当前位置: 仪器信息网 > 行业主题 > >

陶瓷能用纳米压痕仪

仪器信息网陶瓷能用纳米压痕仪专题为您提供2024年最新陶瓷能用纳米压痕仪价格报价、厂家品牌的相关信息, 包括陶瓷能用纳米压痕仪参数、型号等,不管是国产,还是进口品牌的陶瓷能用纳米压痕仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶瓷能用纳米压痕仪相关的耗材配件、试剂标物,还有陶瓷能用纳米压痕仪相关的最新资讯、资料,以及陶瓷能用纳米压痕仪相关的解决方案。

陶瓷能用纳米压痕仪相关的论坛

  • 混凝土纳米压痕仪器求助

    我想做混凝土材料:骨料与水泥砂浆之间、以及新旧砂浆之间的界面过度区的纳米压痕试验。我查了一下资料,这个界面过度区的宽度大概在50微米宽度左右。然后加载的最大加载力为1200微牛。。我先请教一下前辈们:1 纳米压痕仪器: 海思创hysitron TI 950与海思创hysitron TI 900之间有什么区别,我目前联系的大都是海思创TI 900?能够满足要求吗2 制样时,怎样打磨抛光?抛光选取的是水基金刚石悬浮液吗?3 水泥基试验的结果是否离散性比较大4 还有其他要注意的吗?5 大家还知道有哪些学校有海思hysitron创纳米压痕仪(买不起)

  • 【原创大赛】【开学季】+纳米压痕仪对材料蠕变的研究

    【原创大赛】【开学季】+纳米压痕仪对材料蠕变的研究

    许多材料的室温蠕变能力很低,用传统的拉伸方法很难准确测量蠕变应力指数(与蠕变机制密切相关)纳米压痕仪具有极高的载荷和位移分辨率,能够方便的用于微小载荷的性能测量,为研究材料的室温压痕蠕变提供了一种有效的测试手段。纳米压痕仪具有很高的位移和载荷的分辨率,它为考察材料的局部蠕变行为提供了一种新的手段。用该法测量蠕变应力指数,不但方法简单,对样品尺寸要求不高,而且测量精度高。 压痕蠕变时,材料受到的是三维的复杂应力,变形区形状由材料的硬度、模量和加工硬化能力决定,蠕变过程与材料中弹塑性区边界向材料内部扩展的速率有关。压痕测量研究的是衡载荷下的应力弛豫过程,通过单次测量就可得到应变速率敏感指数。 本文以单晶Cu做为实验材料,通过瑞士CSM公司纳米压痕仪进行蠕变测试。测试条件:最大载荷20mN,加卸载速率40mN/min,保载时间600s图1http://ng1.17img.cn/bbsfiles/images/2014/09/201409301557_516567_2224533_3.jpg基于纳米压痕数据,有效压痕应变速率和应力可从下列公式计算http://ng1.17img.cn/bbsfiles/images/2014/09/201409301558_516568_2224533_3.jpg其中ε应变率,σ应变,hi瞬间压痕深度,Ac接触面积,R压头半径基于实验所得纳米压痕数据作图图2(a)t-Pd曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301601_516569_2224533_3.jpg图2(b)t-strain rate曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301603_516571_2224533_3.jpg图2(c)stress-strain rate 曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301606_516580_2224533_3.jpg[/font

  • 【原创】纳米压痕仪用途

    【原创】纳米压痕仪用途

    我们实验室的纳米压痕仪(CSM公司),加载载荷在25uN-30N.分辨率可达1nN.光学显微镜最大屏幕可放大4000倍。 对硬质合金, 纳米材料, 动植物组织等等都可以进行硬度弹性模量的测量。 下次传点漂亮的图片和大家分享http://simg.instrument.com.cn/bbs/images/brow/em09507.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101081218_272687_2224533_3.jpg

