当前位置: 仪器信息网 > 行业主题 > >

高防护超声波物位仪

仪器信息网高防护超声波物位仪专题为您提供2024年最新高防护超声波物位仪价格报价、厂家品牌的相关信息, 包括高防护超声波物位仪参数、型号等,不管是国产,还是进口品牌的高防护超声波物位仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高防护超声波物位仪相关的耗材配件、试剂标物,还有高防护超声波物位仪相关的最新资讯、资料,以及高防护超声波物位仪相关的解决方案。

高防护超声波物位仪相关的论坛

  • 【分享】YTC系列超声波物位仪介绍

    YTC系列超声波物位(料位)传感器、超声波液位传感器、超声波测距传感器广泛吸取国内外多种同类传感器的优点,实现了全数字化、人性化的设计理念,具有完善的测控功能、数据传输功能和人机交流功能。主芯片采用进口工业级单片机,配合数字温度补偿及超宽电压输入稳压等数十块相关专用集成电路,所以YTC系列波物位传感器具有抗干扰性强、测量精度高,可选择模拟量,开关量及RS485输出,方便的与相关设施接口。YTC系列传感器采用工程塑料(ABS、PP)防水外壳,防护等级为IP65,不必接触工业介质就能满足大部分测量要求,彻底解决了压力式、电容式、浮子式等传统测量带来的缠绕、堵塞、泄露、介质腐蚀、维护不便等缺点。

  • 防腐型超声波物位仪

    防腐型超声波物位仪特点:1. 具有抗干扰性强。可任意设置上下限节点及在线输出调节,并带有现场显示,可选择模拟量,开关量及RS485输出,方便的与相关设施接口。2. 采用聚丙烯防水外壳。壳体小巧且相当坚固,具有优良的耐化学品性,对于无机化合物,不论酸、碱、盐溶液,除强氧化性物料外,对几乎所有溶剂在室温下均不溶解,一般烷、烃、醇、酚、醛、酮类等介质上均可使用。3.重量轻、不结垢、不污染介质。4.无毒性。也可用于食品工业设备安装,维修极为方便。5.不必接触工业介质就能满足大部分物位测量要求,从而彻底地解决了压力式、电容式、浮子式等传统测量方式带来的缠绕、堵塞、泄露、介质腐蚀、维护不便等缺点。由于具有以上特点,所以本设备适合于化工、制药、染化、冶金,食品、环保、化纤等行业中,使用后效果显著。

  • 高稳定性超声波一体式气象传感器

    高稳定性超声波一体式气象传感器

    高稳定性超声波一体式气象传感器超声波一体式气象传感器可自动监测空气温度、空气湿度、土壤水分、土壤温度、风速、风向、雨量、光照强度等常规气象要素。系统主要由传感器、远程监测单元、数据存储和处理软件系统三大部分组成,可自动采集气象监测数据,通过GPRS 无线网络平台传送至气象监 测中心服务器,工作人员足不出户,即可了解到各气象监测站的实时气象监测数据,在线开展统计与分析。超声波一体式气象传感器可全面发挥气象监测预警的作用效果,有效发挥气象防灾减灾道防线作用,全面加强防灾减灾能力建设。基于超声波一体式气象传感器提供的监测数据信息,在线分析,农业有关部门可以及时了解农业小气候变化情况,提前预知各项气象灾害的发生,采取有效措施处理,大限度避免灾害损失,从而为农业生产,农业环境研究,作物改良,农作物物候期监测,病虫害防治等相关生产管理工作提供相应的科学数据和决策依据。[img=超声波一体式气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210190913116556_7465_4136176_3.jpg!w690x690.jpg[/img]超声波一体式气象传感器外观美观,功能强大,是智慧型的气象系统产品,可广泛应用于农业生产、科研和标准测量等用途,是开展农业科研、生产,发展优质农业的的重要保障。超声波一体式气象传感器所观测到的数据将会由数据采集器进行收集、转换、传输、存储。数据采集器会安装在防护箱内,这样可以避免风吹日晒以及动物活动对设备造成损害。这一设备会和多要素的传感器相连,另外也会接通太阳能电池板这样的功能设备。[img=超声波一体式气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210190913255384_4640_4136176_3.jpg!w690x690.jpg[/img]

  • 超声波传感器测量方法_超声波液位传感器水位监测

    超声波传感器测量方法_超声波液位传感器水位监测

    [align=left]过去,河流水位监测通常使用手动现场测量来获取数据。虽然这种方法可靠,但同时存在许多问题,例如:[/align](1)河岸上的手工测量存在一定的风险(河流深5米)。(2)在恶劣天气下不能停止工作。(3)测量值不是很准确,只能作为参考。(4)人工成本高,每天需要多个现场数据记录。所以现在测量水位都采用相应的仪器仪表,最常用的还是超声波液位传感器了,超声波液位传感器使用超声波原理,发射和接收所需的时间以及液位或距离的转换是液位监测领域中经常使用的方法。这种非接触方法稳定可靠,因此超声波液位传感器被广泛使用。[b]超声波传感器测量方法:[/b]OFweek Mall了解到超声波物位测量有多种方法,如超声脉冲回波法、共振法、频差法、超声衰减法:超声波脉冲回波方法的基本原理是超声波探头发射超声波。当超声波遇到障碍物时,它将被反射。根据当前环境中的超声波,由单片机记录超声波传输的时间和接收回波的时间。传播速度可以通过公式S = C * t / 2计算(其中S是测量距离,C是超声波传播速度,t是回波时间。)计算超声波的距离,并且获得了障碍。测试系统的距离。共振方法的基本原理是调节超声波的频率,以便在探头和液体表面之间建立驻波共振状态。此时,探针和液体表面之间的距离与介质中超声波的波长成比例。当已知超声速度时,可以从共振频率计算波长,并且可以转换从探针到液体表面的距离。频差法是让超声波探头发出调频超声波。超声波的频率随传播距离而变化,并且可以根据接收信号和发送信号之间的频率差来获得从发送到接收的时间。超声波衰减测量顾名思义,测量介质中超声波的衰减随距离而变化,液位根据接收信号与发射信号之间的衰减变化来测量。从上述方法的比较可以看出,共振法检测液位受某些特定条件的限制,需要与液体表面建立驻波关系,属于接触测量方法。频率差方法要求频率调制器产生调制频率,衰减方法需要测量超声波的衰减量。相比之下,超声脉冲回波方法不需要与液面建立驻波,并且可以实现非接触检测。因此,脉冲回波方法是最合适的方法。OFweek Mall技术工程师推荐使用MB7066超声波液位传感器进行水位监测:[b]MaxBotix 超声波液位传感器-MB7066 [/b]精准而窄的波束角分辨率是1cmIP67防尘防水标准封装超低功耗适合电池供电系统体积小、多种输出方式小、轻重量为您简单集成的项目或产品而设计快速的测量周期可测距离长达10米[img=,293,258]https://ng1.17img.cn/bbsfiles/images/2018/11/201811141618574529_7904_3422752_3.png!w293x258.jpg[/img]超声波液位传感器MB7066是一种体积小但坚固的耐风雨的超声波传感器。符合IP67防护安全等级,可以防护灰尘吸入,可以短暂浸泡。可测距离长达10米,在远距离检测和水槽液位检测中,得到很好的应用。首先,超声波传感器发出噪声脉冲,然后用户可以基于反射信号几乎实时地知道水位。用户还可以使用雷达、深度水位传感器和其他技术,为他们的应用提供最佳解决方案。当使用超声波液位传感器时,用户可以获得所有需要的数据,用于绘制、绘图、分析、 API(应用程序编程接口)转发、数据下载和短信和电子邮件提醒。相关的地方部门可以根据超声波液位传感器反馈的数据快速部署洪水监测系统,具有很高的成本效益。设备可以安装在桥、河、流和任何需要安装远程监控系统的地方。预警系统将提醒您,水位正在上升,以便保护人民和社区免受洪水侵袭。由于数据读取方便。此外,所有超声波液位传感器测量数据的历史存储在云中,用户可以随时随地访问,从而便于历史分析。相关[url=https://mall.ofweek.com/category_5.html]传感器[/url]分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨酒精传感器丨PID传感器丨温湿度传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨超声波传感器丨UV传感器丨光离子传感器丨氧化锆传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨PM2.5传感器

