβ=0.91,PP种优控污染物,该清单可能有助于大型城市的微污染物管理和控制。不同空间尺度土地利用对不同营养级水生生物的慢性风险效应不同,其结果对规划土地利用管理和流域生态保护具有重要意义。多重胁迫因素,包括气候条件、污染排放,尤其是人类土地利用,影响着微污染物的生态风险。在控制流域内的微污染物时,有必要同时考虑这些多重因素。然而,气候变化是一个复杂而长期的影响,它与污染物之间的相互作用可能在短期内不明显。未来的研究可以更多地关注微污染物与长期气候变化之间的相互作用。淡水生态系统中多重压力源的相互作用仍然存在很大的不确定性,在以后的研究中应该重视这些相互作用的机制研究。本项目得到了国家自然科学基金委和国家重点研发计划的资助。
  • 干货分享:酶标仪在植物对逆境胁迫应答中应用
    干货分享:酶标仪在植物对逆境胁迫应答中应用植物生长在开放的自然环境下,不可避免的被迫遭受和应对各种各样恶劣的生存环境,如干旱、盐害、低温、高温和病虫害等,这些不良环境统称为植物逆境或植物胁迫。随着全球环境的日益恶化,各种逆境胁迫因子对植物正常生长和发育的影响日趋严重,也是造成粮食作物和其它经济作物产量和品质下降的主要原因,成为制约现代农业发展的重要因素。植物为了适应各种胁迫环境,经过漫长的进化过程,产生了一系列对抗环境变化的能力,即抗性。植物抗性是绝大多数植物响应环境胁迫的普遍方式,植物抗性可以帮助植物提高对逆境的适应能力,但它是有一定限度的,如果逆境变化过强超出了植物的耐受范围,逆境胁迫会导致植物直接进入衰老和死亡。因此,植物对逆境胁迫的反应一直是植物科学领域的研究前沿。图1:植物与病原互作中的免疫反应人们已经发展出很多检测手段来探索和揭示植物免疫机制和植物抗逆机制,包括高通量测序技术、显微成像技术、色谱-质谱联用技术等,其中酶标仪检测技术作为一种高通量微孔板检测技术,且操作简便的方法,在生物医学、药物研发、农业和微生物学等领域得到了广泛应用。MolecularDevice公司的酶标仪产品可为植物抗逆领域的科学研究提供可行和简便的实验方案。针对钙信号检测,ROS信号检测,定量检测及动态曲线检测,MD都有相对应的完善的解决方案。Flexstation3可以用来检测钙信号,标配5大检测功能并内置自动移液系统,Flex快速动态监测模式,时间间隔最低达到毫秒级,轻松追踪从诱发到衰减完整的钙信号。使用SoftMaxPro软件的PeakPro分析功能,可对钙瞬变和钙振荡的信号进行峰频率、峰宽度、峰数目、峰上升时间及衰减时间等多个峰值属性进行分析。针对ROS信号检测,我们推荐多功能检测酶标仪,如SpectaMaxi3x和SpectaMaxiD系列,这几款仪器都可以配置自动双注射器,既能进行比色法和荧光强度测定,又能进行快速发光反应检测。针对定量检测,SoftMaxPro软件内置21种曲线拟合方式,可用于多种酶活分析和荧光定量分析。针对动态曲线检测,SoftMaxPro软件预置多种动力学参数,可一键输出最大速率、斜率、最大/最小时间和曲线下面积等分析。
  • NanoTemper用户之声 | 探访中国农业大学-植物应答盐碱胁迫的分子机制
    引 言2023年,NanoTemper正式开通了用户之声系列活动,目的是为了分享更多用户的实际应用案例和心得体会,希望能帮助到更多的研究者解决问题。在生命科学领域,微量热泳动(MST)技术已被广泛及高度应用到各项行业,而Monolith分子互作检测仪凭借其优异表现,不断助力科研人员在CNS上发表优质的重磅文献近百篇。本期,我们采访到了来自中国农业大学的杨永青副教授,针对他们的植物应答盐碱胁迫的分子机制这个研究方向进行了深入采访。如果您在分子互作方面同样遇到一些问题,不妨试试MST技术,希望带给大家给多的启发和帮助。来自用户的反馈 NanoTemper 用户介绍 中国农业大学姓名:杨永青 副教授在用仪器:Monolith分子互作检测仪Q1用户背景介绍杨永青副教授从2001-2006年在北京林业大学读博士。2006-2010年在北京生命科学研究所做博士后,2010年进入中国农业大学工作。主持和参与国家自然科学基金重点项目,面上项目,国际合作项目,国家科技部973项目和农业部转基因专项等。获得授权专利4项。在Mol Plant,Nat Commun,Plant Cell,New Phytol和JIPB等高水平学术期刊上发表SCI论文30余篇。Q2请介绍一下您的研究内容我们长期从事植物应答盐碱胁迫的分子机制。盐碱胁迫会引起离子胁迫和渗透胁迫。离子胁迫是影响植物产量的主要因素。植物通过SOS途径将细胞内盐离子外排出去,SOS蛋白的转运依赖于质子ATPase建立的质子梯度,但具体如何调控机制不清楚。因此,我们主要研究的方向是植物应答盐碱胁迫下离子平衡调控的具体机制,并取得了突破性进展。我从2013年左右了解到Monolith,大概统计了一下,近几年发表的文章中,至少有7篇用到了MST技术进行互作研究。在进行抗盐碱机制研究中,会涉及到质子泵,离子运输和信号传递等,进行的互作检测的分子类型也很丰富,包括蛋白质与蛋白质,蛋白质和有机小分子,蛋白与无机离子等,这些互作都可以在Monolith上完成快速检测。Q3请问Monolith分子互作检测仪如何满足您的研究需求?在盐碱胁迫的机制研究中,会涉及到很多类型的分子,如蛋白和蛋白,蛋白和小分子,甚至是蛋白和无机离子的互作,都可以使用MST技术完成检测,而且MST的样品用量少,可以大大减少实验时蛋白提取的工作量。比如说在进行Ca2+蛋白传感器SCaBP3蛋白参与碱胁迫响应的分子机制文章投稿时,The plant cell的reviewer提出需要证明SCaBP3与质膜H+-ATPase AHA2的互作,并且推荐ITC的方法。我们在进行ITC检测尝试时发现,该方法需要大量的蛋白,但每次蛋白的提取量为1-2mg,只可以做1-2次ITC实验,且无法进行重复。而MST方法检测的蛋白用量少,进行一次MST实验,仅需要18ng AHA2和200μg SCaBP3,节约大量样本和时间成本,因此我们采用了MST完成了该组互作实验,并顺利发表文章。使用MST检测SCaBP3和AHA2 C的互作https://doi.org/10.1105/tpc.18.00568Q4您认为Monolith分子互作检测仪有哪些优点?分子互作检测方法对蛋白用量非常少,比如在进行蛋白SCAB和磷脂分子PI3P的Kd检测2时,MST实验仅需要10nM, 160μL的SCAB-蛋白,也就是130ng。这组研究同时进行了PLO(Protein-lipid overlay assay)实验,但该实验流程较为复杂:需要1小时进行干膜,1小时进行SCAB蛋白孵育, 然后通过进行2小时的免疫印迹的方法检测,操作熟练的情况也需要4小时。但每次MST检测也只要15min,这项研究中涉及到两组,也就是检测只需要30min即可完成。因此,MST这种方法极大的提高了实验效率。MST检测SCAB1与磷脂分子PI3P的亲和力https://doi.org/10.1093/plcell/koab264Q5您对NanoTemper售后服务的印象?NanoTemper技术团队一直能与我们进行快速地交流,及时解答问题。每年都会有线上和线下不同专题的培训活动,能够让实验室一届届学生快速掌握MST的实验流程,迅速开展相关实验,我们十分满意。
  • 植物重金属创新科研平台成果:曼陀罗镉胁迫研究
    2005年~2020年,NMT已扎根中国15年。2020年,中国NMT销往瑞士苏黎世大学,正式打开欧洲市场。国内科研人员基于自主底层核心技术——NMT非损伤微测技术,建立的“植物重金属独有创新科研平台”,已经取得了近百项研究成果,联盟将持续为您展示此平台成果案例。联盟已开始提供“植物重金属独有创新科研平台”的建立服务,咨询请联系中关村NMT联盟期刊:农业资源与环境学报标题:曼陀罗对镉的吸收及其亚细胞分布研究样品:曼陀罗检测指标:Cd2+作者:河南农业大学资源与环境学院杨素勤、张彪摘 要为研究曼陀罗对重金属镉的耐性机制,以前期筛选的曼陀罗(Datura stramonium L.)为试验材料,通过水培方式探究镉(Cd)胁迫下曼陀罗对Cd的吸收累积特性及其在植株体内的亚细胞分布特征。结果表明:介质中Cd无论低浓度还是高浓度,曼陀罗各部位的Cd含量都表现为根茎叶,但迁移系数差异不显著。曼陀罗根系Cd2+ 流速在不同位置具有显著差异,其中分生区和伸长区的Cd2+ 流速显著大于根冠区和成熟区。当介质中Cd浓度由0.1 mgL-1增至2.5 mgL-1时,细胞壁和细胞液中Cd含量之和所占比例显著增大。研究表明,曼陀罗根系对Cd2+ 的吸收主要集中在分生区和伸长区,当介质中Cd浓度较低时,根系中细胞壁对Cd向上运输的限制及茎叶中细胞液对Cd的区室化起重要的作用 当Cd浓度较高时,根部细胞各组分中细胞液所占比重增加,Cd由根系向上迁移,此时茎叶中细胞壁对Cd的固定作用增强,其可能是曼陀罗耐受高Cd胁迫的机制之一。
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • Wiris Agro机载作物水分胁迫指数成像仪发布
    Workswell与欧洲领先的生命科学研究机构捷克布拉格生命科学大学作物研究所经过多年合作,开发出了世界首款作物水分胁迫指数成像仪WIRIS Agro,它是第一款可用于农业领域精确绘制大面积水分胁迫指数图(CWSI)的机载成像设备。WIRIS Agro成像仪提供了LWIR波段传感器和10倍光学变焦的全高清相机 (1920x1080像素FHD),结合配套的CWSI分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。水分胁迫(water stress)是植物水分散失超过水分吸收,使含水量下降,植物细胞膨压降低,正常代谢失调的现象。土壤水分亏缺是作物水分胁迫最主要的诱因,重度水分亏缺会严重影响作物生长发育从而最终影响作物产量。因此,诊断作物水分亏缺、寻求适度水分胁迫阈值以谋求最高的水分利用效率一直是农田节水灌溉和精准农业研究中的热点问题。目前,作物水分亏缺指标使用最广泛的是Idso等于1981 年提出的作物水分胁迫指数(Crop Water Stress Index ,CWSI),CWSI是基于冠层温度和空气湿度关系,同时综合考虑了植物、土壤、大气等各种作用因素的一项综合性水分胁迫指标,其中冠层温度是可以通过遥感手段获取的基本信息之一。因此,随着目前低空轻小型无人机的大量使用,通过无人机平台高速获取大面积的植物群体CWSI图像数据终于成为可能。作物水分胁迫指数成像仪WIRIS Agro可搭载于多种类型无人机平台(如安洲科技生产的A660多旋翼无人机、AVF-1000/2000固定翼无人机等)快速精准地获取大面积植被的水分胁迫值、热红外图像数据以及高清RGB图,可用于作物产量制图、优化灌溉或控制水分利用管理补救措施等方面,是现代农田节水灌溉、精准农业、遗传育种和植物表型研究的无人机测量利器。通过CWSI图像优化马铃薯田灌溉条件如上图:基于土壤传感器数据的马铃薯田优化灌溉作业,右侧WIRIS Agro成像仪的图像所示,一些区域灌溉饱和,而其他区域灌溉不足,因此需要根据获取的CWSI图像,重新更好地定位土壤传感器。WIRIS Agro机载作物水分胁迫指数成像仪的主要用途及优点:① 状态监测评估,监控水分胁迫:使用彩色CWSI地图表述作物的水分利用问题,并可结合NDVI植被指数对作物的生长状况和产量进行研究评估;② 管理灌溉管理:灌溉系统优化,优化土壤传感器的位置和分布;③ 植物表型:WIRIS Agro成像仪可获取不同的植物物种对水分状况的不同反应,为作物遗传育种和植物表型研究提供基础数据;④ 丰富的接口:WIRIS Agro成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。安洲科技可为用户提供多种机载设备飞行测试服务,欢迎联络!
  • 未来植物昆虫甚至指甲都可监测大气污染
    据纳米科学领域的很多专家介绍,微型传感器可监测空气质量。超薄高韧性的电子器件可附着在植物、昆虫、纸张甚至我们的指甲上,从而成为传感器。这些传感器可检测经空气传播的毒素和污染物质。   研究和进展   韩国蔚山科学技术大学的研究人员正在研究如何生产某类微型电子传感器。这些传感器可以批量生产,并且可用于测量关于空气质量、温湿度的详细数据。将这些环境数据和其它可利用的信息进行同步,我们可能得出环境质量和某些疾病之间的联系。   国外某网站报道说:&ldquo 这个新方法利用具有独特几何形状的碳原子合成完全阵列分布的电子元器件,尤其是碳纳米管晶体管、碳纳米管传感器和石墨电极。&rdquo   应用   与邮票相似,先将其弄湿即可将这些微型传感器附着在多种表面上。目前,研究者已成功将这些传感器附着于鹿角虫、报纸、指甲、竹子和很多其它材料上。这些传感器以集成天线为特色,已被用于二甲基汞蒸汽的检测。   可穿戴技术及使用   越来越多地,可穿戴技术被认为是很多问题的可行解决方案。比如,空气净化耳机可过滤和监测人体周围的空气,不久这款产品将在中国和远东地区正式面市。最近,英格兰研究者正在爱丁堡使用装有可穿戴设备的背包来测量空气污染,同时也测试此款产品的效果。   重要的是,这些设备可监测和收集数据,从而绘制一幅详细的&ldquo 污染图&rdquo 。将来我们可能通过智能手机来看到这些数据,从而避开重污染的地区,或者是选择戴口罩或空气过滤器。除此之外,决策者可根据这些数据来决定是否执行减缓重污染地区拥堵的措施,如执行新的交通法规或者鼓励使用公共交通。   空气污染及其影响   虽然空气污染是一个相对较新的问题,但其影响确是真实存在的。因此,我们对空气污染了解的越多,越有利于我们来消除其影响。可穿戴污染传感器可方便的融入我们的日常生活,为我们提供重要的信息来保护我们的健康。除此之外,了解我们的行为对环境的影响也有利于我们改变自己的行为。   如果所有人都能看到并理解环境信息,环境问题就会得到更广泛的讨论,也会受到决策者更多的重视。因此微型传感器可能在未来几年对我们的生活带来重大改变。
  • 圆满落幕!环境新污染物分析检测创新技术论坛!