  • 【原创】纳米压痕制样须知

    常有人问我,做纳米压痕对样品有什么要求,现在我谈谈我的看法:.其实纳米压痕制样不是很难,1.根据压痕深度测量原理,样品的表面粗糙度对测量尤为重要,影响着接触深度的确定。表面粗糙度的要求依赖于压入深度和接触面不确定的容忍度。如果粗糙度的特征波长和接触深度可比,当压针在波谷时从载荷-深度数据中可获得的接触面积会低估真正的接触面积,当在波峰时会高估真正的接触面积。误差的大小依赖于与接触尺寸相关的粗糙度的波长和幅值。所以应该精心磨制样品,尽量将粗糙度的波长减小到接触尺寸以下。2. 由于测试时的压入深度较小,样品表面的准备应特别注意。3.样品厚度要求,至少大于10倍压入深度或10倍压入接触半径。4.一般用胶牢固粘在金属块上,然后紧固在样品的定位平台中。要求样品表面要尽量与压针垂直,倾斜程度小于1度http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 【原创】纳米压痕帖

    http://simg.instrument.com.cn/bbs/images/brow/em09502.gif有点紧张...先发个笑脸抖擞一下... 下面进入正文: 由于纳米压痕测试主要在微/纳米尺度,所以影响结果的因素很多。测试结果的不确定有测试过程中一系列因素的不确定度共同决定。ISO 14577将这些因素分成两大类:A类包括接触零点的确定、载荷和深度的测量(主要指环境的振动和磁场强度的变化)、卸载曲线的拟合、热漂移、表面粗糙度影响下的接触面积;B类载荷和深度测量的误差,机架柔度的确定、压针面积函数的校准、热漂移的修正、测试面的倾斜等。1, 样品制备由于测试时的压入深度较小,样品表面的制备应该特别注意。机械抛光可能引起样品表面的硬化,电解抛光粗糙度又较大,应该根据样品特性具体选择抛光方式。样品厚度要求,至少大于10倍压入深度或10倍压入接触半径。2, 样品安装.......3, 环境控制.......4, 间距选择......5, ....... 哈哈,先发这些,看看大家的回帖如何...http://simg.instrument.com.cn/bbs/images/brow/em09511.gif版主要推荐噢.....

  • 纳米材料在陶瓷胶粘剂中的作用

    胶粘剂一种发展示迅速的多功能合成高分子材料,由于其原料品种的多样化以及分子结构的可调性,可以设计出具有不同用途的、适合于各种材料间粘接的多功能胶黏剂。胶黏剂分子结构中大多含有强极性的及化学活泼的基团,因而能够与材料之间产生优良的化学粘接力。但在实际应用中,某些品种的胶黏剂仍然存在诸多不足,如耐水性、耐溶剂性、耐高温等性能较差,有的胶黏剂初粘性、粘接强度等也有待改进以满足特殊的使用要求等。随着纳米技术的基础性和应用性研究的发展,纳米材料不同于普通补强型填料的小尺寸效应、表面效应、宏观量子隧道效应等优良特性在胶黏剂的应用方面显出基独特的优势,少量纳米材料的加入即可大幅度改善胶黏剂性能,所以纳米材料已成为胶黏剂领域关注点。例如优锆纳米研发的纳米陶瓷粘合剂UG-Z01该产品为优锆纳米材料有限公司采用最新纳米材料和美国公司合作研制出的最新陶瓷、煅烧钵子、刚玉粘合剂。该产品为全无机材料,没有任何有机污染,采用耐高温纳米a氧化、纳米锆等纳米氧化物为主做的粘钵子陶瓷全新材料,弥补了耐高温性等特点。

  • 纳米压痕的力学传感器容易坏吗?

    实验室的纳米压痕仪,最近打出来的数据不对劲,问了工程师说是力传感器坏了。买了估计快十年了,现在换传感器说起要7w$。难受死了,有没有好的解决办法呢。印象中传感器没有那么容易坏才对。[img=,690,1493]https://ng1.17img.cn/bbsfiles/images/2024/09/202409131426057101_4683_6482832_3.png[/img]

  • 推荐讲座:见微知著:纳米压痕用于混凝土等建筑材料研究(2018年1月30日)

    网络讲座:见微知著:纳米压痕用于混凝土等建筑材料研究举行时间:2018/01/30 10:00报名链接:[url]http://www.instrument.com.cn/webinar/meeting_3334.html[/url]报告人:魏岳腾博士,1982年10月出生。2011年毕业于清华大学材料学院,并获得博士学位。毕业后进入中国科学院高能物理研究所工作。2013年3月加入Bruker纳米表面仪器部担任应用科学家。主要从事改性材料的设计、表征和应用研究。报告内容:包括混凝土在内的建筑材料的力学性能、摩擦磨损性能对这些建筑材料的应用具有关键作用。更高性能的建筑材料才能实现更复杂的建筑结构的设计。传统力学和摩擦磨损研究方法仅能得到材料的平均性能。而像混凝土在内的多数建筑材料都具有多相结构和相界面,这些微观结构的力学性能限制了材料的最终性能。布鲁克纳米表面部提供了最新一代纳米压痕测试设备,可以快速获得多相材料表面力学性能成像及纳米摩擦磨损性能,为更高性能的材料设计和表征提供指导。本次讲座主要内容包括:建筑材料特点及研究方法,应用布鲁克纳米压痕研究成果实例等。

