当前位置: 仪器信息网 > 行业主题 > >

热敏电阻红外探测器

仪器信息网热敏电阻红外探测器专题为您提供2024年最新热敏电阻红外探测器价格报价、厂家品牌的相关信息, 包括热敏电阻红外探测器参数、型号等,不管是国产,还是进口品牌的热敏电阻红外探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热敏电阻红外探测器相关的耗材配件、试剂标物,还有热敏电阻红外探测器相关的最新资讯、资料,以及热敏电阻红外探测器相关的解决方案。

热敏电阻红外探测器相关的论坛

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.文章来源:http://www.firstsensor.cn/

  • 红外线及探测知识

    红外测温仪光电仪器的核心部件之一 —— 红外探测器红外线探测器是把入射红外辐射能量转变为其他形式能量(一般为电能)的一种转换器或传感器.它是各种红外仪器最重要的关键元件,可分为热敏探测器和光子探测器两大类.1.热敏探测器1,1:热敏电阻探测器热敏电阻器是电阻值对温度极为敏感的一种电阻器,也叫半导体热敏电阻器。它可由单晶、多晶以及玻璃、塑料等半导体材料制成。这种电阻器具有一系2列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化,以及伏安曲线呈非线性。 热敏电阻器种类繁多,一般按阻值温度系数可分为负电阻温度系数(以下简称负温系数)和正电阻温度系数(以下简称正温系数)热敏电阻器;按其阻值随温度变化的大小可分为缓变和突变型;红外测温仪按其受热方式可分为直热式和旁热式;按其工作温度范围可分为常温、高温和超低温热敏电阻器;按其结构分类有棒状、圆片、方片、垫圈状、球状、线管状、薄膜以及厚膜等热敏电阻器。热敏电阻器的主要特点是对温度灵敏度高,热惰性小,寿命长,体积小,结构简单,以及可制成各种不同的外形结构。因此,随着工农业生产以及科学技术的发展,这种元件已获得了广泛的应用,如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探空、开关电路、过荷保护、脉动电压抑制、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等等。随着近代军事技术、特别是空间技术的发展,对热敏电阻器除了要求高可靠、长寿命、超高温和超低温外,还需要灵敏度更高、不需致冷、性能优良的测辐射功率的热敏器件

  • 【原创】NTC热敏电阻的非线性检测及注意事项

    使用NTC热敏电阻应该注意以下事项,避免NTC热敏电阻损坏、使用设备损伤或引起误动作。   (1) NTC热敏电阻是按不同用途分别进行设计的。  (2) 设计设备时,请进行NTC热敏电阻贴装评估试验,确认无异常后再使用。  (3) 请勿在过高的功率下使用NTC热敏电阻。  (4) 由于自身发热导致电阻值下降时,可能会引起温度检测精度降低、设备功能故障,故使用时请参考散热系数,注意NTC热敏电阻的外加功率及电压。  (5) 请勿在使用温度范围以外使用。  (6) 请勿施加超出使用温度范围上下限的急剧温度变化。  (7) 将NTC热敏电阻作为装置的主控制元件单独使用时,为防止事故发生,请务必采取设置“安全电路”、“同时使用具有同等功能的NTC热敏电阻”等周全NTC温度传感器的安全措施。  (8) 在有噪音的环境中使用时,请采取设置保护电路及屏蔽NTC热敏电阻(包括导线)的措施。  (9) 在高湿环境下使用护套型NTC热敏电阻时,应采取仅护套头部暴露于环境(水中、湿气中)、而护套开口部不会直接接触到水及蒸气的设计。  (10) 请勿施加过度的振动、冲击及压力。  (11) 请勿过度拉伸及弯曲导线。  (12) 请勿在绝缘部和电极间施加过大的电压。否则,可能会产生绝缘不良现象。  (13) 配线时应确保导线端部(含连接器)不会渗入“水”、“蒸气”、“电解质”等,否则会造成接触不良。   严格遵守以上的注意事项,安全操作。NTC热敏电阻如何非线性解决?NTC热敏电阻通常为一款高阻抗、电阻性器件,当您需要将热敏电阻的阻值转换为电压值时,该器件可以简化其中的一个接口问题。然而更具挑战性的接口问题是,如何利用线性 ADC 以数字形式捕获热敏电阻的非线性行为。  “NTC热敏电阻”一词源于对“热度敏感的电阻”这一描述的概括。热敏电阻包括两种基本的类型,分别为正温度系数热敏电阻和负温度系数热敏电阻。负温度系数热敏电阻非常适用于高精度温度测量。要确定热敏电阻周围的温度,您可以借助Steinhart-Hart公式:T=1/(A0+A1(lnRT)+A3(lnRT3))来实现。其中,T为开氏温度;RT为热敏电阻在温度T时的阻值;而 A0、A1和A3则是由热敏电阻生产厂商提供的常数。  热敏电阻的阻值会随着温度的改变而改变,而这种改变是非线性的,Steinhart-Hart公式表明了这一点。在进行温度测量时,需要驱动一个通过热敏电阻的参考电流,以创建一个等效电压,该等效电压具有非线性的响应。您可以使用配备在微控制器上的参照表,尝试对热敏电阻的非线性响应进行补偿。即使您可以在微控制器固件上运行此类算法,但您还是需要一个高精度转换器用于在出现极端值温度时进行数据捕获。  另一种方法是,您可以在数字化之前使用“硬件线性化”技术和一个较低精度的 ADC。(Figure 1)其中一种技术是将一个电阻RSER与热敏电阻RTHERM以及参考电压或电源进行串联(见图1)。将 PGA(可编程增益放大器)设置为1V/V,但在这样的电路中,一个10位精度的ADC只能感应很有限的温度范围(大约±25°C)。  请注意,在图1中对高温区没能解析。但如果在这些温度值下增加 PGA 的增益,就可以将 PGA 的输出信号控制在一定范围内,在此范围内 ADC 能够提供可靠地转换,从而对热敏电阻的温度进行识别。  微控制器固件的温度传感算法可读取 10 位精度的 ADC 数字值,并将其传送到PGA 滞后软件程序。PGA 滞后程序会校验 PGA 增益设置,并将 ADC 数字值与图1显示的电压节点的值进行比较。如果 ADC 输出超过了电压节点的值,则微控制器会将 PGA 增益设置到下一个较高或较低的增益设定值上。如果有必要,微控制器会再次获取一个新的 ADC 值。然后 PGA 增益和 ADC 值会被传送到一个微控制器分段线性内插程序。  从非线性的NTC热敏电阻上获取数据有时候会被看作是一项“不可能实现的任务”。您可以将一个串联电阻、一个微控制器、一个 10 位 ADC 以及一个 PGA 合理的配合使用,以解决非线性热敏电阻在超过±25°C温度以后所带来的测量难题。