    3月2日,天津分析测试协会与仪器信息网联合主办的环境新污染物分析检测创新技术论坛,圆满结束,现场讨论氛围热烈。来自中海油天津化工研究设计院有限公司的王琪主任作为特邀嘉宾,主持出席了本次大会,与此同时,6所天津知名高校的权威专家进行了报告分享。报告嘉宾:汪磊 (南开大学环境科学与工程学院 教授/博士生导师)9:00-9:30,汪磊教授就微纳塑料的检测方法进行了分享,系统介绍了环境微塑料的检测方法开发与应用,并分享了课题组最新的科研进展。 报告亮点:微、纳塑料的定量检测方法缺乏是长期制约其环境行为与风险研究的瓶颈问题。被广泛采纳的“消解-分离-显微计数”检测方法仅能提供微塑料的数量丰度,并且难于对微塑料污染水平和传输通量进行量化。相比之下,质谱检测方法可提供更为准确的质量浓度信息。“原位化学解聚-单体小分子质谱检测-聚合物总量回溯”就是这样一种可准确定量环境中痕量微塑料聚合物的质谱检测新方法。报告结束后,汪磊教授与各位线上听众进行了热烈的现场互动,部分问答如下:Q:汪老师好,食品中微塑料和环境中微塑料检测的差异点有哪些呢,谢谢。A:食品中微塑料如果来源于包装材料,可考虑直接检测包装材料的释放,要简单很多。Q:汪教授好,微塑料的溯源您有研究吗? A:溯源目前没有太成熟的方法,我们做了一个微塑料成分指纹谱用于灰尘中微塑料溯源的工作,正在投稿,但也仅能针对行业溯源,也就是说来自纺织业的和非纺织业的。Q:汪教授您好,可以检测植物的根系和叶片中的微塑料吗?A:可以,但限定聚合物种类。实际环境样品很难测到,通常浓度不高,这部分我们是用的实验室培养的拟南芥,是不同剂量的胁迫,现在用的是荧光微塑料,但是还是想再进一步的进行定量检测。Q:汪老师好,做PLA微纳米塑料的定量时,怎么去考虑纳米塑料与环境微生物或者微生物的作用?以及这种作用对检出值的影响。A:最主要困难是乳酸背景值高,其他的影响不太大;因为加热碱消解加SPE。报告嘉宾:张晓丹 (安捷伦 分子光谱应用工程师)9:30-10:00 , 安捷伦张晓丹老师分享了安捷伦8700 LDIR 激光红外成像——生物体中微塑料全自动快速定性及定量分析,主要介绍了安捷伦公司利用8700LDIR激光红外成像技术。据介绍,该技术开发了专门的微塑料测试全自动解决方案,用户仅需将处理好的样品滴至标准的反射窗片后,软件即可自动完成颗粒的识别、定性测试统计以及粒径统计等。报告嘉宾:刘青 (天津科技大学 博士后/助理研究员)10:00-10:30,刘青老师为我们介绍了植物对有机磷酸酯的转化途径及机理研究,利用高分辨UHPLC-orbitrap-HRMS-MS进行非靶标分析识别了OPEs在植物体内的转化产物。3种OPEs共检测出25种产物,包括羟基化产物、水解产物、还原产物,以及多种结合态产物。Q:刘青博士,有机磷酸酯测定的质量控制如何把控,背景干扰的去除?A:有机磷酸酯的前处理过程尽量避免接触塑料制品,如果是环境样品 我们是有个专门的实验室只做环境样品的分析 前处理的质控我们会用氘代物质做一个回收率的监控。Q:刘青博士,对于低于检出限的有机磷酸酯测定结果,如何定值?A:如果是环境样品监测低于LOD 一般我们就认为是未检出;如果出于统计的目的当 检测值低于MDL时 用 MDL的值 除以 2代替。报告嘉宾:刘宪华 (天津大学 教授)10:30-11:00,刘宪华教授为我们分享了微塑料的分析测试及其环境影响研究。报告亮点:在实际环境中,微塑料和其他污染物的复合污染是普遍存在的环境污染现象,因而研究环境中微塑料介导的复合污染物质与生物体之间的相互作用具有重要现实意义,本报告以微塑料、抗生素和重金属在土壤、水体和沉积物等典型介质中的复合污染为研究背景,介绍了其中涉及的分析测试方法和环境影响表征手段。报告嘉宾:穆莉 (农业农村部环境保护科研监测所 副研究员)11:00-11:30 ,穆莉老师分享了典型纳米材料的环境识别技术及植物风险效应研究报告亮点:针对纳米材料分类、用途及存在的环境问题,介绍典型纳米材料的环境识别技术,包括分离提取技术以及相关的多种检测表征手段,进一步,介绍典型纳米材料属性对植物毒性影响的组学分析技术,为纳米材料科学合理应用提供科学技术支持。报告嘉宾:王捷 (天津工业大学 副院长/教授)11:30-12:00,天津工业大学的王捷副院长,为我们带来了关于膜基微流控耦合系统应用于痕量污染物检测研究的报告内容。报告亮点: 用于监测水中痕量污染物的传统技术存在例如检测成本高、周期长,技术门槛高等问题。因此迫切需要开发简单、廉价和灵敏度高的方法实现环境中有毒环境污染物的高效检测。基于微流控芯片的传感检测平台是近年新兴的检测技术。本报告围绕膜基微流控耦合系统展开研究,通过将不同的功能膜与微流控芯片合理的设计耦合实现不同的检测功能,具有所需样品少、测试时间短、灵敏度高的特点。本会议回放视频将在会议结束后1-3天内上线,可添加助教微信进入交流群。微信:13260310733
  • 振动胁迫下双孢蘑菇高光谱成像品质检测
    双孢蘑菇属于呼吸跃变型,采后极易变软腐烂,通常采后常温下双孢蘑菇1~3 d就会出现失水、开伞或者褐变,冷藏可贮藏5~10 d,因此其货架期较短。此外,双孢蘑菇具有薄且多孔的表皮结构同时又缺乏保护组织,属于典型的机械损伤或瘀伤高敏感性作物。在流通过程中要经历长时间的振动胁迫,导致双孢蘑菇产生不同程度的机械损伤。严重的外部损伤可通过机器视觉技术等手段进行检测。沈阳农业大学信息与电气工程学院的姜凤利和食品学院的孙炳新*等以双孢蘑菇为研究对象,采集室温条件下不同振动胁迫时间的新鲜蘑菇高光谱信息,融合光谱和纹理特征,结合化学计量学方法,对双孢蘑菇的早期机械损伤进行快速预测和判别。1、双孢蘑菇色泽分析从表1可以看出,随着振动时间的延长,蘑菇菌盖的亮度L值逐渐下降,颜色值a、b愈加发黄、发红,体现出双孢蘑菇的颜色值随着振动时间的变化而变化。与蘑菇亮度L变化趋势相反,褐变度持续升高,这可能是因为振动处理加剧膜脂过氧化作用,细胞膜透性升高,导致细胞膜结构破坏,使酚类物质与褐变相关酶广泛接触并反应,从而加剧了褐变的发生。综上所述,说明振动胁迫会加速双孢蘑菇白度值下降和褐变。2、双孢蘑菇光谱特征图3为不同振动时间双孢蘑菇平均光谱曲线,可以看出,原光谱数据在400~450 nm和900~1 000 nm波段范围内存在较大噪声,为了保证后续模型的分类正确率,选择450~900 nm范围内的光谱数据进行后续研究。不同振动时间蘑菇平均反射率光谱曲线显著不同,振动120 s的平均光谱反射率最低,完好无损的最高,表明光谱反射率与L值有关,L值越大,蘑菇表面越明亮,光谱反射率越大,即随着褐变度的增加,双孢蘑菇反射率下降明显。进一步分析,光谱在450~750 nm波段不同损伤程度的双孢蘑菇反射率差异明显。3、光谱数据预处理为了提高光谱数据的信噪比,分别采用SNV、SG以及MSC对原光谱进行处理,原光谱曲线以及3种方法处理后光谱曲线(取3种样本各10个光谱数据)如图4所示。从表2可以看出,经过不同预处理方法后,分类模型的效果有很大差异,其中SG预处理后的建模效果最好,训练集和测试集分类正确率分别达到91.11%和84.44%,因此后续研究均采用SG平滑方法处理实验数据。4、特征提取特征波长提取采用SPA提取特征波长个数与RMSECV对应关系如图5a所示,可见选择的特征波长个数为5时,RMSECV值最小为0.191。最终提取出的5个特征波长依次为465、495、512、540、616 nm,如图5b所示。特征波长主要集中在500~650 nm之间,主要是由于该波段范围对应可见光谱的黄色及黄绿色,振动胁迫导致双孢蘑菇表面颜色逐渐变黄,因此随着褐变度增加光谱反射率呈下降趋势。从图6可以看出,CARS在第59次采样时,获得的变量子集建立的PLS模型RMSECV最小,因此,该子集定为关键变量子集,共包含8个变量。提取的特征波长依次为451、475、484、492、518、545、655、798 nm。与SPA相似,CARS提取的特征波长主要集中在500~650 nm附近范围内,除此之外,798 nm波段主要与蘑菇水分含量有关,由于蘑菇受振动胁迫时间较短,因此水分变化并不明显。纹理特征提取如图7所示,因此本研究采用500 nm波段下的灰度图作为特征图像进行感兴趣区域提取。从180个双孢蘑菇样本灰度图中提取240×240大小感兴趣区域图像作为纹理图像,根据纹理特征参数提取方法提取纹理特征值。5、损伤识别模型基于光谱特征的判别模型从表3可以看出,3种识别模型对完好无损、振动60 s、振动120 s的双孢蘑菇识别效果存在较大差异。从3种模型的检测结果看,在训练集和测试集中,SPA提取特征波长效果均优于CARS,可能是由于CARS特征提取算法选择的波长与双孢蘑菇振动损伤相关性较小,而SPA对于消除原始光谱中的冗余信息效果更为突出。此外,SPA-PLS-DA分类识别率最高,训练集和测试集的平均识别率分别为93.33%和91.11%,SPA-BP模型识别率次之,训练集和测试集平均识别率分别为91.11%和88.89%,可能是因为BP神经网络在训练时神经元反向传递学习过程中,易陷入局部最优解。ELM识别模型分类效果差于PLS-DA和BP,训练集和测试集平均识别率分别为82.96%和71.11%,原因可能是ELM模型权重和偏置在后续训练中不进行更新,使其陷入局部最小值,无法获得最优解。基于纹理特征的判别模型从表4可知,与光谱特征判别模型一致,基于纹理特征判别模型的准确率高低依次为PLS-DA、BP和ELM。PLS-DA识别模型在训练集和测试集中,完好无损双孢蘑菇识别正确率均在90%以上,振动60 s类型、振动120 s类型双孢蘑菇识别正确率均低于90%;BP判别模型的分类效果不理想,训练集和测试集中,3 类双孢蘑菇识别正确率均在90%以下,尤其是测试集中,振动60 s双孢蘑菇识别正确率为53.33%。ELM判别模型平均分类正确率最低,训练集和测试集中仅有振动120 s类型双孢蘑菇识别正确率在80%以上。以上建模结果表明单从外部纹理特征建模并不能准确表达蘑菇的内部信息,识别效果不理想。基于光谱-纹理特征融合的判别模型从表5可以看出,训练集的3种不同损伤程度的双孢蘑菇识别正确率均为97.78%,测试集的完好无损类型和振动120 s类型的双孢蘑菇识别正确率为100%,振动60 s类型识别正确率为86.67%,总体识别率为95.56%。从图8可以看出,测试集的振动60 s出现了识别错误的情况,振动60 s被识别成振动120 s和完好无损类型各1个,识别错误的原因可能是振动60 s类型的部分样本与之相邻两类样本的纹理特征差异较小,且光谱特征区分不够明显,导致测试集发生误判的情况。结 论分析并比较SG、MSC和SNV作为高光谱数据预处理方法的建模效果,确定SG为预处理最佳方法。将处理后的数据采用SPA、CARS方法提取特征波长。基于特征波长下的光谱数据以及全波段光谱数据建立PLS-DA、BP神经网络以及ELM分类模型,最终确定SPA-PLS-DA模型分类效果最好,训练集和测试集总体识别率分别为93.33%、91.11%。利用灰度共生矩阵提取500 nm波段下双孢蘑菇纹理特征参数16个,基于特征值建立双孢蘑菇图像信息的PLS-DA、BP神经网络以及ELM分类模型,通过分析实验结果,确定PLS-DA为最佳分类模型,其中训练集和测试集总体识别率分别为88.89%、86.67%。相比光谱建模效果稍差。融合光谱特征和图像特征,建立PLS-DA双孢蘑菇分类模型,训练集和测试集总体识别率分别为97.78%和95.56%。预测效果优于单一信息建立的判别模型。结果表明,采用光谱-图像融合信息建模可以提高双孢蘑菇损伤程度检测精度。
  • 雾霾在线监测仪助力大气污染治理
    四川鼎林信息技术有限公司日前成功研发出雾霾在线监测仪。目前,中科院光电所产业园内的计算机正在不间断地运算其采集回的数据。   该公司负责人杨宁表示,当下环保部门采用空气质量指数监测体系预报污染情况,主要是分项监测PM10、PM2.5等6种污染气体,而雾霾在线监测仪通过实时的能见度、湿度等数据在线监测雾霾,并对空气中的各种污染气体和悬浮物进行总体监测。&ldquo 两种监测方式不同,可有效互补。&rdquo   &ldquo 总体监测的最大好处是既能量化反映雾霾严重程度,又能定位雾霾污染分布和污染源。&rdquo 据该公司总工程师甘志介绍,雾霾的严重程度和大气中污染颗粒物浓度成正比,而颗粒物浓度和大气消光系数成正比。雾霾在线监测仪正是基于透射式原理研发而成,通过监测大气的消光系数,包括散射和吸收效应,进而推算出雾霾严重程度,并最终反映总的污染物浓度水平。同时,当一个地区有多种污染源时,雾霾在线监测仪可定位污染源的分布与位置,有效监测不定期偷排现象。
  • 为降污染指数给监测仪喷水?
    洒水车在给空气监测仪器喷水 昨日,网上爆出的几张照片令人咋舌:汉中市环保局内,空气监测设备被洒水车喷水。市民质疑,喷水影响空气质量监测数据,是弄虚作假。汉中市环保局对此回应称,喷水是因工作人员认为监测设备上有灰尘,擅自对监测设备进行了冲洗。   照片显示:环保局内空气监测设备被喷水   2015年以来,汉中市由过去主要监测空气污染指数,改为监测空气质量指数,并公布PM10和PM2.5等6项监测数据。监控数据表明,汉中城区本月连续多日空气质量呈中度以上污染。   从1月18日下午到昨日上午,网上几张照片显示同一内容:汉中市环保局内一栋楼顶上的空气监测设备,正在被洒水车喷水。对这些照片,网友评论说,对空气监测设备喷水,这明显是弄虚作假,造成空气质量数据虚假,欺骗市民。   昨日上午,华商报记者看到,位于汉中市环保局内一栋5层楼楼顶的空气监测仪设备,确实与照片中位置一致,当日没见有人洒水。放置空气监测仪器的这栋楼,是市环保局空气质量监测中心站办公楼。   洒水者:不小心把水喷到监测设备   昨日,市环保局工作人员联系到汉台区环卫处的涉事洒水车司机程某及汉台区环保局工作人员吴某某。   司机程某称,18日下午1时许,他在民主街正执行洒水任务时,碰到素不相识的吴某某,吴某某自称是环保局的,让他把环保局里打扫下,他就跟着吴某某到了市环保局。在空气监测站办公楼后,自己负责在车前控制洒水车,吴某某则拿着设备向上喷水,一共也就喷了三五分钟。   &ldquo 是我喷的水。&rdquo 吴某某称,他是汉台区环保局环境监测站的工作人员,58岁,工人身份。18日下午,他遇见程某开洒水车后,想给市环保局空气质量监测中心站办公楼南侧的树木喷水除尘,就带着程某到了市环保局。因洒水设备不好操纵,不小心把水喷到了空气监测设备附近。&ldquo 我当时也不知道那上面有空气监测仪器。&rdquo   监测站:短暂喷水不影响监测结果   有网友质疑:工作人员给空气监测仪器喷水,是因为汉中连日来污染严重,想通过这样的办法,改变监测结果,从而给外界造成&ldquo 汉中空气质量好转&rdquo 的印象。   就此,汉中市环境监测中心站站长雷宏介绍,目前,汉中中心城区、大河坎、鑫源北开发区这3个监测点的监测结果会被纳入换算体系,换算出空气质量指数,公布在环保部网站,而3个监测点的空气质量是以小时为单位进行监测的。   &ldquo 市环保局里的这个监测点,就是要换算的3个监测点之一。&rdquo 雷宏称,经过了解,18日给监测点喷水的时长约在5分钟,&ldquo 长时间的话会有所影响,这么短的时间,不会影响监测结果。&rdquo   环保局:已责令当事人员书面检查   昨晚7时,汉中市环保局回复华商报记者称,近日,汉中市中心城区空气质量连续出现中度及重度污染,按照《汉中市重污染天气应急预案》规定,1月14日,市政府启动了重污染天气应急响应。   汉台区政府迅速行动,采取企业限产限排、建筑工地停工、加强道路保洁洒水、冲洗花草树木、禁烧有烟煤等多种措施治污降霾。1月16日和18日,环卫洒水车辆到市环保局院内,冲洗花草树木、道路洒水降尘,在冲洗过程中,工作人员吴某某认为监测设备上有灰尘,擅自对监测设备进行冲洗。此行为被个别群众拍摄并将图片发至网上,被广大网友误解,在社会上造成了不良影响。   事发后,市环保局高度重视,立即组织专人对事件进行了详细调查,对洒水操作人员吴某某进行了严厉的批评教育,责令其写出书面检查。   又讯(记者 郝蕾)华商报记者昨日从省环保厅了解到,昨日上午,省环保厅已监控到网友发帖质疑&ldquo 汉中为降低污染指数给检测仪器喷水&rdquo 的帖子,当天已派出监测站技术人员赶往汉中现场了解情况,目前还在进一步核实中。
  • Resonon | Resonon Pika L在干旱胁迫下小麦叶绿素快速无损评价方面的应用
