当前位置: 仪器信息网 > 行业主题 > >

皮可安培计

仪器信息网皮可安培计专题为您提供2024年最新皮可安培计价格报价、厂家品牌的相关信息, 包括皮可安培计参数、型号等,不管是国产,还是进口品牌的皮可安培计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合皮可安培计相关的耗材配件、试剂标物,还有皮可安培计相关的最新资讯、资料,以及皮可安培计相关的解决方案。

皮可安培计相关的论坛

  • 【资料】安培滴定法

    【资料】安培滴定法

    利用电解池中电流的变化指示滴定终点的电滴定分析方法。分为一个极化电极的安培滴定法和两个极化电极的安培滴定法。用滴汞电极为极化电极的一个极化电极的安培滴定法称为极谱滴定法。两个极化电极的安培滴定法称为死停终点法或双安培滴定法。  极谱滴定法是基于极谱法的原理在一定外加电压下滴加标准溶液,藉观察滴定过程中扩散电流的改变以确定滴定终点的容量滴定法。极谱滴定法装置就是一台简易极谱仪加一支滴定管( 图1 )。溶液中被测离子于一定的外加电压下在滴汞电极上还原(或氧化),此时由于浓差极化产生扩散电流。随着被测离子与滴定剂反应浓度越来越低,在滴汞电极上还原(或氧化)而产生的扩散电流越来越小,达到滴定终点时,扩散电流降至零。若将滴定剂体积与每加一次滴定剂后相应的电流读数作图,可得一直线。过滴定终点之后再将滴定剂体积与加滴定剂后的相应电流作图,又得一直线。将所得两条直线延长相交,交点所对应的滴定剂体积即为滴定终点。此法的优点是:①适用范围广,可用于沉淀反应、络合反应和氧化还原反应 ;② 适用浓度范围宽 , 测量范围为0.1~10-4摩尔/升(mol/L)。缺点是 :① 选择性差,易受其他物质干扰;②操作麻烦。  双安培滴定法的装置和图1相似, 两个电极都是铂电极,串联一个电流计指示电流。外加电压一般为几十毫伏。当滴定至电流发生突变时,表示滴定终点到达。滴定曲线的形状取决于滴定体系的可逆性程度( 图2 )。双安培滴定法可用于沉淀反应、络合反应和氧化还原反应。在双安培滴定法中,应用较广的是碘滴定法 ,此外 ,在铈量法测定As3+和Sb3+离子 ,银量法测定卤素离子和CN- 离子也常用此法指示终点 , 此外,也常用来指示库仑滴定法的终点。双安培滴定法的特点是装置简单,准确快速。[img]http://ng1.17img.cn/bbsfiles/images/2010/04/201004221500_213989_1604460_3.jpg[/img]

  • 【求助】安培小时是什么意思

    空心阴极灯说明书中写到灯的使用寿命为5000安培小时。安培小时是什么意思啊?还有怎么样判断空心阴极灯能量不够,应该换新的灯。望各位朋友指教!

  • 【求助】怎么从电导检测切换到积分安培检测?

    要用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]检测糖,原来测定其他项目用的电导池,现在要换成安培检测。但工作站的控制面板上检测器那块积分安培栏输不了电压数据,参比电极那块也不能操作,而检测器液晶面板上显示的也是电导池的数据,用LOCAL方式把界面改成积分安培模式了,一接工作站就变回了电导模式,请教各位老师怎么办?我刚接触[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],好多不懂的,急!

  • 【求助】离子色谱安培检测器

    代人问个问题,安培检测器和电导检测器不同吧?有没有版友的离子色谱配的是安培检测器?离子色谱的检测器有几种类型啊?