  • 怎样深刻认识超声波液位计

    这里介绍超声波物位计的应用环境:通常应用于温度在-40℃一100℃之间、压力在3Bar (5kg/cm2)以下的场所进行液位或料位的测量。在常温、常压的情况下,选择超声波物位计测量液体液位是最佳的选择,具有工作可靠、安装简便、使用周期长、免维护的特点,并具有相对的价格优势。由于超声波物位计在测量物位时,被测介质不接触,同时为全密闭防腐结构,因此对于粘稠的、腐蚀性的、浑浊的等各种液体的液位测量,效果最佳。仪器仪表网中超声波物位计包含 防爆型超声波液位计,这里介绍超声波物位计的应用环境:测量密闭容器内的挥发性的液体的液位,注意事项:容器内气体声速可能与空气中的声速不同,域名注册如液位计不能对声速进行修正,则会出现一定的误差;挥发性的液体会在超声波液位计探头表面凝结,阻挡声波的收发,要求液位计具有可变功率控制功能。超声波物位计测量固体料位:使用超声波物位计进行料位测量是可行的,有足够的应用经验和成功实例。在对料位进行测量时,应选择好安装位置,选择料面相对平整的位置;对于粉末状的料位,可选择功率(量程)更人的物位计进行测量。超声波液位计测量液面剧烈波动的液体:选用具有自动功率控制功能的超声波液位计;选用更大量程的超声波液位计;在液体中加入塑料管,液位计测量塑料管内液位。两线制超声波物位计与三线制超声波物位计的区别:两线制超声波物位计其供电(DC24v )与信号输出(DC4-2OmA)共用一个回路,仅使用两条线即可,为标准的变送器形式。 三线制超声波物位计实际上为四线制,其供电(DC24v )与信号输出(DC4-2OmA )回路分离,各使用两条线,当它们负端共地相连时,通常使用三条线即可。其优势是发射功率较大。超声波物位计的盲区?超声波物位计在发射超声波脉冲时,不能同时检测反射回波。磁翻柱液位计由于发射的超声波脉冲具有一定的时间宽度,同时发射完超声波后传感器还有余振,期间不能检测反射回波,因此从探头表面向下开始的一小段距离无法正常检测,这段距离称为盲区。被测的最高物位如进入盲区,仪表将不能正确检测,会出现误差。如有需要,可以将物位计加高安装。在工程设计选型时,最应注意的问题:要选择一个好的安装位置,设计合适的安装接口。安装位置要尽可能选择液面平稳、料面平整的位置,同时远离扶梯、进料口、出料口,压力式液位计尽可能与容器壁保持较远的距离,远离搅拌器。安装接口要求开口尺寸足够大,当为法兰安装时,法兰下面的接管长度要设计合理,对于我公司的10米、12米量程的物位计,接管长度应不大于15cm,选择DN80以上的法兰口。对于巧米、20米、30米和40米量程的物位计,接管长度应不大于20cm;选择DN200以上的法兰口。对于8米以下量程的物位计,超声波液位计对接管长度无要求,可适当设计,以消除盲区的影响,并选择DN65以上的法兰口。对于8米以下量程的物位计,对接管长度无要求,可适当设计,以消除盲区的影响,并选择DN65以上的法兰口。超声波物位计是超声波液位计和超声波料位计的统称。当用于测量液体液位时,通常称为超声波液位计。来源—仪器仪表网

  • 超声波液位计工作原理

    大家知道在工业生产装置的检测和控制中,了解所需的仪器仪表工作原理,对选取合适的测量调节仪表是非常有帮助的.在当前工矿企业的物位测量控制中,除了选用各种浮球液位计,压力变送器和差压变送器等等检测仪表外也常常选用超声波液位计那么它是如何工作的呢?一般来说我们把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波物位计就是利用它的这一原理而工作的。在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也被称作为探头。将超声波换能器置于被测液体或物位上方,向下发射超声波,超声波穿过空气介质,在遇到水面或物体介面时被反射回来,然后被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成物位信号进行显示并输出标准信号,供其它仪表或控制装置使用.由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测量出超声波由发射到遇到物面或液面反射被接收所需要的时间,则可换算出超声波通过的路程,从而间接地测量出物位或者液位数据。超声波液位计可采用二线制、三线制或四线制技术,二线制为:供电与信号输出共用;三线制为:供电回路和信号输出回路独立,当采用直流24v供电时,可使用一根3芯电缆线,供电负端和信号输出负端共用一根芯线;四线制为:当采用交流220v供电时,或者当采用直流24v供电,要求供电回路与信号输出回路完全隔离时,应使用一根4芯电缆线。直流或交流供电,具有4~20mADC,高低位开关量输出。    量程范围:0-50米,多种形式可选,适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC系统监控。超声波物位计工作原理是由超声波换能器(探头)发出高频脉冲声波遇到被测物位(物料)表面被反射折回反射回波被换能器接收转换成电信号.声波的传播时间与声波的发出到物体表面的距离成正比.声波传输距离S与声速C和声传输时间T的关系可用公式表示:S=C×T/2.   探头部分发射出超声波,然后被液面反射,探头部分   再接收,探头到液(物)面的距离和超声波经过的时间成比例:   hb = ct2 即   距离 = 时间×声速/2   声速的温度补偿公式: 环境声速= 331.5 + 0.6×温度

  • 超声波液位计和雷达液位计的区别

    我们一般把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波测量物位就是利用了它的这一特征。 在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也称探头。将超声波换能器置于被测液体上方,向下发射超声波,超声波穿过空气介质,在遇到水面时被反射回来,又被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成液位信号进行显示并输出。 由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测出超声波由发射到遇到液面反射被接收所需要的时间,则可换算出超声波通过的路程,即得到了液位的数据。 超声波有盲区,安装时必须计算预留出传感器安装位置与测量液体之间的距离。 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,雷达波以光速运行。这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2式中 D——雷达液位计到液面的距离C——光速T——电磁波运行时间 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 超声波用的是声波,雷达用的是电磁波,这才是最大的区别。而且超声波的穿透能力和方向性都比电磁波强的多,这就是超声波探测现在比较流行的原因。主要应用场合的区别: 超声波和雷达主要是测量原理的不同,而导致他们的不同的运用场合。雷达是鉴于被测物质的介电常数的,而超声波是鉴于被测物质的密度的。所以介电常数很低的物质雷达的测量效果就要打折扣,对于固体物质一般也推荐用超声波。同时雷达发射的是电磁波,不需要传播媒介,而超声波是声波,是一种机械波,是需要传播媒介的。另外波的发射方式元件不同,如超声波是通过压电物质的振动来发射的,所以它不可能用在压力较高或负压的场合,一般只用在常压容器。而雷达可以用在高压的过程罐。雷达的发射角度比超声波大,在小容器或瘦长的容器不推荐用非接触式雷达,一般推荐导波雷达。最后就是精度的问题,当然了,雷达的精度肯定是比超声波高,在储罐上肯定是用高精度雷达的,而不会选超声波。至于价格方面,一般情况下超声波比雷达低,当然一些大量程的超声波价格也是很高的,如6~70米的量程,这时雷达也达不到,只能选超声波! 声波的传输是需要媒介的,所以在真空中就不能传播。所以超声波在现实应用中的局限性还是很大的,与雷达比起来多有不足。首先,超声波物位计有温度限制,一般探头处温度不能超过80度,并且声波速度受温度影响很大。其次,超声波物位计受压力影响很大,一般有求0.3MPa以内,因为声波要靠振动来发出,压力太大时发声部件会受影响。第三,当测量环境中雾气或粉尘很大时将不能很好的测量。凡此种种,都限制了超声波物位计的应用。与之相比,雷达的是电磁波,不受真空度影响,对介质温度压力的适用范围又很宽,随着高频雷达的出现,其应用范围就更加广泛了,所以在物位测量中,雷达是一个非常好的选择。 但是不论是雷达还是超声波液位计,在安装过程中都必须注意安装位置,注意盲区。比如安装在罐体上时,不要装在进料口,不要装在人梯附近,离罐壁要有300到500mm的距离,防止回波干扰。在有搅拌,液面波动大的时候也要选择合适的安装方法。总之,没有十全十美的东西。1.雷达测量范围要比超声波大很多。2.雷达有喇叭式、杆式、缆式,相对超声波能够应用于更复杂的工况。3.超声波精度不如雷达。4.雷达相对价位较高。5.用雷达的时候要考虑介质的介电常数。6.超声波不能应用于真空、蒸汽含量过高或液面有泡沫等工况。

  • 超声波气象监测装置电子气象仪

    超声波气象监测装置电子气象仪

    超声波气象监测装置电子气象仪超声波气象监测装置是一种能自动地观测和存储气象观测数据的设备,主要由传感器、采集器、通讯接口、系统电源等组成,随着气象要素值的变化,各传感器的感应元件输出的电量产生变化,这种变化量被CPU实时控制的数据采集器所采集,经过线性化和定量化处理,实现工程量到要素量的转换,再对数据进行筛选,得出各个气象要素值。超声波气象监测装置观测项目主要包括气压、温度、湿度、风向、风速、雨量等要素,经扩充后还可测量其它要素,数据采集频率较高,每分钟采集并存储一组观测数据。超声波气象监测装置根据对人工干预情况也可将自动气象站分为有人自动站和无人自动站。超声波气象监测装置网由一个中心站和若干气象站通过通信电路组成的。[img=超声波气象监测装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209130913251432_8392_4136176_3.jpg!w690x690.jpg[/img]超声波气象监测装置太阳能、市电互补供电系统,即使突然停电依然不影响使用。可根据用户需要自由选配。太阳能系统方式供电,可保证连续阴雨天情况下十天无断电稳态工作。每个监测点配备30W太阳能板一块,12安石的蓄电池一块,白天进行太阳能板给蓄电池充电,给仪器设备供电,供电系统可以保证在连续阴雨10天左右的仪器正常供电。超声波气象监测装置GPRS无线传输系统通过GPRS流量把采集到的数据缓存到远端服务器,用户通过用户名密码,可以在任何一台可以上网的电脑、移动设备访问,查看下载数据,不受地域的限制。超声波气象监测装置配备3米不锈钢支架,外观美观,不锈钢防护箱很好的保护了仪器的核心部分,使主机不会受到风吹,雨淋,风沙等干扰,保证设备正常工作。多媒体的现场显示可配单色,双色,三色,全彩,液晶屏,可对显示界面进行定制,附加显示时间日期。[img=超声波气象监测装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209130913449932_4544_4136176_3.jpg!w690x690.jpg[/img]