    小麦作为人类重要的粮食来源之一,你对它的印象是什么?是夜来南风起,小麦覆陇黄的生机景象,还是大麦干枯小麦黄,妇女行泣夫走藏的悲切画面?风吹麦浪的一片金黄往往让人神往,然而随着全球气候的变化,干旱逐渐开始威胁小麦的生长及产量,各地小麦纷纷减产,继而引起价格的上涨。久旱麦粒细,终久不成穗......如今,小麦在干旱环境下的生存和适应能力备受关注。叶绿素作为植物生长的基本生化过程之一,与干旱适应性之间的关系引发了广泛的研究兴趣。下面这篇论文聚焦干旱胁迫下小麦的叶绿素含量,通过研究一种新型的监测方法,有望提高对小麦叶绿素含量评估的准确性,对推动粮食安全与生态环境的平衡发展具有重要意义。Resonon Pika L在干旱胁迫下小麦叶绿素快速无损评价方面的应用研究背景小麦是对全球粮食安全至关重要的主要粮食作物。然而,小麦作物遭受着许多非生物胁迫,包括低温、干旱、高温和干热风,这强烈影响其生长、发育和生产力。干旱是世界范围内最严重的非生物胁迫之一,可显著降低小麦的分蘖数、每穗粒数和千粒重。2021年,美国和巴西都遭受了历史性的严重干旱,这使全球粮食价格上涨至近十年来的最高水平。因此,有效监测小麦生长过程中干旱胁迫的影响对提高产量、品种和粮食安全至关重要。叶绿素是植物光合作用的基础,直接决定植物净初级生产力和碳收支,叶绿素含量可以反映植物的生长状况。而干旱胁迫会降低作物的叶绿素含量,破坏光合机制,抑制其生长,最终降低产量。干旱胁迫下作物叶绿素含量的变化程度与抗旱性密切相关,因此,监测小麦叶绿素含量可为小麦的光合作用和抗旱性提供关键信息。传统的叶绿素含量测定方法包括分光光度法和使用手持式叶绿素含量仪,这些方法使得叶片破坏程度大、效率低,不利于大规模测定小麦叶绿素含量。而与传统方法相比,高光谱成像技术可以快速、无损、高效地测定植物叶绿素含量。此外,高光谱图像包含丰富的光谱信息,可用于精确的农业研究和建立复杂的数学模型。近年来,高光谱成像技术在植物监测中的应用发展迅速,广泛的研究主要集中在开发基于光谱指数的模型来估计叶绿素含量。然而,少量的敏感波段并不能充分代表所有的高光谱信息。此外,大多数研究使用的小麦品种较少,忽略了多品种间的异质性。因此,以往模型对其他系统的适用性受到限制,该模型对大规模叶绿素含量和抗旱性的评估无效。研究过程基于此,在本研究中,来自中国西北农林科技大学的一组研究团队以中国阳岭区(108◦ 4 0 E,108◦ 160E,34◦ 160N)为研究区,对新作物品种进行试验。2021年10月21日,在一个钢架棚内共种植335个小麦品种(共2010个叶片样品),并将它们置于不同的土壤含水量条件下,采用土壤钻探法测量0.5m深度的土壤含水量。再在每个品种中采集了6个新鲜的旗叶样本,在实验室内利用Resonon Pika L 高光谱成像系统采集小麦叶片的高光谱图像数据,同时利用SPAD-502 Plus叶绿素计测定小麦旗叶的SPAD值(反映叶绿素含量)。对高光谱图像进行平滑处理(使用Savitzky-Golay滤波器)、一阶导数处理。分析控制和干旱胁迫下小麦灌浆期旗叶的高光谱特征及其与SPAD值的相关关系,用逐次投影算法(SPA)识别特征波段,最后采用机器学习方法构建了四种回归模型,包括简单线性回归(SLR)、最小绝对收缩和选择算子回归(LASSO)、岭回归(RR)和随机森林回归(RFR)模型,并检验模型效果,以确定快速叶绿素含量估计模型的准确性,最终建立一种快速、无损、准确、广泛适用的方法来评估小麦叶绿素含量、光合作用和抗旱性。不同土壤含水量条件下小麦叶片的高光谱曲线和单波段高光谱图像(对照处理CK和干旱胁迫DS条件下)。叶片高光谱与SPAD值的相关性分析及拟合结果。(A,B)光谱反射率和一阶导数与SPAD值的相关性;(C,D)基于549 nm光谱反射率和735 nm光谱一阶导数的简单线性回归(SLR)分析;(E,F)基于549 nm处反射率和735 nm处一阶导数的SPAD预测值和实测值的拟合结果。结果基于不同数据集和模型的SPAD预测值和实测值的比较。(A-C)全波段高光谱反射率的LASSO、RR和RFR模型;(D-F)全波段高光谱一阶导数的LASSO、RR和RFR模型。基于全波段高光谱反射率模型,对不同土壤含水量条件下小麦叶片SPAD预测值和实测值的拟合结果。(A-C)控制条件下的LASSO回归、RR和RFR模型;(D-F)干旱胁迫条件下的LASSO回归、RR和RFR模型。(A,B)由549 nm反射率和735 nm一阶导数估计的叶片水平上的SPAD值图。基于光谱和图像特征数据集的RFR模型结果。结论本研究利用不同土壤含水量条件下大规模小麦品种的高光谱图像分析,确定了叶片叶绿素含量快速估算模型的准确性。对叶绿素含量估计最敏感的波段在可见波段(400-780nm),相关分析表明,最佳波段位于541、549、708和735 nm附近,549 nm处的高光谱反射率和735 nm处的一阶导数与SPAD值的相关性最强。SPA结果表明,在536、596和674 nm处的波段是估计SPAD值的最佳波段,在756和778 nm处的一阶导数对估算相对叶绿素含量最有用。结合光谱特征和图像特征可以提高干旱胁迫小麦SPAD值的估算精度(RFR模型最优性能:R2 = 0.61,RMSE = 4.439,RE = 7.35%)。总之,本研究建立的模型可以有效地评价小麦叶绿素含量,并为了解光合作用和抗旱性提供依据;本研究建立的技术方法具有巨大潜力,可为小麦及其他作物的高通量表型分析和遗传育种提供参考。
  • 污染物源解析有望拉动空气监测仪器需求
    环保部报告要求直辖市、省会和计划单列市启动污染物来源解析工作   3月26日发布的《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》明确了14年大气环境质量监测任务:1、推动第三阶段空气质量新标准检测能力建设;2、各直辖市、省会城市和计划单列市要启动污染物来源解析工作。根据13年环保部颁布的《大气颗粒物来源解析技术指南》,源解析的技术方法有四类,其中三类涉及监测,在监测数据的基础上通过建立模型得出解析数据,我们认为这对空气在线监测仪器及相关实验室仪器存在需求拉动。   VOCs在线检测和治理可能成为14年环保领域亮点   VOCs(挥发性有机物)指以气态分子形态排放到空气中的56种非甲烷碳氢化合物,是PM2.5最主要来源,污染源解析的推出正是为了剖析成因并为大气污染治理作准备,据媒体报道,政府未来将专门针对VOCs排放征收排污费,我们认为VOCs监测和治理有望成为环保领域新的增长点。   业内公司正进行该领域的技术和产品储备   聚光科技已经拥有VOCs和重金属在线监测产品,且旗下子公司清本环保正是从事VOCs治理工程业务;行业内其他公司包括先河环保和雪迪龙。   中国监测行业市场空间有望进一步打开且国内公司的市场份额有望提升   首先我们认为中国监测行业增速将加快:1、除1326个国控点外地方也在增加空气站点,点数有望倍增;2、空气污染源的监测需求正从火电厂拓展至其他重污染行业;3、水质监测方面,政府不断出台针对流域、地下水和行业排放的新政。其次,我们认为中国公司研发实力快速提升,产品性价比高,有望提升市场份额。
  • 我国污染物解析或将拉动监测仪器市场
    3月25日,环保部发布《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》。    《报告》首次对我国自2013年实施环境空气质量新标准的74个城市进行评价。结果表明,2013年74个城市中,只有海口、舟山、拉萨3个城市各项污染指标年均浓度均达到二级标准,其他71个城市存在不同程度超标现象。    重污染区域的首要污染物为PM2.5。对此,环保部官员表示,2014年要大规模、规范化启动污染物来源解析研究工作,北京等重点城市要在今年上半年提交初步成果。    《报告》明确了14年大气环境质量监测任务:1、推动第三阶段空气质量新标准检测能力建设;2、各直辖市、省会城市和计划单列市要启动污染物来源解析工作。    大气污染只是环境污染问题的一个缩影,人无远虑必有近忧。以牺牲环境换取经济增长的时代已经过去,面对经济健康增长的需求,环境友好型的健康可持续发展是大势所趋。加快发展环保产业,利当前、惠长远,不仅有利于治理环境污染、改善生态环境,而且有利于拉动有效投资,带动新兴产业成长,有利于转方式、调结构,对促进经济社会可持续发展具有巨大推动作用。    重视环境保护问题将有力带动环保产业提速。未来,只有将经济发展与绿色GDP相挂钩,经济增长数据才不会以自然资本损失和生态赤字为代价,未来的经济和社会发展才能够持续和健康。    根据13年环保部颁布的《大气颗粒物来源解析技术指南》,源解析的技术方法有四类,其中三类涉及监测,在监测数据的基础上通过建立模型得出解析数据,《报告》的落实对空气在线监测仪器及相关实验室仪器存在需求拉动。    《污染源监测质量保证技术规范》里规定了固定污染源废水排放、废气排放监督监测和比对监测采样及测定过程中质量保证和质量控制的一般原则,这将推动这几类仪器的需求。    VOCs在线检测和治理可能成为2014年环保领域亮点VOCs(挥发性有机物)指以气态分子形态排放到空气中的56种非甲烷碳氢化合物,是PM2.5最主要来源,污染源解析的推出正是为了剖析成因并为大气污染治理作准备,据媒体报道,政府未来将专门针对VOCs排放征收排污费,我们认为VOCs监测和治理有望成为环保领域新的增长点。    我们依然维持年初以来的观点,认为今年环保板块投资的关键词并非政策,而是监管,相关部门将完善法律法规,以保障现有环保政策的落实和环保设施的运行。    杭州、深圳地区先后出台被称为史上最严格的环境监管执法;地区性的大气污染防治立法也在不断完善,成为环境监管工作的坚实后盾。环保部长周生贤表示,打好大气、水、土壤污染防治三大战役,要用好环境执法和信息公开两个手段,强化环境执法监管,保持执法检查高压态势,全面推进环境信息公开,及时公开环境质量监测、建设项目环境影响评价、环境违法案件及查处等方面的环境信息。通过采取稳、准、狠的举措,逐步改善环境质量,让人民群众看到政府的决心,看到环境问题解决的希望。
  • SPECIM IQ | 开创性小型手持智能型高光谱相机如何精准进行植物表型鉴定和病害检测?
    导读 高光谱成像传感器是近几年研究用于监测不同环境中农作物和植被的有效工具。植物的生理学,形态学或生物化学信息可以通过非接触的方式以及不同尺度下评估。例如,利用高光谱传感器用于植物表型分析或农业中的生理胁迫研究。截至目前,市面上有各种非成像和成像高光谱传感器可供选择,这些仪器进行测量的过程相当复杂。因此,现代化检测及研究中对易于用户操作的高光谱传感器的需求日益增加。芬兰新发布的一款新型小型手持式智能型高光谱相机——SPECIM IQ,就是基于用户的现代化便携操作而设计的。SPECIM IQ的机身小巧轻便,只有1.3kg,实现轻松手持操作;同时在相机中直接集成了操作控制系统,通过相机自带的触摸屏就可实时实现基本数据的采集和分析过程(如预处理和分类例程),实现智能化操作。便携手持、现场实时快速检测、全自动智能分析、高质量数据,相信 SPECIM IQ 如此多的现代化特征会让您的高光谱研究更加得心应手!以下我们将SPECIM IQ采集的高光谱数据与已经十分成熟高光谱成像仪技术SPECIM V10E 进行定性对比,发现SPECIM IQ便携手持的设计并未影响到相机的数据准确性,一致地获得了高质量高光谱数据。同时,手持智能型SPECIM IQ还可以实现对植物表型的鉴定以及病害研究检测等,在植物科学研究及其他领域具有无限可能。1、手持智能型高光谱相机SPECIM IQ与SPECIM V10E的定性对比 通过与性能的SPECIM V10E相机对比,我们评估了新型SPECIM IQ的成像质量。SPECIM V10E在推扫式高光谱相机领域是一款具有代表性且广受好评的产品,与SPECIM IQ具有相同的光谱范围(400-1000nm)。在实验过程中,通过采用4倍的光谱合并,达到与SPECIM IQ相似的光谱采集,共有211个波段,每行数据具有1600个像素。研究人员利用两款设备分别在室内(卤素灯光源)和室外(自然光光源)对具有不同颜色的样本:纸片和聚乙烯胶片,进行了高光谱数据采集和对比。 图1 智能型高光谱相机SPECIM IQ(207mm*91mm*74mm) 经过对比,得到如图2所示结果。对相同样本,两款设备采集的光谱形状高度重合:实验室的平均值是0.009,室外平均值为0.043。SPECIM IQ和SPECIM V10E的平均标准偏差分别为室内(0.017和0.021)和室外相同(0.029和0.029),但SPECIM IQ更为均,SPECIM V10E在光谱边界处具有更高的噪声水平(400 -450nm和400-450nm)900-1000nm,见图2)。研究表明,除了925-970nm范围内的大气水汽吸收带之外,周围光谱的原始信号较弱,导致反射信号的快速增加。 图2 平均光谱包含绿色纸片(A)和紫色聚乙烯片(B)的标准差,C表示室内测试的不同颜色的样本 图3 室外数据的光谱对比(A-D):绿色纸片、暗黄色纸片、紫色聚乙烯胶片以及蓝色聚乙烯胶片 2、手持智能型高光谱相机SPECIM IQ对拟南芥的生理胁迫研究 通过植被指数可评估不同状态下植被的生理结构和功能特性,包括生物量、冠层结构、叶面积指数、叶绿素含量以及植物冠层的光利用效率等。研究人员利用SPECIM IQ对拟南芥的两个变种在胁迫状态下的生理状态分别进行了研究。由于缺乏PsbS蛋白质和紫黄质脱环氧化酶,拟南芥的变种样本对光能量利用能力减弱(非光化学淬灭),但在室温条件下可正常发育,在高光照条件下,突变体可能受光损伤,这些都是肉眼无法察觉的。利用SPECIM IQ对18个样本进行数据采集,并对所采集的数据进行植被指数计算,在此基础上,对样本的叶绿素含量和类胡萝卜素转化的敏感程度进行了评估(图4)。 图4 在非胁迫适应(NSA)和胁迫适应(SA)拟南芥野生型(Col-0)和PQ缺陷突变体(npq1和npq4)之间观察到的差异。 左侧面板显示选定感兴趣区域的假彩色图像(A) NDVI(C) REIP(E) 和由SPECIM IQ采集数据计算的PRI(G)。 右侧面板显示计算出的平均值和标准差(B) NDVI(D) REIP(F) 和PRI(H)从三个单的植物随机分布在成像框架,不同的字母表示基于LSD的显着差异(a = 0.05)。 研究表明,SPECIM IQ可用于拟南芥中叶绿素(NDVI)和叶黄素(PRI)的含量的检测,并能评估植株样本的状态。通过验证具有代表性的植被指数,可为其它植被指数的评估计算提供样例,并为在植被研究领域获得更多生理信息奠定了基础。 3、手持智能型高光谱相机SPECIM IQ对大麦白粉病的研究 高光谱成像作为非接触式的测量传感器,在植物疾病严重程度与宿主植物对特定植物病原体的易感性的评估方面有很大的应用。本研究利用SPECIM IQ评估了不同大麦品种在冠层尺度上的白粉病严重程度,并对品种Milford和Tocada进行了4个和7个不同的白粉病易感性等的比较。研究准确地检测了两个品种的白粉病症状,并通过高光谱成像结合数据分析方法评估品种的不同疾病严重程度。研究人员利用SPECIM IQ对在温室中培养的360个大麦植物样本(稳定的漫射光条件下培养)进行检测,并使用的白色参考板(见图5)和SPECIM IQ的内置功能对高光谱数据进行归一化。研究人员利用SPECIM IQ Studio的光谱角匹配方法(SAM)进行感染检测并与支持向量机分类(SVM)方法进行对比,检测到上部叶中具有类似病状的区域。 图5 使用光谱角匹配(SAM)和支持向量机(SVM)对白粉病进行分类,图像左侧包含白色参考面板研究表明,大麦白粉病的样本检测到的疾病症状分别为所有植物像素的25.8%和4.4%,而健康部分只有2.0%和2.2%。现有的错误分类主要是白色参考边界处(看起来像叶面上的白色菌丝体)混合像素的影响。为了消除这种系统偏差,通过减去错误分类像素量来确定疾病严重程度,预测分析的品种的2.2%至23.7%的强烈差异。因此,SPECIM IQ可用来测量评估复杂冠层的疾病严重性,控制光源照明条件保证高信号质量,此项研究也证明SPECIM IQ空间分辨率足以确定大麦叶片上的单一症状。4、总结 手持智能型SPECIM IQ相机在植物生理和病害检测中具有巨大潜力。通过SPECIM IQ与SPECIM V10E室内和室外环境中对不同材质色卡辐射测量评估,得到两者的光谱特性高度一致性。根据植被指数分析得到的结果表明手持智能型SPECIM IQ在植物研究和表型分型策略的背景下的应用潜力:对于白粉病的评估,表明SPECIM IQ具有足够的测量能力,并且与SVM相结合,在量化中对视觉评估的高度一致性。作为新智能型的高光谱相机设备,手持式SPECIM IQ除具有高精度的数据质量外,其设备本身具有高紧凑性、可移动性强和快速集成处理能力,为科技新领域的应用创造了有利条件。手持智能型SPECIM IQ的发布让高光谱传感器技术以实验室设备的质量水平传输到温室和现场,而无需任何载体平台或控制和存储设备,因此,该款设备的诞生无疑可以支持各个场景下的不同应用,并推动现代高光谱技术在更多领域的发展和影响。 相关产品及其链接1、手持智能型高光谱相机SPECIM IQ:http://www.instrument.com.cn/netshow/C282348.htm 2、芬兰SPECIM高光谱航空遥感成像系统:http://www.instrument.com.cn/netshow/C160539.htm 3、芬兰SPECIM 工业高光谱相机FX系列:http://www.instrument.com.cn/netshow/C265811.htm
  • 电科院“超低排放气态污染物监测仪器”通过鉴定
