当前位置: 仪器信息网 > 行业主题 > >

皮秒激光镜

仪器信息网皮秒激光镜专题为您提供2024年最新皮秒激光镜价格报价、厂家品牌的相关信息, 包括皮秒激光镜参数、型号等,不管是国产,还是进口品牌的皮秒激光镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合皮秒激光镜相关的耗材配件、试剂标物,还有皮秒激光镜相关的最新资讯、资料,以及皮秒激光镜相关的解决方案。

皮秒激光镜相关的资讯

  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • 中国科学院西安光机所获得时间分辨率优于10皮秒的激光内爆图像
    作者:张行勇 严涛 来源:中国科学报近日,由中国科学院超快诊断技术重点实验室分幅成像团队缑永胜副研究员负责的时间放大分幅相机,成功在中国工程物理研究院激光聚变研究中心神光-III原型装置上完成激光打靶实验,在国内首次获得了时间分辨率优于10ps(1皮秒=1-12秒)的激光内爆图像,为激光聚变过程精细化测量奠定了基础。时间放大分幅相机系统。 激光内爆图像。 图片均由西安光机所条纹相机工程中心提供该团队持续聚焦超快分幅成像技术,历经10年的的不懈攻关,终于攻克宽束电子光学调制、电子脉冲时间放大和宽谱电子聚焦等多项关键技术,研制成功时间放大分幅相机。他们将分幅相机时间分辨极限从60ps提高至5ps,空间分辨率优于20lp/mm(lp/mm是line-pairs/mm即每毫米线对,常用于表示镜头分辨率的单位,指成像平面1mm间距内能分辨开的黑白相间的线条对数)。据了解,这也是我国目前已实现工程化应用的最高时间分辨率分幅相机,对推动分幅成像技术发展和超快诊断技术发展具有重要意义。 该项研究获得中国科学院超快诊断技术重点实验室基金、中国科学院科研仪器设备研制项目、西安光机所自主部署项目和西部青年学者等项目的大力支持。
  • 新型自由电子激光X射线探测器 ePix10k,每秒可获1000张图像
    新型自由电子激光x射线探测器 ePix10K,每秒可获1000张图像同步辐射与自由电子激光通常都用于研究自然界中一些肉眼无法观察到的超快现象。这些装置可产生的超亮且超快的x射线,就像巨大的频闪灯一样,“冻结”了快速的运动,它们可以捕捉到分子、原子的动态影像,研究人员就能够拍出清晰的快照,探究看不见的微观世界的秘密,为人类对自然的研究工程服务。美国能源部SLAC国家加速器实验室开发出了新一代的x射线探测器ePix10K,新的探测器每秒最多可获1000张图像,速度约是上一代的10倍。这大大提高了光源的有效利用率,即每秒可发射数千次x射线。相比于旧款ePix及其它探测器,ePix10K可以处理强度更高的x射线,同时灵敏度提高了3倍,且像素高达200万。SLAC的直线加速器相干光源(LCLS)x射线激光器上安装了一个16模块,220万像素的ePix10K x射线探测器1ePix10K概述epix10k 是由SLAC开发的一种用于自由电子激光装置(FEL)的混合像素探测器,可通过自动调节增益提供超高探测范围(245 ev至88 mev)。它具有三种增益模式(高,中和低)和两种自动调节增益模式(高至低和中至低)。首批ePix10K探测器围绕模块构建,该模块由与4个Asic结合的传感器倒装芯片组成,从而产生352×384个像素,每个像素100 μm x 100 μm。 ePix10K由两个主要的核心部分组成:感光传感器和专用集成电路(Asic)。后者处理传感器采集的信号,赋予epix10k独特的性能。以前的探测器(例如LCLS科学家使用了几年的ePix100)经过定制,可以在x射线激光每秒120脉冲的发射速率下最大化性能。SLAC的探测器团队进一步开发了该技术,现在它每秒可以捕获1,000张图像。2epix10k的主要规格specification 135k,2mof pixels/module 384 x 352pixel size100μmactive area dimensions38.4 x 35.2mm2max signal(8 kev photons equivalent) 11000frame rate (hz) 120 hz (or up to 1khz)sensor thickness (μm) 5003ePix10K的应用SLAC的ePix 旨在满足使用强大x射线光源研究化学、生物和材料的原子细节的科学家的特定需求。它们速度快,长时间运行稳定并且对大范围的x射线强度敏感,这意味着它们可以处理非常明亮的x射线束以及单个光子。ePix10K将成为SLAC的直线加速器相干光源(LCLS) x射线激光器中x射线科学的新主力,它也将使其他设备受益。美国能源部的Argonne国家实验室的先进光源(APS)和欧洲XFEL已经在使用该技术。4具体案例去年,研究人员把ePix10K带到了APS的Biocars光束线站,这是一个研究生物学和化学过程的实验站。该线站使用了一种被称为时间分辨串行晶体学的技术,研究人员用激光照射微小晶体,并使用APS 的x射线探究晶体的原子结构如何响应激光刺激。“我们将这种方法应用于蛋白质,例如,了解酶如何催化重要的生物反应,”芝加哥大学的Biocars运营经理Robert Henning说,“原则上,我们可以在APS上以每秒1,000个x射线脉冲的速度进行这些实验,但是大多数探测器无法处理与该速率相关的全部强度。”新的探测器将使科学家充分利用x射线源的能量,节省大量时间。Henning说:“要获得完整的数据,我们通常需要拍摄数千张x光照片,能够利用到APS的每一个脉冲,将减少完成这一任务所需的时间。”5ePix10K系列前景SLAC的探测器团队目前已经在开发新一代的探测器ePixHR,它将能够每秒拍摄5,000到25,000张图片。SLAC的最终目标是每秒能得到10万张图片。”此外,该团队正在研究一种革命性的新型探测器SparkPix,它将能以LCLS-II发射x射线脉冲的高速率采集图像并实时处理数据。参考资料【1】g. blaj, a. dragone, c. j. kenney, f. abu-nimeh, p. caragiulo, d. doering, m. kwiatkowski, b. markovic, j. pines, m. weaver, s. boutet, g. carini, c.-e. chang, p. hart, j. hasi, m. hayes, r. herbst, j. koglin, k. nakahara, j. segal and g. haller,“performance of epix10k, a high dynamic range, gain auto-ranging pixel detector for fels.”aip conference proceedings 2054, 060062 (2019) ,submitted.【2】p. caragiulo et al., "design and characterization of the epix10k prototype: a high dynamic range integrating pixel asic for lcls detectors," 2014 ieee nuclear science symposium and medical imaging conference (nss/mic), seattle, wa, 2014, pp. 1-3, doi: 10.1109/nssmic.2014.7431049.【3】https://www6.slac.stanford.edu/news/2020-08-20-new-x-ray-detector-snaps-1000-atomic-level-pictures-second-natures-ultrafast
