当前位置: 仪器信息网 > 行业主题 > >

激光通过迈克尔干涉仪

仪器信息网激光通过迈克尔干涉仪专题为您提供2024年最新激光通过迈克尔干涉仪价格报价、厂家品牌的相关信息, 包括激光通过迈克尔干涉仪参数、型号等,不管是国产,还是进口品牌的激光通过迈克尔干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光通过迈克尔干涉仪相关的耗材配件、试剂标物,还有激光通过迈克尔干涉仪相关的最新资讯、资料,以及激光通过迈克尔干涉仪相关的解决方案。

激光通过迈克尔干涉仪相关的论坛

  • 【分享】迈克尔逊干涉仪工作视频

    视频展示了迈克尔逊干涉仪的结构以及它的工作过程,非常逼真形象![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=83043]迈克尔逊干涉仪工作视频[/url]

  • 【求助】迈克尔逊干涉仪 用途

    请教一个非常弱的问题:[color=#DC143C]迈克尔逊干涉仪的用途[/color],红外本来不就是一定波长范围在照射样品吗,与干涉仪的光程差有什么联系,搞不明白,请指点!!!

  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    [color=#990000]摘要:在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。[/color][size=18px][color=#990000]一、问题的提示[/color][/size] 作为一种高精密光学仪器,迈克尔逊激光干涉仪得到了非常广阔应用,它可用于测量波长、气体或液体折射率、厚度、位移和倾角,具备对长度、速度、角度、平面度、直线度和垂直度等的高精密测量。但在高精密测量中,迈克尔逊干涉仪会受到气氛环境的严重影响,为此一般将被测物放置在低压真空环境中,如图1所示,并对真空度进行精密控制,否则会带来以下问题:[align=center][color=#990000][img=激光干涉仪真空度控制,500,315]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813137507_5730_3384_3.jpg!w690x435.jpg[/img][/color][/align][color=#990000][/color][align=center]图1 迈克尔逊激光干涉仪典型测试系统结构[/align] (1)测试环境的气体折射率波动,会对高精密测量带来严重影响。如果采用专门的气体折射率修正装置,测量精度也只能达到微米或亚微米量级,而无法实现更高精度的测量。 (2)如果真空腔室内有温度变化,腔室内的气压也会剧烈变化,相应折射率也会发生剧烈波动而严重影响干涉仪测量。 (3)在抽真空过程中,内外压差会造成真空腔室的微小变形,同时也会造成光学窗口产生位移和倾斜,从而改变测量光路的光程。 (4)在有些变温要求的测试领域,要求被测物能尽快的被加热和温度均匀,这就要求将真空度控制在一定水平,如100Pa左右,由此来保留对流和热导热传递能力。 总之,在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制。本文将介绍真空度的自动化控制技术以及具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 迈克尔逊激光干涉仪测试过程中,真空度一般恒定控制在100kPa左右,并不随温度发生改变。为此,拟采用如图2所示的真空度控制系统进行实施,具体内容如下:[align=center][color=#990000][img=激光干涉仪真空度控制,690,411]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813484950_7314_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图2 迈克尔逊激光干涉仪测试真空度控制系统结构[/color][/align] (1)采用1torr量程的电容真空计进行真空度测量,其精度可达±0.2%。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在真空腔室的进气口安装步进电机比例阀以精密调节进气流量。 (4)控制过程中,真空泵开启后全速抽取并保持抽速不变。然后对控制器进行PID参数自整定,使控制器自动调节比例阀的微小开度变化实现腔室真空度的精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 【原创】FTIR中的Michelson干涉仪

    不同FTIR制造商在宣传各自产品时提到,采用:动态准直磁浮式迈克尔逊干涉仪、机械摇摆式迈克尔逊干涉仪、机械式迈克尔逊干涉仪,三种形式干涉仪主要特点及优势何在?先谢谢了!

  • 有没有基于空间调制干涉仪的傅里叶变换红外光谱仪?

    请问各位,市场上有基于空间调制干涉仪的傅里叶变换红外光谱仪吗?我看各家公司的产品都是在迈克尔逊干涉仪基础上进行改进的,需要动镜进行扫描,但是空间调制型的如sagnac干涉仪可以避免这种情况,而且体积更小,但是市面上为什么没有看到这类产品呢?