    日前,由国电科学技术研究院所属南京国电环保科技有限公司研制的“超低排放气态污染物监测仪器”通过中国环境科学学会在北京组织召开的技术成果鉴定。  针对火电厂超低排放气态污染物二氧化碳和氮氧化物的监测需求,南京国电环保科技有限公司对紫外差分吸收光谱技术开展了深入研究,开发了具有自主知识产权的 ASP-01型烟气分析仪,该产品具有如下创新点:利用烟气中SO2气体的特征吸收,可实时对光谱仪的输出波长进行在线校准,提高了仪器运行稳定性和测量精度 对二氧化碳和氮氧化物采用光谱补偿修正算法,解决了目标气体的光谱重叠问题,提高了仪器的抗干扰性 针对不同吸收波段的光强进行光机结构优化设计,提高了测量光谱和光机模块的信噪比与灵敏度。  鉴定委员会认为,该成果研制的“超低排放气态污染物监测仪器”测量精确度和稳定性高,检测下限低,填补了国内空白,主要技术指标达到了国际同类仪器的先进水平,一致同意通过鉴定。  目前,该仪器通过了环境保护部环境监测仪器质量监督检验中心的适用性检测和江苏省环境监测中心的比对监测,并在浙江北仑电厂、常州电厂等多台超低排放机组上应用,效果良好。
  • 宁晋县大气污染防治工作领导小组办公室264.60万元采购颗粒物监测仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 宁晋县2024年PM2.5专家组项目招标公告 河北省-邢台市-宁晋县 状态:公告 更新时间: 2024-08-30 宁晋县2024年PM2.5专家组项目招标公告 【发布时间 : 2024-08-30 】 项目概况 宁晋县2024年PM2.5专家组项目 的潜在投标人应在“惠招标电子招投标交易平台”或“宁晋县公共资源交易网”自主网上下载招标文件及相关资料,及时查看有无澄清和修改获取招标文件,并于2024年9月24日14点00分(北京时间)前递交投标文件。一、项目基本情况 项目编号:ZFCG2024113 项目名称:宁晋县2024年PM2.5专家组项目 预算金额:2646000元 最高限价:2646000元 采购需求:主要包括环境管理咨询服务、企业入企抽查服务、大气颗粒物来源解析服务、站点监测服务、走航监测服务、专项排查服务等,具体详见招标文件。 合同履行期限:一年。 本项目(是/否)接受联合体投标:否二、投标人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:本项目专门面向小微企业采购。 3.本项目的特定资格要求:无。三、获取招标文件 时间:2024年9月2日至2024年9月6日,每天0时至12时,12时至23时59分(北京时间,法定节假日除外) 地点:“惠招标电子招投标交易平台”或“宁晋县公共资源交易网”自主网上下载招标文件及相关资料,及时查看有无澄清和修改。 方式:其它 售价:0四、提交投标文件截止时间、开标时间和地点 2024年9月24日14点00分(北京时间) 地点:网上开标,投标人应及时登录惠招标电子招投标交易平台在线参与开标。五、公告期限 自本公告发布之日起5个工作日。六、其他补充事宜 1.已在“河北省公共资源交易服务平台”注册登记的供应商,办理CA数字证书后,可在“惠招标电子招投标交易平台”登录递交投标文件。 2.未经资格确认(注册登记)的供应商,递交投标文件前需按照“邢台市公共资源交易中心关于市场主体登记注册的通知”(http://11 6.131.179.226:8888/sszt-zyjyPortal/zy jyPortal/portal/informationi d=1886)要求,进行注册登记。具体事宜可咨询0319-2686133。 3.投标文件递交时需使用CA数字证书加密,未办理CA数字证书的供应商,需进行CA数字证书注册。CA注册有一定周期,请及时办理以免影响本次项目。 4.潜在供应商如对招标文件有疑问或异议的,可以在规定时间内通过“惠招标电子招投标交易平台交易平台”提出。 若供应商在使用“惠招标电子招投标交易平台”的过程中遇到任何操作性问题,可咨询客服电话:400-780-9998。 5.招标文件等资料发布后,即视为已送达所有潜在供应商,潜在供应商须从“惠招标电子招投标交易平台”或“宁晋县公共资源交易网”自行下载,并及时查看有无澄清或修改。潜在供应商未下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。 6.特别说明:本项目实行双盲:“盲抽”、“盲评”,即投标文件的商务标、技术标分开制作,评审委员会按要求对商务标采取明标评审、对技术标采取暗标评审。投标人应严格按照统一格式和规范,统一投标文件页面大小和颜色,统一封面、封底和字体、行距、页边距、页眉、页脚等“投标文件格式”中技术部分 (技术暗标)要求编制,投标文件不按“盲评”要求编制的,认定为投标无效。技术标(暗标部分)不允许有涂改和行间插字等及能反映投标人标识的内容,否则视为技术标有反映投标人标识内容,视为无效投标文件。 7.本公告发布媒体:中国河北政府采购网、宁晋县公共资源交易网、惠招标电子招投标交易平台。七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:宁晋县大气污染防治工作领导小组办公室 地址:宁晋县兴宁街48号 联系方式:赵冰清0319-5890623 2.采购代理机构信息 名 称: 河北国盛工程咨询有限公司 地 址:石家庄市槐安西路260号乐橙商务广场C座14层 联系方式:董海娟 0311-87331516 3.项目联系方式 项目联系人:董海娟 电 话:0311-87331516 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:颗粒物监测仪 开标时间:2024-09-24 14:00 预算金额:264.60万元 采购单位:宁晋县大气污染防治工作领导小组办公室 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河北国盛工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 宁晋县2024年PM2.5专家组项目招标公告 河北省-邢台市-宁晋县 状态:公告 更新时间: 2024-08-30 宁晋县2024年PM2.5专家组项目招标公告 【发布时间 : 2024-08-30 】 项目概况 宁晋县2024年PM2.5专家组项目 的潜在投标人应在“惠招标电子招投标交易平台”或“宁晋县公共资源交易网”自主网上下载招标文件及相关资料,及时查看有无澄清和修改获取招标文件,并于2024年9月24日14点00分(北京时间)前递交投标文件。一、项目基本情况 项目编号:ZFCG2024113 项目名称:宁晋县2024年PM2.5专家组项目 预算金额:2646000元 最高限价:2646000元 采购需求:主要包括环境管理咨询服务、企业入企抽查服务、大气颗粒物来源解析服务、站点监测服务、走航监测服务、专项排查服务等,具体详见招标文件。 合同履行期限:一年。 本项目(是/否)接受联合体投标:否二、投标人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:本项目专门面向小微企业采购。 3.本项目的特定资格要求:无。三、获取招标文件 时间:2024年9月2日至2024年9月6日,每天0时至12时,12时至23时59分(北京时间,法定节假日除外) 地点:“惠招标电子招投标交易平台”或“宁晋县公共资源交易网”自主网上下载招标文件及相关资料,及时查看有无澄清和修改。 方式:其它 售价:0四、提交投标文件截止时间、开标时间和地点 2024年9月24日14点00分(北京时间) 地点:网上开标,投标人应及时登录惠招标电子招投标交易平台在线参与开标。五、公告期限 自本公告发布之日起5个工作日。六、其他补充事宜 1.已在“河北省公共资源交易服务平台”注册登记的供应商,办理CA数字证书后,可在“惠招标电子招投标交易平台”登录递交投标文件。 2.未经资格确认(注册登记)的供应商,递交投标文件前需按照“邢台市公共资源交易中心关于市场主体登记注册的通知”(http://11 6.131.179.226:8888/sszt-zyjyPortal/zy jyPortal/portal/informationi d=1886)要求,进行注册登记。具体事宜可咨询0319-2686133。 3.投标文件递交时需使用CA数字证书加密,未办理CA数字证书的供应商,需进行CA数字证书注册。CA注册有一定周期,请及时办理以免影响本次项目。 4.潜在供应商如对招标文件有疑问或异议的,可以在规定时间内通过“惠招标电子招投标交易平台交易平台”提出。 若供应商在使用“惠招标电子招投标交易平台”的过程中遇到任何操作性问题,可咨询客服电话:400-780-9998。 5.招标文件等资料发布后,即视为已送达所有潜在供应商,潜在供应商须从“惠招标电子招投标交易平台”或“宁晋县公共资源交易网”自行下载,并及时查看有无澄清或修改。潜在供应商未下载相关资料,或未获取到完整资料,导致投标被否决的,自行承担责任。 6.特别说明:本项目实行双盲:“盲抽”、“盲评”,即投标文件的商务标、技术标分开制作,评审委员会按要求对商务标采取明标评审、对技术标采取暗标评审。投标人应严格按照统一格式和规范,统一投标文件页面大小和颜色,统一封面、封底和字体、行距、页边距、页眉、页脚等“投标文件格式”中技术部分 (技术暗标)要求编制,投标文件不按“盲评”要求编制的,认定为投标无效。技术标(暗标部分)不允许有涂改和行间插字等及能反映投标人标识的内容,否则视为技术标有反映投标人标识内容,视为无效投标文件。 7.本公告发布媒体:中国河北政府采购网、宁晋县公共资源交易网、惠招标电子招投标交易平台。七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:宁晋县大气污染防治工作领导小组办公室 地址:宁晋县兴宁街48号 联系方式:赵冰清0319-5890623 2.采购代理机构信息 名 称: 河北国盛工程咨询有限公司 地 址:石家庄市槐安西路260号乐橙商务广场C座14层 联系方式:董海娟 0311-87331516 3.项目联系方式 项目联系人:董海娟 电 话:0311-87331516
  • 您的室内/车内污染物测全了吗?-CISILE2016之微环境检测技术专题
    仪器信息网讯 2016年5月22-24日,经国家商务部批准,由中国仪器仪表行业协会主办,北京朗普展览有限公司承办的“第十四届中国国际科学仪器及实验室装备展览会”(CISILE 2016)在北京国家会议中心召开。本届展览会特设“微环境检测技术”分论坛,关注我们的室内环境和车内环境安全。会议现场  本分论坛由北京服装学院龚龑副教授主持,邀请中国疾病预防控制中心环境与健康相关产品安全所吴亚西研究员、北京市理化分析测试中心杨华副研究员、山西省产品质量监督检验研究院李学哲教授、龚龑副教授、北京市化工研究院尹洧研究员分别从室内空气污染、车内空气污染和实验室应用标准为与会者分享了其研究成果。中国疾病预防控制中心环境与健康相关产品安全所吴亚西研究员  吴亚西研究员从室内空气质量评价、空气污染现状、室内空气污染现状、室内空气质量的改善措施、室内空气污染监测方法等五方面系统的介绍了室内空气质量与检测技术,重点从采样方法、采样点布置、污染物的检测技术等方法介绍了室内空气污染的监测方法。最后,吴研究员提出,未来室内空气检测仪器发展方法应为简单、快速、灵敏、便携(小型化)、抗干扰(特异性好),重点可关注的技术为光学技术(如提高方法性能,检测限)、傅里叶红外气体分析仪、长光程气体光谱仪、光度法、光腔衰荡光谱技术、特异性化学发光、荧光等。北京市理化分析测试中心杨华副研究员  环境舱指可以合理模拟室内环境条件的一种测试设备,由惰性材料制成,汇效应的影响很小,舱内的环境参数可精确控制,在家具污染释放检测和室内空气净化产品检测中广泛应用。目前,市场上的空气净化产品包括被动式净化产品(活性炭、空气净化功能照明灯、防雾霾纱窗、植物净化产品等)和主动式空气净化产品(集中空调用模块化空气净化装置和单体式空气净化器),此类产品的检测大都使用了环境舱。  植物净化技术指利用植物从空气中去除污染物以改善室内空气质量的方法,因其经济、有效和自身的生态功能与美学价值而备受关注。杨华副研究员采用环境舱技术对近300种植物进行了研究,结果表明植物对挥发性有机物有很好的去除效果,如果选择得当,在大型环境舱内,植物在最初的三个小时即可显著去除苯系物。山西省产品质量监督检验研究院李学哲教授  李学哲教授为与会者详细介绍了我国的标准组成以及对实验室安全的意义。标准是指通过标准活动,按照规定的程序经协商一致制定,为各种活动或其结果提供规划、指南或特性,供共同使用和重复使用的文件,宜以科学、技术和经验等综合成果为基础。实验室用管理标准按不同管理部门、机构可分为国家标准、行业标准、地方标准、团体标准和企业标准,按用途可分为术语类、规范类、通用类、指南类、规则类、仪器类、方法类、安全类等等。为保证实验室安全,实验室人员应当认真学习相关标准,在工作中参考各类标准,避免各类安全事故的发生。北京服装学院龚龑副教授  龚龑副教授以“车内装饰纺织品材料的VOC释放及控制”为题,介绍了车内纺织品的发展现状、VOC来源与危害、VOC检测以及VOC释放控制。一辆汽车所有纺织品大约在25千克左右,涉及汽车80多个零部件,包括顶棚、地毯、座椅面料、安全气囊、安全带、轮胎、后备箱内衬、背衬、护板、过滤材料、蓬盖布等。然而由于缺乏规范的生产控制体系、缺乏专业的从业人员,自主开发能力弱、产品标准化水平低等原因,我国车用纺织品的生产企业大多难以保证产品的质量。  为保证乘车人的安全,环保部颁布了《乘用车内空气质量评价指南》规定车内空气中笨、甲苯、二甲苯、乙苯、甲醛、乙醛等的浓度要求,采用吸光度法、气相色谱法、超声萃取-气质联用方法等对其进行检测。然而由于检测方法复杂,在成本和时间上很难满足人们对车内空气质量的关切。龚龑老师与相关仪器厂商合作,采用激光拉曼光谱来检测车内各种纺织品的光谱特性,并建立谱图与VOC含量之间的关联,从而实现车内VOC的快速检测,目前此项工作正在开展中。北京市化工研究院尹洧研究员  尹洧研究员以“居室空气质量及检测技术”为题,详细介绍了室内空气主要污染物及其主要来源和检测技术。室内空气的应测项目包括温度、大气压、空气流速、相对湿度、新风量、二氧化硫、二氧化氮、一氧化碳、二氧化碳、氨、臭氧、甲醛、苯、甲苯、二甲苯、总挥发性有机物、苯并芘、可吸入颗粒物、氡、菌落总数等,其它项目包括甲苯二异氰酸酯、苯乙烯、丁基羟基甲苯、4-苯基环乙烯、2-乙基已醇等。  新装饰、装修过得室内环境应测定甲醛、苯、甲苯、二甲苯、TVOC等,人群比较密集的应测菌落总数、新风量及二氧化碳,使用臭氧消毒、净化设备及复印机等可能产生臭氧的应测臭氧,住宅一层、地下室、其它地下设施以及采用花岗岩、彩釉地砖等天然放射性含量较高材料新装修的应监测氡,北方冬季施工的建筑物应测定氨。编辑:李学雷
  • 油品检测仪|润滑油常见三大污染物及检测方法