  • 气相色谱仪常用温度传感器 —— 热敏电阻温度传感器

    气相色谱仪常用温度传感器 —— 热敏电阻温度传感器

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用温度传感器[/font][font='Times New Roman'] [font=Times New Roman]—— [/font][/font][font=宋体]热敏电阻温度传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]热敏电阻是利用金属氧化物半导体材料的电阻值随温度变化特性制成的热敏元件,与常见的热电阻相比,其电阻温度系数更高,可以获得更高的温度检测灵敏度。热敏电阻成本较低、阻值随温度变化的曲线呈非线性、不同元件之间的特性分散性较大、可测量温度范围较低,一般用于室温或者色谱仪的某些工作于较低温度的辅助单元。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]热敏电阻是金属氧化物半导体材料制成的测温元件,与热电阻(例如铂电阻)测温原理类似,温度变化会改变其电阻值。一般分为负温度系数([/font][font=Times New Roman]NTC[/font][font=宋体])热敏电阻、正温度系数([/font][font=Times New Roman]PTC[/font][font=宋体])热敏电阻和临界温度([/font][font=Times New Roman]CTR[/font][font=宋体])热敏电阻三类。[/font][/font][font=宋体][font=宋体]各类型的热敏电阻温度特性曲线如图[/font][font=Times New Roman]1[/font][font=宋体]所示,[/font][font=Times New Roman]CTR[/font][font=宋体]热敏电阻在工作温度范围内,当温度超过确定数值时,其电阻值发生急剧变化,主要用于温度开关。[/font][font=Times New Roman]PTC[/font][font=宋体]热敏电阻在工作温度范围内阻值随温度上升而增大,常用于电气设备的过热保护、电路中的限流元件或发热源的定温控制。[/font][/font][font=宋体][font=Times New Roman]NTC[/font][font=宋体]热敏电阻温度特性与[/font][font=Times New Roman]PTC[/font][font=宋体]相反,在工作温度范围内,电阻随温度升高而降低,并且其低温下电阻值较高,电阻值随温度的变化率较大,常用于温度补偿或者温度测量领域。因其较大的电阻变化率,容易得到较高的测温精度。[/font][/font][align=center][img=,264,244]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231550112039_9513_1604036_3.jpg!w551x510.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]热敏电阻温度特性曲线[/font][/font][/align][font=宋体][font=宋体]热敏电阻可根据使用要求,封装加工成各种形式的探头,例如棒状、盘装、珠装等,其尺寸较小、响应速度快、灵敏度高,典型外观如图[/font][font=Times New Roman]2[/font][font=宋体]所示。其工作温度范围为[/font][font=Times New Roman]-50~350[/font][font=宋体]℃,高精度测定温度情况下建议使用温度不超过[/font][font=Times New Roman]150[/font][font=宋体]℃。热敏电阻一般常用于数值较低范围温度的检测,例如实验室室温检测或者色谱仪内部器件散热片或仪器外壳的温度测定。[/font][/font][align=center][img=,278,132]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231550224349_7538_1604036_3.jpg!w535x253.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]热敏电阻外观[/font][/font][/align][font=宋体][font=宋体]某些分析条件需要[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的柱温箱工作温度于接近室温(例如[/font][font=Times New Roman]35[/font][font=宋体]℃),此种情况下高稳定性和高精度的温度控制较为困难,实验室室温的变化会影响柱温箱的温度稳定和控制精度。色谱控制系统需要根据室温的数值确定柱温箱温度的控制参数,此种场合下,测定室温经常会用到热敏电阻用于柱温箱温度的辅助控制。[/font][/font][font=宋体][font=宋体]某些电气或者光学部件(例如[/font][font=Times New Roman]FPD[/font][font=宋体]检测器的干涉滤光片、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的氘灯等部件)要求的工作环境温度较低,基于对部件的保护,热敏电阻一般会安装在这些部件的散热片上。当意外情况发生(例如断电或者散热风扇损坏)使部件温度超过其保护温度时,色谱系统将会自动启动散热风扇或者发出报警。[/font][/font][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]使用热敏电阻作为漏液传感器,实质利用了热敏电阻的测温原理。当[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统发生泄漏,泄漏出的液体接触热敏电阻表面,由于液体蒸发造成热敏电阻表面温度降低,色谱系统感知到其温度变化,会触发漏液报警。[/font][font=宋体][font=宋体]此外还有利用[/font][font=Times New Roman]PN[/font][font=宋体]结温度特性制成的半导体热敏元件,称为固态温度传感器或集成温度传感器。硅管的[/font][font=Times New Roman]PN[/font][font=宋体]结的结电压在温度每升高[/font][font=Times New Roman]1[/font][font=宋体]℃时下降约[/font][font=Times New Roman]2mV[/font][font=宋体],利用此特性,可以将硅二极管或者三极管制成[/font][font=Times New Roman]PN[/font][font=宋体]结温度传感器,其尺寸较小、线性良好、时间常数短、灵敏度高,测温范围一般为[/font][font=Times New Roman]-50~150[/font][font=宋体]℃。其安装位置和使用场合与热敏电阻传感器相同。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明热敏电阻和固态温度传感器的原理。[/font]