  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p    strong 腐蚀形貌常用表征方法 /strong /p p   在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。 /p p    strong 激光共聚焦扫描显微镜 /strong /p p   激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。 /p p   该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。 /p p    strong 试验材料 /strong /p p   试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。 /p p    strong 试验仪器 /strong /p p   红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。 /p p    strong 腐蚀试验 /strong /p p    span style=" color: rgb(0, 176, 240) " (1)全面腐蚀 /span /p p   将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。 /p p   依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。 /p p   试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N& #39 -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    span style=" color: rgb(0, 176, 240) " (2)沟槽腐蚀 /span /p p   将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。 /p p   依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。 /p p   试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。 /p p   试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    strong 结果与讨论 /strong /p p    span style=" color: rgb(0, 176, 240) " 1 全面腐蚀 /span /p p   全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title=" 图1 全面腐蚀试验后试样的宏观照片.jpg" alt=" 图1 全面腐蚀试验后试样的宏观照片.jpg" / br/ br/ /strong strong 图1 全面腐蚀试验后试样的宏观照片 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" width=" 378" height=" 406" border=" 0" vspace=" 0" style=" width: 378px height: 406px " / /strong /p p style=" text-align: center " strong 图2 全面腐蚀试验后试样的扫描电镜图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width=" 400" height=" 271" border=" 0" vspace=" 0" style=" width: 400px height: 271px " / /strong /p p style=" text-align: center " strong 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图 /strong /p p    span style=" color: rgb(0, 176, 240) " 2 沟槽腐蚀 /span /p p   由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title=" 式(1).png" alt=" 式(1).png" / /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" / /strong /p p style=" text-align: center " strong 图4 沟槽腐蚀试验后试样的宏观照片 /strong /p p   式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α& lt 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title=" 图5 沟槽腐蚀试验参数测定.png" alt=" 图5 沟槽腐蚀试验参数测定.png" / /strong /p p style=" text-align: center " strong 图5 沟槽腐蚀试验参数测定 /strong br/ /p p   沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title=" 图6 沟槽腐蚀试验后试样的金相图.jpg" alt=" 图6 沟槽腐蚀试验后试样的金相图.jpg" / /strong /p p style=" text-align: center " strong 图6 沟槽腐蚀试验后试样的金相图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" / /strong /p p style=" text-align: center " strong 图7 沟槽腐蚀试验后试样的LSCM图 /strong /p p style=" text-align: center " strong 表1 不同方法得到的沟槽腐蚀敏感系数 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" alt=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" / /strong /p p   采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。 br/ /p p    strong 结论 /strong /p p   (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。 /p p   (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。 /p
  • 1150万!全光谱激光扫描共聚焦显微镜、全光谱激光扫描共聚焦显微镜和激光共聚焦显微镜采购项目
    一、项目基本情况项目编号:GXZC2023-J1-001494-JDZB项目名称:超高分辨场发射扫描电子显微镜采购采购方式:竞争性谈判预算金额:275.0000000 万元(人民币)最高限价(如有):275.0000000 万元(人民币)采购需求:超高分辨场发射扫描电子显微镜1台。如需进一步了解详细内容,详见谈判文件。合同履行期限:自签订合同之日起120个工作日内完成产品安装、调试,通过验收并交付使用。本项目( 不接受 )联合体投标。1.采购人信息名 称:广西师范大学     地址:广西桂林市雁山区雁中路1号        联系方式:辛老师、0773-3696563      2.采购代理机构信息名 称:广西机电设备招标有限公司            地 址:广西桂林市七星区骖鸾路31号湘商大厦603            联系方式:郑雯峪、蒋仕波,0773-3696789转1            3.项目联系方式项目联系人:郑雯峪、蒋仕波电 话:  0773-3696789转1二、项目基本情况项目编号:ZBUSTC-GJ-06项目名称:中国科学技术大学苏州高等研究院全光谱激光扫描共聚焦显微镜采购项目预算金额:365.0000000 万元(人民币)最高限价(如有):365.0000000 万元(人民币)采购需求:包号货物名称数量主要功能是否允许采购进口产品采购预算1全光谱激光扫描共聚焦显微镜1套主要用来进行组织和细胞中荧光标记的分子和结构检测、荧光强度信号的定量分析、深层组织和细胞成像、亚细胞结构高分辨检测、荧光漂白及恢复实验以及其他生物学应用。是365万元合同履行期限:合同签订后 150 天(国内供货)或者L/C后 150 天(进口免税)本项目( 不接受 )联合体投标。1.采购人信息名 称:中国科学技术大学苏州高等研究院     地址:苏州市独墅湖高教区仁爱路188号        联系方式:秦老师;wangpeng1107@ustc.edu.cn      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯;王军;郭宇涵;010-68290530;010-68290508            3.项目联系方式项目联系人:李雯;王军;郭宇涵电 话:  010-68290530;010-68290508三、项目基本情况 项目编号:CBNB-20236027G 项目名称:宁波市中医院激光共聚焦显微镜采购项目 预算金额(元):5100000 最高限价(元):5100000 采购需求: 标项名称: 激光共聚焦显微镜 数量: 1 预算金额(元): 5100000 简要规格描述或项目基本概况介绍、用途:包含扫描检测系统、万能分光系统、荧光寿命传感成像分析系统等。详见招标文件。 备注:组成联合体的成员数量不超过2个。 合同履约期限:详见招标文件。 本项目(是)接受联合体投标。1.采购人信息 名 称:宁波市中医院 地 址:宁波市海曙区丽园北路819号(广安路268号) 传 真:/ 项目联系人(询问):郑老师 项目联系方式(询问):0574-87089099 质疑联系人:李老师 质疑联系方式:0574-87089098 2.采购代理机构信息 名 称:宁波中基国际招标有限公司 地 址:宁波市鄞州区天童南路666号中基大厦19楼 传 真:0574-87425373 项目联系人(询问):周旭坤 项目联系方式(询问):0574-87425380 质疑联系人:王莹巧 质疑联系方式:0574-87425583        3.同级政府采购监督管理部门 名 称:宁波市政府采购管理办公室 地 址:宁波市海曙区中山西路19号 传 真:/ 联系人 :李老师 监督投诉电话:0574-89388042