  • 【资料】-农药残留的安培检测法

    【资料】-农药残留的安培检测法

    [B]农药残留的安培检测法[/B][I]李竹赟 王敏[/I]摘 要:建立灵敏高效的农药分析方法对于有效解决由农残超标引起的食品卫生安全和环境污染等问题具有重要意义。安培检测法作为一种简便、快速、灵敏、准确的电化学方法,最近几年来被越来越多地应用于农药分析研究,其研究热点主要集中于通过对电化学体系中工作电极的选择和优化来改善检测的性能,提高灵敏度,降低检测限。本文根据检测体系中工作电极的分类从常规电极、修饰电极以及微电极等3方面对农药残留安培检测体系的研究进展作了综述,认为集成便携化是农残电化学检测方法的研究发展趋势。关键词 农药残留 安培检测法 修饰电极 微电极 农药的广泛应用有效解决了农作物的病虫害问题,但由于许多农药及其降解产物会使农作物、畜禽和水产等动植物体受到不同程度的污染,通过食物链的富集作用,危害人体的健康与食品安全, 因而长期大量使用农药又引发了相应的食品安全问题和环境污染问题。建立灵敏和高效的农药残留分析方法对于有效解决由农残超标引起的卫生安全和环境污染甚至由此涉及的经济贸易等问题具有重要意义。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、高效液相色谱以及色谱-质谱联用技术等仪器分析方法具有准确、高效、灵敏和高通量等特点, 已被广泛应用于农药残留分析的实际工作。与此同时,灵敏的农残光谱检测法也得到了发展。但上述方法分析周期长、设备昂贵且需要特殊的测试环境,因而不易推广。为满足环境中大量样品的现场快速检测要求,基于农药生化特性制得的各种酶试剂盒和速测卡不断推出。但据调查研究,许多速测卡的灵敏度、重现性不高而成本较高,因此多数仅用于农药残留的初步定性筛选。事实上,许多农药或其衍生物含有硝基、苯环以及卤素等具有电化学活性的基团,它们在电极表面具有很好的氧化还原性,非常适合于电化学检测。与上述方法相比,电化学检测方法可直接得到电信号,易传递,具有设计简单、成本低、易于微型化和多元化、并有多种电化学研究方法可供选择等优点,适合于自动控制和在线灵敏、快速分析。其中,对可控电压下样品在电极表面发生氧化或还原反应产生的电解电流进行检测的方法,即安培检测法,具有极高的灵敏度,并可能一次性测出多种成分。因此,安培检测法多年来已被广泛应用于生物医学、环境科学、药物学以及食品科学等领域,成为分析科学中最具活力、最有发展前景的研究领域之一。 但是,农药分子的直接电化学检测并没有得到足够的重视,在这方面报道很少。直到最近几年,电化学检测尤其是安培检测法才逐渐成为农药残留检测方法研究的热点。为提高检测灵敏度,很多研究工作都集中在对安培检测体系的工作电极进行选择和修饰加工方面。本文根据安培检测法工作电极的不同,按照常规电极、修饰电极和微电极进行分类对农残安培检测法的研究作了综述,并简要讨论了检测体系的集成化研究情况。文中将以最佳检测结果为依据,列举典型的工作电极组成的农药安培检测方法于表1 ,以便于读者对不同方法进行比较。[img]http://ng1.17img.cn/bbsfiles/images/2008/03/200803011152_80213_1613333_3.jpg[/img][color=#DC143C][B]全文附件在7楼,有需要的可以下载。[/B][/color]