  • 【原创】光电导探测器主要应用范围

    [size=4] photoconductive detector 利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。 1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为 λc=hc/Eg=1.24/Eg (μm) 式中 c为光速。本征光电导材料的长波限受禁带宽度的限制。在60年代初以前还没有研制出适用的窄禁带宽度的半导体材料,因而人们利用非本征光电导效应。Ge、Si等材料的禁带中存在各种深度的杂质能级,照射的光子能量只要等于或大于杂质能级的离化能,就能够产生光生自由电子或自由空穴。非本征光电导体的响应长波限λ由下式求得 λc=1.24/Ei 式中Ei代表杂质能级的离化能。到60年代中后期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半导体材料研制成功,并进入实用阶段。它们的禁带宽度随组分x值而改变,例如x=0.2的HG0.8Cd0.2Te材料,可以制成响应波长为 8~14微米大气窗口的红外探测器。它与工作在同样波段的Ge:Hg探测器相比有如下优点:①工作温度高(高于77K),使用方便,而Ge:Hg工作温度为38K。②本征吸收系数大,样品尺寸小。③易于制造多元器件。表1和表2分别列出部分半导体材料的Eg、Ei和λc值。 通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实用性器件还要考虑性能、工艺、价格等因素。常用的光电导探测器材料在射线和可见光波段有:CdS、CdSe、CdTe、Si、Ge等 在近红外波段有:PbS、PbSe、InSb、Hg0.75Cd0.25Te等 在长于8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。 可见光波段的光电导探测器 CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属全密封型结构,玻璃窗口与可伐金属外壳熔封。 器件灵敏度用一定偏压下每流明辐照所产生的光电流的大小来表示。例如一种CdS光敏电阻,当偏压为70伏时,暗电流为10-6~10-8安,光照灵敏度为3~10安/流明。CdSe光敏电阻的灵敏度一般比 CdS高。光敏电阻另一个重要参数是时间常数 τ,它表示器件对光照反应速度的大小。光照突然去除以后,光电流下降到最大值的 1/e(约为37%)所需的时间为时间常数 τ。也有按光电流下降到最大值的10%计算τ的 各种光敏电阻的时间常数差别很大。CdS的时间常数比较大(毫秒量级)。 红外波段的光电导探测器 PbS、Hg1-xCdxTe 的常用响应波段在 1~3微米、3~5微米、8~14微米三个大气透过窗口。由于它们的禁带宽度很窄,因此在室温下,热激发足以使导带中有大量的自由载流子,这就大大降低了对辐射的灵敏度。响应波长越长的光,电导体这种情况越显著,其中1~3微米波段的探测器可以在室温工作(灵敏度略有下降)。3~5微米波段的探测器分三种情况:①在室温下工作,但灵敏度大大下降,探测度一般只有1~7×108厘米瓦-1赫;②热电致冷温度下工作(约-60℃),探测度约为109厘米瓦-1赫 ③77K或更低温度下工作,探测度可达1010厘米瓦-1赫以上。8~14微米波段的探测器必须在低温下工作,因此光电导体要保持在真空杜瓦瓶中,冷却方式有灌注液氮和用微型制冷器两种。 红外探测器的时间常数比光敏电阻小得多,PbS探测器的时间常数一般为50~500微秒,HgCdTe探测器的时间常数在10-6~10-8秒量级。红外探测器有时要探测非常微弱的辐射信号,例如10-14 瓦;输出的电信号也非常小,因此要有专门的前置放大器。[/size]

  • 美制成超快高敏石墨烯光电探测器 可广泛用于生化武器探测、机场安检等技术领域

    中国科技网讯 据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然·纳米技术》杂志上。 科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。 而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。 通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。 研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。 新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。 虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。(张巍巍) 《科技日报》(2012-06-06 二版)