  • 【分享】超声波清洗机的日常维护、保养、注意事项

    超声波清洗机的日常维护、保养、注意事项   1、电源:使用合符设备规格的电源及电源线,用户方的电源回路中必需装设专用于清洗机的空气开关以在需要的时侯切开清洗机电源;本司生产的清洗机的电源规格有以下几种:  ①1¢220±10VAC50/60HZ,采用单相5~15A三圆脚插头,包含一条接地线;   ②3¢380±10V50HZ,采用三相四线制直接出线方式,五芯双绝缘电缆,包含一条接地线;   ③用户配备的电源线线径必需等于或大于清洗机引线线径;   2、接地线:本司生产清洗机机体及发生器都会在其电源引线上配有专用的接地线,并有明区分于其它电线的特征,因为本设备与水、腐蚀性(溶胀性)液位接触,易引起漏电,请按安全要求接好接地线;   3、设备采用不燃性洗净剂,切勿采用易燃易爆物质作洗净剂,设备的使用在必需确保远离有易燃易爆物质的场合,用户特殊情况下必需采用某些物质时,必须洽询本司确认安全,并作好相应的安全防护措施;   4、洗净槽中无液或液位不足都会对设备造成不可逆转的破坏,使用时必需确保槽中注入足量的洗净液,否则相关的电热器、泵、超声波震子都可能损坏并可能引超火灾及人身伤害;   5、电气控制箱及相关电气组件等注意不要溅入水,并远离水蒸汽、腐蚀性气体、粉尘等;   6、设备异常时请及时与我司联络或停止电源后由有经验的专业电工进行检查;   7、要清洗的工件请用有支脚的洗篮或挂具装挂好,置入槽中洗净,禁止将工件直接置入槽底进行洗净,否则可能引起工件及缸底的损伤;   8、设备作业时,机体内可能存在高温、高压、电气组件端子表面带电、传动机构的运动、压力突动等可能的引起人身伤害的因素,工作时请勿打开机壳,以免在无防护条件下作业;   9、设备长期不用时,请放出洗净液,干燥内槽及表面后用薄膜保护好,以防止设备的腐蚀老化加快;     日常维护及保养   1、保持设备工作场所的通风、干燥、洁净,有利于设备的长期高效运转及优化工作环境条件;   2、洗净液过于肮脏时应及时处理,定期清理清洗槽、贮液槽内污垢,保持洗净槽内及外观的洁净,可提高洗净槽的耐用性;   3、电气控制箱及设备通风口远离水蒸汽、腐蚀性气体、粉尘,定期用压缩空气清理附着的灰尘;   4、定期测试设备的绝缘性能,对于易老化电气组件定期检查,检查接地线,确保设备良好接地此项目须由具有专业经验的电工进行,;   5、定期测试电源,确认符合设备的电源电压要求,避开在过高或过低的不稳定电源下长期工作;   6、带有过滤装置的设备,定期更换过滤芯;   7、带有传动机构的,应按要求定期加注黄油、机油等润滑剂,定期更换减速机齿轮油,确保运动机件在良好润滑条件下工作;   故障及异常对策   故障及异常状况 原因及处理方法   1、无超声波 检查电源、保险管,对照6、7条处理   2、无电加热 检查电源,温度控制器设定是否在正常位置,检查相关的水位开关,检查电热器是否失效;更换失效组件;   3、外壳带电 电热组件绝缘不良或其它组件回路接壳,更换绝缘不良组件,接好接地线;   4、声音异常,洗净效果下降 超声波发生器或换能器异常,检查换能器引线两个端子的绝缘电阻,并拆下换能器护板,检查有无异常;   5、声音啸叫 部分换能器不能适应缸体及水位、水温的变化,变更水位,工件出入水面时动作不要过大;   6、保险管烧断,玻璃管内无发黑 检查电源电压,可能是过高电源电压或负载瞬间变化引起,更换相同规格保险管或稍大号的保险管;   7、保险管烧毁,玻璃管内发黑 过电流引起,可能内部功率管或回路短路,应与我司售后服务部联络;

  • 温控高功率超声波细胞破碎仪说明

    [b][url=http://www.f-lab.cn/cell-disruptors/sonic-2000wt.html]温控高功率超声波细胞破碎仪SONIC-2000WT[/url][/b]是一种利用超声波探针在液体中产生空化效应的而制成的Sonicator[b]温控型号高功率超声波细胞破碎均质仪器[/b],具有温度显示控制功能避免样品过热,广泛用于细胞均质破碎,由超声波发生器,超声波转换器和超声波探针均质器件构成。用于多种动植物、病毒、细胞、细菌及组织的破碎,可用来乳化、分立、裂解、匀化、提取、消泡、清晰、纳米材料的植被、分散及加速化学反应等。由超声波发生器,转换器和探针组成,具有温度检测器供选配,[img=超声波均质器]http://www.f-lab.cn/Upload/SONIC-1200W.jpg[/img]采用LCD屏清晰显示左右操作参数和选项:温度,时间,输出功率等,具有温度显示控制功能避免样品过热损坏[b]超声波细胞破碎仪:[url]http://www.f-lab.cn/cell-disruptors.html[/url][/b]

  • 超声波液位传感器相对优势有哪些

    [align=left]超声波液位传感器发出超声波脉冲,声波经液体表面反射后被超声波液位传感器接收器转换成电信号,由声波的发射和接收之间的时间来计算传感器与被测液体表面的距离。[/align]超声波液位传感器可将多种物位参数的变化转换成标准电流信号,远传至操作操纵室,供二次仪表或计算机进行集中显示、报警或自动操纵,其非常好的结构及安装方法使得超声波液位传感器可适用于 炎热的天气、高压、强腐蚀、易结晶、防阻塞、防冷结以及固体粉状、粒状物料等特殊条件下的液位,料位或物位的持续检测,可广泛应用于多种工业过程中的检测操纵。因为超声波液位传感器输出只与光电探头是不是接触液面相关,与介质的其它特性,如温度、压力、密度、电等参数无关,所以超声波液位传感器检测准确、重复精度高 响应速度快,液面操纵非常精确,而且不需调校,就能够直接安装使用。超声波液位传感器内部的全部元器件进行了树脂浇封处理,超声波液位传感器内部没有所有机械活动部件,所以光电液位传感器可靠性高、寿命长、免维护。假如超声波液位传感器安装的位置下面有障碍物,那么就不宜使用超声波液位传感器,有障碍物会影响超声波发射,导致信号丢失;需要调整或幸免障碍物的出现。超声波液位传感器价格较贵, 采纳非接触测量,液体黏稠度、腐蚀性等问题不会影响,更卫生。再比如一些其他的液位传感器的一些特点,光电式液位传感器内部的发光二极管所发出的光被导入传感器顶部的透镜。没有液体时,则发光二极管发出的光直接从透镜反射回接收器。当有水状态时,光折射到液体中,从而使接收器收不到或只能接收到少量光线。光电式液位传感器是利用光学反射原理来进行测量的,所以当在阳光直射或者其他有红外线干扰的情况下会影响液位检测。对此要进行安装调整或 采纳遮光罩幸免。超声波液位传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html[/color][color=#333333]丨[/color][color=#333333]压电薄膜传感器丨[/color]微型传感器[color=#333333]丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]风速传感器丨微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨[/color][color=#333333]传感器https://mall.ofweek.com/category_5.html丨[/color][color=#333333]气压传感器丨[/color][color=#333333]硫化氢传感器丨一氧化碳传感器丨光离子传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]bm传感器丨电流传感器丨[/color][color=#333333]位置传感器丨[/color][color=#333333]风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 锅炉超声波除垢防垢设备

    锅炉水垢具有结垢速度快、停产清洗麻烦、容易形成炉管熔蚀爆裂,引发事故。超声波水垢处理器利用频率共振原理,在线除垢防垢,有效控制水垢危害。该设备自动化程度及科技含量高,不需专人操作,省钱、省力、安全、环保。锅炉超声波除垢防垢设备配置:换能器 + 信号发生器 + 清洗装置。适用于各类燃料蒸气炉、采暖炉、茶浴炉、开水箱(器)等加热设备。

  • PN-42 S型超声波液位计的5个特点

    详细介绍 PN-42 S型超声波液位计特点 PN-42S型超声波液位计共有模拟量、开关量及数字信号同时输出功能,防水外壳,适用于一般场合的液物位检测。其主要芯片采用飞利普工业级单片机、数字温度补偿和相关专用集成电路,抗干扰性强,可任意(自定义设定)设置上下限及在线输出调节,并带有现场显示,模拟量、开关量及RS485和RS232输出,可方便地与主机连接。适用于石油、化工、自来水、污水处理、水利水文、钢铁、煤矿、电力、交通以及食品加工等行业。主要技术指标见表10-1. 超声波液位计特点——国仪器仪表网介绍1)采用全密封小角度防水超声波传感器设计.适用于恶劣环境;2)声束角小于100,适合小空间检测;3)高亮度LED数码显示;4)带有倒置距离转换功能,可实现上下限点任意设定;5)超声波变送器可在0.35~12m内任意点进行开关量设置(选装)。

  • 气相色谱可以和超声波放在一个房间吗?

    各位前辈:请问气相色谱可以和超声波放在一个房间吗?新到了一家工厂,他们的气相色谱和液相色谱尽然和超声波放在一个房间内,超声波滋滋滋滋滋的响声,对基线有影响吗?