  • 【原创大赛】离子色谱实战宝典 5.3 安培检测器(一)5.3.1-2安培检测器的发展历史及主要厂家

    【原创大赛】离子色谱实战宝典  5.3 安培检测器(一)5.3.1-2安培检测器的发展历史及主要厂家

    [align=left][font='Times New Roman','serif']5.3 [/font][font=宋体]安培检测器[/font][/align][align=left][font='Times New Roman','serif']5.3.1 [/font][font=宋体]安培检测器的发展历史[/font][/align][font='Times New Roman','serif']5.3.2 [/font][font=宋体]国内外主要安培检测器厂家[/font][align=left][font='Times New Roman','serif']5.3.3 [/font][font=宋体]安培检测器的原理[/font][/align][font='Times New Roman','serif']5.3.3.1 [/font][font=宋体]伏安法[/font][font='Times New Roman','serif']5.3.3.2 [/font][font=宋体]直流安培法([/font][font='Times New Roman','serif']Direct amperometric detection[/font][font=宋体],[/font][font='Times New Roman','serif']DC[/font][font=宋体])[/font][b]5.3.3.3 [font=宋体]脉冲安培法([/font]Pulsedamperometric detection, PAD[font=宋体])[/font]5.3.3.4 [font=宋体]积分安培法([/font]Integratedpulsed amperometric detection, IPAD[font=宋体])[/font]5.3.3.5 [font=宋体]迟滞时间[/font]5.3.3.6 [font=宋体]电位极限[/font][/b][font='Times New Roman','serif']5.3.4 [/font][font=宋体]安培检测器各组成的结构[/font][b]5.3.4.1 [font=宋体]安培池的结构[/font]5.3.4.2 [font=宋体]热电(戴安)安培检测器(池)的结构[/font][/b][font='Times New Roman','serif']5.3.4.3 [/font][font=宋体]万通安培检测器(池)的结构[/font][font='Times New Roman','serif']5.3.4.4 Antec [/font][font=宋体]安培检测器(池)的结构[/font][font='Times New Roman','serif']5.3.4.5 [/font][font=宋体]工作电极[/font][font='Times New Roman','serif']5.3.4.6 [/font][font=宋体]参比电极[/font][font='Times New Roman','serif']5.3.4.7 [/font][font=宋体]膜片[/font][font='Times New Roman','serif']5.3.5 [/font][font=宋体]薄层式安培池检测响应的关系[/font][font='Times New Roman','serif']5.3.6[/font][font=宋体]安培检测器的应用[/font][b]5.3.6.1 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]-[font=宋体]直流安培检测技术([/font]IC-CP[font=宋体])[/font]5.3.6.2 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]-[font=宋体]脉冲安培检测技术([/font]IC-PAD[font=宋体])[/font]5.3.6.3[font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]-[font=宋体]积分脉冲安培检测技术([/font]IC-IPAD[font=宋体])[/font]5.3.7 [font=宋体]安培检测器各部件的使用和维护[/font]5.3.7.1 [font=宋体]热电安培检测器的使用和维护[/font]5.3.7.2 [font=宋体]万通安培检测器的使用和维护[/font]5.3.8 [font=宋体]安培检测器的故障判断和注意事项[/font][font=宋体][/font][font=宋体][/font][/b][align=left][font='Times New Roman','serif']5.3.1 [/font][font=宋体]安培检测器的发展历史[/font][/align][font=宋体]电化学检测的起源可追溯到[/font][font='Times New Roman','serif']20[/font][font=宋体]世纪初,当时为了发展碳氢燃料,研究了对污染的贵金属电极的再活化。[/font][font='Times New Roman','serif']1924[/font][font=宋体]年,[/font][font='Times New Roman','serif']Hammett[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][15][/font][/sup][font=宋体]首先对[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极施加脉冲电势对其进行清洗。[/font][font='Times New Roman','serif']Armstrong[sup][16][/sup][/font][font=宋体]在[/font][font='Times New Roman','serif']1934[/font][font=宋体]年分别将脉冲电位用于[/font][font='Times New Roman','serif']H[sub]2[/sub][/font][font=宋体]的阳极氧化和[/font][font='Times New Roman','serif']O[sub]2[/sub][/font][font=宋体]的阴极还原。[/font][font='Times New Roman','serif']Kolthoff[/font][font=宋体]和[/font][font='Times New Roman','serif']Tanaka[sup][17][/sup][/font][font=宋体]研究了在多种支持电解质作用下的[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极的极化曲线,为以后通过电位氧化和还原脉冲对电极进行再活化的研究工作奠定了基础。随着[/font][font='Times New Roman','serif']IC[/font][font=宋体]在上世纪七十年代的发展,刺激了贵金属电极表面脉冲电位再活化的发展。[/font][font='Times New Roman','serif']1981[/font][font=宋体]年,爱荷华州立大学的[/font][font='Times New Roman','serif']Johnson[/font][font=宋体]和他的同事以及学生们引入了脉冲安培检测([/font][font='Times New Roman','serif']PAD[/font][font=宋体]),用于测定流动注射系统中[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极上的简单醇和糖类[/font][sup][font='Times New Roman','serif'][18][/font][/sup][font=宋体]。在[/font][font='Times New Roman','serif']Johnson[/font][font=宋体]和[/font][font='Times New Roman','serif'] Dionex[/font][font=宋体]公司(现为[/font][font='Times New Roman','serif']Thermo Scientific[/font][font=宋体])的共同努力下,研制出了第一台能够进行脉冲电化学检测([/font][font='Times New Roman','serif']pulsed electrochemicaldetection, PED[/font][font=宋体])的电化学检测器[/font][sup][font='Times New Roman','serif'][19][/font][/sup][font=宋体]。[/font][font='Times New Roman','serif']1983[/font][font=宋体]年,[/font][font='Times New Roman','serif']Polta[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][21][/font][/sup][font=宋体]采用脉冲安培检测器,[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极作为工作电极,[/font][font='Times New Roman','serif']NaOH[/font][font=宋体]为淋洗液,成功检测了三种氨基酸,并且灵敏度良好,甘氨酸、苯胺和羟基脯氨酸的检测限分别为[/font][font='Times New Roman','serif']13ng[/font][font=宋体]、[/font][font='Times New Roman','serif']7ng[/font][font=宋体]和[/font][font='Times New Roman','serif']23ng[/font][font=宋体]。