  • 火焰探测器的工作原理与紫外线探测器的渊源

    火焰探测器的工作原理与紫外线探测器的渊源

    火焰探测器又称感光式火灾探测器,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。下面工采网小编给大家介绍一下火焰探测器工作原理。火焰燃烧过程释放紫外线、可见光、红外线,在特定波长、特定闪烁频率(0.5HZ-20HZ)具有典型特征,有别于其他干扰辐射,阳光、热物体、电灯等辐射出的紫外线、红外线没有闪烁特征。火焰探测器工作原理是通过检测火焰辐射出的特殊波长的紫外线、红外线及可见光等,同时配合对火焰特征闪烁频率来识别,来探测火焰。一般选用紫外光电二极管、紫外线探测器、紫外线传感器等作为探测元件。[img=,446,450]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011704_01_3332482_3.jpg!w446x450.jpg[/img]紫外线探测器是将一种形式的电磁辐射信号转换成另一种易被接收处理信号形式的传感器,光电探测器利用光电效应,把光学辐射转化成电学信号。光电效应可分为外光电效应和内光电效应。外光电效应器件通常指光敏电真空器件,主要用于紫外、红外和近红外等波段。具有内增益的外光电效应器件包括光电敏倍增管、像增强器等光敏电真空器件,它们具有极高灵敏度,能将极微弱的光信号转换成电信号,可进行单光子检测,其灵敏度比内电光效应的半导体器件高几个量级。内光电效应分为光导效应和光伏效应。光导效应中,半导体吸收足够能量的光子后,把其中的一些电子或空穴从原来不导电的束缚状态激活到能导电的自由状态,导致半导体电导率增加、电路中电阻下降。光伏效应中,光生电荷在半导体内产生跨越结的P-N小势差。产生的光电压通过光电器件放大并可直接进行测量。根据光导效应和光伏效应制成的器件分别称为半导体光导探测器和光伏探测器。最后给大家介绍三款性能非常优秀的紫外线探测器和紫外线二极管,都是应用在火焰检测和防紫外辐射源等领域的顶尖产品。[b]德国SGLUX 紫外光电探测器 - TOCON_ABC1[img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]基于碳化硅的宽频紫外光电探测器,带有集成放大器TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射和火焰检测领域。[b]紫外光电探测器TOCON_ABC1特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有集中器镜头盖0…5 V电压输出峰值波长是280 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 pW/cm2[b]德国SGLUX 紫外光电探测器 - TOCON_ABC10[/b][img=,298,298]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011705_01_3332482_3.jpg!w298x298.jpg[/img]TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。在恶劣环境和极低或极高的紫外辐射中,精密电子件使TOCON成为了一个可靠的元器件。但是sglux内部生产的SIC探测器芯片使TOCON成为了永存的准传感器,以PTB所报告的强抗辐射为特点。应用在紫外辐射、淬火控制和火焰检测领域。[b]紫外光电探测器TOCON_ABC10特性:[/b]基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有衰减器0…5 V 电压输出峰值波长是290 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 mW/cm2[b]德国SGLUX 紫外光电二极管 - SG01D-5LENS[img=,394,291]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_01_3332482_3.jpg!w394x291.jpg[/img]SiC 具有独特的特性,能承受高强度的辐射,对可见光几乎不敏感,产生的暗电流低,响应速度快和噪音低。这 些特性使SiC成为可见盲区半导体紫外探测器的最佳使用材料。SiC探测器可以一直工作于高达170°C(338°F)的温度中。信号(响应率)的温度系数也很低, 0,1%/K。由于噪音低(fA级的暗电流), 能够有效地检测到极低的紫外辐射强度。请注意这个装置需要配置相应的放大器。(参见第3页中的典型电路)。SiC光电二极管有七个不同的有效敏感面积可供选择,从0.06 mm2 到36 mm2。标准版本是宽频UVA-UVB-UVC。四个滤波版本导致更严格的感光范围。所有光电二极管都有密封的金属外壳(TO型),直径为5.5mm的TO18 外壳或9.2mm 的TO5外壳。进一步的选项是2只引脚(1绝缘,1接地)或3只引脚(2绝缘,1接地)。[b]德国SGLUX 紫外光电二极管 SG01D-5LENS 特点[/b]宽频UVA+UVB+UVC, PTB报道的芯片高稳定性, 用于火焰检测辐射敏感面积 A = 11,0 mm2TO5密封金属外壳和聚光镜, 1绝缘引脚和1接地引脚10μW/cm2 峰值辐射约产生350 nA电流[b]德国SGLUX 紫外光电二极管 SG01D-5LENS参数:[/b][b][img=,690,365]http://ng1.17img.cn/bbsfiles/images/2017/12/201712011706_02_3332482_3.jpg!w690x365.jpg[/img][/b][/b][/b]