    润滑油被誉为设备的血液,流淌在设备内部,对设备起到润滑减磨、冷却、清洁和防锈等作用。润滑油如果受到污染,会造成润滑失效,设备磨损加剧,进而引起设备故障、缩短设备使用寿命… … 润滑油受到污染是一个复杂的问题,有时候日常检查可以发现,有些情况却不能,有些污染不能通过肉眼观察到。而且,对于所有的污染,等到肉眼都能发现时,说明已经很严重。总之,润滑油的污染,要早发现,早处理,尤其对于较为敏感、比较关键的设备。油液检测通过检测油品,可以准确的分析润滑油里的污染物,就像通过血液检测,发现人体的异常情况一样。颗粒物颗粒物是危害最大的一种污染物,它们进入润滑系统内部,会造成磨粒磨损、金属压伤刮伤、金属疲劳。颗粒物一般具有一定的硬度,许多颗粒物的尺寸很微小,能穿过零件之间的间隙,在设备内部循环,造成磨损。常见的颗粒物有灰尘、砂砾、设备运转中产生的细小金属颗粒、锈渣等。颗粒物污染不但危害设备本身,而且还会缩短润滑油的使用寿命。磨粒磨损会增加油里的金属粉末含量,这些细小的金属颗粒不但进一步磨损设备,而且还会加速润滑油氧化变质,因为金属粉末会催化油品的氧化速度。鉴于这些颗粒物的危害是连锁性的,因此及早监测、及早处理很重要。油液检测可以发现油液里的细小颗粒物,还可以发现设备的早期磨损。通过检测油液里的颗粒物计数,我们可以了解油液的清洁度、是否进入了颗粒污染物。另外,通过金属元素分析,我们可以发现设备的早期磨损。当颗粒物与设备的金属发生了磨粒磨损,被刮擦下来的金属就可以被监测到。通过金属的元素及成分分析,还可以找到磨损源,例如,齿轮的材料大部分是铁,含有少量的其它合金成分(铬、镍、锰等等)。如果发现颗粒物进入润滑油,一般的补救措施包括:找到颗粒物从哪里进来的,然后堵住来源,通过过滤,把颗粒物除掉——但是,这个做法不一定都有效。有些时候滤油也很难完全除掉颗粒物,还得把油换掉。如果磨损比较明显,建议进行铁谱分析,可以确定磨损的程度,指导设备维护。水分水分是常见的污染物,虽然危害没有颗粒物严重,但是水分会破坏润滑效果、使油变质、造成设备磨损,水分也会引起金属锈蚀。润滑油里的水分有三种形式:溶解水、乳化水、游离水,其中,乳化水的危害最大。溶解水就是已经溶解在润滑油里的水分,润滑油具有吸湿性,会吸收空气里的水分,因此会含有少量的水分。一般来说,少量的溶解水不会造成什么危害,除非某些情况对润滑油的含水量要求特别严格。润滑油可以允许的溶解水含量最大值为吸水饱和点,在达到吸水饱和点之前,润滑油里虽然含有水分,但是不会表现出有水的迹象,例如乳化、或者浑浊、透明度降低等。润滑油里进入水后,如果没有和油分离开,微小的水滴悬浮在油液里成为悬浊液,就成为乳化水,乳化水的危害最大。当润滑油乳化时,含水量已经超过了饱和点。油里含有乳化水时,润滑油的透明度会降低、浑浊,颜色发白甚至变成奶白色。乳化水的危害很大,因为它们可以自由地流动,污染整个润滑系统里的油,另外,水分会破坏油的润滑性。乳化水到达设备运转的承压区域后,这些区域会润滑不良、摩擦加剧而磨损。当水和润滑油完全分离开后,就成为游离水。游离水的危害相对较小,但是也会引起问题。首先,游离水也可能随着润滑油循环,引起油乳化。另外,油里的水会削弱润滑油的破乳化性,导致泡沫增加,消耗润滑油里的添加剂,缩短润滑油的使用寿命,并且容易滋生细菌。水分对设备的危害除了引起润滑不良,还有氢脆、锈蚀。润滑油能防止金属锈蚀,如果油里进水,容易引起金属锈蚀。潮湿的大气和游离的水分都可能引起金属的氢脆问题,氢脆又称为氢损伤,可以引起轴承损坏。水会分解为氢和氧,电解和腐蚀也会产生氢,水会促进电解和腐蚀,高强度钢尤其容易遭受这种问题。另外润滑油、润滑脂里加入的添加剂里面含有硫(极压添加剂、抗磨剂等等),矿物油本身也含有一定的硫杂质,会促进金属的腐蚀和裂化。水分会破坏油膜的强度和油膜的完整性,润滑是依靠油在金属接触面之间形成一层油膜,油膜隔开金属之间的直接摩擦,防止金属直接接触。如果水分进入轴承的金属接触受力区域,就会破坏油膜的完整性,降低油膜强度,导致润滑不良或者金属之间直接摩擦,会引起金属疲劳损伤、形成金属刮擦、碎裂。水会缩短润滑油的使用寿命,另外水还会造成润滑油里的抗氧化剂流失、消耗,导致润滑油氧化变质。润滑油氧化会形成酸性物质、油泥和漆膜、使油的黏度增加,影响喷溅润滑的效果等等。当发现润滑油进水时,正确的处理方法是首先找到水分来源,切断来源,然后采取除水措施,严重时最好换油,水含量最好通过油液检测来准确判定。混入其它润滑油使用润滑油时,应该避免与其它油品接触。但是有些情况,比如泄露、加油时用错润滑油(润滑油粘度选择错误或者添加剂类型选错)等等,都会造成不同的润滑油混合。例如,矿物油与常规的PAG合成油(非油溶性PAG)不能相容。这两种油如果相混,会导致混合后的油粘度增加,并形成油泥,其它现象还有酸值升高、滤芯被油泥堵塞。同时,由于发生相混导致润滑不良,还会发生设备磨损。当润滑油里混入其他油类,解决的方法是换油并冲洗润滑系统,不能使用过滤的方法除掉。使用错误配方类型的润滑油也是一个常见问题,可能是换油时不小心加错油,或者直接就是选油错误。例如,如果设备需要的是极压型润滑油(EP)或者抗磨型润滑油(AW),而用户误加成一般的抗氧防锈型油品,就会造成设备运行中磨损。如果对润滑油的抗乳化性有较高要求的设备里,混入了加有清净分散剂的油品,那么油的抗乳化性/油水分离性会削弱。例如汽轮机油里混入了发动机油,1升的机油混入7000升的汽轮机油里,就可以破坏汽轮机油的抗乳化性,因此千万要避免润滑油相混。对于这种情况,需要把油都换掉,并且冲洗润滑系统。如果设备有黄色金属(例如铜),但是需要使用极压型润滑油,那么就需要了解润滑油对黄色金属的腐蚀性,因为某些极压润滑油里含有活性硫,会腐蚀黄色金属。通过红外图谱检测,可以发现润滑油误用或者相混。另外,最好还配合使用铁谱分析,可以发现是否发生了设备磨损。因为润滑油误用或者混合,很可能带来设备磨损。润滑油误用还可能是粘度不对,有可能是粘度选择错误,或者油里混入了其它粘度的油。如果油的粘度过大,或者混入了高粘度油,在齿轮系统里会观察到磨损,还有喷溅润滑异常。对于液压系统,会造成设备反应迟缓,油的滤过率降低。润滑油是设备的血液,如果出现问题,不仅影响到整个系统的运行,还会增加维护成本,严重时会造成设备重大故障。要怎样做好预防呢?除了在添加和使用的过程中多加注意以外,加强对润滑油的监测,定期取样进行润滑油元素、磨粒、水分、粘度、嗅探等检测和分析,确定润滑油的清洁度,富尔邦代理的斯派超油液监测设备能够帮您分析润滑油的状态,针对性排除故障,避免设备出现故障或意外停机。相关仪器A1031油液颗粒污染度检测仪是依据GB/T 18854-2002、ISO11171-1999、DL/T432-2007、GJB 420B、NAS1638、ISO4406等标准研制的用于油液中污染粒子的分布大小尺寸及等级检测的仪器。油液颗粒计数器采用光阻法(遮光法)原理研制,适用于液压油、润滑油、抗燃油、绝缘油和透平油等颗粒污染度的检测。可提供快速、准确、可靠、可重复的检测结果及完整的污染监测分析报告。广泛应用于航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域。仪器特点1.采用国际液压标准光阻(遮光)法计数原理。2.高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高。3.采用精密注射泵取样方式,可自行设定取样体积,进样速度稳定,取样精度高。4.采用了正负压结合的进样系统,可实现样品脱气,适合不同粘稠度的检品测试。5.内置空气净化系统,保证测试不受污染。6.内置多重校准曲线,可兼容国内外常用标准进行校准。7.内置GJB-420B、NAS1638、ISO4406和ГOCT17216-71等8种常用标准,支持自定义标准测试,并可根据客户需求设置所需标准。8.可采用标准取样瓶或取样杯等多种取样容器,满足不同行业的检测要求。9.彩色触摸屏操作,内置打印机,结构简洁大方,操作简单方便。10.全功能自动操作,中文输入,具有数据存储、打印功能。11.内置数据分析系统,可根据标准自动判定样品等级。12.具有RS232接口,可连接电脑或实验室平台进行数据处理。13.可有偿提供颗粒度计量测试站“中国航空工业颗粒度计量测试站”校验报告。技术参数• 光源:半导体激光器• 粒径范围:0.8um~500um• 检测通道:8通道任意设置粒径尺寸• 分辨力:优于10%• 重复性:RSD• 气压舱最大正压:0.8MPa • 极限重合误差:10000粒/mL• 工作电源:AC220V±10%,50HzA1070微量水分测定仪适用标准:GB/T11133 GB/T11146 GB/T 7600 GB/T6023 GB/T6283 GB/T606。石油产品水分测定器采用经典理论——卡尔●菲休微库仑电量法;依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,能可靠的对液体、气体、固体样品进行微量水分的测定。广泛适用于石油、化工、电力、商检、科研、环保等领域。仪器特点1、液晶彩色7寸触摸屏显示,自动平衡,人机对话界面,各种参数具有菜单提式输入,具有与电脑、wifi连接功能。2、配有试验日期、时钟等多种参数提示功能,微分检测,系统偏差自动修正,搅拌、检测、打印数据微机自动完成,具有μg 水与ppm单位自动转换功能。3、操作简单,使用方便,测试准确、稳定、易操作,是试验室理想的测量仪器。技术参数• 测量范围:3μg~100mg• 电解速度:2.4毫克/分(最大)• 分 辨 率:0.1μg• 准 确 度:10μg~1mgH2O ±3μg 1mgH2O 以上为0.3%(不含进样误差)• 终点显示:信息显示、蜂鸣器响、终点指示灯亮• 显示时钟:年 月 日 小时 分钟 秒(掉电保持)• 打 印 机:16个字符针式打印,纸宽44毫米• 电源电压:AC220V±10%,50Hz• 外形尺寸:170*170*110mm • 重 量 :1.25KGA1064石油和合成液水分离性测定仪是测定石油合成液与水分离的能力。液晶触摸屏中文显示界面,菜单提示式输入。**温控表控温,自动定时,精度高,准确度好。显示年月日及当前时钟等多种参数提示。恒温浴采用小缸体,人性化设计。操作简便,测量准确,外型设计美观。自动搅拌,自动定时,试管搅拌电机大臂自动升降。配有时钟等多种参数提示。可广泛应用于电力、石油、化工、商检及科研等部门。适用标准:GB/T7305、GB/T7605仪器特点1、**温控表控温,控温准确性、稳定性好。2、仪器结构优化,试验过程不损坏试管。3、长寿命搅拌电机,机械传动无噪声,稳定可靠。4、可依次分离四个样品,提高工作效率。5、液晶触摸屏,灵敏度高。6、采用**PT100温度传感器,传输信号更精准。7、控制温度、搅拌定时、转盘动作、升降动作自动化,提高工作效率。8、**PLC控制系统,可靠性、稳定性、安全性高。9、配置热敏打印机,可以打印数据。10、配有水浴排加液口,方便水浴内清洗及更换水浴介质。技术参数
  • 贵州发布深入打好大气污染防治攻坚战实施方案,这些单位应配备VOCs检测仪
    近日,贵州省生态环境厅等15单位制定印发了《贵州省深入打好大气污染防治攻坚战实施方案》(以下简称《方案》)。《方案》分为1个总方案和污染天气防控、臭氧污染防治、柴油货车污染治理3个子方案。《方案》指出,要坚持突出重点、以点带面。以冬春季节和春节、元宵节、中元节等特殊时段为重点管控时段,以PM2.5、O3为重点管控污染物,以中心城市为重点管控区域,以建筑施工工地、城区主干道和挥发性有机物(VOCs)、氮氧化物(NOx)主要排放源为重点管控对象,全面加强大气污染防治;加强污染天气应急处置帮扶指导,完善扬尘污染防治设施,强化重点污染物监测和重点污染源监控,逐步提升城市环境空气质量管控和应急处置能力;在臭氧污染防治专项行动方面,应加强O3监测和污染研判分析,开展VOCs和NOx协同管控和区域联防联控。应强化技术支撑,加强机理研究,开展颗粒物和臭氧源解析,提升气象变化和污染物输送分析能力,构建污染成因分析、监测预报、精准溯源、科学评估、深度治理、智慧监管、应急处置的全过程科技支撑体系。完善监测体系,中心城市开展非甲烷总烃监测,强化工业污染源自动监控,建设重型柴油车和非道路移动机械远程在线监控平台。提升管控效能,建设秸秆焚烧高空监控设施,完善抑尘车、洒水车、清扫车等扬尘污染防治设施,逐步配备便携式VOCs检测仪等设备。此外,在子方案《贵州省城市污染天气防控专项行动方案》中提出:加强城市环境空气质量管控和应急处置能力建设。完善抑尘车、洒水车、清扫车等扬尘污染防治设施,建设秸秆焚烧高空监控设施,购置主要污染物走航监测设施,开展PM2.5、颗粒物(PM10)、臭氧走航监测和源解析。各地将城市环境空气质量管控和应急处置经费纳入本级财政预算,并予以保障;子方案《贵州省臭氧污染防治专项行动方案》中提出:加强污染源监测监控。推动VOCs和氮氧化物排放重点排污单位依法安装自动监测设备,并与生态环境部门联网。督促企业按要求对自动监测设备进行日常巡检和维护保养。市、县两级生态环境部门配备便携式VOCs检测仪。《方案》原文:贵州省深入打好大气污染防治攻坚战实施方案为贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的意见》《深入打好重污染天气消除、臭氧污染防治和柴油货车污染治理攻坚战行动方案》和《中共贵州省委省人民政府关于在生态文明建设上出新绩的实施意见》《贵州省“十四五”生态环境保护规划》《贵州省空气质量改善行动计划》有关要求,打好城市污染天气防控、臭氧污染防治、柴油货车污染治理三个标志性战役,切实解决人民群众身边关心的突出大气环境问题,持续巩固改善全省环境空气质量,制定本方案。一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,全面落实习近平生态文明思想和习近平总书记视察贵州重要讲话精神,坚决落实党中央、国务院关于生态环境保护的决策部署和省委、省政府有关工作安排,坚持以人民为中心的发展思想,以“在生态文明建设上出新绩”为总目标,以巩固改善空气质量为核心,以当前迫切需要解决的污染天气、臭氧污染、柴油货车污染等突出问题为重点,深入打好大气污染防治标志性战役,推动“十四五”全省空气质量改善目标顺利实现,进一步增强人民群众的蓝天幸福感、获得感。(二)基本原则坚持精准科学、依法攻坚。结合实际,科学制定攻坚行动方案,冬春季聚焦细颗粒物(PM2.5)和污染天气、夏季聚焦臭氧(O3)、全年紧抓柴油货车开展攻坚;依法监管,严格执法,禁止“一刀切”“运动式”攻坚。坚持突出重点、以点带面。以冬春季节和春节、元宵节、中元节等特殊时段为重点管控时段,以PM2.5、O3为重点管控污染物,以中心城市为重点管控区域,以建筑施工工地、城区主干道和挥发性有机物(VOCs)、氮氧化物(NOx)主要排放源为重点管控对象,全面加强大气污染防治。坚持完善机制、强化督导。健全城市环境空气质量管控机制,充分压实大气污染防治攻坚责任。加强污染防控技术帮扶和督促指导,严格监督考核,完善闭环管理,确保各项任务措施落实落细。(三)主要目标到2025年,全省9个中心城市环境空气质量平均优良天数比率达到98.8%,PM2.5平均浓度控制在22 ug/m3以内,县级城市环境空气质量平均优良天数比率保持在97%以上,NOx和VOCs重点工程减排量分别达到1.17万吨和0.45万吨,柴油货车NOx排放量下降12%,消除重污染天气,基本消除中度污染天气,有效控制轻度污染天气。二、实施重大专项行动(一)城市污染天气防控专项行动健全城市环境空气质量管控机制,强化污染天气预测预报,实施环境空气质量精准管控,推进重点区域突出大气环境问题排查整治。深入开展建筑施工和道路扬尘、工业粉尘污染管控,开展燃煤散烧、秸秆焚烧等低空散烧污染整治。加强污染天气应急处置帮扶指导,完善扬尘污染防治设施,强化重点污染物监测和重点污染源监控,逐步提升城市环境空气质量管控和应急处置能力。(二)臭氧污染防治专项行动坚决遏制高耗能、高排放、低水平项目盲目发展,积极推动产业结构优化调整和能源清洁低碳转型,有力促进减污降碳协同增效。推进VOCs原辅材料替代和排放治理,实施低效脱硝设施排查整治,推动钢铁、水泥等重点行业NOx污染治理和超低排放改造,推进工业锅炉和炉窑提标改造。加强O3监测和污染研判分析,开展VOCs和NOx协同管控和区域联防联控。(三)柴油货车污染治理专项行动加大运输结构调整和车船清洁化推进力度,加快铁路专用线建设,逐步提高“公转铁”“公转水”货运量。强化机动车排放大数据应用,加强柴油货车生产、使用、检验等全流程管控,积极开展部门联合监管执法。推进传统汽车清洁化,加快推动机动车新能源化发展。开展非道路移动源综合治理,逐步提升非道路移动机械清洁化水平。三、保障措施(一)加强组织领导各地要把深入打好城市污染天气防控、臭氧污染防治、柴油货车污染治理三个标志性战役作为深入打好大气污染防治攻坚战、奋力在生态文明建设上出新绩的重要举措,结合本地大气环境管理目标和工作实际,科学精准制定具体方案,加大政策支持力度,确保各项目标任务顺利完成。生态环境部门定期下达各中心城市环境空气质量管控目标。各有关部门要强化担当、密切配合、协调联动,共同推进方案实施。(二)强化技术支撑加强机理研究,开展颗粒物和臭氧源解析,提升气象变化和污染物输送分析能力,构建污染成因分析、监测预报、精准溯源、科学评估、深度治理、智慧监管、应急处置的全过程科技支撑体系。完善监测体系,中心城市开展非甲烷总烃监测,强化工业污染源自动监控,建设重型柴油车和非道路移动机械远程在线监控平台。提升管控效能,建设秸秆焚烧高空监控设施,完善抑尘车、洒水车、清扫车等扬尘污染防治设施,逐步配备便携式VOCs检测仪等设备。(三)从严压实责任督促企业落实主体责任,对工程质量低劣、环保设施运营管理水平低甚至存在弄虚作假行为加大联合惩戒力度,加强自行监测和执法监测监督抽查,严厉查处无证排污或不按证排污、旁路偷排、未安装或不正常运行治污设施、超标排放、弄虚作假等行为,持续开展环保信用评价。生态环境部门定期调度目标任务推进情况,通报空气质量状况,将大气污染防治标志性战役年度和终期目标完成情况作为深入打好污染防治攻坚战成效考核的重要内容,强化目标任务落实情况考核,将有关落实情况纳入省委生态环境保护督察。对在城市环境空气质量管控和应急处置中工作不力、履职不到位等行为,依法依规严肃处理;对未按时完成目标任务的地区依规依法实行通报批评和约谈问责。附件:1.贵州省城市污染天气防控专项行动方案2.贵州省臭氧污染防治专项行动方案3.贵州省柴油货车污染治理专项行动方案附件1贵州省城市污染天气防控专项行动方案一、攻坚目标到2025年,全省9个中心城市环境空气质量平均优良天数比率达到98.8%,PM2.5平均浓度控制在22 ug/m3以内,不发生重污染天气,基本不发生中度污染天气,有效控制轻度污染天气;县级城市环境空气质量平均优良天数比率保持在97%以上,全部达到二级标准;降尘排放量不高于6吨/(月平方公里)。二、攻坚思路根据不同季节、城市、行业等大气污染特点,开展污染天气防控攻坚战。冬春季节重点加强PM2.5污染防控,夏秋季节重点加强臭氧污染防控。六盘水市、铜仁市、都匀市、凯里市等中心城市重点加强PM2.5污染防控,兴义市重点加强臭氧污染防控,贵阳市、遵义市、安顺市、毕节市统筹加强PM2.5和O3污染防控。针对扬尘、秸秆焚烧等突出污染问题,着力开展重点管控区域突出环境问题整治、建筑施工和道路扬尘污染整治、工业粉尘污染整治、低空散烧污染整治和强化精准管控五大行动。建立健全城市环境空气质量预警、督导、考核和问责机制,强化城市环境空气质量精准管控。