  • 【资料】超声波测厚仪的工作原理和设计方案

    超声波测厚仪的工作原理和设计方案超声波测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种,由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。  1. 工作原理  超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。  HT系列超志波测厚仪,在采用国内外先进技术的基础上,运用单片机技术研制 的一种低功耗低下限袖珍式的智能测量仪器,不仅有测量不同材质厚度的仪器,而且有单测钢,超薄型的,同时均可配套高温测厚探头。  2. 测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。  3. 影响测量精度的原因  (1) 覆盖层厚度大于25μm时,其误差与覆盖层厚度近似成正比;   (2) 基体金属的电导率对测量有影响,它与基体金属材料成分及热处理方法有关;   (3) 任何一种测厚仪都要求基体金属有一个临界厚度,只有大于这个厚度,测量才不会受基体金属厚度的影响;   (4) 涡流测厚仪对式样测定存在边缘效应,即对靠近式样边缘或内转角处的测量是不可靠的;   (5) 试样的曲率对测量有影响,这种影响将随曲率半径的减小明显地增大;   (6) 基体金属和覆盖层的表面粗糙度影响测量的精度,粗糙度增大,影响增大。

  • 超声波的清洗

    超声波的清洗作用是一个十分复杂的过程,在这里只做一简单介绍。超声波作用包括超声波本身具有的能量作用,空穴破坏时放出的能量作用以及超声波对媒液的搅拌流动作用等。1超声波的能量作用:超声波具有很高的能量,它在传媒液体中传播时,把能量传递给传媒质点,传媒质点再将能量传递到清洗对象物表面并造成污垢解离分散。声波是一种纵波,即传媒质点的振动方向与波的传播方向一致。在纵波传播过程中,传媒质点运动造成质点分布不匀,出现疏密不同的区域,在质点分布稀疏区域声波形成负声压,在分布致密区域声波形成正声压,并形成负声压、正声压的交替连续变化,这种变化不仅使传媒质点获得一定动能而且获得一定加速度。高频超声波的能量作用是异常巨大的。在具有能量的传媒质点与污垢粒子相互作用时,把能量传递给污垢并造成它们的解离分散。2空穴破坏时释放的能量作用:超声波与通常声波一样在媒液中传播是直线运动方式。运动速度与媒液有关,在不同媒液中传播速度不同,超声波的频率比通常的声波频率高,所以波长短,能量高。在媒液中直线前进的超声波,到达与其它物质的界面时,要发生透射和反射运动,发生透射与反射的程度是由构成界面物质的声阻抗率决定的,声阻抗率是传声媒质某一给定表面的声压与质点速度之比。各种传声媒质都有固定的声阻抗率。当超声波行进到声阻抗率相差很大的两种媒质的界面时,主要发生反射,而在声阻抗率相近的两种媒质的界面上主要发生透射。如当超声波行进到水-空气界面时,由于空气密度远小于水,因此声阻抗率也相差较远,所以此时声波主要发生反射;同样超声波行进到水-钢铁界面时,由于两种媒质之间声阻抗率相差很大,所以主要也发生反射。而当超声波行进到水-塑料界面时,由于两种媒质之间声阻抗率相近,所以超声波主要发生透射。反射回来的超声波与前进中的超声波合成后,当每一点的位相差保持稳定不变时,发生共振,而在某些固定位置上相互叠加而加强,媒液在这些位置上容易产生空穴。由于超声波以正压和负压重复交替变化的方式向前传播,负压时在媒液中造成微小的真空洞穴,这时溶解在媒液中的气体会很快进入空穴并形成气泡;而在正压阶段,空穴气泡被绝热压缩,最后被压破,在气泡破裂的瞬间对空穴周围会形成巨大的冲击,使空穴附近的液体或固体都会受到上千个大气压的高压。放出巨大的能量。这种现象在低频率范围的超声波领域激烈地产生。当空穴突然爆破时,能把物体表面的污垢薄膜击破而达到去污的目的。当使用的超声波频率在28~100khz范围内时,超声波的几种作用都存在。而空穴消失过程产生的巨大压力作用十分突出。当使用的超声波频率在特高频率范围时,超声波的作用主要是其本身巨大的能量作用,并不产生空穴,但这种巨大的能量对细微污垢的去除清洗作用很大。另外超声波不仅有帮助媒液加快溶解污垢的作用,而且也起到搅拌作用,使媒液发生运动,新鲜媒液不断作用于污垢加速溶解。所以超声波强大的冲击力如果作用发挥适当的话,可促使顽固附着的污垢解离,而且清洗力不均匀的情况得以避免。但由于超声波使用过程中存在对清洗对象造成损伤的可能性,所以当清洗对象很脆弱的情况不宜采用超声波清洗。洗涤媒液的选择超声波清洗都是以一定的液体作为媒质的条件下进行的,选择媒液是以能充分发挥超声波的作用达到去污目的为原则的。由于水是产生空穴效果最好的液体,通常用清水作媒液,用量不很大,也不需要采用喷射或搅拌的方法来使水剧烈流动。但由于清水对油性污垢的分散解离能力较差,因此实际上常采用表面活性剂或酸碱水溶液作超声波清洗的媒液。由于各种亲水性或亲油性有机溶剂产生空穴效果的能力比水差,所以如果用这些有机溶剂作媒液,实际上要靠它们对污垢的溶解分散能力作补充才能有效地去除污垢。而且有机溶剂往往存在易然、易爆和有毒的问题,因此通常总是用水作媒液。用超声波清洗应注意的问题在一定条件下用超声波清洗才能过得较好效果,因此需要注意以下问题。1克服空穴产生的不均匀性:前已述及空穴是沿着最大声压带不均匀地产生的。当清洗对象在洗液中处于静置状态时,就会由于空穴产生的不均匀造成清洗的不均匀现象。通常为克服这种现象的发生,常采用以下方法:①移动清洗对象:当清洗对象在洗槽中移动时,空穴能较均匀地作用于对象的表面,最常用的方法是让清洗对象发生旋转,当物体位于空穴最大声压带垂直相交的平面上清洗效果比较专一。②改变洗液深度:当洗槽液面上下变动时,空穴最大声压带的位置也发生相应变化可以克服不均匀性。③形成矩形波形:把几种不同波长的超声波合成在一起,所产生的超声驻波,最大声压带范围扩大,可以克服不均性。④防止共振波的生成:如果使液面与清洗对象表面不相互垂直,可防止在清洗对象表面发生受迫振动并形成共振波。这样,一方面可减少清洗不匀,同时也可避免清洗对象损伤。2克服由于超声波被反射而造成的效果不均匀性:当超声波反射发生在清洗对象内侧的表面,金属管道的内表面,金属物品深陷处的凹面以及碰到金属网做的清洗物容器时,都会妨碍超声波的透过而造成超声波作用的不均匀,这是超声波清洗中常出现的问题。3空穴作用造成的清洗对象的损伤:空穴作用有可能使清洗对象损伤,性能变得脆弱。另外,在用超声波处理锐利的刀具的刀刃、电子机械上用的极薄的金属片时,由于空穴作用造成破损的事情是经常发生的,而且是频率越低的超声波空穴作用强度越大。因此在使用超声波清洗时,对清洗对象的形状、材料的性质都要考虑到。只有选择适当的超声波频率,采用适当的使用方法才能取得好的清洗效果。

  • 【转帖】超声波流量计※超声波流量计原理※超声波流量计价格

    关于便携式超声波流量计、手持式超声波流量计、超声波流量计原理以及超声波流量计价格是什么多少钱, 比如:科隆超声波流量计、多普勒超声波流量计的价位各是多少?超声波气体流量计、超音波流量计的品牌有哪些, 这些超声波流量计精度都比较高的那种。下面我们看看超声波流量计的详解吧:管段式超声波流量仪表引是以“速度差法”为原理, 测量圆管内液体流量的仪表。它采用了先进的多脉冲技术、信号数字化处理技术及纠错技术, 使流量仪表更能适应工业现场的环境, 计量更方便、经济、准确。产品达到国内外先进水平, 可广泛应用于石油、化工、冶金、电力、给排水等领域。1、智能化标准信号输出, 人机界面友好、多种二次信号输出, 供您任意选择。2、电路更优化、集成度高、功耗低、可靠性高。3、无机械传动部件不容易损坏, 免维护, 寿命长。4、独特的信号数字化处理技术, 使仪表测量信号更稳定、抗干扰能力强、计量更准确。5、管段式小管径测流经济又方便, 测量精度高手持式超声波流量计F601/G601的技术参数如下:测量测量原理:时差相关原理流速: 0.01~25 m/s分辨率: 0.025 cm/s重复性: 0.15%读数, 视应用而定精度:(流场充分发展且 径向对称)体积流量: ± 1%读数, 视应用而定± 0.5%读数, 经过标定流速: ± 0.5%读数, 视应用而定可测介质: 所有导声流体, 且气泡或固体颗粒的体积含量14h显示: 2 x 16 字符, 点阵, 带背光工作温度: -10 ~ 60℃功耗: 100000条测量量通讯接口: RS232, RS485(可选)可通讯的参数: 实测值, 记录值, 参数记录软件: FluxData(可选)功能: 下载测量值/记录, 图形显示, 格式转换操作系统: ????WindowsTM ????过程输出(可选)输出与主设备电隔离输出组数视输出类型而定. 更多信息请洽FLEXIM电流范围: (0/4-20) mA精度: 0.1%读数± 15μA有源输出: Rext 500??无源输出: Uext 24V, Rext 1k??电压范围: (0~1) V或(0~10) V精度: 0~1V: 0.1%读数± 1mV0~10V: 0.1%读数± 10mV仪表阻抗: Ri = 500??频率范围: 0~1kHz或0~10kHz集电极开路: 24 V/4mA开关量集电极开路: 24 V/4mA干簧继电器: 48 V/0.1A功能,如状态输出: 上下限, 符号变化或出错脉冲输出: 值: (0.01~1000)units宽度: (80~1000)ms过程输入(可选)输入与主设备电隔离, 最多4组输入.温度类型: Pt100, 四线制范围: -50℃~400℃分辨率: 0.1 K精度: ± (0.02K + 0.1%读数)电流范围: 有源: (0~20)mA无源: (-20~20)mA精度: 0.1%读数± 10 A有源输入: Ri = 50??无源输入: Uext 24V, Rext 1k??电压范围: (0~1) V或(0~10) V精度: 0~1V: 0.1%读数± 1mV0~10V: 0.1%读数± 10mV仪表阻抗: Ri= 1M夹装式探头