  • 非制冷势垒型InAsSb基高速中波红外探测器

    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XB?n势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。[align=center][size=18px][back=#ffff00][b]材料生长、器件制备和测试[/b][/back][/size][/align]通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(101? cm?3)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(101? cm?3)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(101? cm?3)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm2的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。[align=center][size=18px][back=#ffff00][b]结果与讨论[/b][/back][/size][/align][b]材料质量表征[/b]图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm2的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 ?和2.1 ?。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/92230b98-4dac-4ee0-aeaa-282dcd342995.jpg[/img][/align][align=center][color=#0070c0]图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片[/color][/align][b]器件的变温暗电流特性[/b]图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R?A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R?A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/a8f8001f-cd03-42f4-a32f-8b1acc94131d.jpg[/img][/align][align=center][color=#0070c0]图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R?A随反向偏压的变化曲线;(c)R?A随温度倒数变化曲线[/color][/align][b]器件暗电流的尺寸效应[/b]由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R?A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10? Ωcm。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/e7fba8aa-eabe-40a4-a863-6ebcdd264744.jpg[/img][/align][align=center][color=#0070c0]图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R?A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R?A随台面直径的变化;(d)(R?A)?1与周长对面积(P/A)变化曲线[/color][/align][b]器件的结电容[/b]图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/c09b63df-6442-42f2-b548-df4f539db6eb.jpg[/img][/align][align=center][color=#0070c0]图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。[/color][/align][b]器件的射频响应特性[/b]通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/95acbbf7-8557-4619-b4cd-5829d636aced.jpg[/img][/align][align=center][color=#0070c0]图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/541829b0-a336-4b7e-a75b-0a15f8dfd06a.jpg[/img][/align][align=center][color=#0070c0]图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线[/color][/align]图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。[align=center][size=18px][back=#ffff00][b]结论[/b][/back][/size][/align]通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm2,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10? Ωcm,对照的nBn器件的表面电阻率为3.1×103 Ωcm,而pBn和nBn的R?A体积项的贡献分别为16.60 Ωcm2和5.27 Ωcm2。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。[b]论文链接:[/b][url]http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157[/url][来源:MEMS][align=right][/align]

  • 安防新设备被动红外探测器

    被动红外探测器:采用被动红外方式,已达到安保报警功能的探测器。被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。 被动红外探测器越来越多的被应用于安防领域,能够探测到当前区域内有没有移动的人等目标。 与其他红外探测器不同的时,被动红外探测器采取被动的方式,即自身不附加红外辐射光源,本身也不发射任何能量。目标在探测渔区内移动,会引起某一个立体防范空间内的热辐射的变化,而红外热辐射能量的变化能够灵敏的被被动红外探测器感应到,从而发出报警。 被动红外探测器一般由光学系统、红外传感器、报警控制器等构成。被动红外探测器安装好后,某一区域内的热辐射量量对于探测器来说基本上是不变的。尽管背景物体(如墙、家具等)也会散发出红外辐射能量,但由于能量很小不会触发报警。可当有人等移动目标进入该区域后,红外热辐射值会产生显著的变化。红外传感器的探测波长范围是8~14m,包括人体的红外辐射波长。探测器接收到这些信号后,将信号处理并送往报警控制器,最终触发报警,达到安防的目的。

  • 石墨烯结合量子点制成高灵敏光电探测器

    中国科技网讯 据物理学家组织网5月16日(北京时间)报道,西班牙塞西斯光学技术研究所用石墨烯结合量子点成功研发出一种混合型光电探测器,灵敏度是其同类探测器的10亿倍。研究人员指出,该研究预示了石墨烯在光学传感器和太阳能电池领域的新应用。相关论文发表在最新一期《自然·纳米技术》上。 石墨烯在光电子学和光电探测应用领域极有潜力,具有光谱带宽广、响应迅速的优点,但缺点是光吸收能力弱,缺乏产生多倍载荷子的增益机制。目前的石墨烯光电探测器响应度(一定波长的光在入射功率作用下的输出电流)在0.01A/W以下。 研究人员解释说,所需要的是一种迫使更多光被吸收的方法,石墨烯吸收光的效率仅为3%。为了提高光吸收率,他们转向了量子点。量子点是一种纳米晶体,能根据自身大小吸收不同波长的光。从本质上讲,光电探测器是一种把少量光转化为微小电流的设备,通过检测电流来确定有多少光进入了设备,或者直接用该电流产生其他反应,比如辅助产生摄影图像。 为了制造光电探测器,研究小组首先用标准的胶带法剥离出一层石墨烯作底片,用纳米印刷术在上面印上微小的黄金电极,然后用喷雾瓶将硫化铅晶体喷在上面。这些胶状晶体包含了各种大小的颗粒,几乎能吸收所有波长的光。他们用不同波长的光来照射探测器,检测其电阻和电量。 在制造量子点时,要保证在量子点和石墨烯之间实现配位体交换最大化,最大困难是找到合适的材料组合。研究人员说,他们经多次试验,终于使内量子效率达到了25%。在探测器中,量子点层中的光强烈而且可调,生成的电荷传导到石墨烯,在此电流多次巡回,响应度达到了107A/W。 研究人员还指出,在这种光电探测器基础上,还能造出更多新设备,如数字摄像机、夜视镜以及其他多种传感器设备。(记者 常丽君) 总编辑圈点 石墨烯极高的导电性着实令科学家着迷,也因此激发了科学家利用石墨烯来设计超高速光电探测器。传统的硅基光电探测器不能折叠,也不便宜,而且不够灵敏。多年来,一种便宜、可折叠的光电探测器一直是科学家们的梦想。单层石墨烯似乎可以胜任。然而单层石墨烯吸收光子的能力比硅还差,仅有3%的光子被吸收。而当量子点附着在其表面时,其吸收光子的能力可神奇地提高到50%。这样一来,可以穿在身上的电子产品或许真的不再是梦了。 《科技日报》(2012-05-17 一版)

  • 主动红外探测器的应用特点

    主动红外探测器由红外发射机、红外接收机和报警控制器组成。分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。主动式红外探测器遇到小动物、树叶、沙尘、雨、雪、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。由于光束较窄,收发端安装要牢固可靠,不应受地面震动影响,而发生位移引起误报,光学系统要保持清洁,注意维护保养。因此主动式探测器所探测的是点到点,而不是一个面的范围。其特点是探测可靠性非常高。但若对一个空间进行布防,则需有多个主动式探测器,价格昂贵。主动式探测器常用于博物馆中单体贵重文物展品的布防以及工厂仓库的门窗封锁、购物中心的通道封锁、停车场的出口封锁、家居的阳台封锁等等。

  • 【求助】求红外探测器

    小弟想要一个能检测波长为3.3um的热释电红外探测器,但在网上查了很久,发现都是些检测波长在5-14um的探测器。哪位大侠知道哪种型号的探测器能满足我的需求啊?劳烦告诉我型号啊,感激不尽哦!