  • 奥地利安东帕(中国)有限公司刚刚发布了销售工程师(纳米压痕仪)- 杭州-杭州市职位,坐标杭州市,敢不敢来试试?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-85522.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]销售工程师(纳米压痕仪)- 杭州-杭州市[b]职位描述/要求:[/b]职责描述:在所负责的区域内,有效开发纳米压痕、摩擦磨损、纳米划痕等仪器的客户;制定并完成客户拜访计划,建立和强化客户关系;完成销售计划、业绩指标;协调合同实施、回款;熟练使用CRM系统追踪潜力商机;追踪行业市场发展动态,收集和整理市场状态和竞争者信息;任职要求:具备纳米压痕、摩擦磨损、纳米划痕等材料力学仪器的相关知识以及实际操作经验;本科及以上学历,材料、高分子、化学、物理等相关专业;两年以上相关产品行业经验,有一定的行业客户基础;有独立开发业务的能力,积极主动地开拓市场;有出色的内外部沟通协调能力;良好的团队配合;有较强的抗压力,能适应长期出差的工作;[b]公司介绍:[/b] 安东帕(Anton Paar)是一家以研制工业及科研专用之高品质测量和分析仪器为主导的企业.我们在测量技术方面的多个领域处于世界领先地位.自企业成立以来,公司员工的创新精神及其对产品质量锲而不舍的追求就一直是我们发展的源动力与基础.我们开发新产品的构想源于直接面对用户需求和密切关注市场的发展状况.将这样的构想实现成为应用最新技术的仪器,则是靠本公司强大的研发部门以及与公司外学术机构伙伴的合...[url=https://www.instrument.com.cn/job/position-85522.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 纳米陶化液的相关信息

    一.背景钢铁在进行涂装前通常需要进行前处理,包括除油、除锈等工艺,化学前处理方法通常还要在钢铁的表面形成一层化学转化膜,该转化膜既有一定的防腐能力,可以避免零件在喷涂前短暂的时间内返锈,也可以增加零件表面的粗糙度,增强涂料与基底的结合力。目前大部分采用的是磷化工艺,随着节能减排的不断推进,新型无磷转化膜(陶化膜)正在悄然取代传统的磷化膜。陶化液应该就是所谓的锆系、锆钛系、硅烷系、锆硅烷系、等无磷金属表面处理剂,可部分替代磷化液,主要原料为氟锆酸盐,硅烷偶联剂等。这种新型氧化锆转化膜技术在实验室里已取得了成功,全面生产试验正在进行中。该新型转化膜是由无定形态ZrO2组成的,而不是Zn3(PO4)2多晶体。它主要是用氧化锆组成的纳米陶瓷涂层取代传统的结晶型磷化保护层,与金属表面和随后的油漆涂层之间有良好的附着力,耐腐蚀性能优良。相信氧化锆转化膜技术的应用一定会给钢铁行业前处理工艺带来巨大的变革。硅烷化和陶化等无磷成膜技术的应用,使钢铁表面化学转化膜技术发生了重大变革。尽管这些转化膜工艺尚未成熟,与磷化处理相比,在实际生产应用中还存在一些难度,但我们相信,随着技术的不断发展,在不久的将来,这些处理技术一定会逐步取代传统的磷化工艺,或者出现更为先进的处理工艺。2007年以来,氧化锆转化膜技术在通用、沃尔沃、大众等三家汽车公司分别进行了附着力和耐腐蚀性能的检测,结果基本达到了各家公司的测试指标。新型氧化锆转化膜技术在汽车前处理上的应用,还需做以下方面的工作。当前汽车前处理行业充满挑战和竞争,随着环保法规的日益严格、能源和原材料成本的日益增加,以及劳动力成本的上涨,促使原材料供应商不断进行技术创新。氧化锆转化膜技术的发明,给汽车前处理行业带来了全新的发展前景。1.1陶化液的组成1) 硅烷处理剂水溶液中通常以水解的形式存在:硅烷水解后通过其SiOH基团与金属表面的MeOH基(M表示金属)的缩水反应而快速吸附于金属表面;一方面硅烷在金属界面上形成Si-O-Me共价键。 Si(OR)3+H2O----------Si(OH)+3ROH (1) Si(OH)+MOH-----------SiOM+ H2O (2)一般来说,共价键问的作用力可达70010,硅烷与金属之间的结合是非常牢固的;另一方面,剩余的硅烷分子通过SiOH基团之间的缩聚反应在金属表面形成具有Si-O-Si三维网状结构的硅烷膜。该硅烷膜在烘干过程中和后道的电泳漆或喷粉通过交联反应结合在一起,形成牢固的化学键。这样,基材、硅烷和油漆之间可以通过化学键形成稳固的膜层结构。优点:①不含重金属和磷酸盐,废水处理简单,可以降低废水处理的成本,减轻环境污染。②不需表调,也不需要亚硝酸盐促进剂等,药剂用量少,可加快处理速度,提高生产效率,也减少了这类化学物质的对环境污染。③可在常温下进行,不需加温,减少能源消耗。④一种处理液可同时处理铁、铝等材料,不需更换槽液,降低生产成本。1.2陶化机理它是以锆盐为基础在金属表面生成一层纳米级陶瓷膜。陶化剂不含重金属、磷酸盐和任何有机挥发组分,成膜反应过程中几乎不产生沉渣,可处理铁、锌、铝、镁等多种金属。陶化原理:1)酸的侵蚀使金属表面H+浓度降低:Fe-2e—Fe2+,2H++2e—22)纳米硅促进反应加速::ZrO2+4—+2H2O式中为纳米硅,为还原产物,纳米硅为反应活化体,加快了反应速度,进一步导致金属表面H+浓度急剧下降,生成的 成为成膜晶核。3)锆酸根的两级离解:

  • 【网络讲座】:3月30日 薄膜材料的纳米力学行为表征

    【网络讲座】:3月30日 薄膜材料的纳米力学行为表征

    【专家讲座】:薄膜材料的纳米力学行为表征【讲座时间】:2016年03月30日 14:00【主讲人】:宋双喜 毕业于上海交通大学材料学,2005年进入田纳西大学诺克斯维尔分校深造,2009年获得材料学博士并进入Hysitron公司担任Application Scientist,2013年受聘上海交通大学特别副研究员,2014年获得上海市浦江人才计划。研究领域包括材料力学行为,金属玻璃等,以第一作者发表SCI论文10篇,总引用400多次。【会议简介】纳米压痕技术的诞生与薄膜材料的发展密不可分。上世纪80年代,随着薄膜技术的不断发展以及在半导体领域的广泛应用,厚度在微米级甚至纳米级的薄膜有着大量的市场需求,而这些薄膜的微观力学行为表征备受关注。传统的力学性能测试方法已无法满足微米、纳米尺度薄膜材料的表征,因此纳米压痕技术的出现弥补了这一领域的空白,之后的二十多年有关纳米压痕理论及利用纳米压痕来进行纳米力学行为表征的相关研究呈指数增长,相关技术也相继应用于各种新兴工业领域。而不断出现的纳米力学表征新技术,与人类不断推进探究材料微观性能的极限,两者相辅相成,成为当今科研前沿领域的一种新模式。本次Hysitron公司举办的网络研讨会主要针对薄膜材料领域介绍相关的纳米力学行为表征方法如薄膜材料的基底效应、残余应力、硬度与弹性模量表征、含时塑性表征、粘附力表征及其他先进纳米力学行为表征及其主要应用范例。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年03月30日 13:304、报名参会:http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/18895、报名及参会咨询:QQ群—171692483http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668519_2507958_3.jpg