  • 超声波微气象传感器气象要素选型

    超声波微气象传感器气象要素选型

    超声波微气象传感器气象要素选型超声波微气象传感器广泛应用于气象、环保、机场、农林、水文、事、仓储、科学研究等领域。可以实时监测风速、风向、雨量、温度、湿度、气压、太阳辐射、土壤温度、土壤湿度等九要素气象参数。超声波微气象传感器配置的微电脑气象数据采集仪具有气象数据采集、实时时钟、定时存储、参数设定、参数和气象历史数据掉电保护等功能。超声波微气象传感器采用标准RS232/485通讯功能,支持MODBUS通讯协议,可以通过有线、移动无线GPRS和无线数传电台等多种通讯方式与气象计算机组成气象监测系统。电源系统有市电、直流和太阳能系统多种方式。采用全不锈钢支架和野外防护箱,外形美观、耐腐蚀、抗干扰。[img=超声波微气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210100905515838_6451_4136176_3.jpg!w690x690.jpg[/img]无线传输方式可根据通讯距离的不同分为短距离无线传输、中距离无线传输、长距离无线传输三种无线传输方式,也可通过无线通讯方式实现一个中心对多个站点的实时监测。(1)短距离无线传输方式:采用先进的微波射频通讯传输模块,通讯距离在0~300米范围之内,主要适合于校园内、场区内等短距离范围内数据传输,无任何通讯费用。(2)长距离无线传输方式:采用GSM网/GPRS网通讯技术,结合Internet网络通讯协议,配备无线通讯控制器可实现监测中心对各个站点进行实时监测,远程采集各监测站点的气象数据,不受距离限制,数据传输可靠。[img=超声波微气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210100906128344_8429_4136176_3.jpg!w690x690.jpg[/img]

  • 超声波风速传感器常见应用

    [align=center][/align]超声波风速传感器是一种全数字信号检测仪器,它可以通过空气中超声波的传播时间来计算风速。随着海洋的开发和利用,该设备被广泛应用于海洋领域。在开发海洋的同时,人们还必须防止海洋给人类带来的灾难,特别是表面上风速变化的问题。因此,超声波风速传感器已成为他们的首选。超声波风速传感器采用超声波时差法测量风速。空气中的声音速度将叠加在风速上。如果超声波的传播方向与风向相同,则其速度会增加。相反,如果超声波传播的方向与风向相反,则其速度将变慢。因此,在固定的检测条件下,超声波在空气中传播的速度可以对应于风速函数。通过计算可以得到准确的风速和风向。当声波在空中传播时,其速度受温度的影响很大 超声波风速传感器在两个通道上检测到两个相反的方向,所以温度对声波速度的影响可以忽略不计。在海洋领域中使用超声波风速传感器应该注意的是,根据该地区的使用情况,通常可以将其分成两个区域:海洋和离岸:超声波风速传感器的海洋应用:大部分海洋风暴实际上都来自遥远的海域,因此在这个位置建立一个气象观测平台可以作为早期预报。目前,为了研究海洋气象变化,人们在很多遥远的海域。设置了沿海气象观测平台,但由于偏远地区设备维护和恶劣天气环境的不便,目前这些气象平台采用低成本,鲁棒的仪器,如三杯超声波风速传感器。近海地区:在近海地区和沿海等地,通常人们会设置带有超声波风速传感器的气象站,因为这些地区维护,检查和其他工作更方便,因此可以使用一些高成本仪器,如超声波,光学其他风速传感器设备。由于传统的风速计有旋转的机械部件,使得这些运动部件容易受到传感器的损坏,超声波风速传感器的设计是为了避免任何机械部件,以确保更可靠的操作。同时,超声波风速传感器具有长期稳定性而无需维护。关于声音,声音通过流动的物体在交叉点传输。在电子声学传感器和它们之间的超声波信号之间进行传输。沿着正交轴,由风速引起的声波的传播时间是不同的。 CV7超声波风速传感器在它们之间传递了四个不同的测试,但是测试的头部被用于计算。结合测量计算风速,风向由基准轴计算。温度测量用于校准。超声波风速传感器的设计减少了倾角的影响(由于传感器空间的形状,传感器倾斜的影响可以被部分校正)。另外,CV7还可以传输4个独立的测试数据,以确保正向矢量计算的正确性。该方法的风速灵敏度为0.15m / S,线性度高达40m / s。在超声波风速传感器的应用中,超声波风速传感器具有重量轻,无移动部件,坚固耐用的特点。它不需要维护和现场校准,可以同时输出风速和风向。可以根据自己的需要选择风速,输出频率和输出格式单位。加热单元(推荐用于寒冷条件下)或模拟输出也可以根据需要选择。超声波风速传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器http://mall.ofweek.com/category_44.html[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 超声波清洗原理及注意

    众所周知,人们所听到的声音是频率20Hz~20000Hz的声波信号,高于20000Hz的声波称为超声波,声波的传递依照正弦曲线纵向传播,即一层强一层弱,依次传递,当弱的声波信号作用于液体中时,会对液体产生一定的负压,使液体内形成许许多多微小的气泡,而当强的声波信号作用于液体时,则会对液体产生一定的正压,因而,液体中形成的微小气泡被压碎。经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能最极大的冲击波,相当于瞬间产生的高温和高达上千个大气压,这种现象被称之为“空化效应”,超声波淸洗正是应用液体中气泡破裂所产生的冲击波来达到淸洗和冲刷工件内外表面的作用。 超声波可以分为三种,即次声波、声波、超声波。次声波的频率为20Hz以下,声波的频率为20Hz~20kHz,超声波的频率则为20kHz以上。其中次声波和超卢波一般人耳是听不到的。超卢波由于频率高、波长短,因而传播的方向性好、穿透能力强。超声波淸洗机原理主要是将换能器,将功率超声频源的声能,并且要转换成机械振动,通过淸洗槽壁使之将槽子中的淸洗液辐射到超声波。由于受到辐射的超声波,使之槽内液体中的微气泡能够在声波的作用下从而保持振动。 当声压或者声强受到压力到达一定程度时候,气泡就会迅速膨胀,然后又突然闭合。在这段过程中,气泡闭合的瞬间产生冲击波,使气泡周围产生1012Pa~1013Pa的压力,这种超声波气化所产生的巨大压力能破坏不溶性污物而使它们分化于溶液中。 超声波一方面破坏污物与淸洗件表面的吸附,另一方面能引起污物层的疲劳破坏而被剥离,气体型气泡的振动对固体表面进行擦洗,污层一旦有缝可钻,气泡立即“钻入”振动使污层脱落,由于空化作用,两种液体在界面迅速分散而乳化,当固体粒子被油污裹着而粘附在淸洗件表面时,油被乳化,固体粒子自行脱落,超声在淸洗液中传播时会产生正负交变的声压,形成射流,冲击清洗件,同时由于非线性效应会产生声流和微声流,而超声空化在固体和液体界面会产生高速的微射流,所有这些作用,能够破坏污物,除去或削弱边界污层,增加搅拌、扩散作用,加速可溶性污物的溶解,强化化学淸洗剂的淸洗作用。 由此可见,凡是液体能浸到且声场存在的地方都有淸洗作用,其特点适用于表面形状非常复杂的零件的淸洗。尤其是采用这一技术后,可减少化学溶剂的用量,从而大大降低环境污染。 超声波清洗机使用注意事项 1、超声波淸洗机电源及电热器电源必须有良好接地装置。 2、超声波清洗机严禁无清洗液开机,即清洗缸没有加一定数量的淸洗液,不得合超声波开关。 3、有加热设备的淸洗设备严禁无液时打开加热开关。 4、禁止用重物(铁件)撞击淸洗缸缸底,以免能童转换器晶片受损。 5、超声波发生器电源应单独使用一路220V/50Hz电源并配装2000W以上稳压器。 6、淸洗缸缸底要定期冲洗,不得有过多的杂物或污垢。 7、每次换新液时,待超声波起动后,方可洗件。