  • 红外光电探测器的应用有哪些?

    大家好,哪位大侠能说一下近红外光电探测器的应用有哪里?红外的光电探测器有InGaAs(铟镓砷), Ge(锗), PbS(硫化铅), PbSe(硒化铅),MCT等。铟镓砷象640*512 ,320*256,主要会用到什么上面?请大侠们指导一下,先谢谢喽tangtang:论坛规定不给留联系方式,可站短联系。

  • 处女贴:请教红外探测器选型问题

    处女贴,请各位多多指导。是这样,我在做一个项目,就是用红外探测器获取红外信息,然后通过串口传入电子控制单元,在电子控制单元进行红外图形处理,识别出人体。应用场景是用在汽车上,来探测哪个位置有人,来进行分区调节温度。电子控制单元现在已经调试好了,接口也都通了,但在红外探测器选型上没经验。所以请教:1.该红外探测器仅仅是可以获取人体附近的红外线就可以。不需要成品。因为成本核算的原因。2.探测器要有一定的捕获角度3.批量采购的话,成本要在百元以下。因为是要量产的。多谢!

  • 【求助】如何选择FTIR的红外探测器

    大家好!我是新人,昨天通过同学推荐才知道这个网站的,我非常喜爱这个网站,希望它能在大家的努力下变得更加出色^_^. 我现在跟随导师做一个项目,是通过FTIR测量MEMS器件的沟槽深度。在选购红外探测器时,有两样选择,一个是MCT,一个是DTGS。两种探测器的光谱相应范围基本上都符合要求(当然DTGS的要稍大一些),但MCT的灵敏度和响应速度要更快一些,不过需要氮冷。从实验经费考虑,导师比较倾向于选购DTGS。但是我查阅国外相关实验的资料时,发现他们用的基本上都是MCT,所以很犯难。如果大家有这方面的相关经验和资料的话,请不吝赐教,谢谢! 另外,不知道有没有人有AMS公司的IR3000的资料,我这里搜集到的只有比较简单的一些数据,如果可以告知一二的话,小弟不胜感激。 希望能和大家成为好朋友!^_^

  • 关于红外探测器的探测率D*

    D*=(A*f)^0.5/NEP,其中A是探测器光敏元面积,f是电子学带宽,NEP是噪声等效功率。相信大家都知道,光谱成像在探测器光敏元上不可能只占一个像元,而是有一定面积的,请问此时计算D*,A 是用一个像元的面积还是光谱所占的面积?

  • 电阻器的检测方法分享

    [b]1、百检固定电阻器的检测[/b]A)将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。B)注意测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。[b]2、百检水泥电阻的检测[/b]检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。[b]3、百检熔断电阻器的检测[/b]在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。[b]4、百检电位器的检测[/b]检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。A)用万用表的欧姆挡测“1”、“2”两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。B)检测电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆档测“1”、“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,这时电阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。当轴柄旋至极端位置“3”时,阻值应接近电位器的标称值。如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。[b]5、正温度系数热敏电阻(PTC)的检测[/b]检测时,用万用表R×1挡,具体可分两步操作:A)常温检测(室内温度接近25℃)将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。B)加温检测在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。

  • 求红外光谱仪所用探测器

    欲买用于NDIR红外分析的探测器,推荐几款性价比好的 热释电探测器, 热电偶和热电堆也行, 碲镉汞探测器也行 发一份详细资料到信箱augustcool214@sina.com.cn,谢谢 最好有报价(大概)

  • 近红外光电探测器主要应用有哪些?

    大家好,哪位大侠能说一下近红外光电探测器的应用有哪里?近红外的光电探测器有InGaAs(铟镓砷), Ge(锗), PbS(硫化铅), PbSe(硒化铅)等。铟镓砷象640*512 ,320*256,主要会用到什么上面?请大侠们指导一下,先谢谢喽联系电话:13649264285邮箱:zhangwenjuan@fy-ic.com