[/font][font='Times New Roman','serif']1998[/font][font=宋体]年,[/font][font='Times New Roman','serif']Rocklin[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][22][/font][/sup][font=宋体]开发了一种采用四电位波形的脉冲安培法检测糖类,与常用的三电位波形相比,四电位波形能使工作电极即金电极由于金氧化物形成和溶解而导致的表面损耗最小化,从而提高了检测的信噪比,并且大大提高了测样的长期重现性。[/font][font='Times New Roman','serif']1989[/font][font=宋体]年,[/font][font='Times New Roman','serif']Welch[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][23][/font][/sup][font=宋体]提出了积分脉冲安培检测法([/font][font='Times New Roman','serif']IPAD[/font][font=宋体]),并将其成功应用于氨基酸的检测,[/font][font=宋体]积分安培检测可解决含[/font]N[font=宋体]、[/font]S[font=宋体]等化合物在检测过程中致使电极钝化的问题[/font][font=宋体]。[/font][font='Times New Roman','serif']Clarke[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][24][/font][/sup][font=宋体]在[/font][font='Times New Roman','serif']1999[/font][font=宋体]年通过对施加电位波形的优化,开发了一种新的不用衍生化的六电位波形检测方法检测氨基酸和氨基糖,基线非常稳定,信噪比和测样重现性都有了很大提高,并且降低了工作电极的损耗,该方法对于大多数分析物的检出限小于[/font][font='Times New Roman','serif']1 pmol[/font][font=宋体]。[/font][font=宋体]就国内而言,最早是在[/font][font='Times New Roman','serif']1985[/font][font=宋体]年南京分析仪器研究所的蒋孝忠等[/font][sup][font='Times New Roman','serif'][25][/font][/sup][font=宋体]制作了薄层流动式安培检测器,其性能良好,并且灵敏度高,成功应用于大白鼠脑组织中的儿茶酚胺类及其代谢物,检测限为[/font][font='Times New Roman','serif']10[sup]-12[/sup] g[/font][font=宋体]。[/font][font='Times New Roman','serif']1987[/font][font=宋体]年,纪华民等[/font][sup][font='Times New Roman','serif'][26][/font][/sup][font=宋体]制造了多工作电极的薄层流通式安培检测器,并且将其与液相色谱结合成功检测了五种儿茶酚胺化合物,检出限达到[/font][font='Times New Roman','serif']10 pg[/font][font=宋体]。[/font][font='Times New Roman','serif']1993[/font][font=宋体]年,吴守国等[/font][sup][font='Times New Roman','serif'][27][/font][/sup][font=宋体]研制了一种多功能安培检测器,具有壁面射流型、薄层型和工作电极串行或并行四种模式。[/font][font='Times New Roman','serif']1996[/font][font=宋体]年,上海分析仪器厂项目组金成等[/font][sup][font='Times New Roman','serif'][28][/font][/sup][font=宋体]成功研制了商品化的脉冲安培检测器[/font][font='Times New Roman','serif']XP-206PAD[/font][font=宋体],并且经过了严格的测试与试用,其性能优异,推动了我国[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]领域的发展。随后国内的科研工作者继续研制了一些新型安培检测器,如毛细管电泳柱端[/font][font='Times New Roman','serif']/[/font][font=宋体]柱上安培检测器、微安培检测器等[/font][sup][font='Times New Roman','serif'][29-32][/font][/sup][font=宋体]。[/font][font=宋体]在2010年前其中上海天美与华东师范大学合作曾成功研制一款脉冲和直流集一体的安培检测器,但后期这款安培检测器并未商品化。[/font][font=宋体]但是这些研制的安培检测器并没有得到良好的实际应用。国内商品化的安培检测器基本仍处于空白。国内[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]厂家目前能见到的是青岛普仁的伏安检测器,盛瀚的直流安培检测器,但并没有相应的使用论文发表。华东理工大学的施超欧,成功研发了脉冲安培检测器,,发表了国内第一篇全国产的脉冲安培检测器的论文[/font][font='Times New Roman','serif'][][/font][font=宋体],安徽皖仪,近日也推出了带脉冲安培检测器的高端[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],目前还有更多的厂家在研发脉冲安培检测器。[/font][b][font=宋体][font=宋体][font='Times New Roman','serif']5.3.2 [/font][font=宋体]国内外主要安培检测器厂家[/font][font=宋体]目前商品化的安培检测器厂家不多,国外主要有荷兰的[/font][font='Times New Roman','serif']Antec[/font][font=宋体]、美国的[/font][font='Times New Roman','serif']Thermo[/font][font=宋体],瑞士[/font][font='Times New Roman','serif']Metrohm[/font][font=宋体]、美国[/font][font='Times New Roman','serif']Agilent[/font][font=宋体]、美国[/font][font='Times New Roman','serif']Waters[/font][font=宋体](其中[/font][font='Times New Roman','serif']Metrohm[/font][font=宋体]、[/font][font='Times New Roman','serif']Agilent[/font][font=宋体]、[/font][font='Times New Roman','serif']Waters OEM Antec[/font][font=宋体]的电化学检测器)、[/font][font=宋体]以及日本的[/font][font='Times New Roman','serif']Shimadzu[/font][font=宋体]等。其中荷兰的[/font][font='Times New Roman','serif']Antec[/font][font=宋体]在电化学检测器上整体实力最强,是国际著名的专业电化学检测器厂家。[/font][/font][/font][font=宋体][font=宋体][font=宋体][img=,502,341]https://ng1.17img.cn/bbsfiles/images/2021/11/202111231033388876_7732_1617661_3.jpg!w502x341.jpg[/img][/font][/font][/font][font=宋体][font=宋体][font=宋体]国外主要安培检测器厂家之间的关系[/font][font='Times New Roman','serif'] [/font][font=宋体]国内[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]厂家还是以电导检测器为主,青岛盛瀚有直流安培检测器,普仁有伏安检测器,可运行脉冲电位,但不能用于糖的分析,安徽皖仪和深圳通用成功开发了脉冲安培检测器,可用于糖的检测,除此外历元等也在研究安培检测器。[/font][/font][/font][font=宋体][font=宋体][/font][/font][/b]