  • 用法如激光扫描仪再现北京猿人之家
    2009年5月,北京周口店遗址第一地点(猿人洞)开始进行保护性的考古发掘前期工作。自上世纪70年代以来,猿人洞就再未进行过考古发掘,长时间的风化侵蚀使猿人洞的剖面出现险情,为排除险情,稳定剖面,经国家文物局批准,中国科学院古脊椎动物与古人类研究所与周口店北京人遗址管理处联合对猿人洞西剖面进行保护性的清理发掘。在发掘之前,为翔实记录猿人洞的历史原貌,文物保护专家利用现代先进的法如3D激光扫描仪,获取到详尽的、高精度的猿人洞三维立体影像图数据&mdash &mdash 数十万年前古人类生活过的洞穴实景得以再现,科技的发展可以让人类审视现在的文明和进步! 关于北京猿人遗址: 北京猿人遗址是世界著名的古人类遗址,它位于周口店龙骨山上,于1 9 2 1年开始发掘,是目前世界上同时期人类遗址中材料最丰富的一个,又是华北中更新世(即第四纪冰川更新世中间的一个时期 )洞穴堆积的标准剖面,在古人类学和第四纪地质学上均占有很重要的地位。这个遗址1 9 6 1年被国务院定为全国第一批重点文物保护单位,1 9 8 7年被联合国教科文组织列入世界文化遗产名录。 解决方案: 文物保护专家使用了法如激光扫描仪,在猿人洞现场简单架设和移站扫描仪,通过测量扫描即可获得洞穴的真实三维场景再现。三维测量的原理是激光测距。第一步是发射激光束,旋转的镜面将激光束直接反射到测量区域:通过反射回镜面的激光束,可以精确和唯一地确定镜面到物体之间的距离。在编码器测量镜头旋转角度与激光扫描仪的水平旋转角度后,计算机可以精确计算出每个测量点的空间坐标,并把这些三维空间点的坐标存贮起来。这一步骤每秒最快重复近百万次,通过重复这一步骤,并最终形成被测环境的三维空间图像。其分辨率比传统的数码相机高上千倍,大空间激光三维扫描仪的场景数字化记录优势已得到充分验证。被测对象通过无缝拼接形成完整空间,克服了视角局限外挂数码照相机,实现彩色扫描,还原彩色现实。 欲知本产品信息:点击进入 法如科技 FARO Technologies,Inc. 地址:上海市桂林路396号3号楼1楼 邮编:200233 Tel: 86-21-61917600 Fax:86-21-64948670 网址: www.faroasia.com/china e-mail: chinainfo@faro.com
  • 河南农业大学876万元购买激光扫描共聚焦显微镜等一批仪器
    8月24日,河南农业大学农业农村部公开招标购买激光扫描共聚焦显微镜、气相色谱质谱联用仪、冷冻多功能实验仪等一批仪器,预算876万元。  项目编号:豫财招标采购-2021-809  项目名称:河南农业大学农业农村部大宗粮食加工重点实验室条件能力建设项目--分项采购2项目  采购方式:公开招标  预算金额:8,760,000.00元  项目编号:豫财招标采购-2021-809  项目名称:河南农业大学农业农村部大宗粮食加工重点实验室条件能力建设项目--分项采购2项目  采购方式:公开招标  预算金额:8,760,000.00元  采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)  采购内容:包1:专业设备(冷冻多功能实验仪(1台/套)、全自动吹泡仪(1台/套)) 包2:分析检测设备(气相色谱质谱联用仪(1台/套)、液相色谱质谱联用仪(1台/套)) 包3:生物成像设备(激光扫描共聚焦显微镜(1台/套)、倒置荧光显微镜(1台/套)、流式细胞仪(1台/套))。(具体内容详见招标文件)  交货期:合同生效后90天内(本招标文件仪器参数中另有规定交货期的设备除外)  交货地点:采购人指定地点  质量保证期:所有设备质保期(本招标文件仪器参数中另有规定质保期的设备除外)自验收合格后叁年。需提供原厂家承诺证明文件。  合同履行期限:见七、其他补充事宜  本项目是否接受联合体投标:否  是否接受进口产品:是  开标时间:2021年09月15日09时00分(北京时间)
  • 中科院成功研制激光扫描实时立体显微镜
    据中国科学院网站消息,日前,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室(简称:瞬态室)超分辨成像团队研制成功双光子激发激光扫描实时立体显微镜,首次把基于双目视觉的立体显微方法和高分辨率双光子激发激光扫描荧光显微技术结合在一起,实现了对三维荧光样品的高速立体成像,相关研究成果发表在2016年12月刊的PLOS ONE 杂志上,并被授权国家发明专利(专利号ZL201210384895.4)。  当代生命科学研究对光学显微技术提出了越来越高的要求——更高的空间分辨率、更大的成像深度、更快的成像速度。特别是对于生物活体显微成像来说,生物组织对光的散射使得噪声大大增强,严重影响了空间分辨率和成像深度。为了提高成像深度,双光子激发激光扫描荧光显微技术自20世纪90年代提出后被广泛应用于神经成像等领域,但是其逐点扫描的成像方式严重制约了成像速度。因为高分辨率光学显微镜的景深很小,要对样品完成三维成像,通常需要数十层乃至上百层的二维图像进行叠加重建得到,图像采集和处理一般需要数分钟甚至数十分钟,要快速实时地获取和显示三维图像非常困难。  瞬态室超分辨成像团队在研究员姚保利和叶彤的带领下,以双目视觉原理和贝塞尔光束产生扩展焦场为基础,提出了由四个振镜组成的激光束立体扫描装置,实现了对贝塞尔光束的横向位置和倾角共三个维度的控制,突破了只有两个自由度的传统激光扫描不能实时切换视角的限制。通过对四振镜立体扫描装置的优化设计和控制,实现了对贝塞尔光束的三自由度快速扫描,可在毫秒量级进行双视角切换,从而解决了激光扫描立体显微成像系统中双光路同时成像的技术难题,首次实现了基于双视角实时激光扫描的立体显微成像和显示系统。该系统可对样品进行立体动态成像和实时双目立体观测,其三维成像速度比传统的逐点扫描方式提高了一到两个数量级。该双光子立体显微系统为活体生物的三维实时成像和显示提供了一种新的观测工具。  “它可以让我们像观看立体电影一样实时地观测动态的三维微观世界,无需光切片,无需耗时的三维图像重构。”杨延龙如此总结这套系统的特点,他负责设计和完成了其中的立体扫描和成像显示的关键部分。“双目视觉成像是非常高效的三维信息获取方式,但是现有的体视显微镜,空间分辨率和景深互相制约,我们利用三自由度扫描的贝塞尔光束进行非线性荧光激发突破了这种限制。”  这项研究先后在中科院“百人计划”和国家自然科学基金的支持下,从基本原理验证、关键技术突破,到原理样机完成,经历了从基础研究到应用集成的各个环节。目前,课题组正在与国内外相关科研机构开展生物医学应用的合作研究,期望尽快将该项技术应用于生物活体三维快速成像和显示领域。花粉和荧光小球样品的红蓝立体图像(可佩戴红蓝眼镜观看)
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p   近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 中标项目 /strong /span /p p style=" text-align: center " strong 干式激光成像仪 /strong /p p   项目编号:HYEZ2J2018007 /p p   项目名称:干式激光成像仪采购 /p p   总成交金额:6.97 万元(人民币) /p p   采购单位名称:北海市华侨医院 /p p   中标单位名称:江西伟晨医疗设备有限公司 /p p style=" text-align: center " strong 密封式同轴送粉激光增材制造系统 /strong /p p   项目编号:HBT-15170140-173892 /p p   项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目 /p p   总成交金额:208.85 万元 /p p   采购单位名称:武汉理工大学 /p p   中标单位名称:南京中科煜宸激光技术有限公司 /p p style=" text-align: center " strong 原子吸收分光光度计及涡度相关系统 /strong /p p   项目编号:CEIECZB03-17ZL144 /p p   项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目 /p p   中标金额:54.43万元 /p p   中标供应商名称、地址及成交金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 大连工业大学信息学院光电实验室建设 /strong /p p   项目编号:LNZC20171001868 /p p   项目名称:大连工业大学信息学院光电实验室建设采购项目 /p p   中标金额:54.18万元 /p p   中标单位:大连万慧科技有限公司 /p p   主要成交标的: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title=" 2.