  • 紫外线传感器怎样应用在火焰探测器中

    紫外线传感器怎样应用在火焰探测器中

    [align=left]紫外火焰检测器通过检测由物质燃烧产生的紫外线来检测火灾,除紫外火焰探测器外,市场上还有一种红外火焰探测器,即线性射束烟雾探测器。 紫外火焰探测器适用于火灾期间可能发生明火的地方。紫外火焰探测器可用于火灾强烈的火焰辐射或没有阴燃阶段的地方。火焰检测器要求紫外线传感器本身耐高温和高灵敏度。[/align]紫外线火焰探测器由紫外线触发。普通的扩散火焰可以产生足够强度的紫外线,易于识别。在设计探测器时,必须注意光谱范围应该在290nm的太阳辐射之外。OFweek Mall了解到紫外线传感器非常有效,它可以排除太阳辐射,并能有效地感知火焰发出的285nm或更小的辐射光。诸如碳化硅光电二极管的其他组件是高度敏感的,但是对于非火焰紫外光具有差的分辨能力。紫外线传感器被开发并用于保护危险区域靠近探测器的特殊位置,并且探测器对火焰的选择性可以精确到仅由火焰产生的紫外辐射的特定波长。紫外火焰探测器已成功用于爆炸抑制系统和低压室内水灭火系统中的释放装置。[img=,337,257]https://ng1.17img.cn/bbsfiles/images/2018/12/201812271549500713_2154_3422752_3.png!w337x257.jpg[/img]紫外线传感器的正常工作寿命与工作线有直接关系。其典型系列具有高消耗和低消耗。高耗电线路由于电流大,可直接驱动继电器,线路简单,线路简单,维护方便 随着集成电路的快速发展,从设计中采用了越来越多的低功耗电路。低功耗电路不仅耗电少,而且有效避免了大放电电流和去电时间不足引起的自激。与电阻容量并联的负载增加了管的放电面积并缩短了处于脉冲状态的时间。在DC状态下操作时,紫外线传感器必须具有足够的灭火时间(大于2ms)。这是因为紫外光管的放电不会自熄,并且放电管本身在放电后释放许多自由亚稳原子,导致第二次放电。它更容易,只有经过足够长的时间后,这些亚稳态原子才能显着减少。那么在火焰检测行业中用的比较多的传感器是这种型号的:TOCON_ABC10[b]德国SGLUX 紫外光电探测器 -TOCON_ABC10[/b]TOCON是5伏供电的紫外光电探测器,带有的集成放大器使紫外辐射转化成0~5V电压输出。TOCON的输出电压引脚可以直接连接到控制器,电压计或其他带有电压输入的数据分析装置。高度现代化的电子元件和带有紫外玻璃窗的密封金属外壳可消除封装内寄生电阻路径导致的噪声或电磁干扰。对各个工业紫外传感应用来说,TOCON 是完美的解决方案,从pW/cm2水平的火焰检测到W/cm2水平的紫外固化灯控制。十种不同的TOCONs覆盖了这13个数量级范围,它们的灵敏度有所不同。TOCONs生产为紫外宽频传感器或带有过滤器进行选择性测量。[img=,311,312]https://ng1.17img.cn/bbsfiles/images/2018/12/201812271549494053_1160_3422752_3.jpg!w311x312.jpg[/img]相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨紫外线传感器https://mall.ofweek.com/category_92.html丨水质传感器丨可燃气体传感器丨温湿度传感器丨酒精传感器丨微量氧传感器丨PID传感器丨PM2.5传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器丨CO2传感器丨CO传感器丨UV传感器丨光纤传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤压力传感器丨双气传感器丨

  • 找本中文版的红外探测器一书

    找本中文版的红外探测器一书【序号】:1【作者】:[color=#444444]Antoni Rogalski 著[/color]【题名】:[color=#444444]《红外探测器》原书第二版中文版[/color]【年、卷、期、起止页码】:[color=#333333]840[/color]页【全文链接】:[color=#333333][url]https://www.yqdaw.com/daw17057p11.html[/url][/color]

  • 大连化物所开发出柔性可穿戴长波红外光热电探测器

    [color=#000000]近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。[/color][color=#000000]仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/d9f98d30-33d3-4a5f-ae64-7284b6ef766d.jpg[/img][/align][color=#000000]光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作([/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]Adv. [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]M [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b][color=#0070c0]ater. [/color][color=#0070c0][/color][/b][/i][/url][color=#000000],2022;[/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902044][i][b]Adv. Mater [/b][/i][/url][color=#0070c0][i][b].[/b][/i][/color][color=#000000],2019;[/color][url=https://www.nature.com/articles/s41467-018-07860-0][i][b]Nat. Commun. [/b][/i][/url][color=#000000],2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。[/color][color=#000000]在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。[/color][color=#000000]相关研究成果以“[b]Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”[/b]为题,发表在[b]《先进材料》[/b][i](Advanced Materials)[/i]上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)[/color][color=#000000]文章链接:[/color][url=https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911][b]https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911[/b][/url][来源: 中国科学院大连化物所][align=right][/align]