  • 【求助】计时库伦/计时安培

    最近想用计时安培考察电极表面双电层电容的变化,看了些文献说是用计时安培或计时库仑,但都没有具体的参数设置,我刚刚接触电化学,这方面基本空白,希望各路大虾专家们帮帮我,不胜感激啊!我用的是Epsilon 电分析仪。以下是我在文献上看到的关于计时库仑测界面电容的一段话,不太明白:Chronocoulometric measurements of the adsorption of the aliphatic compounds were carried out in situ at 0.000Vversus SSCE in an ethanol solution containing NaClO4 (20 mM) and either C12SSO3Na or C12SH (both 1 mM). [color=#DC143C]The potential was stepped from 0.000 to +0.050 V versus SSCE and back for 5 ms.[/color]The interfacial capacitance was determined by extrapolating the linear portion of the charge-time curve to zero time and dividing the charge by the potential step.

  • 千克、安培、摩尔和开尔文被重新定义?一文读懂来龙去脉!

    [align=left][color=#333333] 11月13至16日,由国际计量局(BIPM)组织的第26届国际计量大会(CGPM)在法国凡尔赛召开。大会最终对“修订国际单位制(SI)”的1号决议进行了表决。7个SI基本单位中的4个改由自然常数来定义,并于2019年5月20日起正式生效。新定义将保证SI的长期稳定性,并使复现单位的方法向更好、更新的技术开放。[/color][/align][align=left][color=#333333][b]为什么要使用国际单位制?[/b][/color][/align][align=left][color=#333333]  国际单位制,也是常说的米制或公制,想必大家都有一些概念,但是它被广泛被采用的原因是什么呢?各个国家之间进行贸易活动,那必然涉及到贸易产品的数量是多少的问题。比如说,我们国家要出口给美国一批钢材,价钱谈好了,例如一吨是800美元,接下来要进行贸易结算的话,就要确定这批钢材有多少吨。这里就会涉及一个测量问题,即是用中国的秤还是美国的秤来确定这批钢材的质量,或者说谁的秤更准、更公平。为了避免贸易摩擦,统一标准,国际单位制(International System of Units,SI)应运而生。在国际单位制中,明确规定了1千克到底应该多重。贸易双方可以都加入这个体系,然后用国际单位制中所规定的1吨标准(1000千克)来称量这批钢材,如此,就避免了可能的贸易纠纷,当然也就促进了不同国家间的贸易活动。换句话说,国际单位制的地位相当于贸易的第三方,或者是裁判员,保证了交易的公平公正。[/color][/align][align=left][color=#333333]  再举一个在科学研究方面的例子。1998年12月11号,火星“观察者”号飞船由美国宇航局发射升空后不明原因地神秘失踪。直至6年后,美国宇航局才找到了飞船失踪的原因:原来,美国洛克希德—马丁公司在研制飞船时将一部分工作转包给了英国的一家公司。而该公司负责项目的工程师使用了英国的计量单位(英制),而不是美国宇航局所使用的国际单位制。两套单位之间的差异,导致观察者号在计算和测量控制参数时出现了显著偏差,并在随后出现航行错误,导致轨道器最终进入低高度轨道并被大气压撕毁。要知道,火星观察者号的造价是一亿两千五百万美元!显然,如果两个合作方采用的是统一的单位,这样的悲剧就不会发生。这个例子更从侧面说明了单位制在全世界范围内的统一对促进科学技术发展的重要意义。[/color][/align][img=,326,294]http://www.chinamtt.cn/Upload/images/%E5%9B%BE%E7%89%871%20(2).png[/img][color=#444444]图:观察者号火星探测器在坠毁之前的照片 (图片来源:维基百科)[/color][align=left][color=#333333][b]国际单位制是如何发挥作用的?[/b][/color][/align][align=left][color=#333333]  国际单位制共有7个基本单位,分别是米、秒、千克、安培、摩尔、开尔文和坎德拉。由这7个基本单位可以导出其他所有的单位。因此,要维持国际单位制本身的稳定性,必须要对这7个SI基本单位设立一种不随时间、环境等因素发生变化的定义,确保SI单位基本量值的稳定性。实际上,国际单位制建立的一个基本宗旨就是:For all time, for all people,即能在任何时间能为任何用户提供“最高标准”。[/color][/align][align=left][color=#333333]  在溯源体系方面,传统基于实物基准的定义,如千克,呈现金字塔状的溯源结构。在金字塔的顶端是保存在国际计量局的国际千克原器,而各个国家的千克基准,都要定期送到国际计量局进行校准。如此,国际计量局在基本单位的实物基准定义的单位量值传递方面便具有了核心地位。