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光治疗系统 /strong /p p   项目编号:Q5300000000617001570 /p p   项目名称:昆明医科大学附属医院购置激光治疗系统采购项目 /p p   中标金额:129万元 /p p   中标供应商名称:贵州邦建医疗科技设备有限公司 /p p   主要成交标的: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 193nm 激光剥蚀进样系统等 /strong /p p   项目名称:中国海洋大学 /p p   项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目 /p p   采购单位名称:中国海洋大学 /p p   中标金额:1367.93612 万元 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title=" 4.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光雷达项目 /strong /p p   项目编号:JXBJ2017-J28802 /p p   项目名称:南昌大学空间科学与技术研究院激光雷达采购项目 /p p   采购单位:南昌大学 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 308准分子光治疗系统和激光光子工作站 /strong /p p   项目编号:[350823]SHHY[GK]2017015-1 /p p   项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目 /p p   中标金额:169.9万元 /p p   中标供应商:厦门海辰天泽仪器有限公司 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 复杂曲面三维激光扫描系统 /strong /p p   项目编号:LNZC20171201441 /p p   项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目 /p p   中标金额:58.9万元 /p p   中标单位:北京金鹰腾飞科技有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 双光子激光共聚焦显微镜采购项目 /strong /p p   项目编号:中大招(货)[2017]993号 /p p   采购单位名称:中山大学 /p p   中标金额:489.803430万元 /p p   中标供应商名称:广州市诚屹进出口有限公司 /p p   中标标的名称、规格型号、数量、单价、服务要求: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title=" 8.jpg" /    br/ /p center /center p style=" text-align: center " strong 超短强激光微纳制造实验室项目 /strong /p p   飞秒激光放大器 /p p   项目号:17A51870611-BZ1700401866AH /p p   项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购 /p p   中标总金额:145.9万元 /p p   中标供应商:相干(北京)商业有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title=" 9.jpg" / /p p style=" text-align: center " strong 便携式高分辨测风激光雷达 /strong /p p   项目编号:OITC-G170321151 /p p   项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目 /p p   中标总金额:280.0 万元(人民币) /p p   中标供应商名称:西南技术物理研究所 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title=" 10.jpg" / /p p style=" text-align: center " strong 激光共聚焦拉曼光谱仪、数字综合试验箱 /strong /p p   项目编号:ZX2017-12-13 /p p   项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目 /p p   中标金额:115.30万元 /p p   中标单位:西安共进光电技术有限责任公司 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title=" 11.jpg" / /p center /center p style=" text-align: center " strong 激光共聚焦拉曼光谱仪 /strong /p p   项目编号:OITC-G17031833 /p p   项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目 /p p   采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所 /p p   总中标金额:155.7781万元 /p p   中标供应商:雷尼绍(上海)贸易有限公司 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title=" 12.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 还有一个招标大单,注意关注哦! /strong /span /p p   招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器 /p p   项目编号:0811-184DSITC0089 /p p   项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次) /p p   采购单位:华东师范大学 /p p   预算金额:230.0 万元(人民币) /p p   采购内容: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title=" 2018-02-07_091003.jpg" / /p p   购买标书时间:2018年01月26日-02月02日 /p p   投标截止时间:2018年02月28日 /p p   联系方式:冯东海 ,021-62231151 /p
  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展   我国飞秒脉冲激光参数准确度国际领先   日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。   飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。   该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。   据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 清华团队探微揭秘!飞秒激光改写材料“基因”