  • 新型纳米陶化液案例

    美硕公司研发生产的MD-350纳米陶化剂具有技术成熟、稳定、使用寿命长等特点。MD-350纳米陶化剂是一种无磷酸盐的环保型前处理剂, 是针对目前对环境保护要求越来越严格的前处理环境下,研发的新一代环保型处理液。不含磷和重金属,符合欧盟RoHS环保指令要求,适合于钢铁、锌和铝表面处理,在处理的工件上形成从无色、金黄色、蓝色到蓝紫色陶化皮膜,能增强涂装的结合力和耐腐蚀性能,并和各种型号的涂料匹配。室温 (不需要加热)处理,适用于喷淋或浸泡处理方式。 处理的工件上形成从无色、金黄色、蓝色到蓝紫色陶化皮膜,能增强涂装的结合力和耐腐蚀性能,并和各种型号的涂料匹配。室温 (不需要加热)处理,适用于喷淋或浸泡处理方式。 MD-350纳米陶化剂适用于钢铁、锌和铝表面处理,在处理的工件上形成从无色、金黄色、蓝色到蓝紫色纳米陶瓷转化膜,增强涂装的附着力和耐腐蚀性能。2.1.陶化工艺流程预脱脂→主脱脂→水洗→纯水洗→皮膜(陶化)→纯水洗→烘干→后处理2.2.相关参数1.采用浸渍式或喷淋式处理2.处理槽材质:为不锈钢、厚壁塑料板或碳钢(内有防腐衬里)制,交换器和喷嘴应为不锈钢或尼龙制,配管和泵应为不锈钢制3.建浴(g/l):30-404.陶化点:3-85.工作液PH值:3.8~5.5 6.工作温度:10℃ ~ 40℃ 7.工作时间 :0.5~ 2min 2.3陶化工作液(1吨)配制1.将清水加到空槽中八成;2.加入陶化剂50-60L加入处理槽中;3.拌溶解均匀;4.补足余量水(自来水)至1000升,;5.按工艺参数调整PH5.0为最佳;2.4陶化工作液PH值和陶化点的检测1.PH值的检测方法用PH试纸或酸度计直接检测工作液PH值。2.陶化点的检测方法 取陶化工作液10ml放入250ml锥形瓶中,加入20ml的试剂A(缓冲溶液),加入试剂B溶液(掩蔽剂),加入[/si

  • 【特稿】浅谈纳米材料的应用

    有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。  1 力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

  • 纳米材料在隔热涂料中的应用

    当前,节能和新能源探索已经成为世界的重要课题。建筑能耗在人类整个能源消耗中所占的比例一般在30%~40%,它们绝大多数是采暖和空调造成的能耗,而通过门窗散失的热量约占整个建筑采暖及空调耗能的50%。因此,提高门窗的保温隔热性能是降低建筑能耗的有效途径。为节约能源,人们发明了多种节能方法,都是为了阻隔太阳光中多余的热辐射而达到降温的目的。但是有些产品有的隔热效果不佳,有的价格过于昂贵等多种原因在应用推广上有些困难。纳米材料由于具有宏观尺寸物体所没有的性质,能为新型涂料的研制带来意想不到的效果而成为研究的热点。透明隔热宝(UG-C06)是由优锆纳米新研发出的一种水性陶瓷类隔热保温涂料,采用最新复合陶瓷隔热技术和纳米二氧化钛材料,设计用来反射光能和辐射热能。在炎热的季节降低表面温度和内部温度;在寒冷的季节更好地保持室内温度;在使用空调的环境中降低能源消耗。不仅如此,透明隔热宝(UG-C06)独特的环保成分――液体纳米ATO,纳米二氧化钛更能消除周围环境中的异味,解甲醛和其他有害物质。透明隔热宝(UG-C06)中的4种陶瓷微珠能够产生魔术般的功效!第一种陶瓷微珠能够有效地阻隔紫外线达99%;第二种陶瓷微珠能反射90%以上的可见光;第三种陶瓷能够阻隔红外线达92.5%,而神奇的第4种陶瓷分子能够防止超量的水蒸汽进入,而允许正常数量的水分子的通过。由此极大增加整个建筑表面的防晒绝热能力。该产品采用先进的生产工艺将纳米超活性ATO ,TIO2做成适合在玻璃,瓷砖,金属,水泥、PE,PET,PC,PP,PVC等表面涂覆的纳米涂层材料。其透明性的超活性ATO,起到吸收红外线和阻隔紫外线功能。超活性ATO化学性稳定的对热,湿度等外部环境引起的物性变化小,所以能保持半永久性导电性质,能有效地阻止红外辐射和紫外线辐射,阻隔红外效果达95%,阻隔紫外效果达90%,该涂层材料与基材有极好的相容性,铺展,流平性能好,附着力强,持久不脱落。纳米隔热涂料(优锆纳米)不仅能够兼顾隔热与透光性,而且具有机械性能优异、耐老化、耐腐蚀等优点。纳米透明隔热涂料的开发应用能够很好地解决对采光玻璃既透明又隔热节能的技术要求,加上其自身的结构特点保证了该涂料的使用寿命长,因而纳米透明隔热涂料在普通玻璃、有机玻璃等透明载体表面的开发应用,不但环保节能,而且经济实用。在当今社会能源危机和环保压力日益增大的情况下,隔热涂料将具有很好的应用前景。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制