[/color][/align][align=left][color=#333333]  然而,近几十年来,量子技术的出现和发展打破了国际计量局在量值溯源方面的核心地位。例如,目前在计量领域应用最成功的量子基准——原子钟,复现SI基本单位秒的定义准确性已经进入10-18量级。在此基础上发展的导航、卫星成像技术广泛应用在人们的生活之中,取得了巨大的成功。如今,在很多国家的计量院都建立了高精度的原子钟用于对秒定义的复现,这些复现的装置本身基于量子效应,复现值与基本物理常数直接挂钩。各个国家也就不用把本国的原子钟送到国际计量局校准,因为基于量子现象实现的标准自身就具有绝对的准确性。给国际计量局“去核心化”也是本次基本单位变革的主要目标之一。[/color][/align][align=left][color=#333333][b]本次国际单位制变革的主要内容是什么?[/b][/color][/align][align=left][color=#333333]  第26届国际计量大会在2018年11月16日通过决议,决定对4个SI基本单位进行重新定义,即分别采用普朗克常数、基本电荷量、阿伏伽德罗常数和玻尔兹曼常数来分别重新定义基本单位千克、安培、摩尔和开尔文。新定义正式实施时间为2019年国际计量日(5月20日)。[/color][/align][align=left][color=#333333]  用于重新定义的4个基本物理常数值由国际科学数据委员会(CODATA)根据世界各主要实验室测量结果评差确定,4个常数的最终数值分别为:[/color][/align][img=,379,195]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181116163856.png[/img][img=,371,371]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120172912.png[/img][color=#444444]图:SI基本单位和用于定义的基本物理常数(图片来源:国际计量局)[/color][align=left][color=#333333]  在新定义实施之前,这四个SI基本单位的定义分别是:千克等于国际千克原器的质量 安培是一恒定电流,若它保持在处于真空中相距1米的两根无限长而横截面大小可被忽略的平行直导线内,则这两根导线之间产生的力在每米长度上等于2×10-7牛顿 摩尔所包含的基本单元数与0.012千克碳12的原子数目相等 开尔文等于水的三相点热力学温度的1/273.16。[/color][/align][align=left][color=#333333][b]为什么要重新定义、实物基准及其缺点?[/b][/color][/align][align=left][color=#333333]  质量千克的量值,是用保存在国际计量局的一个砝码来确定的——国际千克原器(International prototype of kilogram,IPK)。之所以用这个砝码来定义质量的单位千克,是因为科学家发现铂铱合金(90%铂+10%铱)相对于其他的合金材料密度大且化学性质稳定。采用铂铱合金砝码定义千克的决议是在1889年召开的第1届国际计量大会上通过的。[/color][/align][img=,372,448]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120173032.png[/img][color=#444444]图:国际千克原器(图片来源:国际计量局)[/color][align=left][color=#333333]  千克采用国际千克原器定义后,计量学家们十分关心的一个问题是:这样的定义到底有多稳定?会随着时间的推移发生漂移吗?这个问题在定义质量单位千克之初就被提了出来。在1889年进行千克定义时,国际计量局共制作了7个铂铱合金千克砝码,其中里之前千克定义量值最近的一个,用于质量单位千克的定义,即国际千克原器。而其他6个采用同种材料、同种工艺制作的砝码,则作为副基准,用于检查彼此之间是否存在随时间变化的漂移。从1889年千克定义到今天,国际千克原器与6个副基准之间的量值比对试验共进行了4次,结果发现,6个副基准的平均量值相对于国际千克原器,在100多年的时间里变化了约50微克,即相对于1千克变化了约5×10-8。而测定该变化量的前提是假定国际千克原器的量值是绝对稳定的(定义),因此,是进行的相对测量。而对千克的绝对量变化,既无法测量,也无人知晓。从这一点上来讲,千克基于国际千克原器质量的定义不是“for all time”,因为千克的实际量值可能已经随时间发生了变化。[/color][/align][img=,405,266]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120174324.png[/img][color=#444444]图:国际千克原器与6个复制品比对结果(横坐标为比对年份,纵坐标为砝码质量差值)[/color][align=left][color=#333333]  千克用千克原器定义后,千克原器就被保存在国际计量局。为了保证千克原器的绝对安全,用于保存千克原器的装置外设置了3把锁,钥匙交由3个不同的重要人物保管,分别是国际计量局局长、国际计量咨询委员会主席和法国档案部部长。从这点上看,基于国际千克原器的千克定义也不是“for all people”。