    光与物质的相互作用是探究低维量子材料微观物理机制的重要探测手段,并且其中超短、超强脉冲激光还可作为电子结构及物态的有效调控手段,实现平衡态所不具有的新物态、新效应。周树云研究组和合作者首次在半导体材料黑磷中实现了脉冲激光诱导的弗洛凯瞬时能带调控,并发现其与黑磷的赝自旋具有独特的耦合作用及光学选择定则,研究工作以“Pseudospin-selective Floquet band engineering in black phosphorus”为题,于2023年2月2日发表在Nature杂志。半导体材料弗洛凯能带调控示意图给黑磷中的电子“拍电影”低维量子材料包括碳纳米管、石墨烯、过渡金属硫族化合物等,以其新奇的物理特性和全新的器件应用而广受关注。例如,相比于石墨的三维立体结构而言,石墨烯以其单原子级厚度可以被视作“二维”这样的低维材料,其中的电子结构也会因为维度的降低而发生剧烈的变化。“我们研究的电子能带结构可以通俗地理解成这些材料的DNA,它决定了材料的各种属性,清华大学“水木学者”鲍昌华解释道,“而我们所做的就是利用飞秒激光来调控这些材料的DNA,从而获得我们想要得到的一些性质。”当前学界的研究主要聚焦在材料的平衡态特性,而对其非平衡态物理及超快动力学的研究尚处于发展阶段。周树云团队利用脉冲激光,将时间精度控制到万亿分之一秒,迈出了实现瞬时调控材料特性的坚实一步。在超快时间尺度(皮秒甚至飞秒)上实现电子结构和物理特性的测量和调控,不仅能够拓展非平衡态物理知识的前沿,还将为未来新型、高速器件的开发和应用奠定重要的科学基础。在非平衡态超快动力学和瞬时物态调控研究中,一个备受关注的重要研究方向是通过周期振荡的势场诱导量子物态的变化,进而实现对其电子结构的调控,该方案被称为弗洛凯工程(Floquet engineering)。从材料的晶格结构出发,电子受到空间中周期性变化晶格的影响,形成在动量空间具有周期性的能带结构,导致整个材料呈现出金属、绝缘体、半导体乃至超导体的多种性质的可能。与之相类比,外加的周期振荡势场将导致电子在能量空间出现能带结构的周期性复制,进而形成弗洛凯态。进一步地,通过电子与周期势场的相互作用对低维量子材料的能带结构、对称性及拓扑性质的瞬时调控,可实现平衡态所不具有的新物态,例如,将拓扑平庸的材料转变为拓扑材料,实现远离平衡态的拓扑超导态等。“目前,国际上这方面的研究还刚开始。一方面,我们希望弗洛凯能带工程可以在更加广泛的材料体系中被实现,从而为更加自由地调控材料的性质提供一种新的途径,”对于该研究领域的发展前景和可能的应用,清华大学物理系2017级博士生周绍华介绍,“另一方面则是在未来飞秒激光在材料物性调控作用上的应用,如在超快时间尺度上实现材料的非平庸拓扑、超导拓扑物态等。”弗洛凯态的概念自上个世纪初被提出后就引起了物理学家的广泛关注,并被应用于凝聚态物理、冷原子物理和光晶格等领域。近十年来,弗洛凯瞬时能带和物性调控已经发展成为国际上凝聚态物理和材料科学的一个重要科学前沿。然而,尽管理论方面涌现出丰富的预言,与之形成鲜明对比的是凝聚态体系中的实验进展非常少。很多关键的科学问题,例如,能否在常规材料(例如半导体)中实现能带结构的瞬时调控,仍然有待实验的证实。利用超快时间分辨角分辨光电子能谱在黑磷中实现弗洛凯瞬时能带调控周树云研究组多年来致力于低维量子材料的电子能谱和非平衡态超快动力学的研究,尤其是弗洛凯能带及物态调控的实验研究。这一过程并不简单,需要研发具有能够实现弗洛凯调控工程所需的极端实验条件的先进科学仪器。由于弗洛凯调控要求激发光源具有低光子能量、强峰值电场等极端实验条件,研究组针对领域难点投入了大量的精力,攻克了中红外强场脉冲激发光源以及与角分辨光电子能谱仪结合方面的困难,研制出具有前沿技术指标的超快时间分辨角分辨光电子能谱(TrARPES)系统。在材料体系方面,周树云研究组独创一格,巧妙地选取了黑磷这个具有小带隙、高迁移率的经典半导体材料。通过精细调节中红外激发光源的光子能量,研究组发现当光子能量与带隙接近共振时,黑磷的电子结构从平衡态的抛物线形状演化为在带顶打开能隙的“墨西哥帽”形状,并观察到了复制的弗洛凯边带。在研究其中的弗洛凯瞬时能带调控时,研究组使用了类似“给电子拍电影”的方法:在飞秒尺度上去记录它在光的激发下,从光到来之前、刚好到达时以及光离开以后整个动态过程中的关键时刻,从而观察它是怎样演化的。在此基础上,他们通过系统性地探究该瞬时能隙对时间、光强和电子掺杂等变量的响应等,确认了所观测到的瞬时能隙是由弗洛凯能带工程所导致。更有意思的是,研究组发现黑磷中的弗洛凯能带工程对激发光源的偏振具有强烈的选择性:只有当泵浦光偏振沿着黑磷的扶手椅型(armchair)方向时,才会出现瞬时能隙,揭示出弗洛凯能带工程调控具有特定的光学选择定则。结合理论分析,研究组指出这一奇特的偏振选择效应来源于黑磷的赝自旋自由度(黑磷元胞中含有两个子晶格,对应的两能级系统可类比自旋)。这些研究结果不仅为弗洛凯能带调控提供了重要的思路,同时,飞秒激光调控的迅速“开关”特点也为进一步探索拓扑物态、关联物态(磁性、超导等)的瞬时调控奠定了重要的基础。此外,这一独特的偏振选择效应未来也有望应用于光学偏振相关的光电器件应用中。参与项目研究的实验团队成员坚持“一步一个脚印”这个研究课题自周树云2012年入职清华大学就已列入她的研究计划,是她在清华最想解决的科学挑战之一。该实验涉及多种精密实验技术的结合,没有现成的仪器设备可以开展此类实验,也缺乏可供借鉴的研究经验,研究过程充满了挑战。课题组通过多年的技术研发和多方筹集资源,克服重重困难,不断朝着目标努力,并最终在2018年完成了仪器平台的建设,使该系统在能量分辨率、时间分辨率、中红外泵浦光源等多方面指标具有国际领先水平。最近,他们利用这一设备成功攻克了超快时间尺度下,光与半导体材料相互作用导致的弗洛凯工程这一重要科学问题。该实验所需的实验条件十分苛刻,研究成果来之不易。例如,在实现弗洛凯瞬时能带调控的过程中,需要调控两束飞秒激光在时间和空间上完全重合,才有可能观测到该效应。这就需要不仅在时间上要使它们在飞秒尺度上重合,还要使它们在空间上聚焦到空间上同一个几十微米尺度的点。此外,激光光源的能量范围以及极端峰值电场强度也给实验带来了很多技术上的挑战。最困难的是,对于这样的未知领域,什么样的实验条件有利于弗洛凯瞬时能带调控的观测,在这方面并没有可供借鉴的经验,只能是摸着石头过河,通过大量实验逐渐积攒经验。在研究过程中,研究组成员通过长年累月的坚持、严谨求实的态度最终攻克了一个又一个难关,从最初开始该实验时遭遇不断失败到观察到最终实验结果时的豁然开朗,他们用专精的实力诠释了科研的态度和决心。“清华大学为我们提供了优质的科研环境,为青年学者的成长提供了助力。”在清华园学习生活的第 11 个年头,鲍昌华一步步从清华物理学堂班学生、获得研究生特奖成长为今年的 “水木学者”,对科研有他自己深刻的体会。“我们在做科研的过程中,需要不忘初心,始终坚持一步一个脚印。只有把每一步都做到完美,厚积薄发,最后才有希望摘取到最重要的科研成果。”周绍华也有这样的深切体会:“除了优秀的学术环境和科研平台以外,清华自强不息的文化传统也使我们受益匪浅。在科研的道路上,只有坚持自强不息,不断追求卓越,才能取得科研上的重大突破。”论文通讯作者是周树云,论文共同第一作者为周绍华和鲍昌华。合作者包括清华大学物理系段文晖院士、于浦教授,北京航空航天大学汤沛哲教授,中科院物理所孟胜研究员等。该研究工作主要受到科技部国家重点研发计划、自然科学基金委国家杰出青年科学基金项目、重点项目和重大科研仪器研制项目的支持。此外,该研究工作还受到国家自然科学基金委基础科学中心项目和中国科学院项目的支持。
  • 山东大学独辟蹊径:用水替代激光扫描仪
    p   一般而言,3D物体形状重建,需要借助先进的激光扫描仪。最近,计算机图形领域的顶级会议SIGGRAPH 2017对外发表的一项研究却另辟蹊径:用水这一介质来获取物体表面,将3D物体表面建模的任务转化为体积问题。 br/ /p p   “这种新的方法可以准确重建物体中的隐藏部分,克服常见的3D激光扫描方法的局限。”山东大学计算机学院院长陈宝权教授告诉科技日报记者,传统3D扫描和形状建模常使用激光扫描仪和摄像头对物体表面进行扫描。其局限性在于光线照不到的地方无法取样,缝隙、微小凸起等结构取样不完整,还有透明等特殊的材料难以处理。 /p p   为此,科学家们将物体浸入水中,测量物体的排水量,然后利用这种体积上的变化信息重建物体的表面形状,优势就体现了出来。“水能很好地贴合复杂的表面,还能渗透到空腔里,计算排水量也不需要考虑光线的折射率和偏振等问题,轻松绕过了光学设备面临的种种限制。”陈宝权说。 /p p   实验中,研究人员制作了一套简便的“3D浸入装置”,通过多次将物体以不同角度浸入水中,研究人员就能得出物体多个横截面的信息,进而精确地计算出物体的几何形状,包括平时激光扫描仪很难捕捉到的部分。科研人员表示,CT设备体积庞大,且只能在特定的环境中使用,成本也高。相比之下,浸入转换法以较低的计算成本生成更精确的形状,性价比高,应用范围更广。 /p p   这项名为“基于浸入转换3D形状重建”的高科技成果由陈宝权教授率领北京电影学院未来影像高精尖创新中心,联合以色列特拉维夫大学、本· 古里安大学,加拿大英属哥伦比亚大学的研究人员合作完成。 /p p br/ /p
  • OPTON发现之旅 扫描电镜与激光拉曼联用技术