三、攻坚行动(一)着力开展环境空气质量精准管控行动1.加强污染天气应急管控。强化污染天气预测预报,及时发送预警信息。集中组织修订中心城市轻、中度污染天气管控方案,统一标准和要求,完善城市环境空气质量管控和应急处置高位推动机制,建立健全中心城市和区县大气污染联防联控机制。强化应急减排措施清单化管理,工业源应急减排措施应落实到具体生产线、生产环节、生产设施,做到可操作、可监测、可核查,企业应制定“一厂一策”操作方案,将特殊时段禁止或限制污染物排放要求纳入排污许可证,实施“一证式”管理。(省生态环境厅、省气象局按职责分工负责)2.加强污染天气应急处置帮扶督导。组织专家开展污染趋势研判,针对性提出管控建议。强化城市环境空气质量日常管控和应急处置工作的明察暗访及督促指导,及时通报突出大气污染问题,典型问题纳入省委生态环境保护督察内容。(省生态环境厅牵头负责)(二)着力开展重点区域突出大气环境问题整治行动3.加强突出问题排查整改。开展中心城市和县级城市环境空气重点管控区域突出环境问题排查,重点排查建筑施工和道路扬尘污染、餐饮油烟污染、机动车尾气污染、工业企业污染、喷涂污染等,梳理问题清单,制定“一点一策”整治方案,建立整改台账,明确责任人,确保问题整改到位。(省生态环境厅、省住房城乡建设厅按职责分工负责)(三)着力开展扬尘污染整治行动4.加强建筑施工扬尘治理。监督建筑施工工地严格落实“六个百分之百”的扬尘污染防治措施。发布实施《环境空气质量降尘》《施工场地扬尘排放标准》,加大建筑施工工地扬尘污染防治执法监管力度。(省住房城乡建设厅、省生态环境厅按职责分工负责)5.加强道路扬尘治理。各地定期开展住建、生态环境、城市综合执法、交通运输等部门参与的建筑施工扬尘污染防治执法检查,冬春季节每月不得少于一次。加大城区道路清扫和保洁力度,开展城市环境空气重点管控区域道路积尘率监测和考核。(省住房城乡建设厅、省生态环境厅、省交通运输厅按职责分工负责)(四)着力开展工业粉尘污染整治行动6.加强工业企业环保设施运行监管。虽达标排放但对城市环境空气质量有较大影响的工业企业开展深度治理;根据城市环境空气质量管理需要,引导企业合理安排停产、检修时间。(省生态环境厅牵头负责)7.加强工业企业污染堆场集中整治。推进工业企业物料堆场实行规范化管理,采取封闭式仓库、设置防风抑尘围挡和覆盖、喷淋抑尘等措施,有效控制无组织扬尘污染。加强砂石场扬尘防治执法监管,严格新建砂石场审批,全面依法关停违法违规的砂石场。(省生态环境厅、省自然资源厅按职责分工负责)(五)着力开展低空散烧污染整治行动8.加强重点区域和重点时段散烧污染防治。严格执行已划定的高污染燃料禁燃区、限燃区有关要求,加强散煤燃烧管控。严格烟花爆竹销售管理,按照因地制宜、疏堵结合、一市一策的原则,制定春节、中元节等期间烟花爆竹燃放和烧纸祭祀管控方案,明确措施,落实责任。强化冬季烟熏腊制品、路边焚烧取暖等污染行为管控。各地要建立健全市县乡村四级秸秆禁烧管控机制,落实责任,切实加强秸秆、杂草等焚烧管控,真正做到令行禁止。(省生态环境厅、省应急管理厅、省公安厅、省农业农村厅按职责分工负责)(六)着力开展防控能力提升行动9.加强技术支撑。强化预测预报能力建设,进一步提高预测预警准确度,扩大预测预警城市范围。鼓励购买第三方服务,强化城市环境空气质量管控和应急处置技术支撑。(省生态环境厅牵头负责)10.加强城市环境空气质量管控和应急处置能力建设。完善抑尘车、洒水车、清扫车等扬尘污染防治设施,建设秸秆焚烧高空监控设施,购置主要污染物走航监测设施,开展PM2.5、颗粒物(PM10)、臭氧走航监测和源解析。各地将城市环境空气质量管控和应急处置经费纳入本级财政预算,并予以保障。(省生态环境厅、省财政厅按职责分工负责)附件2贵州省臭氧污染防治专项行动方案一、攻坚目标到2025年,PM2.5和O3协同控制取得积极成效,NOx和VOCs重点工程减排量分别达到1.17万吨和0.45万吨,全省O3浓度、O3污染天数相比“十三五”时期基本稳定。二、攻坚思路坚持精准治污、科学治污、依法治污,以5月~10月重点时段,以贵阳市、遵义市、六盘水市、安顺市、毕节市、铜仁市、凯里市、都匀市、兴义市建成区及贵安新区建成区、仁怀市等重点区域,协同推进VOCs和NOx协同减排。聚焦煤化工、焦化、农药、制药、工业涂装、包装印刷、油品储运销等重点行业,加大低VOCs原辅材料和产品源头替代力度,全面提升VOCs废气收集率、治理设施同步运行率和去除率。加大钢铁、水泥、焦化等行业以及锅炉、炉窑、移动源氮氧化物减排力度,持续降低VOCs和NOx排放量。坚持提升能力、补齐短板,有效解决污染监管能力薄弱等问题,加强夏秋季臭氧污染区域联防联控。三、攻坚任务(一)VOCs原辅材料源头替代行动1.加快实施低VOCs含量原辅材料替代。加快制定辖区内溶剂型涂料、油墨、胶粘剂、清洗剂使用企业低VOCs含量原辅材料替代计划,严格控制生产和使用高VOCs含量溶剂型涂料、油墨、胶粘剂、清洗剂等建设项目,推动现有高VOCs含量产品生产企业升级转型,提高水性、高固体分、无溶剂、粉末等低VOCs含量产品的比重。旧城改造等涉及建筑墙体涂刷、建筑装饰以及市政道路划线、栏杆喷涂、沥青铺装等政府投资建设工程严格选用低、无VOCs的涂料、稀释剂及胶粘剂。鼓励在房屋建筑中推广使用低VOCs含量涂料和胶粘剂。全面推进汽车整车制造底漆、中途、色漆使用低VOCs含量涂料;在木质家具制造、汽车零部件、工程机械、钢结构、船舶制造技术成熟的环节,大力推广使用低VOCs含量涂料。(省生态环境厅、省工业和信息化厅、省住房城乡建设厅按职责分工负责)2.开展含VOCs原辅材料达标情况联合检查。严格执行涂料、油墨、胶粘剂、清洗剂VOCs含量限值标准,建立多部门联合执法机制,定期对生产企业、销售场所进行抽检抽查,增加使用环节检测监管,每年5月~10月开展一次检测,曝光不合格产品并追溯其生产、销售、进口、使用企业,依法追究责任。(省市场监管局、省生态环境厅、省住房城乡建设厅、贵阳海关按职责分工负责)(二)VOCs排放治理达标行动3.建设高效适宜VOCs治理设施。全面梳理VOCs治理设施台账,分析治理技术、处理能力与VOCs废气排放的匹配性,合理选择治理技术。鼓励企业采用多种技术的组合工艺,提高VOCs治理效率。加快推进单一低温等离子、光氧化、光催化以及非水溶性VOCs单一喷淋吸收不能稳定达标设施升级改造。加大VOCs初始排放速率大于等于3千克/小时的车间或生产设施管控力度。(省生态环境厅牵头负责)4.强化VOCs无组织排放整治。全面排查含VOCs储存、转移和运输、设备与管线组件、敞开液面以及工艺过程等环节无组织排放情况,开展不达标排放整治。推动现代煤化工、制药、农药等行业开展储罐配件失效、装载和污水处理密闭收集效果差、装置区废水预处理池及废水储罐废气未收集、无组织排放泄漏检测与修复(LDAR)不符合标准规范等问题治理。推动焦化行业开展酚氰废水处理无密闭、煤气管线及焦炉等装置泄露问题治理;推动工业涂装、包装印刷等行业重点治理集气罩收集效果差、含VOCs原辅材料和废料储存不密闭等问题。依法依规整治汽修行业废气排放“散乱污”现象,责令汽修行业企业限期整改未在密闭空间或设备中进行喷涂作业、喷涂废气处理设施缺乏、简陋低效问题。鼓励装载高挥发性化工产品的汽车罐车使用自封式快速接头。鼓励企业单独收集处理含VOCs有机废水系统中的高浓度废气。督促企业规范开展泄漏检测与修复,在臭氧污染高发季节前对LDAR开展情况进行抽测和检查。鼓励企业使用低泄漏的储罐呼吸阀、紧急泄压阀,定期开展储罐部件密封性检测。(省生态环境厅牵头负责)5.加强非正常工况废气排放管控。督促石化、化工等重点行业企业落实开停车、检维修计划提前报告制度,制定非正常工况VOCs管控规程,实施台账管理。推进火炬、煤气放散管按要求安装引燃设施,配套建设燃烧温度监控、废气流量计、助燃气体流量计等设备,及时补充助燃气体。(省生态环境厅牵头负责)6.推进涉VOCs产业集群整治提升。加大涉VOCs排放工业园区和产业集群综合整治力度,全面排查产业集群溶剂型涂料、油墨、胶粘剂、清洗剂使用情况和涉有机化工生产情况,研究制定整治提升计划,统一整治标准和时限。同一类别工业涂装企业聚集的园区和集群,推进建设集中涂装中心;吸附剂使用量大的地区,建设吸附剂集中再生中心,同步完善吸附剂规范采购、统一收集、集中再生的管理体系;同类型有机溶剂使用量较大的园区和集群,建设有机溶剂集中回收中心。加快建设涉VOCs“绿岛”项目。推进钣喷共享中心建设。鼓励贵阳孟关汽车城等汽修行业集中的区域建立汽修集中喷涂中心,配套建设高效VOCs治理设施。(省生态环境厅、省交通运输厅、省发展改革委、省工业和信息化厅、省商务厅、省科技厅按职责分工负责)7.推进油品VOCs综合管控。每年至少开展一次储运销环节油气回收系统专项检查。开展汽车罐车密封性能定期检测,严厉查处在卸油、发油、运输、停泊过程中破坏汽车罐车密闭性等行为,探索将汽车罐车密封性能年度检测纳入排放定期检验范围。探索实施分区域分时段精准调控汽油(含乙醇汽油)夏季蒸气压指标。积极推动万吨及以上原油成品码头、现役8000总吨及以上油船开展油气回收治理。(省商务厅、省公安厅、省生态环境厅、省交通运输厅按职责分工负责)(三)氮氧化物污染治理提升行动8.实施低效脱硝设施排查整治。开展采用脱硫脱硝一体化、湿法脱硝、微生物法脱硝等治理工艺的锅炉和炉窑排查抽测,督促不能稳定达标排放的企业及时整改,推动达标无望或治理难度大的企业改用电锅炉或电炉窑。鼓励采用低氮燃烧、选择性催化还原(SCR)、选择性非催化还原(SNCR)等成熟技术。探索推广新型脱硝技术。(省生态环境厅、省市场监管局、省工业和信息化厅、省科技厅按职责分工负责)9.推进重点行业超低排放改造。有序推进钢铁、水泥企业超低排放改造。推动独立烧结、球团、高炉、轧钢等行业企业参照钢铁超低排放要求实施改造。鼓励其他行业探索开展氮氧化物超低排放改造。到2025年,65蒸吨/小时以上燃煤锅炉(含电力)实现超低排放,水泥行业超低排放有序推进,钢铁行业超低排放改造全部完成。(省生态环境厅、省发展改革委、省工业和信息化厅按职责分工负责)
  • 工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪
    工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪-翁开尔"安全控制油脂污染情况"清洁度参考指南是针对零部件清洗工艺或设备系统的研发人员、操作人员、生产链负责人以及测量人员。该指南制定目的是促进通过高效监控来保证工艺质量。德国FiT工业协会 (Fachverband industrielle Teilereinigung e.V.)已经认识到,相关行业需要针对油脂污染问题提出切实可行的质量保证及监控建议。基于现有技术,FiT整理了2015年到2018年历年来多个工艺实例、专家及用户经验,并制定了 "安全控制油脂污染情况"的相关参考指南。当今许多工业领域中,尽管厂家使用了最先进的生产技术,采用多道清洗工艺对零部件进行前处理,都不能完全解决零部件表面残留污染物对后续工艺造成影响,如喷涂、粘接、焊接等后续工艺的附着力不够、起泡、虚焊等问题。因此,零部件表面清洁度是产品及工艺质量的关键指标。生产厂家应借助高效精准的清洁度检测技术来测量零部件的清洗工艺和清洗后的污染物残留情况,从而进行有针对性的清洗过程,使零部件具有足够的清洁度来进行后续生产工艺(如焊接、连接、喷涂、粘接等)和检验成品质量。过去,厂家主要只检测颗粒物清洁度,而现在,他们越来越重视油污、油脂、成品油等有机污染物对产品质量的影响作用。膜状污染物往往是无法避免膜状污染物通常是指油污、油脂、防腐剂、涂料、冷却润滑油、切削油、粘接剂和其他生产助剂残留物、手汗和手指纹等。简单来说,膜状污染物可以理解为在零部件表面上呈现为一层薄薄的、非颗粒状的污染物质。油脂、成品油类和类似有机物的合格值制定众所周知,油脂、成品油类和类似有机物的污染物残留会影响后续工艺质量,如造成涂层附着力不良、起泡、虚焊、粘接不牢固等问题。故此,目前大部分相关行业规定了零部件需要达到合格的表面清洁度。当然,零部件表面没有污染物是最好的,但这只是一个理想状态。这种想法使所有生产厂家都认为,零部件表面油脂等污染残留物会影响后续工艺。虽然在生产过程中可以使用不含硅油的生产助剂,但多数工艺还是需要使用含有油脂的生产助剂。在原材料加工工艺中,冷却润滑剂、切削油等必要生产助剂必然含有天然或合成的油脂。因此,在实际生产中必须确定零部件表面清洁度合格值,使零部件拥有足够的清洁度来保证后续工艺质量。如今越来越多的制造工艺和终端应用重视零部件表面油脂、成品油、指纹等污染物质的残留情况,因此零部件制造商和清洗设备老板需要找到合适而高效的表面清洁度检测设备。为了满足不断增长的清洁度检测需求,FiT的《零部件清洗质量保证工艺控制指南》和《清洗工艺规划检查表》可以提供初步操作指导。而参考指南 "安全控制油脂污染情况"全面论述了这个问题。参考指南相关介绍该指南的前言部分给出了相关定义和术语,用于规范语言;随后解释了膜状污染物的出现、来源及其特性和影响。基于某些具体工艺、终端应用和行业,对检测膜状污染物在生产过程中的重要性日益重要进行了说明;在最后部分指出了本指南的适用范围。该指南能协助生产厂家内部研发、建立标准和优化生产和清洗工艺,保证整体工艺质量和最终产品质量重现性。同时也重点总结了零部件的清洗工艺、清洗前的初始状态以及目前适用的清洗化学和清洗工艺的解决方案。只有通过合适的清洁度检测、分析控制技术,才能从根本上获取到经过清洗工艺零部件的表面清洁度或污染程度。为此,它提出了一些最常见的适用检测方法,并特别强调了与应用有关的适用性和局限性。在最后,该文件概述了目前工艺监测的解决方案。实例部分本指南的实例部分将基础知识与零件清洗的典型应用关联起来,并提供解决方案,也给出了实际操作建议,便于厂家系统性设计出符合产品质量标准的清洗工艺,并能正确快速调整工艺参数。此外,该指南还指出了监测清洗工艺活性物质、污染物质以及检测整个生产链的零部件真实情况。除了需要确定油污、成品油等污染物来源和检测零部件表面清洁度,该指南还提出了零部件表面清洁度合格值的确定方法。根据某个典型应用,它介绍了实际使用过程中使用到的测量和分析控制技术,并说明了各种方法的优点和局限性。此外,它还提出了保证零部件表面清洁度合格的最佳处理工艺,便于厂家以合适的清洗工艺来设计和分析零部件。结合上述建议,生产厂家能借助高效表面清洁度检测仪器来快速监控并改善零部件的上下游清洗工艺。金属零部件表面清洁度最佳检测方案德国析塔表面清洁度仪能可靠精准量化零部件表面清洁度,是目前领先的污染物量化检测技术。该仪器采用共焦法原理,通过光源发射出最佳波长的紫外光探测金属表面的污染物,内置的传感器探测荧光强度,荧光强度的大小取决于零部件表面有机物残留情况。借助完整紫外光源与传感器的共同作用,析塔表面清洁度仪能快速准确量化基材表面的污染物含量。该仪器为客户提供便携式和在线式机型,全面满足工厂车间或实验室的快速监测清洁度的工艺要求,以评价清洁工艺质量,最大程度上避免人为主观判断带来的测量误差,显著增加工艺可靠性。可见,德国析塔表面清洁度仪能协助生产厂家直接判断零部件表面清洁度是否达到合格要求,稳定零部件加工过程中的清洗质量、实现量化控制! 翁开尔是德国析塔SITA清洁度仪中国独家代理商,欢迎致电咨询。
  • 有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染!
    有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染! 2020 China 挥发性有机物污染防治科技大会现场精彩回顾 挥发性有机物(VOCs)种类繁多,对人体健康和生态环境危害巨大,是较为复杂的一类污染物。VOCs China 2020是我国专注于VOCs污染防治领域的全产业链、供应链的专业展览会,最大范围荟萃国内外VOCs污染综合整治产业链上下游的先进技术、工艺、材料和装备等进行展示与合作。 天津润泽环保惊艳亮相展会现场,所携产品与解决方案备受瞩目,实现了信息技术与环保产业的深度融合。 01 监控污染明星产品 面对日益严重的环境空气污染问题,只有及时有效的实时监测污染情况,获得真实可信的数据,才可以为环境管理者提供制订管理措施的依据。 多组分气体监测仪:一款用于检测工业有毒有害气体的仪器,检测气体种类选择范围包括硫化氢、氨气、甲硫醚、甲硫醇、二甲二硫、二硫化碳、苯乙烯、氮氧化物、臭氧、二氧化硫、氯化氢、氯气、TVOC等工业气体,可以基于这些污染气体浓度分析出臭气浓度OU值。 用户也可根据实际应用需求定制气体种类、数量及检测范围等。相比较传统的化学法气体检测系统,本仪器具有检测速度快、检测灵敏度高、检测参数多并种类选择灵活、操作简便、系统维护量少等特点,逐步成为环境检测站、工业园区、大型化工制药企业等应对环境空气污染监测的必要的气体检测设备。 02 天津润泽环保技术团队 天津润泽环保科技有限公司依托总部雄厚的研发实力、注重科技投入、超前的思维、完善的管理机制, 以其从容、自信的姿态在行业中勇往前行。倾力打造国家信任、客户满意的企业形象。 通过本次展会,天津润泽环保迎来了很多老伙伴,更结识了很多新朋友,我们希望能把这份缘分持续下去,一起为中国环保产业做出贡献。感谢大家的关注!