[/color][/align][align=left][color=#333333]  应特别注意7个SI基本单位的定义之间并不是彼此独立的,千克量值的不稳定性,还会影响SI其他基本单位的量值。例如,在上述的基本单位定义中,电流单位安培的定义用到了导出单位牛顿,而牛顿这个单位中就包含质量单位千克。再例如,摩尔的定义中也用到了千克。现有的千克量值基准存在的缓慢变化,虽然说现阶段还不足以影响人们的日常生活,但其长期积累的效应,无疑会影响国际计量制体系的稳定性,并且会对精密科学研究产生不良影响。[/color][/align][align=left][color=#333333][b]采用了新定义后的好处是什么?[/b][/color][/align][align=left][color=#333333]  基于基本物理常数重新定义SI的上述基本单位,最重要的进步,是使得基本单位的量值具有了长期稳定性。至少,目前已有的科学试验并未发现基本物理常数在宇宙形成后曾发生过显著变化,即便有微小的变化,这种变化在人类存在的历史中也完全可以忽略不计。基于基本物理常数定义SI的基本单位,就是要使对基本单位量值的复现变得不再受时间、地点以及环境的限制。打个比方,质量的单位千克采用普朗克常数重新定义后,我国若建立了达到国际先进水平的联系普朗克常数与砝码质量的精密测量试验装置,那么,我们国家的千克标准砝码,就不需要再送到国际计量局去进行校准了。不仅如此,原则上我们的装置测量准确性得到公认的话,还能为其他国家提供校准的服务。[/color][/align][align=left][color=#333333]  千克单位新定义具有开放性,还允许人们在家里建造自己的砝码校准装置。例如,我两年多前在美国国家计量院工作期间,一个同事Leon.Chao,就自己用乐高拼块制作了一架功率天平装置,并成功地实现了对克量级砝码优于1%的校准。[/color][/align][img=,435,353]http://www.chinamtt.cn/Upload/images/QQ%E6%88%AA%E5%9B%BE20181120173202.png[/img][color=#444444]图:美国计量院Leon Chao搭建的乐高版功率天平(图片来源:美国物理联合会)[/color][align=left][color=#333333]  采用基本物理常数重新定义SI基本单位,这对基本单位量值保持连续性也意义非凡。以前人们对实物基准,总担心因为天灾或人祸而损毁,而采用基本物理常数重新定义基本单位后,人们就无需考虑这个问题了。并且,在以前,当新的、更准确的计量技术出现时,可能会导致基本单位的定义要被修改。例如,质量单位千克在被定义为国际千克原器的质量之前,还曾被定义为1升水的质量。采用基本物理常数定义SI基本单位后,可以在相当长的时间内避免基本单位的定义被反复修改。而且未来随着相关技术的进步,只会不断提升单位量值复现的准确性,但不会轻易改变基本单位的定义。另外,上述4个SI基本单位的重新定义,也会使得SI七个基本单位的定义具有统一的形式。[/color][/align][align=left][color=#333333]  与SI基本单位定义相对应,基本物理常数体系在本次SI单位制修订中也会产生重要的变化。普朗克常数、基本电荷量、阿佛加德罗常数、玻尔兹曼常数的数值被确定下来后,很多与之相关的基本物理常数的测量准确性也会发生重要变化。但总体来讲,新单位体制下的基本物理常数体系将更为精密,其测量[url=http://www.jlck.net/forum-279-1.html]不确定度[/url]也将变得更小。[/color][/align][align=left][color=#333333][b]这次基本单位修订会对人们生活有什么影响吗?[/b][/color][/align][align=left][color=#333333]  本次SI基本单位修正的基本原则,是保证基本单位量值的连贯性,即保证新的定义对人们生活产生的影响最小。应该说,本次SI基本单位定义的修订,是过去几十年来大量科技人员努力奋斗的结果。在此之前,物理学家、计量学家等在共同努力希望做得更好一件事情,就是将这些用于SI基本单位定义的基本物理常数的量值测准。而在此测量过程中,必须保证所使用的相关基准能够完全溯源到现有的SI基本单位定义上。例如,测量普朗克常数所使用的砝码,必须要能溯源到国际千克原器上。这样做的目的,就是保证在重新定义后,SI基本单位的量值在新、旧定义中是连续的,不会发生跳变。简单地说,本次SI基本单位制的修订,不会对人们的基本生活产生影响。[/color][/align][align=left][color=#333333][b]这次SI基本单位修订有缺点吗?[/b][/color][/align][align=left][color=#333333]  本次SI基本单位修订也存在一个小缺点,即对中小学的科普可能存在一些困难。例如,未来千克的定义为(还没有官方表述):千克是使得普朗克常数准确等于6.62607015×10-34焦耳*秒的质量。显然,相对于之前的实物基准定义,如何将普朗克常数与砝码联系在一起,中小学生在理解上可能会有一定困难。个人认为,最简单的理解,也需要用到爱因斯坦的质能方程和普朗克辐射,即mc2=hf([i]m[/i]为质量,[i]c[/i]为真空中的光速,[i]h[/i]为普朗克常数,[i]f[/i]为辐射频率)。因此,在未来,将这些新定义转化成易懂、深入浅出的物理解释或描述,也是一件十分重要且必须要做好的事情。[/color][/align]