    在蔡司的产品家族里面,扫描电镜SEM无疑是一颗璀璨的明珠。Zeiss扫描电镜向我们清晰的展示了万千样品的细微特征: 而环绕在电镜周围的,则是为大家所熟知的一群“老朋友”:能谱、波谱、EBSD、阴极荧光谱仪等等。Zeiss电镜的朋友圈,随着科技的进步,向着更前沿的科研方向不断拓展延伸。在这个朋友圈中,最新闪亮登场的是WItec的激光拉曼(Raman)光谱仪。 激光拉曼光谱仪在光谱仪的家族里也算是重器。对于大多数物质而言,在分子结构的分析方面,激光拉曼的作用,无可替代。那么扫描电镜与激光拉曼相结合,究竟能给我们带来那些新的发现呢? 首先让我们领略一下Zeiss扫描电镜与激光拉曼联用系统的风采: 图中主机为Zeiss Merlin扫描电镜,左侧为Gatan MonoCL4阴极荧光光谱仪,中间黑色部分为激光拉曼的扫描电镜适配单元,右中下俩黑色部件:上方为激光拉曼的激光器部分(Laser source),下方为单色器(Monochromator)。接下来我们与您分享一下,扫描电镜与激光拉曼联用的一篇测试结果:样品为黄铁矿(Pyrite)和石英(Quartz)的伴生物。 图一为Zeiss扫描电镜的样品拍摄结果:图一 Zeiss Merlin扫描电镜图像图二为WItec激光拉曼内置光学显微镜所拍摄的大致同一样品区域:图二 大致同一区域的光学图像 图三为WItec激光拉曼在选定区域的图像分析结果:不同的颜色代表了不同的分子构成,给出了样品所包含的三种不同物质相的信息。图三 WItec激光拉曼的图像分析结果 图四为WItec激光拉曼在选定区域的谱图分析结果: 红、蓝、绿三种颜色的谱图,与图像分析结果中相映的色彩区域一一对应,体现出三个不同相所包含物质成分及分子结构的信息。图四 WItec激光拉曼的谱图分析结果 图五为Zeiss扫描电镜与WItec激光拉曼的混合图像分析结果: 图五 扫描电镜、激光拉曼的混合图像分析结果 好了,转瞬之间我们就完成了,激光拉曼在亚微米尺度下的面扫描图像分析。这才是扫描电镜与激光拉曼联用的精华所在。扫描电镜告诉了我们:它看起来是个什么样子;而激光拉曼告诉了我们:它究竟是什么,它是如何构成的。 Zeiss来自德国,WItec同样源于德国,这是科学仪器领域再完美不过的Couple了。 最后,科学无国界,我们在此特别鸣谢韩国科学技术研究院,感谢KIST所提供的设备、测试结果及合作中的所有帮助。 韩国科学技术研究院始建于1966年,从成立之日起,KIST就一直是带领韩国科学技术复兴和发展的领导性机构之一。致力于高新工业核心技术的研发,为韩国前沿性产业升级做出了杰出的贡献。此次购买蔡司扫描电镜激光拉曼联用系统主要用于石墨烯领域的研究。 “知微行远,以科技探索世界”,欧波同将以更积极,更专业的态度,在科学仪器领域为各界工作者提供全方位的支持和帮助! 关于欧波同有限公司欧波同有限公司,是中国领先的微纳米技术服务供应商,是一家以外资企业作为投资背景的高新技术企业,总部位于英国,分别在北京、上海、辽宁、山东、河南、陕西等地设有分公司和办事处。作为蔡司电子显微镜在中国地区最重要的战略合作伙伴,公司秉承“打造国内最具影响力的仪器销售品牌”的经营理念,与蔡司品牌强强联合,正在为数以万计的中国用户提供高品质的产品与国际尖端技术服务。未来,我们将一如既往致力于中国微纳米技术的创新与发展,与中国广大客户一起携手共同描绘中国高端微纳米科技振兴辉煌的广阔蓝图!欲了解更多信息,请浏览公司网站:http://www.opton.com.cn/
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。   该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。   此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。   为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。   科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • 274万!北京大学快速多点激光扫描共聚焦显微镜采购项目
    项目编号:BMCC-ZC22-0259项目名称:北京大学快速多点激光扫描共聚焦显微镜采购项目预算金额:274.0000000 万元(人民币)采购需求:包号名称数量预算金额是否接受进口产品01快速多点激光扫描共聚焦显微镜1套274万元是注:1.交货时间:自合同签订之日起120日内交货并安装调试完毕。2.交货地点:北京大学化学与分子工程学院。3.简要技术需求及用途:北京大学拟采购快速多点激光扫描共聚焦显微镜,用于进行长时间的活细胞观察 ,并进行快速超高的成像。对细胞和亚细胞器中荧光标记的分子和结构检测,荧光强度信号的定量分析,深层组织和细胞成像,亚细胞结构超高分辨检测,荧光共定位分析等。可进行荧光漂白及恢复实验,蛋白互作实验等。 合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。
  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • 全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
    全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
  • 物理所利用高对比度飞秒激光产生超强极短X射线源
    中科院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室张杰研究组的陈黎明研究员等,与日本原子力研究所合作在激光硬X射线源研究方面取得重要进展。研究成果发表在Physical Review Letters 104, 215004(2010)上。   飞秒脉冲强激光与靶物质相互作用时,产生的超热电子通过K壳层电离辐射和轫致辐射产生硬X射线。由于此种X射线源在理论上具超快的特点,非常适合对物质进行飞秒时间分辨的动力学探针,加上其微小的X射线发射源尺寸,极低的建造成本,比拟甚至高于同步辐射源的源峰值亮度,成为第三代同步辐射光源之外的最具应用价值的补充光源,具有在医学、生物学和材料学等方面的极大的应用前景,因此成为国际上相关领域研究热点之一。   但是实际应用中现有的激光X射线源都表现出信噪比差等缺点,造成能实际利用的K光子总额较少,大量的能量包含在连续的轫致辐射本底中,极大地降低了成像的对比度 同时由于电子在靶材料中反复多次震荡或长程输运和碰撞,使产生的X射线辐射的时间宽度都在皮秒甚至纳秒量级,造成这些激光X射线源在原子分子学和材料学中的应用受到极大限制,基于激光的硬X射线源的实际应用价值大打折扣。因此,如何有效控制和优化激光硬X射线的产生效率、单色性和脉冲宽度是一个值得研究、亟待突破的课题。   陈黎明研究员及其合作者继利用高对比度激光与固体靶相互作用产生了低本底、高转换效率的Ka射线源【Physical Review Letters 100, 045004(2008)】之后, 为了进一步提高上述各种参数以产生更强,单色性更好的X射线源,采用了高对比度的飞秒激光脉冲与小尺寸气体团簇相互作用。这项工作是基于前期的实验观察【Applied Physics Letters 90, 211501(2007)】之上的,最新的结果将光子产额有提高了一个量级。   目前国际上利用团簇的研究均普遍采用普通对比度的激光,由于这类激光脉冲有强的预脉冲,为保持团簇在主脉冲到来时依然具有能引起线性共振的临界密度,往往采用大尺度的团簇。这样,在团簇中产生的超热电子在团簇中多次碰撞产生大量的连续本底,并且由于大尺度团簇膨胀的整体不均匀性,使K壳层X射线的能量转换效率很低(~10-6)。最新研究在实验中利用了高对比度的激光防止了团簇的先期膨胀,再利用激光强电场驱动纳米级尺寸的团簇在相互作用中的非线性共振机制,这种机制的特点是团簇电子只在激光电场和电荷分离场的共同作用下运动,这些电子的共振将只在脉冲的前几个周期内激发,激光脉冲过后电子能量迅速消失,所产生的X射线源具有10飞秒量级的时间分辨 同时,共振加热的电子是和纳米尺度的团簇碰撞,不会产生高能轫致辐射本底 另外,研究人员还在实验中成功地实现了团簇的非线性共振和线性共振加热之间的相互转换,得到清晰的相互作用物理图像。   由于他们在实验中产生了高信噪比、极短的K壳层X射线源,比较彻底地克服了前述激光X射线源的不利因素。这将极大地推动此领域的发展并确立基于激光的X射线源在超快研究中真正的实际应用价值和地位。   本项目得到中科院、国家自然科学基金、973国家基础研究计划和863高技术研究计划的支持。
  • 380万!北京大学多点激光扫描共聚焦显微镜采购项目
    项目编号:HCZB-2022-ZB0679项目名称:多点激光扫描共聚焦显微镜预算金额:380.0000000 万元(人民币)最高限价(如有):380.0000000 万元(人民币)采购需求:包号设备名称数量(台/套)1多点激光扫描共聚焦显微镜1套 详见招标文件第四章采购需求合同履行期限:合同签订后 120 日内交货并安装完毕本项目( 不接受 )联合体投标。
  • 三维激光扫描技术,给古建筑做个“透视”