  • 全方位植物叶片光学监测和评估系统在黑龙江农垦科学院投入运行
    “万物生长靠太阳”。作物产量的高低归根结底取决于叶片对太阳辐射,特别是光合有效辐射的利用。全面监测和评估高等植物对光的吸收、利用、反射和传播,既能从整体上了解植物对光合有效辐射的吸收情况和光合作用的,又能具体分析叶绿体对光能的转化途径及电子传递状况,并且能够衡量作物冠层的结构变化。 由北京易科泰生态技术有限公司提供的全方位植物叶片光学监测和评估系统目前在黑龙江农垦科学院正式安装并组织了培训学习。该系统由开放式叶绿素荧光成像系统FC800-O、手持式叶绿素荧光仪FP100、全自动便携式光合仪LCPro-SD、植物冠层分析系统SunScan、AM350便携式叶面积仪组成,能够对黑龙江农垦科学院的主要研究作物水稻、玉米、大豆的形态及光合生理特性做全方位、多角度的监测和评估。 设备的安装、演示、培训和上手操作在6月末连阴雨天气下的哈尔滨进行。北京易科泰生态技术有限公司的技术工程师为参加培训的师生进行了详细的讲解和演示。理论铺垫和口头讲解仪器的使用&应用开放式叶绿素荧光成像系统FC800-O演示Rfd叶绿素荧光衰减率成像 PAR吸收率成像手持式叶绿素荧光仪FP100讲解FluorPen应用案例:番茄的臭氧处理在不同时期的OJIP快速荧光动力学曲线变化(Thwe and Kasemsap, 2014)全自动便携式光合仪LCPro-SD操作演示应用案例:调亏灌溉对柑橘叶片光合速率、气孔导度及叶绿素荧光强度的影响(Zarco-Tejada et al., 2016;LCPro-SD &FP100测定)ET:100%满足水分需求;RDI 1 :调亏灌溉,水分供给降低到37%;RDI 2:调亏灌溉,水分供给降低到50%。箭头指向水分胁迫开始施加的日期。AM350便携式叶面积仪操作演示植物冠层分析系统SunScan演示讲解Soilbox-343土壤碳通量观测系统讲解
  • 精选案例汇总 | MST在植物抗逆机制研究上的应用
    MST案例汇总 植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天小编带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用。01高温胁迫_蛋白&蛋白互作Chen, Si‐Ting, et al. "Identification of core subunits of photosystem II as action sites of HSP 21, which is activated by the GUN 5‐mediated retrograde pathway in Arabidopsis." The Plant Journal 89.6 (2017): 1106-1118.前人研究发现位于叶绿体的热休克蛋白21(HSP21)能够保护光系统II复合体 (PSII),使其免受细胞内热和氧化应激,但其作用的分子机制尚不清楚。中科院植物生理生态研究所郭房庆研究团队发现,热应激下拟南芥HSP21被GUN5依赖的逆向信号通路激活,并直接结合其核心亚基D1和D2蛋白来稳定PSII。 组成性表达HSP21可以恢复热胁迫下PSII 的热敏稳定性和gun5突变体的功能缺失,表明HSP21是热胁迫条件下维持类囊体膜系统完整性的关键伴侣蛋白。研究人员借助MST技术直接在接近天然状态下的裂解液中检测了HSP21蛋白与PS II核心亚基D1和D2蛋白之间的亲和力。图注:MST技术检测HSP21和植物裂解液中D1/D2结合植物内某些蛋白较难纯化或者纯化后活性受影响,利用MST技术,可直接在植物裂解液内进行亲和力检测,无需纯化。在本次实验中,作者裂解表达35S::D1-eYFP或35S::D2-eYFP的转基因植物,直接向裂解液中加入梯度稀释的纯化HSP21蛋白,检测得到HSP21与D1/D2的亲和力Kd分别为0.67μM和1.32μM.02低温胁迫_蛋白&离子Ding, Yanglin, et al. "CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis." Science Advances 8.26 (2022): eabn7901.寒冷的环境中会触发植物细胞质Ca2+的激增,导致植物的转录重编程。然而,Ca2+信号是如何被感知和传递到下游的低温信号通路仍然是未知的。中国农业大学杨淑华课题组研究发现,钙依赖性蛋白激酶28 (CPK28)启动了一个磷酸化级联,从而作用于低温诱导Ca2+信号下游的转录重编程。这项研究阐明了一种先前未知的机制,揭示了植物从质膜到细胞核的快速感知和转导低温信号的关键策略。研究中,作者通过MST实验检测到CPK28可直接与Ca2+结合。CPK28 EF-hand位点突变蛋白CPK28EFm与Ca2+亲和力降低了6倍,证明了EF-hand对结合Ca2+非常重要。图示:MST技术检测CPK28/CPK28EFm与Ca2+的亲和力03淹水胁迫_蛋白&离子Lehmann, Julian, et al. "Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis." Current Biology 31.16 (2021): 3575-3585.淹水胁迫导致厌氧菌引发的胞质酸中毒,使植物细胞感知酸性并通过膜去极化传递这种信号的分子机制尚不清晰。德国维尔茨堡大学研究表明,拟南芥根中酸中毒诱导的阴离子流出依赖于阴离子通道AtSLAH3,细胞质子浓度的增加使SLAH3从无功能二聚体转变为活性单体形式,激活了阴离子通道。研究发现硝酸盐对于pH依赖的通道激活至关重要,并通过MST技术研究SLAH3与NO3-的结合。图示:(左) 淹水相关胁迫响应中酸中毒诱导的阴离子通道SLAH3的激活(右) MST技术检测不同PH下SLAH3与NO3-亲和力作者表达SLAH3-GFP融合蛋白作为荧光信号源,无需其他标记。在pH6.5下检测到SLAH3与NO3-相互作用的Kd为120±50 mM。在pH为7.3时,SLAH3仍与NO3-结合,但亲和力降低了60%,表明SLAH3与阴离子的结合依赖于pH。04干旱胁迫_蛋白和磷脂分子Yang, Yongqing, et al. "Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis."The Plant Cell 34.1 (2022): 477-494.为了应对干旱胁迫,植物关闭气孔以减少叶片蒸腾水分的损失。气孔运动受信号分子磷脂酰肌醇三磷酸(PI3P)的调控。然而,这一过程的分子机制尚不清楚。中国农业大学郭岩研究组研究表明,拟南芥气孔关闭过程中,PI3P通过与植物特异性肌动蛋白结合蛋白 (SCAB1) 结合,抑制其寡聚,从而调节气孔关闭期间保卫细胞中F-肌动蛋白稳定性和重排。为了检测SCAB1蛋白是否可与PI3P结合,作者进行MST实验,结果显示二者具有非常强的亲和力,解离常数Kd为4.5±0.09 pmol。为了确定具体结合位点,作者将PI3P motifs RXLR-dEER进行突变,MST结果显示,三重突变蛋白不能与PI3P结合。综合其他实验,最终证明,SCAB1的4个RXLR motifs均具有PI3P结合能力,且至少需要2个RXLR才能与PI3P结合。图示:MST检测SCAB1与PI3P的亲和力
  • 被污染气体监测仪器的行业人士围观的,居然是!
    被围观的就是滨松的【量子级联激光器(QCL)】↓↓↓↓↓↓↓↓和滨松新型【InAsSb探测器】↓↓↓↓↓↓↓↓你看,小编是不是敲耿(tao)直(lu)!一丢丢都没有卖关子~(可爱.jpg) 图片来源:xz7.com这两个小玩意,其实是上周闪耀在第十五届中国国际环保展滨松展台的小明星,作为核心光源和探测器,从头到尾,重新诠释了更好的红外气体分析。红外气体分析在污染气体监控中的重要性就不多说了,随着国内“大气十条”的推进,对监测仪器性能要求变得更高、更严,这便直接转化成了对核心器件的要求,也变成了一个个新的难题。光源:监测精度要求更高,但一般的半导体激光器,如果在数百nm中有多个波长发生震动时,光谱带宽变宽,受到多种气体的干扰,测量精度易下降。中红外光源的激光器要达到“1成分=1波长”,需开发与被测对象气体相同数量的光源。开发成本大,商务风险高。探测器:常见污染气体主要集中在4μm~10μm,探测器波长范围需尽可能覆盖。反之,则会增加成本,光路设计变复杂,进而仪器体积增大,功耗上升;探测器须完全符合RoHS标准,传统高污染的碲镉汞(MCT)探测器彻底面临“下岗”;实时监测要求探测器具有更快上升时间,确保在更短时间内获得信号;小型化趋势要求探测器结构改善,避免制冷带来的高功耗、制冷系统体积大的问题。而本次在环保展中登台的量子级联激光器(QCL)和InAsSb探测器,就是目前我们解决问题的答案。滨松QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽处于非常窄的单一波长。虽然DFB-QCL很难实现量产,但滨松目前已拥有了充实的可定制化产品线。滨松QCL曾获得2016年日本激光学会产业“优秀奖”InAsSb探测器的新品——P13894系列在本次展会中再次与专业观众们见面。因相较市面同类产品,前所未有地将探测范围延至了11μm,实现了单个探测器对多种成分的分析能力,所以自诞生以来就光环加身;另外一个重要的point就是它持有“完全符合RoHS标准”这一门槛级的“上岗证”,成为新红外气体分析探测器的理想接班人;同时具有的非制冷、高灵敏度、更快上升时间等特性,也使它对于污染气体在线监测更具意义,并为仪器的小型化提供了可能。无论是探测器还是激光光源,都存在很多开发难题,而整体方案的提供对于仪器的开发者来讲,可以更有利于器件的相互评价,规避许多开发中由于器件出处不一而产生的技术磨合问题,缩短设备研发时间。当然,除了这两位突出的小明星外,我们在环保展中还呈现出了红外气体分析应用的探测方案“全景图”,针对不同的污染气体监测需求、成本考虑,从光源和探测器方面都呈现出了相应的技术支持能力。当然,除了红外气体分析的应用外,滨松在展会中还呈现了热门的大气(臭氧、二氧化硫等)、水质以及VOCs检测的相关产品。为水和空气治理的第一步——监测,提供核心的光电探测技术支持。水、空气、土壤都是生命源,滨松的技术可以为我们监测污染、促进治理,但想真正实现祖国环境保护愿景,还需要更多相关企业的社会责任意识觉醒,和我们每个人的努力。 滨松中国自身而言,目前所有展台均使用环保材质,减少涂料带来的空气污染和建材浪费。这也许是一个小的举动,但群体中每个个体的点滴善举终有一天可能成就环境问题的改善。“勿以善小而不为”,环境的守护不光靠我们的技术,更靠你的行动。
  • 安徽光机所AGHJ-LIF-I水质有机污染三维荧光监测仪亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院安徽光学精密机械研究所研制的AGHJ-LIF-I水质有机污染三维荧光监测仪、TEMO大气颗粒物分析仪亮相国家“十一五”重大科技成就展。 AGHJ-LIF-I水质有机污染三维荧光监测仪 TEMO大气颗粒物分析仪   关于中国科学院安徽光学精密机械研究所:   中国科学院安徽光学精密机械研究所成立于1970年12月。位于安徽省合肥市西郊,占地面积约600余亩。现设大气光学研究中心、环境光学研究中心、应用激光技术研究中心和光学工程技术中心以及一批高科技公司。安徽光机所具有光机电技术研究开发综合优势和配套的生产制造能力,并已获得了GB/T19001-2000和GJB9001A-2001质量体系认证证书。 安徽光机所在激光大气传输和激光大气探测、激光光谱学、环境光学和环境监测技术、遥感和辐射定标与校正、新型激光器和晶体材料、医学光电子学和激光医疗仪器、光电子学和光电工程等学科领域,承担着国家重点科技攻关、国家"八六三"计划、国家自然科学基金、国家部委预研、中科院重大以及地方攻关等项目。在和企业合作研发环境监测技术、工业和医用激光技术、激光晶体材料等方面已开发出一系列高技术产品。研制成功的空气质量长程差分吸收监测系统、便携式大气探测激光雷达和测污激光雷达设备,已在我国环境污染监测中发挥着重要作用。
  • “水中有毒污染物多指标快速检测仪器”项目启动
    2013年1月5日,由安恒环境科技(北京)股份有限公司牵头实施国家重大科学仪器设备开发专项“水中有毒污染物多指标快速检测仪器”项目启动会在清华大学顺利召开。   启动仪式由项目负责人万众华总经理主持,科技部科研条件与财务司吴学梯副司长、清华大学康克军副校长、教育部科技司基础处邹晖副处长、北京市科委社发处郑俊副处长分别致辞。   出席启动大会的有教育部教育管理信息中心副主任曾德华,钱易院士、金国藩院士、程京院士、曲久辉院士,国家食品安全风险评估中心吴永宁研究员、长江流域管理委员会水保局臧小平局长、清华大学环境工程学院余刚院长以及项目实施单位的领导和专家共70余人参加了会议。   在启动仪式上,项目专家组组长钱易院士宣布本项目总体组、专家组和用户委员会名单,清华大学校长陈吉宁任本项目总体组组长,会上颁发了两组一委聘书。   在随后的项目第一次全体会议上,项目的技术负责人、项目第一技术支撑单位清华大学施汉昌教授做了项目技术报告,与会专家对项目实施提出了具体的要求和建议,对项目的实施具有非常重要的意义,项目实施各方表示积极落实。   各任务承担单位清华大学、中国人民大学、中山大学、中国环境监测总站、长江流域水环境监测中心、苏州市环境监测中心站、肇庆市环境保护监测站、中国城市规划设计研究院、国家果类及农副加工产品质量监督检验中心、国家环保产品质量监督检验中心、金达清创公司、安恒公司分别介绍了该单位的任务内容及年度计划,大家就关心的经费、技术、需求等问题进行了深入的讨论。项目牵头单位安恒公司财务部经理钱慧同志向大家作了项目财务管理制度报告。   本次会议的召开,表明总投资超过1亿元人民币,其中国家财政支持达4700万元的国家重大科学仪器设备开发专项“水中有毒污染物多指标快速检测仪器”项目正式启动实施,研制开发新型高通量、高灵敏的水中有毒污染物多指标快速同步检测仪器系统,并形成便携式、实验室台式和在线式系列产品。本仪器将成为目前国际上具备多类型污染物同步快速检测功能的新一代环境监测仪器,带动我国环境监测仪器的跨越式发展。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 新污染物监测成为生态环境工作新热点(环境经济杂志)
    持久性有机污染物(POPs)、内分泌干扰物(EDCs)、抗生素(Antibiotics)和微塑料(Microplastics)……这一串串英文符号从名称上看,它们可能有些陌生,但生活中却十分常见,如药品、个人洗护用品、汽油添加剂、防污涂料及添加剂等的使用都有可能是环境中新污染物的来源。随着对化学物质环境和健康危害认识的不断深入,可能更多的新污染物还会不断被识别出来。中国环境监测总站分析室主要负责人袁懋告诉《环境经济》,与二氧化硫、氨氮等常规污染物相比,很多新污染物在环境中的存在水平不高,但具有毒害性、难降解、持久性等特点。在新污染治理工作上,鉴别和测试它们依赖于高精度的专业监测仪器。可以说,目前新污染物治理所依赖的各种技术手段中,监测技术及手段的发展正成为生态环境工作的新热点。工作人员正在讨论新污染物实验数据中国环境监测总站供图。赵淑莉/摄新污染物监测有三项重点工作近年来,国家层面正积极将新污染物纳入环境风险防范体系,新污染物治理工作已是箭在弦上。我国在新污染物法规制度、调查监测、源头管控、过程控制、末端治理及能力建设等方面开展了一系列工作,正在研究建立化学物质环境风险评估与管控技术标准体系,有效支撑了新污染治理工作。袁懋告诉记者,根据《新污染物治理行动方案》(以下简称《行动方案》)相关要求,在生态环境部生态环境监测司的统筹下,他们针对新污染物监测重点做了以下几项工作。一是研究建立健全新污染物环境监测技术体系。开展新污染物相关监测方法和监测规范研究,加快构建新污染物监测技术体系。二是做好新污染物环境监测试点。生态环境部已印发《2023年新污染物环境监测试点工作方案》(环办监测函〔2023〕219号),由中国环境监测总站牵头,会同生态环境部南京环境科学研究所、生态环境部华南环境科学研究所、国家海洋环境监测中心、生态环境部环境发展中心国家环境分析测试中心、生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心、生态环境部黄河流域生态环境监督管理局生态环境监测与科学研究中心、生态环境部海河流域北海海域环境监督管理局生态环境监测与科学研究中心等技术支持单位,对口帮扶天津、河北、江苏、浙江、山东、湖北、广东、广西、重庆、陕西等10个省(区、市)开展试点监测。三是提升监测水平。突出试点辐射带动作用,指导地方进行新污染物监测能力建设,提升监测水平,有效支撑新污染物治理。目前相关监测方法研究、技术体系构建工作在稳步推进中。第一阶段试点监测工作也在如火如荼开展。