  • 超声波测厚仪的应用领域介绍

    超声波测厚仪由于处理方便,非金属材料的厚度,并有良好的指向性,超声技术测量金属,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,超声波测厚仪广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、  方法  使用超声波测试误差减少方法,超声波测厚仪被测物表面的光洁度关系很大,一般表面生锈的物体要用砂纸打磨下这样测出厚度更精确,超声波测厚仪对表面有电镀层的、有油漆测量厚度是要选用单晶探头,单晶探头的超声波测厚仪可以回波-回波模式,无需去除油漆涂层而测量厚度。  国家标准  GB11344-1989接触式超声波脉冲回波法测厚  检定规程:  JJF1126-2004超声波测厚仪校准规范  预防及注意  1、正确选用测厚探头  (1)测曲面工件,采用曲面探头护套或选用小管径专用探头(φ6mm),可较精确的测量管道等曲面材料。  (2)对于晶粒粗大的铸件和奥氏体不锈钢等,应选用频率较低的粗晶专用探头(2.5MHz).  (3)测高温工件,应选用高温专用探头(300-600°C),切勿使用普通探头。  (4)探头表面有划伤,可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。  2、对被检物表面进行处理。  通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。  3、正确识别材料,选择合适声速。  在测量前一定要查清被测物是哪种材料,正确预置声速。对于高温工件,根据实际温度,按修正后的声速预置或按常温测量后,将厚度值予以修正。此步很关键,现场检测中经常因忽视这方面的影响而出错。  4、正确使用耦合剂。  首先根据使用情况选择合适的种类,当使用在光滑材料表面,可以使用低粘度的耦合剂 当使用在粗糙表面、垂直表面及顶表面,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高,耦合剂应涂在探头上超声波测厚仪用超声波在介质中的脉冲反射对物体进行厚度测试称超声测厚超声波测厚仪主要有主机和探头两部分组成。主机电路包括发超声测厚仪射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的间的一半而得到试样的厚度  自然界的声波以频率可以划分为三大类:次声、声、超声。频率低于20Hz的波动称为次声 频率在20-20kHz之间的波动称为声 频率在20KHz以上的波动称为超声。我们人耳可以听见声但是听不见次声和超声。我们超声医学应用的是超声,频率在MHz数量级。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播,具有良好的束射性和方向性。  应用

  • 超声波大量程物/液位传感器

    MHZ(兆洲)牌超声波大量程物/液位传感器MH-A30A4是重庆兆洲科技发展有限公司在新的一年里, 最新专业制造的通用型超声波物/液位传感器,它博采众长,吸取了国内外多种物/液位传感器优点,实现了全数字化,人性化设计理念,具有完善的物/液位测控功能.数据传输功能和人机交流功能。主芯片采用进口工业级单片机,数字温度补偿和超宽电压输入稳压等数十块相关专用集成电路。具有抗干扰性强,可选择模拟量,开关量及RS485输出,方便的与相关设施接口。本机是ABS材料外壳,防护等级为IP65,它不必接触工业介质就能满足大部分物/液位测量要求,从而彻底地解决了压力式、电容式、浮子式等传统测量方式带来的缠绕、堵塞、泄露、介质腐蚀、维护不便等缺点。最大量程:30m 盲区:1m 指向角(Q)≈12°工作频率:20KHz~43.0KHz(因型号规格而不同)输出信号:4~20mA (其它方式可选)最大负载阻抗:300Ω最小显示分辨率:1mm 精度:±0.3%×最大量程工作温度:-10℃~60℃ 工作压力:常压外形尺寸:φ110x160mm 重量2.5kg工作电压:DC12—36V 功耗1.5W进线电缆: Φ5~10mm×5m方便的螺纹安装(M30×1.5)

  • 【原创】超声波提取的机理

    超声波提取技术(Ultrasound Extraction, UE)是近年来应用到中草药有效成份提取分离的一种最新的较为成熟的手段。 超声波是指频率为20千赫~50兆赫左右的电磁波,它是一种机械波,需要能量载体—介质—来进行传播。超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。在工业应用方面,利用超声波进行清洗、干燥、杀菌、雾化及无损检测等,是一种非常成熟且有广泛应用的技术。超声波萃取的原理 超声波萃取中药材的优越性,是基于超声波的特殊物理性质。主要是主要通过压电换能器产生的快速机械振动波来减少目标萃取物与样品基体之间的作用力从而实现固--液萃取分离。(1)加速介质质点运动。高于20 KHz声波频率的超声波的连续介质(例如水)中传播时,根据惠更斯波动原理,在其传播的波阵面上将引起介质质点(包括药材重要效成分的质点)的运动,使介质质点运动获行巨大的加速度和动能。质点的加速度经计算一般可达重力加速度的二千倍以上。由于介质质点将超声波能量作用于药材中药效成分质点上而使之获得巨大的加速度和动能,迅速逸出药材基体而游离于水中。(2)空化作用。超声波在液体介质中传播产生特殊的“空化效应”,“空化效应”不断产生无数内部压力达到上千个大气压的微气穴并不断“爆破”产生微观上的强大冲击波作用在中药材上,使其中药材成分物质被“轰击”逸出,并使得药材基体被不断剥蚀,其中不属于植物结构的药效成分不断被分离出来。加速植物有效成份的浸出提取。(3)超声波的振动匀化(Sonication)使样品介质内各点受到的作用一致,使整个样品萃取更均匀。综上所述,中药材中的药效物质在超声波场作用下不但作为介质质点获得自身的巨大加速度和动能,而且通过“空化效应”获得强大的外力冲击,所以能高效率并充分分离出来。超声波萃取的特点(characteristic) 适用于中药材有效成份的萃取,是中药制药彻底改变传统的水煮醇沉萃取方法的新方法、新工艺。与水煮、醇沉工艺相比,超声波萃取具有如下突出特点:(1)无需高温。在40℃-50℃水温F超声波强化萃取,无水煮高温,不破坏中药材中某些具有热不稳定,易水解或氧化特性的药效成份。超声波能促使植物细胞地破壁,提高中药的疗效。(2)常压萃取,安全性好,操作简单易行,维护保养方便。(3)萃取效率高。超声波强化萃取20~40分钟即可获最佳提取率,萃取时间仅为水煮、醇沉法的三分之一或更少。萃取充分,萃取量是传统方法的二倍以上。据统计,超声波在65~70篊工作效率非常高。而温度在65篊度内中草药植物的有效成份基本没有受到破坏。加入超声波后(在65度条件下),植物有效成份提取时间约40分钟。而蒸煮法的蒸煮时 间往往需要两到三小时,是超声波提取时间的3倍以上时间。每罐提取3次,基本上可提取有效成份的90%以上。(4)具有广谱性。适用性广,绝大多数的中药材各类成份均可超声萃取。(5)超声波萃取对溶剂和目标萃取物的性质(如极性)关系不大。因此,可供选择的萃取溶剂种类多、目标萃取物范围广泛。(6)减少能耗。由于超声萃取无需加热或加热温度低,萃取时间短,因此大大降低能耗。(7)药材原料处理量大,成倍或数倍提高,且杂质少,有效成分易于分离、净化。(8)萃取工艺成本低,综合经济效益显著;(9)超声波具有一定的杀菌作用,保证萃取液不易变质。 目前,实验室广泛使用的超声波萃取仪是将超声波换能器(Transducer)产生的超声波通过介质(通常是水)传递并作用于样品,这是一种间接的作用方式,声振强度较低,因而大大降低了超声波萃取效率。此外,通常实验室所用的超声波发生器功率较大

  • 【分享】超声波提取的机理

    超声波提取技术(Ultrasound Extraction, UE)是近年来应用到中草药有效成份提取分离的一种最新的较为成熟的手段。 超声波是指频率为20千赫~50兆赫左右的电磁波,它是一种机械波,需要能量载体—介质—来进行传播。超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。在工业应用方面,利用超声波进行清洗、干燥、杀菌、雾化及无损检测等,是一种非常成熟且有广泛应用的技术。超声波萃取的原理 超声波萃取中药材的优越性,是基于超声波的特殊物理性质。主要是主要通过压电换能器产生的快速机械振动波来减少目标萃取物与样品基体之间的作用力从而实现固--液萃取分离。(1)加速介质质点运动。高于20 KHz声波频率的超声波的连续介质(例如水)中传播时,根据惠更斯波动原理,在其传播的波阵面上将引起介质质点(包括药材重要效成分的质点)的运动,使介质质点运动获行巨大的加速度和动能。质点的加速度经计算一般可达重力加速度的二千倍以上。由于介质质点将超声波能量作用于药材中药效成分质点上而使之获得巨大的加速度和动能,迅速逸出药材基体而游离于水中。(2)空化作用。超声波在液体介质中传播产生特殊的“空化效应”,“空化效应”不断产生无数内部压力达到上千个大气压的微气穴并不断“爆破”产生微观上的强大冲击波作用在中药材上,使其中药材成分物质被“轰击”逸出,并使得药材基体被不断剥蚀,其中不属于植物结构的药效成分不断被分离出来。加速植物有效成份的浸出提取。(3)超声波的振动匀化(Sonication)使样品介质内各点受到的作用一致,使整个样品萃取更均匀。综上所述,中药材中的药效物质在超声波场作用下不但作为介质质点获得自身的巨大加速度和动能,而且通过“空化效应”获得强大的外力冲击,所以能高效率并充分分离出来。超声波萃取的特点(characteristic) 适用于中药材有效成份的萃取,是中药制药彻底改变传统的水煮醇沉萃取方法的新方法、新工艺。与水煮、醇沉工艺相比,超声波萃取具有如下突出特点:(1)无需高温。在40℃-50℃水温F超声波强化萃取,无水煮高温,不破坏中药材中某些具有热不稳定,易水解或氧化特性的药效成份。超声波能促使植物细胞地破壁,提高中药的疗效。(2)常压萃取,安全性好,操作简单易行,维护保养方便。(3)萃取效率高。超声波强化萃取20~40分钟即可获最佳提取率,萃取时间仅为水煮、醇沉法的三分之一或更少。萃取充分,萃取量是传统方法的二倍以上。据统计,超声波在65~70篊工作效率非常高。而温度在65篊度内中草药植物的有效成份基本没有受到破坏。加入超声波后(在65度条件下),植物有效成份提取时间约40分钟。而蒸煮法的蒸煮时 间往往需要两到三小时,是超声波提取时间的3倍以上时间。每罐提取3次,基本上可提取有效成份的90%以上。(4)具有广谱性。适用性广,绝大多数的中药材各类成份均可超声萃取。(5)超声波萃取对溶剂和目标萃取物的性质(如极性)关系不大。因此,可供选择的萃取溶剂种类多、目标萃取物范围广泛。(6)减少能耗。由于超声萃取无需加热或加热温度低,萃取时间短,因此大大降低能耗。(7)药材原料处理量大,成倍或数倍提高,且杂质少,有效成分易于分离、净化。(8)萃取工艺成本低,综合经济效益显著;(9)超声波具有一定的杀菌作用,保证萃取液不易变质。 目前,实验室广泛使用的超声波萃取仪是将超声波换能器(Transducer)产生的超声波通过介质(通常是水)传递并作用于样品,这是一种间接的作用方式,声振强度较低,因而大大降低了超声波萃取效率。此外,通常实验室所用的超声波发生器功率较大