    在山西五台山南台西麓的树林中,千年古刹佛光寺静静矗立。作为国务院公布的第一批全国重点文物保护单位,佛光寺已列入世界遗产目录。其中,建于公元857年的佛光寺东大殿是我国现存最为完整、体量最大的唐代木结构建筑,也是研究唐代木结构建筑最为重要的“标准器”。   据清华大学建筑设计研究院文化遗产保护研究所等编写出版的《佛光寺东大殿勘察研究报告》描述,佛光寺东大殿背靠陡崖,50年代曾由于崖体倒塌使大殿后墙局部遭到破坏,同时存在局部基础不均匀下沉和木构建糟朽、断裂等问题。   “清华大学文化遗产保护研究所承担了佛光寺东大殿精确测绘等工作。我们希望对东大殿用三维激光扫描的精确测量方法,来确定建筑结构变形,通过对变形的量化分析,得到东大殿结构是否安全的结论。”清华大学建筑学院副院长吕舟教授说。   20世纪30年代,梁思成、林徽因根据敦煌第61窟中的“大五台山图”发现了佛光寺东大殿,作为至今国内已知的唯一唐朝木建筑,这座珍贵的建筑对我国建筑史研究具有极重要的意义。   自梁思成开展佛光寺调研的1937年至今70多年里,建筑历史界多次踏勘、测量东大殿。但测量手段基本以皮尺、钢尺的手工测量为主,数据取舍到0.5厘米。   吕舟说,前人所做的测绘已取得巨大成果,但由于以往测量工具和测绘手段的限制,难以达到更高精度,误差量也难以控制,测量结果不一。在本次勘察中,使用了三维激光扫描配合全站型电子速测仪定位,全站仪可给出控制点的空间相对坐标,为扫描结果的三维空间形象提供坐标 再加上局部的手工测量,从而得到一套精确、客观的东大殿数据。如今,在古代建筑测绘领域,三维激光扫描已是一项常用的技术。   据介绍,与传统测绘技术相比,三维激光扫描的优势在于数据全面性和准确性,可以在电脑中像做透视一样进行切片测量,从而测量无法直接测量的位置,完成实测不可能完成的工作,并尽可能测量到所有数据,再通过数理统计推断出最符合的原始设计尺寸 全站仪所获得数据精确,角度误差为秒级,测距误差为毫米级 观测速度快,采集单个点仅需几秒钟 工作距离最远可达数百米等。   吕舟说,“通过三维激光扫描获得东大殿精确测绘数据后,东大殿一些法式制度上的规律开始清楚地呈现在我们面前,使重建或复原东大殿,消除结构变形影响的标准形态成为可能。”通过对三维激光扫描点云切片与复原的东大殿标准结构剖面相比较,就可得到东大殿准确的结构变形情况,对东大殿结构安全做出判断。这也是我国第一次把三维激光扫描应用于木结构文物建筑的结构安全评估。   以文物保护为目的的测绘要求准确地反映文物建筑的现状,包括残损、构件错置、改动、变形的情况,手工测绘中难以准确、清晰地表现出文物建筑现状,或有可能在测绘过程中被忽略。“三维激光扫描为解决这一问题提供了可能性。”吕舟说。   东大殿被称为我国古代建筑遗存中最为珍稀的一座,其所蕴含的设计思想、结构尺度和加工做法在非物质遗存方面具有非凡价值。因此,吕舟表示,以精密测绘入手,通过运用精密测量工具与传统测绘相结合的方法,取长补短,力求在使用目前最先进的技术条件下,得到尽可能精确而全面的测绘结果等。在该结果基础上,绘制东大殿复原理想设计图。   “在上述工作的基础上,我们才能提出了东大殿保护工作计划以及初步的修缮建议等。”吕舟说。   据国家“指南针计划—中国古代发明创造的价值挖掘与展示”专项,在“古代著名的遗址、墓葬、古建筑和土木工程设计、建造材料技术等方面”,“进行系统的专项调查、整理挖掘、研究展示、抢救传承”。   文物建筑测绘国家文物局重点科研基地(天津大学)主任吴葱教授说,除三维激光扫描技术和全站仪外,他们还将多基线数字近景摄影测量系统、固定翼无人机、无人直升机等新技术应用于古建筑测量中,精确测绘了柬埔寨吴哥古迹、天坛、故宫、颐和园、山西应县木塔、辽宁义县奉国寺等20多处古建筑。
  • 科学家利用玻璃造出飞秒激光器
    科学家在玻璃基板上制造了千兆飞秒激光器。图片来源:瑞士洛桑联邦理工学院商业飞秒激光器是通过将光学元件及其安装座放置在基板上制造的,这需要对光学器件进行严格对准。那么,是否有可能完全用玻璃制造飞秒激光器?据最新一期《光学》杂志报道,瑞士洛桑联邦理工学院的科学家成功做到了这一点,其激光器大小不超过信用卡,且更容易对准。研究人员表示,由于玻璃的热膨胀比传统基板低,是一种稳定的材料,因此他们选择了玻璃作为衬底,并使用商用飞秒激光器在玻璃上蚀刻出特殊的凹槽,以便精确放置激光器的基本组件。即使在微米级的精密制造中,凹槽和部件本身也不够精确,无法达到激光质量的对准。换句话说,反射镜还没有完全对准,因此在这个阶段,他们的玻璃装置还不能作为激光器使用。于是,研究人员进一步设计蚀刻,使一个镜子位于一个带有微机械弯曲的凹槽中,凹槽在飞秒激光照射时局部可扭动镜子。通过这种方式对准镜子后,他们最终创造出稳定的、小规模的飞秒激光器。尽管尺寸很小,但该激光器的峰值功率约为1千瓦,发射脉冲的时间不到200飞秒,这个时间短到光都无法穿过人类的头发。这种通过激光与物质相互作用来永久对准自由空间光学元件的方法可扩展到各种光学电路,具有低至亚纳米级的极端对准分辨率。
  • 2012激光共聚焦扫描显微学研讨会举行
    北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会顺利举行   仪器信息网讯 2012年3月27日,为推动北京市及周边省市激光共焦扫描显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进激光共焦扫描显微学在生命科学等领域中的应用和发展,北京理化分析测试技术学会和北京市电镜学会在北科大厦成功举办了“北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会”。来自高校、科研院所、企业的100余名专家学者参加了本次会议。 会议现场 军事医学科学研究院张德添教授 北京大学医学部生物医学分析中心何其华高工   会议由军事医学科学研究院张德添教授,北京大学医学部生物医学分析中心何其华高工主持。 Cdc42在小鼠卵母细胞减数分裂成熟中的作用 中国科学院动物研究所孙青原研究员   孙青原研究员现任中国科学院动物研究所计划生育生殖生物学国家重点实验室主任,他在报告中介绍了利用Zeiss LSM710激光共聚焦显微镜、珀金埃尔默Ultra VIEW VOX活细胞实时成像系统等仪器研究Cdc42在小鼠卵母细胞减数分裂成熟中的作用,Cdc42作为一种细胞骨架和细胞极化的重要调节物,在减数分裂和卵母细胞成熟过程中有重要的作用。 毫米级多光子显微镜荧光成像 奥林巴斯(中国)有限公司位鹏先生   采集更明亮和更清晰地标本深层图像,对于更好的开展生命科学研究工作来说十分重要。位鹏先生介绍了奥林巴斯在这方面所能提供的解决方案:利用日本理学院Miyawaki博士研发的组织、器官透明液处理小鼠大脑样本,结合奥林巴斯的XLPLN25×SVMP镜头可以观察到深度达4mm处的深层图像。目前奥林巴斯还推出了一款新型的镜头,观察深度可达8mm,不过还未正式推向市场,可接受定制。 超高分辨率显微镜技术 中国显微图像网秦静女士   在生命科学研究中科学家总希望看到更加细微的结构,从细胞到细胞器、再到蛋白质等生物大分子,这些结构的尺度都在纳米量级远远超出了常规的光学显微镜的分辨极限,电子显微镜虽然能提供纳米级的分辨率,但不适合观察活细胞,为了解决这一难题,超高分辨显微镜技术应时而生。在报告中秦静女士详细介绍了四种基于不同原理的超高分辨显微镜:4Pi显微镜、STED(受激发射损耗显微镜)、PALM(光激活定位显微镜)、STORM(随机光学重建显微束),并分析了各类显微镜的性能及优缺点。 多光子技术的新进展 徕卡仪器有限公司王怡净博士   王怡净博士从单分子探测(SMD)、相干反斯托克斯拉曼散射(CARS)、光参量振荡器(OPO)等三个方面介绍了多光子技术的最新进展。王怡净博士介绍说如果想观察分子的运动或分子的识别,采用普通的共聚焦技术就比较困难,所以单分子探测技术就应用而生。相干反斯托克斯拉曼散射技术是一种基于分子固有的振动特性的观察方法,样品无需进行荧光标记,避免了荧光漂白等问题,该技术是由华裔科学家谢晓亮发明,徕卡公司购买了该技术并将其产品化。光参量振荡器是一种新型红外激光器,它的激发波长可以达到1300nm,由于激发波长变长,因而散射更小,观测深度更深、对样品损伤更小。 现代荧光显微镜学在生命科学中的应用 蔡司光学仪器(上海)国际贸易有限公司张宁博士   张宁博士介绍了在生命科学研究中,不同的样品分析对于仪器的灵活性、观察深度、扫描速度,以及分辨率等都有不同的需求,蔡司根据不同的需求能够提供相应的仪器:如果对深度要求比较高,可以选择多光子显微镜 如果要进行瞬态分析,可以选择转盘式共聚焦显微镜、纯内反射荧光显微镜等 如果对分辨率要求非常高,可以选择光活化定位系统、结构光学照明系统等。此外,张宁博士还介绍了蔡司最新的780点扫描激光共聚焦系统,以及在2011年7月蔡司将光学显微镜部门和电镜部门进行了整合。 激光共聚焦扫描技术在神经发育中的作用研究 北京大学医学部王韵博士   神经系统是机体最重要、最复杂的系统。王韵博士在报告中介绍了激光共聚焦扫描显微技术在神经细胞增殖和分化中的应用;胚胎电转结合Confocal技术观察神经细胞的迁移;利用Confocal技术研究神经元极性、观察轴突导向;利用双光子Confocal技术观察培养的海马脑片中单个树突棘长时程结构可塑性改变时分子激活的时空变化、观察活体动物皮层神经元树突棘随外界刺激而出现的数目消长等。 