  • 安培检测器测氰化物基线一直跑不好

    万通881的离子色谱,SUPP4 10MMOL的NAOH淋洗液 直流模式安培检测器 测氰化物,淋洗液配了几次了,也抽滤了,应该不是淋洗液的问题,Ag电极也打磨了几次,就是基线做不稳,做低浓度的时候,就明显看到波动和杂峰,峰也拖得厉害。想请救一下做安培检测器的老师,这个氰化物有这么难测吗?你们做的时候是不是每次要打磨电极,基线跑得怎么样?

  • 【讨论】如何转移安培瓶里的农残标准液?

    在做农残检测时,经常要配制标准溶液,但是买回的标准溶液几乎都是用安培瓶封装的,体积一般也就1ml多一点点,如1.2ml或1.3ml,从安培瓶里转移出来稀释时非常麻烦:一是用小砂轮片旋开后,瓶的口径太小,[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]的管咀伸不进去,二是用1ml的胖肚移液管移取时,因原液太少,一不小心就吸干了,导致液体冲进洗耳球里。大伙有什么好办法?实际操作时,我一般将标准溶液倒入小烧杯,移取0.8ml或0.5ml来配置。准备买一只1ml的进样针,专门用来配标准溶液。

  • ICS6000安培检测器响应增加

    使用的ICS6000+安培检测器的搭配,淋洗液是醋酸盐缓冲液加甲醇,在进样过程中出峰的响应不稳定,一直增加!(同一个溶液一个小时内的峰面积增加3%),想知道有可能是什么原因导致的响应一直增加

  • 【求助】不可逆安培法的一些问题

    1在不可逆双安培法中采用不可逆双电极,是对电极和工作电极吗,那么参比电极怎么办。2 外加电位差怎么设置,直接在时间电流曲线中设置吗,哪里是电位值也不是电位差值啊。3 如果外加电位差为0,那么2个电极的实际电位是多少怎么测量呢。

  • 离子色谱脉冲安培检测器

    各位老师,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]脉冲安培检测器基线不稳定是什么原因?

  • 盛翰CIC300安培检测器进行氰化物检测方法研究

    盛翰CIC300安培检测器进行氰化物检测方法研究

    盛翰CIC300安培检测器进行氰化物检测方法研究 危险废物中的氰化物毒性较大,比较经典的化学方法有硝酸银滴定法、异烟酸-吡唑啉酮分光光度法和异烟酸-巴比妥酸分光光度法等。但其过程繁琐,本次运用盛翰CIC300离子色谱加国内较少的盛翰自产的安培检测器进行氰化物的检测研究。1 材料与方法1.1仪器及试剂 CIC300型离子色谱仪,淋洗液:100mmol/L氢氧化钠+50mmol/L醋酸钠+0.5%(体积比)乙二胺,氰化物标准物质。http://ng1.17img.cn/bbsfiles/images/2016/11/201611010814_615496_0_3.jpg1.2 色谱条件 分析柱为SI-52 4E日本柱,淋洗液流速0.7mL/min,安培检测器采用45度,直流安培,施加电位-0.07V。1.3 样品的前处理与分析 称取 5g(准确至 0.001g)过 180μm 筛且有代表性的固体废物于 250ml 烧杯中,加入 80ml 水,超声提取 30min。然后将其全部转移到 100ml 容量瓶中,用水定容。摇匀后,取部分溶液于3000rpm 速度离心 15min,取上清液。依次经过 0.22μm 尼龙滤膜和C18柱将提取液中的固体颗粒和有机物除去, 而后进样分析。 如果用于进样的溶液中氯离子含量超过 50mg/L, 则需要过C18柱将绝大部分氯离子去除。准确量取 50ml 浸出液,依次经过 0.22μm 尼龙滤膜和 C18 柱将提取液中的固体颗粒和有机物除去,而后进样分析。开启主机、电脑、显示器,主机预热10min。打开色谱工作站,将去离子水脱气:真空泵脱气3-5min。通淋洗液,在电位控制软件上设置电位-0.07V,在HW软件中采集信号,等待基线走稳。进样分析,方法如下: ①用去离子水将进样器、针头清洗干净。(注意:进样过程中手不要触及针头) ②用洗瓶将进样口清洗2-3次。 ③将阀打到“进样”位置,用注射器每次吸取2ml样品注入将进样口清洗3次。(注意:注射器中不能有气泡) ④注入1ml 样品。迅速将阀打至“分析”位置(注意动作要快,在1S内完成),点击“进样”按钮开始采集样品谱图。 ⑤样品谱图采集完毕,点击“停止”按钮,更改谱图文件名,将谱图保存。2 结果与讨论2.1精密度的测定 运用同一样品浓度进行处理,重复测量6次,计算其相对标准偏差,结果如表1http://ng1.17img.cn/bbsfiles/images/2016/11/201611010815_615498_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611010815_615497_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611010816_615499_0_3.jpg2.2准确度的测定对空白样品加标回收率可达70%-85%。2.3 注意事项1. 安培池使用完毕后需将参比电极旋转下来泡到饱和氯化钾溶液中。2. 安培池使用一段时间后需要将银电极拆下来使用打磨纸打磨。方法是将打磨纸上撒上打磨粉,滴上几滴去离子水,将电极放在上面画八字打磨。 实验证明盛翰CIC300配制自家安培检测可以对氰化物进行检测,可以满足日常需求,但是经我们测试,检出限的下限有待进一步优化,是我们后续的工作。

  • 关于安培检测器,有问题请教

    安培检测池拆下浸泡入KCL已经半年重新安装后使用,PA20糖柱,淋洗液:10mMNaOH,发现PH显示11.9-12.1,output值700多nC不知如何能降低背景值,请高手指教另外,右侧泵的出水小孔有液体流出,不知是否泵坏了?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制