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 【分享】电离室探测器

    电离室ionization chamber  由处于不同电位的电极和限定在电极之间的气体组成,通过收集因辐射在气体中产生的电子或离子运动而产生的电讯号来定量测量电离辐射的探测器。  分为脉冲电离室和电流电离室,前者可记录单个辐射粒子的电离辐射,主要用于重带电粒子的能量和注量或注量率的测量,后者则用来记录大量辐射产生的平均效应,用于测量X射线,γ光子束,β射线和中子束的注量、注量率和剂量。  是一种核辐射探测元件。一般为圆柱形,电离室中间有一个柱状电极,它与外壳构成一个电容器。在电离室的两极加上电压,可以收集放射性射线作用产生的电离电流。根据电离电流的大小可以确定放射性活度。按照被测射线种类不同,电离室可分为α电离室、β电离室和γ电离室。[1]  一种最早的测量核辐射的气体电离探测器之一,早在191—1914年间,就用它成功地发现了宇宙线.最简单的电离室由两块平行板构成,一块接几百至几千伏正高压,一块通过电阻接地.当带电粒子经过时,使两板之间气体电离,正离子飞向阴极,电子飞向阳极.两板上产生感应电荷,在接地的电阻上就形成一脉冲信号.由于电子飞行速度比离子要大三个量级,电子将快速到达阳极,在到达前,由于是正反离子对共同贡献,脉冲上升,随着电子减少和离子被阴极吸收,脉冲慢慢下降,直到正离子被吸收.由此可见,电离室相当于简单的放电线路,不同的电离室就是选择不同的值iPiP设计出来的.如果离子收集时间为+(约为103C秒),电子的]收集时间为-(约为106+C秒),当取时,为离子脉冲H]iP]电离室,它收集了全部电子和离子,可以用它来测量带电粒子的能量.当取-<<+时为电子电离室,它比较快,可]iP]以用来测量带电粒子的强度.但由于它的脉冲辐度与离子对产生地点有关,不能直接用它来测能量.为了把电离室做得又快又能测能量,人们把它改进成屏栅电离室,可以在重离子物理中测量重带电粒子能量并鉴别粒子,也可改进为圆柱形脉冲电离室,既可测能量,又可作记数器.[编辑本段]正文  一、电离室工作原理  电离室是一种探测电离辐射的气体探测器。  气体探测器的原理是,当探测器受到射线照射时,射线与气体中的分子作用,产生由一个电子和一个正离子组成的离子对。这些离子向周围区域自由扩散。扩散过程中,电子和正离子可以复合重新形成中性分子。但是,若在构成气体探测器的收集极和高压极上加直流的极化电压V,形成电场,那么电子和正离子就会分别被拉向正负两极,并被收集。随着极化电压V逐渐增加,气体探测器的工作状态就会从复合区、饱和区、正比区、有限正比区、盖革区(G - M区)一直变化到连续放电区。  所谓电离室即工作在饱和区的气体探测器,因而饱和区又称电离室区。如图11-1所示,在该区内,如果选择了适当的极化电压,复合效应便可忽略,也没有碰撞放大产生,此时可认为射线产生的初始离子对N0恰好全部被收集,形成电离电流。该电离电流正比于N0,因而正比于射线强度。加速器的监测探测器一般均采用电离室。标准剂量计也用电离室作为测量元件。电离室的电流可以用一台灵敏度很高的静电计测量。  不难看出,电离室主要由收集极和高压极组成,收集极和高压极之间是气体。与其他气体探测器不同的是,电离室一般以一个大气压左右的空气为灵敏体积,该部分可以与外界完全连通,也可以处于封闭状态。其周围是由导电的空气等效材料或组织等效材料构成的电极,中心是收集电极,二极间加一定的极化电压形成电场。为了使收集到的电离离子全部形成电离电流,减少漏电损失,在收集极和高压极之间需要增加保护极。  当X射线、γ射线照射电离室,光子与电离室材料发生相互作用,主要在电离室室壁产生次级电子。次级电子使电离室内的空气电离,电离离子在电场的作用下向收集极运动,到达收集极的离子被收集,形成电离电流信号输出给测量单元。  二、电离室的主要性能  (一) 电离室的灵敏度  一般说来,电离室的灵敏度取决于电离室内的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量。由于电离室内的气压近似为一个大气压,那么,也可以说其灵敏度正比于空气体积,因而这个体积又称“灵敏体积”,对于测量照射量(空气比释动能)的电离室,其电流服从下式的规律  或者写为:  式中  SC — 电离室的灵敏度(灵敏因子)  [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]IC[/color][/url] — 电离室的电离电流A  — 照射量率Ckg s(Akg)  V — 电离室的灵敏体积  a — 常数,与电离室的材料和空气密度有关,对于空气等效电离室α≈1.2×10   因此随着电离室体积增大,灵敏度增高。  (二) 电离室的能量响应  如上所述,电离室的响应(灵敏度)正比于空气比释动能率(照射量率),而不受其他影响,例如不应随能量的变化而变化,不应随温度的变化而变化等。但是由于电离室本身不能完全由空气制作,不能完全等同于空气,当辐射的能量改变后,电离室的响应(灵敏度)也随之改变,这种特性称之为能量响应。  对于剂量测量的电离室,能量响应是极为重要的性能参数:而对于剂量监测的电离室虽然也关心能量响应,但不是非常重要。  (三) 电子平衡  在加速器辐射和空气的相互作用中,加速器的光子不能直接引起电离,而是通过光电吸收、康普顿散射和电子对生成作用损失能量,产生次级电子。加速器的初级电子虽然引起电离,但是引起空气电离的主要还是次级电子。加速器光子或初级电子在与物质的作用中首先产生次级电子,而作为电离室,进入电离室空气空腔的次级电子主要在电离室的壁中产生的。由于壁的材料的密度比空气大得多,产生的电子也多,因此随着壁厚的增加,进入电离室空气灵敏体积的次级电子增加,当电离室壁厚增加到一定程度,电离室壁对次级电子的阻挡作用开始明显,并最终使得进入灵敏体积的次级电子和逃出灵敏体积的次级电子相等,我们便称这种状态为“电子平衡”,或称“电子建成”。广义的说,所谓电子平衡,是指进入测量体积元的次级电子能量等于离开该体积元的次级电子能量。当射线的能量高时,次级电子的能量也高,穿透的材料厚度增大,达到电子平衡的厚度也增大。  一般来说,只要包围收集体积空气的材料的厚度大于次级电子最大射程,电子平衡条件就可基本满足。我们稍微详细点分析。

  • 【分享】半导体探测器

    【分享】半导体探测器

    半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,晶体管电子学的发展促进了半导体技术的发展。半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型(下图由左至右)。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291643_192752_1615922_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制