  • 【资料】——超声波提取技术

    超声波提取技术(Ultrasound Extraction, UE)是近年来应用到中草药有效成份提取分离的一种最新的较为成熟的手段。超声波是指频率为20千赫~50兆赫左右的电磁波,它是一种机械波,需要能量载体—介质—来进行传播。超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。在工业应用方面,利用超声波进行清洗、干燥、杀菌、雾化及无损检测等,是一种非常成熟且有广泛应用的技术。超声波萃取的原理超声波萃取中药材的优越性,是基于超声波的特殊物理性质。主要是主要通过压电换能器产生的快速机械振动波来减少目标萃取物与样品基体之间的作用力从而实现固--液萃取分离。(1)加速介质质点运动。高于20 KHz声波频率的超声波的连续介质(例如水)中传播时,根据惠更斯波动原理,在其传播的波阵面上将引起介质质点(包括药材重要效成分的质点)的运动,使介质质点运动获行巨大的加速度和动能。质点的加速度经计算一般可达重力加速度的二千倍以上。由于介质质点将超声波能量作用于药材中药效成分质点上而使之获得巨大的加速度和动能,迅速逸出药材基体而游离于水中。(2)空化作用。超声波在液体介质中传播产生特殊的“空化效应”,“空化效应”不断产生无数内部压力达到上千个大气压的微气穴并不断“爆破”产生微观上的强大冲击波作用在中药材上,使其中药材成分物质被“轰击”逸出,并使得药材基体被不断剥蚀,其中不属于植物结构的药效成分不断被分离出来。加速植物有效成份的浸出提取。(3)超声波的振动匀化(Sonication)使样品介质内各点受到的作用一致,使整个样品萃取更均匀。综上所述,中药材中的药效物质在超声波场作用下不但作为介质质点获得自身的巨大加速度和动能,而且通过“空化效应”获得强大的外力冲击,所以能高效率并充分分离出来。超声波萃取的特点(characteristic)适用于中药材有效成份的萃取,是中药制药彻底改变传统的水煮醇沉萃取方法的新方法、新工艺。与水煮、醇沉工艺相比,超声波萃取具有如下突出特点:(1)无需高温。在40℃-50℃水温F超声波强化萃取,无水煮高温,不破坏中药材中某些具有热不稳定,易水解或氧化特性的药效成份。超声波能促使植物细胞地破壁,提高中药的疗效。(2)常压萃取,安全性好,操作简单易行,维护保养方便。(3)萃取效率高。超声波强化萃取20~40分钟即可获最佳提取率,萃取时间仅为水煮、醇沉法的三分之一或更少。萃取充分,萃取量是传统方法的二倍以上。据统计,超声波在65~70º C工作效率非常高。而温度在65º C度内中草药植物的有效成份基本没有受到破坏。加入超声波后(在65度条件下),植物有效成份提取时间约40分钟。而蒸煮法的蒸煮时间往往需要两到三小时,是超声波提取时间的3倍以上时间。每罐提取3次,基本上可提取有效成份的90%以上。(4)具有广谱性。适用性广,绝大多数的中药材各类成份均可超声萃取。(5)超声波萃取对溶剂和目标萃取物的性质(如极性)关系不大。因此,可供选择的萃取溶剂种类多、目标萃取物范围广泛。(6)减少能耗。由于超声萃取无需加热或加热温度低,萃取时间短,因此大大降低能耗。(7)药材原料处理量大,成倍或数倍提高,且杂质少,有效成分易于分离、净化。(8)萃取工艺成本低,综合经济效益显著;(9)超声波具有一定的杀菌作用,保证萃取液不易变质。目前,实验室广泛使用的超声波萃取仪是将超声波换能器(Transducer)产生的超声波通过介质(通常是水)传递并作用于样品,这是一种间接的作用方式,声振强度较低,因而大大降低了超声波萃取效率。此外,通常实验室所用的超声波发生器功率较大(³ 300W),因而会发出令人感觉不适的噪音(须采取隔音措施或操作期间远离超声波发生器)。超声装置亦分为浸入式和外壁式两种,采用复频共振方式,比单一频率提取效率大大地提高。转载于网络。