袁懋表示,根据调研的各地监测能力以及前期工作基础,结合区域分布,选取的10个试点地区,覆盖了我国东、中、西部地区,涵盖了长江、黄河流域的若干省份,也包括了沿海省和内陆省;围绕《行动方案》中列明的重点行业,各试点地区结合对本地区的涉新污染物行业调查结果,确定本年度试点监测的行业企业或典型工业园区(石化、印染、橡胶、医药、畜禽养殖等)此外,根据管理需求将人口密集区的城镇污水处理厂纳入监测范围,开展污水及其周边地表水、一般水质等监测,因此试点监测可一定程度上反映我国不同区域、重点行业等的新污染物排放以及对周边地表水等的影响情况。袁懋说:“10个试点省份已编制本省份的新污染物环境监测试点工作方案和监测方案,目前正在按计划开展本年度第一阶段新污染物试点监测。”例如,江苏省试点8月份上报的监测方案是在2个典型区域共布设地表水及饮用水源地点位28个、污水点位31个、环境空气点位13个,涉及的新污染物项目主要是根据试点地区实际生产及排污情况,并结合《重点管控新污染物清单(2023年版)》《第一批化学物质环境风险优先评估计划》等管理需求进行筛选确定,包括抗生素、全氟化合物、邻苯二甲酸酯类、内分泌干扰物等7大类。江苏省试点监测在国家的基本要求上,增加了连云港大浦工业区环境空气中异味监测,旨在更好地、有针对性地解决工业区的实际环境问题和监管需求。截至8月,2个试点地区均已完成了第1期实际样品采样,各实验室的分析测试工作正在开展中。江苏省通过参加试点监测调查、能力验证考核,在实践中提高新污染物监测水平。一方面将初步掌握省内典型区域新污染物环境赋存情况,为新污染物管控提供科学依据;另一方面通过对驻市中心技术人员的实训,加快构建全省新污染物监测能力网络,进一步提升全省新污染物监测技术能力。由此逐步理清工作关系,发挥示范效应,为形成省内新污染物监测业务化运行模式、积累工作经验奠定基础,为落实国家和江苏省新污染物治理工作提供技术支撑。对于新污染物而言,只有摸透“敌情”,方能有的放矢、精准治理,为下一步更为具体的监管要求筑牢基石。哪些新污染物需要优先监测?新污染物治理工作起步晚、基础较为薄弱、治理难度大,对地方尤其是环境监测部门而言,要想补齐不足与短板,还面临诸多挑战。袁懋说:“通过新污染物的监测调研工作,我们也发现了当前新污染物面临的挑战。”具体而言,一是新污染物种类多、新增多,来源广,应该在污染源或化学品信息调查、风险筛查的基础上开展监测,以了解环境风险较大的新污染物的污染现状;但目前监测部门对当地的污染源或化学品信息调查情况掌握不够,各地应加强建立相关部门协作机制、促进信息共享。二是监测技术体系有待完善,现有的技术规范、监测方法及质控要求,可初步支撑新污染物环境调查监测试点工作,但仍有较大缺口,亟待加快开展生态环境管理迫切需求的重点管控新污染物监测分析和质量管理等技术研究,进一步规范和完善新污染物监测方法。三是有些新污染物浓度较低,有的甚至达到痕量/超痕量水平,监测技术难度大,对仪器设备、技术能力和人才队伍要求非常高,且很多新污染物尚无成熟的监测方法,国家和地方应加强监测能力建设、人员技术培训,以及监测技术方法研究,不断完善生态环境监测网络,以适应新污染物试点监测工作需要。四是部分地区经费紧张,难以支撑新污染物监测,各地应加大对新污染物监测工作的资金投入,做好资金保障,确保新污染物监测工作顺利进行。据了解,新污染物监测整体来说面临成本较大的压力。仪器设备、标准溶液以及试剂耗材等多依赖于从国外进口,价格高昂、购买周期长。当前,国产化仪器设备、标液耗材等的研发及生产需尽快提上日程。“新污染物,种类繁多。”中国科学院生态环境研究中心研究员、环境化学与生态毒理学国家重点实验室常务副主任郑明辉表示,由于我们的技术和财力精力都有限,所以对于新污染物的治理,还要抓住重点,把一些优先需要治理和优先监控的污染物找出来。从战略角度来看,应该尽快将当前最急迫的污染物列入优先监测和优先监管名单,并不断更新优先监测的名单。从优先性角度来看,这也是国际上的趋势。那么,如何识别和判断最优先管控或者是最优先监测的新污染物呢?“一般来看,应该从这几个方面去考虑。”郑明辉表示,首先,评价污染物对生态环境和人体健康的危害或者是风险的程度,这也是国际上管控污染物的一个基本原则。例如,污染物在环境中的浓度;在环境中难降解的程度,也就是持久性;或者虽然在环境中的浓度水平很低,但是经过食物链放大,在生物体内的富集,进而危害生物,也影响到人类健康。“此外,对于我们在用的一些化学品,在有适当的替代技术和替代产品之前,可能还要有一个过渡时期。”郑明辉说:“所以优先性也需要综合分析和考虑。”“新污染物监测任重道远。”袁懋告诉记者,当前,各省(区、市)已迅速响应相关政策,出台、印发《新污染物治理工作方案》。虽然扎实管控、做好治理新污染物的工作,但是依然需要确保“监测先行、监测灵敏、监测准确”,结合监管实际,落实相关技术等保障措施。工作人员正在开展新污染物分析方法研究。中国环境监测总站供图。赵淑莉/摄新污染物监测技术与方法要求高新污染物一般具有“新”“多”“广”等特点。新,是新近发现或者被关注;多,是现有种类多、新增多;广,是来源广,可能来自生产、使用、消费和处置各环节;此外,有些新污染物浓度较低,甚至达到痕量/超痕量水平。这些特点,对新污染物监测技术与方法提出了更高要求,新污染物比其他污染物监测难度大。袁懋告诉记者,目前,新污染物试点监测主要以相关名录为抓手,即聚焦《重点管控新污染物清单(2023年版)》《第一批化学物质环境风险优先评估计划》《优先控制化学品名录(第一批)》《优先控制化学品名录(第二批)》,结合各地区重点行业涉新污染物种类以及监测技术能力,确定开展监测的项目。新污染物的监测究竟要经历哪些阶段?袁懋介绍,经历过程主要为调研本辖区涉新污染物行业分布、现场踏勘并编制监测方案、根据测定项目及相关要求形成监测能力、按照标准方法或技术规范开展监测。简而言之,针对不同类型的新污染物,分析方法不同,需分别采样分析。比如抗生素监测,因为抗生素种类很广,根据化合物结构可分为喹诺酮类、磺胺类、四环素类、大环内酯类、β-酰胺类等几大类,因此开展抗生素监测前,要根据调研的制药企业或园区涉原辅料、产品等情况,确定重点监测的抗生素种类,从而有针对性地进行高效监测。研究编制作业指导书,提高数据质量环境监测数据的质量是环保工作的生命线。准确、真实的环境监测数据,是客观评价环境质量状况、反映污染治理成效、实施环境管理与决策的基本依据。一旦自动监测数据被“污染”,造成的危害甚至不亚于生态环境污染本身。生态环境部对监测数据弄虚作假坚决“零容忍”,那么在实施新污染物监测时有哪些注意事项?“只有数据真实了,环境监测才能起到监督、溯源的根本作用,各领域的监测工作才有意义。”袁懋告诉记者,为提升环境监测技术水平,保证环境监测数据质量,根据《国务院办公厅关于印发新污染物治理行动方案的通知》《2023年国家生态环境监测方案》及《关于印发2023年新污染物环境监测试点工作方案的通知》的有关要求,中国环境监测总站将开展新污染物环境监测实验室能力验证。袁懋表示,新污染物试点监测工作,对于有方法标准或行业技术文件满足监测要求的项目,要求试点省份开展监测前进行方法验证,无方法或现有方法标准不满足监测要求的项目,中国环境监测总站组织技术单位编制了作业指导书,供试点监测参考。“为做好今年的试点监测工作,我们组织编制了6项作业指导书,其中抗生素比较受关注。”袁懋说:“针对水质抗生素的监测,作业指导书中规定了每批次样品分析时要进行标准溶液、实验室空白、平行样和基体加标样品测定,并且需要满足对应的指标要求。”袁懋进一步解释说:“这些作业指导书是参照《环境监测分析方法标准制订技术导则》的要求进行编制;其中,我们参照现行的相关监测分析方法标准,在作业指导书中对监测的质量保证和质量控制措施进行了严格的要求。与此同时,新污染物试点监测工作方案中规定,实验室在使用作业指导书前需要按照检验检测机构资质认定要求进行方法确认。这些都是对监测数据真、准、全的有力保障。”“另外,试点监测过程中,中国环境监测总站会同其他技术支持单位对试点省(区、市)开展包括质控在内的帮扶工作,严把数据质量关。”袁懋说:“以‘实打实’的质量控制,‘硬碰硬’的监督检查,狠抓环境监测数据质量,环境监测‘顶梁柱’基础作用将更加突显,将进一步加快我国生态文明建设进程。”潜在新污染物如何监测?《重点管控新污染物清单(2023年版)》(以下简称《清单》)自实施以来,14类重点管控新污染物按照国家有关规定,采取禁止、限制、限排等环境风险管控措施,相关管控实现有单可循,有据可依。记者注意到,在《清单》第五条明确指出,将根据实际情况实行新污染物的动态调整。除了《清单》中明确的14类重点管控新污染物外,还有社会关注度较高的微塑料,以及邻苯二甲酸酯类、有机磷酸酯类、紫外吸收剂、有机锡等其他潜在的新污染物。那么,潜在的新污染物如何监测?据了解,当前,基于监测的新污染物调查筛查主要有两个途径:一是列出调查清单,通过定量方法对关注的区域开展调查,通俗地讲,是带有“目标性”地判断某种新污染物在环境介质中是否存在。然而,如果调查的清单中没有环境介质中赋存的新污染物,将很难被管理人员发现并引起注意。二是使用基于高分辨质谱的高通量方法进行筛查,但目前在前处理、数据采集、谱库和筛查方法学上缺乏统一标准,不能准确定量,筛查结果“千人千面”,不同调查机构的定性和定量结果缺乏可比性。袁懋告诉记者,新污染物种类多、新增多,来源广,应该结合污染源或化学品信息调查、风险评估结果,对环境风险较大的新污染物开展监测。“对列入重点管控清单的新污染物,针对已有监测方法标准的,要抓紧形成监测能力;对尚无监测方法标准的,需加快进行标准方法制修订;以推进重点管控新污染物排污单位自测、执法监测和重点区域环境监测。”袁懋表示,筛查类监测采用的靶向与非靶向分析技术适用于新污染物的研究性监测。国家环境分析测试中心(以下简称分测中心)污染调查评估研究室主任杜兵表示,国家环境分析测试中心基于轨道阱质谱、飞行时间质谱等高分辨质谱技术,开发了基于环境管理需求的高通量靶向非靶向筛查准定量技术。“我们开发了适于不同类别仪器的广谱低损的前处理方法,通过不同离子化模式和数据采集模式的组合,开发高分辨全谱系谱库,开展靶向非靶向分析。使用DDA数据开展高响应污染物靶向/非靶向分析。使用DIA数据采样解卷积模式开展低响应污染物靶向/非靶向筛查,并辅助定量。”杜兵介绍。广泛筛查后,如何对潜在污染物进行更精准的定量分析?杜兵说:“对筛查出的环境污染物,还会与国内外主要管控名录对照,结合毒性效应和暴露水平,按照关注度水平和确认程度水平进行优先级排序,渐次建立高分辨谱库,形成一套基于气相色谱/液相色谱—高分辨质谱技术和统一的稳定同位素标记内标体系以及广谱低损的前处理方法相结合的定量技术,实现跨仪器平台的高通量定量数据的可比分析。”在开展化学物质基本信息调查和优先评估化学物质详细信息调查之外,一些省(区、市)也提出要开展环境筛查性监测,以发现在环境中潜在的新污染物。例如《上海市新污染物治理行动工作方案》就“点名”了《清单》外的内分泌干扰物——双酚A等,提出对其进行环境风险筛查。袁懋表示,为保障新污染物环境监测制度的建立和在全国范围内顺利开展新污染物监测,生态环境监测机构需要加强与科研单位和仪器公司等社会力量的广泛合作。目前,新污染物监测大型仪器分析设备主要依赖进口,我国高端检验检测仪器设备国产化程度不高,市面上现有国产仪器设备是否适用于新污染物监测尚有待进一步评估验证,为保障新污染物环境监测制度的建立和全国范围的顺利开展,充分了解相关国产仪器设备的适用情况,中国环境监测总站将开展新污染物环境监测国产仪器设备比对,助推我国新污染物环境监测技术装备取得国产化突破和质量提升。进一步提高新污染物识别精准化和智能化水平,不断用新技术、新方法解决新污染物监测中的难点、痛点问题,逐渐完善新污染物环境监测技术体系,推进生态环境质量持续改善,让祖国天更蓝、地更绿、水更清,万里河山更加多姿多彩。
  • Palas®空气质量监测仪器帮助应对空气污染挑战
    空气是维持生命的重要物质,其质量优劣对人体健康有重要影响。伴随冬季的到来大气以下沉气流为主,污染物不易扩散。Palas® 对城市细粉尘污染的监测有着丰富的经验,并且对恶劣天气下的空气质量监测同样熟悉。颗粒物监测专家Palas® 提供的AQ Guard Smart网格化空气质量监测仪和Fidas® 单颗粒计数气溶胶粒径分布光谱仪是用于空气质量监测的专业仪器,为测量空气中的气溶胶颗粒物提供监测支持。用吸烟的危害衡量空气污染程度空气中的PM2.5颗粒物的粒径仅2.5微米。因为这些颗粒足够小,可以深入肺部进入血液,并引发心脏病、中风、肺癌和哮喘等疾病危害到人们的健康。同时人们深谙吸烟对身体健康的危害,一家著名的环境机构通过环境监测数据报告,设计了一款应用程序,通过将空气质量与吸烟的数量联系起来,将空气污染与吸烟行为造成的危害进行对比,对空气污染的健康影响进行了深入分析,以帮助人们了解空气污染对健康的影响。其结果直观且引人注目,通过该应用程序可查看不同地区的空气污染信息。例如在一天内的监测中,海南的空气污染程度相当于一天吸0.4支香烟,系统提示当前的空气质量令人满意,空气污染很少或没有风险,人们可以享受平常的户外活动;而保定的空气污染程度则相当于一天吸9支香烟,系统提醒目前的主要空气污染物PM2.5可能影响身体健康,人们应减少户外活动,特别是弱势人群。由此可知空气污染在一些城市是一个不容乐观的现状,人们需要时刻关注空气污染所带来的伤害。海南与保定两地一天内的空气污染用吸烟量衡量的对比恶劣天气中的气溶胶监测针对不同原因造成的空气污染,专注于研究气溶胶和颗粒物的监测专家Palas® 带来了空气质量监测解决方案。2021年9月隶属于西班牙加那利群岛(Islas Canarias)的拉帕尔马岛(La Palma),发生了50年不遇的火山喷发。而后不到半年,今年2月又遭遇了由强季节性风引起的沙尘暴。接踵而至的自然灾害对当地的空气环境以及人们的生活造成严重影响。Palas® 即刻响应,部署员工飞往该岛安装了10台AQ Guard Smart 网格化监测仪。面对此次沙尘暴AQ Guard Smart再次为西班牙当局提供实时监测信息,以帮助他们做出决策并告知公众。AQ Guard Smart监测到的火山灰和撒哈拉沙尘PSD成相图可靠的Palas® 监测仪器Palas® 稳定的空气质量监测仪器,能对颗粒物浓度和分布进行可靠、连续、灵活的测量,找出颗粒物污染产生原因,并对其扩散作出预测,可用于移动走航监测、颗粒物排放扩散研究、安全工作条件的监控,以及在路边位置、建筑工地或工业厂房进行临时或长期的空气质量监测等,以帮助人们应对各种空气污染的挑战。AQ Guard Smart网格化环境空气质量监测仪选配数据云平台,即插即用,实时查看热点数据:AQ Guard Smart 是适用于室外空气气溶胶监测的光谱仪,以通过 EN 16450 标准下的 Fidas® 200 为基础,采用单颗粒物散射光测量原理。可加载气体传感器(SO2、CO、NO2、O3),从而提供评估空气质量数据。AQ Guard Smart 不需要重新校准,可长时间运行。可通过对粒度分布的具体分析来确定粒度测定的偏差和PM值的偏移,并且将其作为系统自测的内容,当多出容差时系统自动显示和报警。AQ Guard Smart通过 Palas® MyAtmosphere 传输测量数据;单独运行时,可以借助带或不带太阳能支持的外部电池来运行系统。产品优势以经过认证的 FIDAS® 200 系列为基础而开发的技术,可以保证细粉尘值的高准确度和可重现性;以公认的快捷方便的现场校准而闻名通过云 MYATMOSPHERE 实现短时间调试和即时记录测量值通过 Wi-Fi 热点、远程访问和外部触摸板,根据现场情况进行配置通过 GPRS/3G/4G/Ethernet/Wi-Fi 通信,可选:LoRaWAN可扩展气象站和气体传感器,可以更好地评估和评价颗粒物数据以高时间分辨率测量 Cn、PM1、PM2.5、PM4、PM10(可选:SO2、CO、NO2、O3)颗粒物测量范围从 0.175 - 20,000 nm 到 100 mg/m³ 质量浓度或 20000 个颗粒/cm³ (单一颗粒物分析)应用领域工业: - 生产过程 - 散装物料处理(混合,卸料,储存,包装等) - 厂界监控施工现场:道路,铁路,拆除现场建筑物:学校,幼儿园,医院,酒店,办公室,公共服务建筑物建筑工地或其他污染区域附近的住宅建筑公共交通:机场,火车站,电车和地铁站,游轮,客舱,例如在电车、火车上Fidas® 单颗粒计数气溶胶粒径分布光谱仪Palas® Fidas® 单颗粒计数气溶胶粒径分布光谱仪是为管制空气污染而开发的气溶胶光谱仪。它可以连续分析环境空气中存在的细粉尘颗粒,测量尺寸范围为180 nm – 18 µ m,并计算PM10和PM2.5排放值。同时计算并记录的还有PM1,PM4,PMtot,颗粒数浓度Cn和粒度分布。因此,通过计数、单颗粒测量原理即可提供有关细尘颗粒信息。产品优势获得德国TÜ V Rheinland认证以及英国MCERTS认证连续和同时实时测量多个PM值基于颗粒物粒径分布的详细信息可调时间分辨率从1 秒以上至24小时通过Palas® 服务器云区域进行全球数据检索低维护、低消耗品应用领域监测网中合规性监测颗粒物特征科学研究移动走航监测颗粒物排放扩散研究
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制