Volocity——3D活细胞时代的成像分析软件 珀金埃尔默仪器(上海)有限公司公司焦磊博士   焦磊博士介绍了珀金埃尔默推出的Volocity细胞三维结构分析软件,该软件包括多个功能模块,用户可以在同一软件环境下完成图像获取、分析和数据发表的全过程。Volocity软件的Acquisition模块可以实现多通道、多位点3D图像的精确定位和自动实时采集 Visualization模块可为用户提供多种图像展现方式,用户可以在高分辨率、完全交互的3D模式下实时解决样品构造 Quantitation模块提供了丰富的工具可以在3D模式下对物体进行测量、分析和跟踪描绘 Restoration模块设计用于三维或四维图像的反卷积计算,以提高图像的分辨率。 超高分辨率显微镜的引进与发展态势分析 中科院生物物理所纪伟博士   纪伟博士介绍了目前不同的提高分辨率的成像方法的原理及其分辨能力,以及各种方法对样品制备的要求和在实际应用当中的优劣势。采用光敏定位技术的超分辨率显微镜采用大功率激光器和快速采样EMCCD,可以很好的观察活细胞 利用片层光扫描结合光敏定位成像技术可以观察厚样品 具有更高的分辨率,可以研究百nm尺度的细胞器细节结构。最后纪伟博士总结说,更高的分辨率、更快的分析速度以便观察活细胞、以及与其他技术的融合:如TIRF-STED、PALM-EM、STED-AFM、FCS-STED、STORM-AFM等。   会议中,与会人员同专家及企业人员进行了充分的互动和交流,通过会议大家对于激光共聚焦扫描显微技术的最新进展有了更多的认识和了解。
  • 飞秒激光结合自组装复合加工技术获突破
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校工程科学学院微纳米工程实验室利用飞秒激光引导毛细力自组装复合加工方法,实现了手性可控三维微结构和三维金属纳米间隙结构的灵活制备,并实现了在涡旋光手性检测和高灵敏度生化检测方面的应用,相关研究成果日前分别发表在《先进材料》和《先进功能材料》上。 /p p style=" text-indent: 2em " 手性微结构在光学和力学等领域具有重要的应用潜力,可以用于构筑多种多样的光学和力学超材料。目前三维手性微结构的灵活、可控制备仍存在诸多困难。中国科学技术大学微纳米工程实验室在飞秒激光复合加工方面开展了长期的系统性研究。在前期工作中,他们通过将飞秒激光直写与毛细力自组装技术结合,开发了新型的飞秒激光复合加工方法,实现了复杂多层级聚合物结构的制备,并在微物体操纵、微粒制备、微光学、仿毛细血管微通道制备等多个领域开展了应用研究。 /p p style=" text-indent: 2em " 在前期工作的基础上,研究团队将飞秒激光直写与毛细力驱动自组装技术相结合,通过调控微结构的空间排布、结构尺寸等参数,引导毛细力的方向和大小,成功制备了多层级手性微结构,并展示了该方法高度的灵活性和可扩展性。 /p p style=" text-indent: 2em " 此外,该研究团队还利用这种飞秒激光复合加工方法成功制备了三维金属纳米间隙结构,并实现了典型表面增强拉曼光谱SERS标的物R6G和抗癌药物DOX的高灵敏度检测。该研究为非平坦表面上构建金属纳米间隙结构提供了一种新的方法,有望将基于微流体的表面增强拉曼光谱检测技术应用于精准医疗、实时在线检测等领域。(记者吴长锋) /p
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。   飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。   在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。   该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 204万!南昌大学第二附属医院引进激光扫描共聚焦显微镜项目
    项目编号:0628-224110104619-02项目名称:南昌大学第二附属医院引进激光扫描共聚焦显微镜项目【国际招标】采购方式:公开招标预算金额:2040000.00 元最高限价:1720000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000719150激光扫描共聚焦显微镜1台02040000.00元详见公告附件合同履行期限:合同签订后三个月内本项目不接受联合体投标。
  • 410万!中国农业大学双光子激光共聚焦扫描显微镜采购项目
    一、项目基本情况项目编号:XHTC-HW-2023-0002项目名称:中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目预算金额:410.0000000 万元(人民币)采购需求:本项目为中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目,简要技术参数:激光光源系统等,详见附件采购需求。本项目允许采购进口产品。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年03月22日 至 2023年03月29日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:北京市海淀区莲花池东路39号西金大厦11层方式:需携带法人授权书原件及被授权人身份证复印件加盖公章。文件售后不退。未从采购代理机构获取招标文件并登记在案的潜在供应商均无资格参加投标。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国农业大学地址:北京市海淀区圆明园西路2号联系方式:吴老师 010-62731314-8052.采购代理机构信息名称:新华招标有限公司地址:北京市海淀区莲花池东路39号西金大厦11层联系方式:张云驰010-63905857、刘佳 010-639059263.项目联系方式项目联系人:刘佳电话:010-63905926采购需求.docx
  • 528万!ZEISS中标上海交通大学激光片层扫描显微镜国际招标采购项目
    一、项目编号:0705-2340JDBXTXDK/02/学校编号:招设2023A00017(招标文件编号:0705-2340JDBXTXDK/02)二、项目名称:上海交通大学激光片层扫描显微镜国际招标三、中标(成交)信息供应商名称:Hezhibio Trading Limited供应商地址:香港湾仔轩尼诗道253-261号依时商业大厦1902室中标(成交)金额:528.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 Hezhibio Trading Limited 激光片层扫描显微镜 ZEISS Lightsheet 7 1 CNY 5289000
  • 丹麦拟研发激光风能扫描仪
    丹麦即将建设一个欧洲风能研究中心,其中一个重要项目是研发风能扫描仪,用以分析大气中的风能信息,使风力开发更有效率。   丹麦媒体29日报道说,风能扫描仪是一种特殊的激光测风设备。激光雷达向空中发射激光束,在遇到空气中的微粒后,激光束可反射回雷达,仪器据此自动分析出当前风力条件。   使用风能扫描仪,风力涡轮机制造商能够根据特定风力环境选择安装合适的风机产品 航空系统也可以事先了解气流的详细信息,让飞行员有足够的心理准备,使飞机起降时更加安全。   该仪器还可在风机出现问题时协助进行故障诊断,以确定故障原因是否与当地特定风力条件有关。   风能扫描仪项目由丹麦技术大学的可再生能源国家实验室领导实施,与德国、希腊、西班牙、荷兰、挪威和波兰的研究伙伴共同完成,预计2013年投入运行。该项目计划耗资4500万至6000万欧元,欧盟将提供1500万欧元的资金支持。   除风能研究中心外,欧盟委员会还批准建立另外两个可再生能源研发中心,即设在西班牙的欧洲太阳能研究中心和设在比利时的欧洲核能研究中心。
  • 160万!清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目
    项目编号:BIECC-22ZB1133/清设招第20221251号项目名称:清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:该设备用于为生物样本研究的多光子显微镜系统提供激光光源,针对多光子显微成像, 提供(680 nm - 1300 nm)宽的波长调谐范围,全波长全自动调谐,适宜于各种生物活体成像,广泛应用于神经科学/光遗传学,胚胎学,免疫学等多个生物领域研究。具体要求详见第四章。包号名称数量01超宽调谐飞秒激光器1套合同履行期限:合同签订后120日内交货。本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制