  • 防爆超声波液位计

    防爆超声波液位计 ECHOTOUCH系列 LU20/LU20-IS有对这款了解的吗?朋友说是北京康纳森conasen供应,了解的给点建议

  • 【分享】超声波清洗原理

    超声波清洗源于二十世纪六十年代,自超声波技术问世以来,科学家们发现:一定频率范围内的超声波,作用于液体介质里,可以达到清洗的作用。经过一段时间的研究和试验,不仅得到了满意的效果,而且发现其清洗效率极高,由此超声波清洗机被逐渐运用于各行各业中去。在应用初期,由于电子工业的限制,超声波清洗设备电源的体积比较庞大,稳定性及使用寿命不太理想,价格昂贵,一般的工矿企业难以承受,但其出色的清洗效率及效果,仍然让部分实力雄厚的国有企业一见倾心。随着电子工业的飞速发展,新一代的电子元器件层出不穷,应用新的电子线路以及新的电子元器件,超声波电源的稳定性及使用寿命进一步的提高,体积减小,价格逐渐降低。二十世纪八十年代末,第三代超声波电源问世,既逆变电源,应用最新IGBT元件。新的超声波电源具有体积小,可靠性高,寿命长等特点,清洗效率得以进一步提高,而价格也降到了大部分企业可以接受的程度。 众所周知,人们所听到的声音是频率20~20000Hz的声波信号,高于20000Hz的声波称之为超声波,声波的传递依照正弦曲线纵向传播,即一层强一层弱,依次传递,当弱的声波信号作用于液体中时,会对液体产生一定的负压,使液体内形成许许多多微小的气泡,而当强的声波信号作用于液体时,则会对液体产生一定的正压,因而,液体中形成的微小气泡被压碎。经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能量极大的冲击波,相当于瞬间产生几百度的高温和高达上千个大气压,这种现象被称之为“空化效应”,超声波清洗正是应用液体中气泡破裂所产生的冲击波来达到清洗和冲刷工件内外表面的作用。 当超声波电源将50Hz的日常供电频率改变为28KHz后,通过输出电缆线将其输送给粘接在盛放清洗溶液的清洗槽底部的超声波发生器(换能器),由换能器将高频的电能转换成机械振动并发射至清洗液中,当高频的机械振动传播到液体里后,清洗液内即产生上述空化现象,达到清洗的目的。由于超声波的频率很高,在液体中所产生的空化作用可以达到28000次/秒,几乎可以说是不断地在进行,在液体中由于空化现象所产生的气泡数量众多且无所不在,因此对于工件的清洗可以非常彻底,即使是形状复杂的工件内部,只要能够接触到溶液,就可以得到彻底的清洗,又因为每个气泡的体积非常微小,因此虽然它们的破裂能量很高,但对于工件和液体来说,不会产生机械破坏和明显的温升。一般来说:用于清洗的超声波,其频率应在20KHz?80KHz之间,频率低噪音大,换能器的体积也偏大,高频率的超声波通常被应用于探伤,医疗诊断和超声波加湿。超声波设备概述一定频率范围内的超声波作用于液体介质内可起到清洗工件的作用。这一清洗技术自问世以来,受到了各行各业的普遍关注。超声波清洗机的运用极大地提高了工作效率和清洗精度,以往清洗死角、盲孔和难以触及的藏污纳垢之处一直使人们备感头痛,新技术的开发和运用使这一工作变得轻而易举。近年来,随着电子技术的日新月异,超声波清洗机也同我们日常生活离不开的收音机一样,经过了几代的演变,技术更加先进,效果更加显著,同样,它的价格也越来越多的被社会所接受,在各行各业中逐渐被广泛运用。超声波清洗设备主要由以下组件构成:1、清洗槽:盛放待洗工件不锈钢制成,可安装加热及控温装置。2、换能器(超声波发生器):将电能转换成机械能压电陶瓷换能器,频率、功率视具体机型。 3、电源:为换能器提供所需电能逆变电源,进口IGBT元件,安装过流保护线路。 换能器将高频电能转换成机械能之后,会产生振幅极小的高频震动并传播到清洗槽内的溶液中,在换能器的作用下,清洗液的内部将不断地产生大量微小的气泡并瞬间破裂,每个气泡的破裂都会产生数百度的高温和近千个大气压的冲击波,从而将工件冲刷干净。 从超声波清洗机的清洗原理我们不难理解,为什么它的清洗效率和效果都异常出色。一、不论工件形状多么复杂,将其放入清洗液内,只要是能接触到液体的地方,超声波的清洗作用都能达到。二、清洗时液体内产生的气泡非常均匀,工件的清洗效果也将非常均匀一致。三、配合清洗剂的使用,加速污染物的分离和溶解,可有效防止清洗液对工件的腐蚀。四、无需手工清理,杜绝了手工清洗对工件产生的伤害,避免繁重肮脏的体力劳动。 在我们所了解到的各行各业中,几乎每一个行业都有应用到超声波清洗机的地方,例如:机械行业;表面处理行业;医疗行业;仪器仪表行业;机电电子行业;光学行业;半导体行业;科教文化;钟表首饰;石油化工行业;纺织印染行业;其他。超声波清洗特点1、 清洗特点:1)超声波清洗对于手工及其它清洗方式不能完全有效地进行清洗的工件,具有显著的清洗效果,可彻底地达到清洗要求。2)超声波清洗对形状和结构复杂的工件尤为适用。3)超声波清洗可有效地降低污染,减少有毒溶剂对人类的损害。4)超声波清洗可根据不同的溶剂达到不同的效果,如:除油,除锈或磷化。5)超声波清洗是目前清洗效率最高的清洗方式,也是清洗效果最好的清洗方式。6)超声波清洗可大幅度降低劳动强度,杜绝劳动隐患。 2、 清洗效率:自超声波清洗技术问世以来,其出众的清洗效能深得广大行业用户的青睐,其中尤以其显著地提高了清洗效率及清洗效果而让人一见倾心。以往在肮脏的环境中通过繁重的体力劳动,需要长时间地进行手工清洗的复杂机械零件,应用了超声波清洗机以后,不仅改善了劳动环境,减轻了劳动强度,而且在大幅提高清洗精度的基础上,清洗时间缩短为原来的四分之一。较之现在所有清洗方法,超声波清洗的效率是最高的。 3、 清洗成本:在所有清洗方式中,清洗成本大体可分为:设备成本和消耗成本。超声波清洗设备使用寿命约为十年,除设备购置成本高于手工清洗和有机碱性溶剂刷洗外,低于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]清洗和高压水射流清洗,对于消耗成本,以有效尺寸为600×400×350mm,功率为1KW,价格约为1万元的超声波清洗机为例,工作一小时,耗电1度,费用约为0.5元,碱性金属清洗剂1公斤,价格约为20元,可反复使用20-50个小时(根据污染程度而定),相当于0.4-1元/小时,而一般工件清洗时间仅为3-15分钟即可,且一次清洗可对一定数量及体积的工件同时清洗,因此对于消耗成本而言,采用超声波清洗,不仅清洗效果最好,而且清洗成本相当于不到0.04元/件,还不算节省的劳动力成本,远远低于其他各类清洗方法。 4、 清洗效果:就清洗方式而言,运用于工业清洗的清洗方式一般为手工清洗,有机溶剂清洗,蒸汽[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]清洗,高压水射流清洗和超声波清洗,根据清洗效果可以明显地区分清洗的方式,超声波清洗被国际公认为当前效率最高,效果最好的清洗方式,其清洗效率达到了98%以上,清洗洁净度也达到了最高级别,而传统的手工清洗和有机溶剂清洗的清洗效率仅仅为60%-70%,即使是气象清洗和高压水射流清洗的清洗效率也低于90%,因此,在工业清洗中,超声波清洗机以其效率高,效果好,适用于大工作量清洗的特性无疑是清洗的最佳选择,这也是为什么凡是对洁净度要求高的行业,如:航空仪表,真空镀膜,光学器材,医疗器械等行业都选择超声波清洗的原因。本文摘自:[URL=http://www.labwater.cn]上海优普实业有限公司[/URL]

  • 超声波负离子加湿器工作原理

    新一代的超声波加湿设备采用先进的集成式机芯;一体模块式设计;稳定的双水位自动控制,有效的提高了设备的雾化加湿性能,使雾化颗粒均匀在5微米左右,使单位加湿量的能耗指标降至最低。是一种空气加湿的仪器。 利用水槽底部换能器(超声波振子)将电能转换成机械能,向水中发射1.7MHz超声波。水表面在空化效应作用下产生直径为3-5μm的超微粒子。水雾粒子与流动空气进行热湿交换,达到等焓加湿空气的目的。 超声波负离子加湿器是国内外应用较广的一种加湿方式。超声波系列加湿器,在工作时无机械驱动、无噪音干扰、无污染,故障率低、能耗低、雾化效率高、维护简便、可靠。具有护肤美容、康体健身、净化环境等多种用途,是高效、可靠、实用的超声波空气质量调节加湿设备。既可以较大空间进行均匀加湿,也可对特殊空间进行局部温度补偿,具有较高的使用灵活性。

  • 这5招真能搞定超声波清洗噪音?

    这5招真能搞定超声波清洗噪音?使用超声波清洗是一种环保的洗涤方式,超声波设备可以说是每个实验室都必不可少的,但是提到缺点,确实让很多人头大,超声波噪声约有85dB以上,凡是使用过超声波的人,应该都深有感触,既然不能不用,那么是否有好的方法能够避免噪声的给广大分析人员带来的不适呢?下面我们一起一探究竟。我们都知道,超声波的原理是:利用超声空化在固体和液体界面所产生的高速微冲流能够除去或削弱边界污层,增加搅拌作用,加速可溶性污物的溶解,强化化学清洗剂的清洗作用,这样就能减少化学清洗剂的用量,甚至可以不用化学清洗剂。比起用各式化学洗剂来清洗,超声波清洗方法的确是既便捷又环保的好方法。超声波清洗的特点:1)超声波清洗可大大提高清洗表面的洁净度;2)清洗速度快、效果高;3)可连续自动化操作;4)可清洗外形复杂的清洗件;5)可进行大批量小型件清洗(如不锈钢填料环)。利用超声波可清洗各种精密仪器、仪表零件,但最好是清洗一些小部件。它可清除油污、锈蚀产物及制作表面的各种污物,对钢铁制件一般可用22~23KHz的超声波振荡作用,使制作表面的腐蚀产物疏松、脱落、剥离。何为超声空化噪声:【超声空化】是指液体在超声波作用下产生大量的非稳态的微小气泡和空泡(直径约50~500 μm),这些气泡和空泡随超声波的振动反复进行生成、迅速变大、溃灭闭合的循环过程。超声波噪声是超声空化带来的,叫做空化噪声。只要利用空化效应来清洗,则空化噪声基本上是不可避免的,它一定伴随着空化效应的发生而产生。为了降低空化噪声,就需要对空化噪声产生的原理进行研究,从而在不影响空化清洗能力的前提下,找出一些降低空化噪声对环境影响程度的方法。简单来说,空化噪声是这样产生的:超声波在水中产生超声空化,空化泡闭合时会产生基频谐波(与超声频率f0一致)和分频谐波(1/2f0,1/3f0,…),这些谐波叠加在一起就组成了空化噪声,其中分频谐波的频率较低,有可能进入人耳所能听见的频率范围之内,成为噪声的主要来源。超声频率越低,就有更多的分频谐波能够听得见,从而噪声就越大。空化噪声的危害:研究发现,空化噪声不但污染环境,而且对长期处于这种工作环境中的工作人员会引起健康状况的下降、工作能力的降低等。 众所周知,当噪声达到一定强度就会对人的听觉器官产生伤害,进而使听力下降。研究结果表明,一个人每天如果受到80dB以上噪声的影响,久而 久之,他的听力就会明显下降;人们如果短时间内受 到100~125dB噪声的影响,耳朵会暂时变聋;如果受到150dB以上噪声的短暂冲击,耳朵会永远失去听力。在当今提倡以人为本的社会里,如此大的噪声问题是必须加以解决的。

  • 涂层测厚仪和超声波测厚仪的不同之处

    涂层测厚仪和超声波测厚仪的不同之处涂层测厚仪:磁性和电涡流两种测量方法,可无损地检测磁性金属基体上非磁性覆盖层的厚度(如钢铁合金和硬磁性钢上的铝、铬、铜、锌、锡、橡胶、油漆等)以及非磁性金属基体上非导电的绝缘覆盖层的厚度(如铝、铜、锌、锡上的橡胶、塑料、油漆、氧化膜等。 超声波测厚仪是利用超声波的原理对金属、塑料、陶瓷、玻璃及其他任何超声波的良导体进行测量。一般是用在工业生产领域中对材料或零件做精确测量,其另一重要方面是可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。  超声波测厚仪http://www.dscr.com.cn/show.asp?id=374是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。  超声波测厚仪分为普通型与涂层型,普通型一般需要将测量点打磨出金属光泽后测量,涂层型分为只测量涂层厚度和透过涂层测母材两种;因为波的反射原理,只测量涂层厚度的超声波测厚仪品牌较多,而透过涂层测母材的超声波测厚仪较少。  测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制