  • 红外中麦克逊干涉仪的作用·

    昨天参加了赛默飞世尔的FTIR的培训,一直不明白为什么要用麦克逊干涉,干涉之后的光,没啥特别的变化呀,,为啥不直接用光源呢,我的意思是不经过干涉器,直接照射 样品,,望解答,,在最后价格光栅分光系统分下光就OK了呀~~~~用干涉仪,,我真的想不明白它不能分光光呀,,有啥用呢~~~

  • 有ipad的玩迈克尔杰克逊那款游戏没?

    有ipad的玩迈克尔杰克逊那款游戏没?

    育碧出的。叫《迈克尔·杰克逊:体验HD》好像apple store 里有,大概几十RMB。http://ng1.17img.cn/bbsfiles/images/2012/05/201205141902_366955_1786353_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/05/201205141902_366957_1786353_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/05/201205141902_366958_1786353_3.jpg可惜没PC版,不然我也玩玩。

  • Zygo 发布全新 Qualifire 激光干涉仪

    [color=#000000]阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire?。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。[/color][color=#000000]Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。[/color][color=#000000]Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:[/color][color=#000000]Qualire激光干涉仪提供了许多新颖的新功能。[/color][b][color=#000000]智能附件接口[/color][/b][color=#000000]——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。[/color][b][color=#000000]体积小、重量轻[/color][/b][color=#000000]——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。[/color][b][color=#000000]移相器[/color][color=#000000](PMR)[/color][/b][color=#000000]——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:[/color][color=#000000]整体机械稳定性和对准[/color][color=#000000]降低损坏或错位的风险[/color][color=#000000]确保性能一致,减少重新校准的需要[/color][b][color=#000000]改进的用户体验[/color][/b][color=#000000]——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。[/color][b][color=#000000]更易于维护[/color][/b][color=#000000]—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。[/color][b][color=#000000]飞点[/color][/b][color=#000000]——用于减少伪影的可选模块,包括自动对焦功能。[/color][b][color=#000000]稳定变焦[/color][/b][color=#000000]——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。[/color][color=#000000]计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。[/color][来源:仪器信息网译] 未经授权不得转载

  • 【资料】求助--激光干涉仪

    [em10] 用于机床定位精度检测和重复定位精度检测的激光干涉仪什么牌子的好呀?在Renishaw和API之间徘徊,那位前辈能给指点一二?

  • 激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img=,578,450]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201754505855_5264_3712_3.jpg!w578x450.jpg[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img=,678,333]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755021895_7221_3712_3.jpg!w678x333.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755111914_6482_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755345695_9383_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

  • 激光干涉仪怎样测量五轴机床平移轴直线度误差?

    SJ6000激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在[b]SJ6000[color=#333333]激光干涉仪[/color][/b]动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img]http://www.chotest.com/Upload/2019/9/201909243125960.png[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910178906394.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img]http://www.chotest.com/Upload/2019/10/201910170468304.png[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img]http://www.chotest.com/Upload/2019/10/201910173593913.png[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

  • 【讨论】傅立叶变换红外是否会出现波数不准的问题?

    傅立叶型的红外仪器都是通过迈克尔逊干涉仪和激光波长采样,然后再通过FFT转换得到光谱的,那这类型的仪器会不会出现光栅型的仪器的波长不准的问题呢?比如说波数整体偏大或者偏小呢?出现这种情况应该怎么样处理?

  • 傅立叶变换红外光谱仪的原理

    傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。

  • 多巴胺与甲叉双丙烯酰胺迈克尔加成反应红外光谱分析

    [color=#444444]PDA与MBA的迈克尔加成反应,红外光谱测定后,怎么分析PDA加成到MBA上啊,MBA与新形成的混合物都有碳氮键,这样的话是不是没法用红外分析啊?求大神指点[/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370449_377.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w75h4465285_1547370450_451.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370450_190.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370450_994.png[/img][/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2019/0113/w133h4465285_1547370450_229.png[/img][/color]

  • 基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究

    【序号】:1【作者】: 刘家麟【题名】:基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究【期刊】:北京化工大学【年、卷、期、起止页码】:2022【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1022005132.nh&uniplatform=NZKPT&v=hxJv3NMhuDHY-jj4l0AX3Nzwz8LzS540BpAmeGTIX14YK0KG0XqVG210VP0so7Kz

  • 以太是存在的,一个简单的证实以太存在的实验及理论分析

    以太是存在的,一个简单的证实以太存在的实验及理论分析

    各位:一个简单的实验就可以证实以太的存在。这个实验是如此的简单,每个人都可以做一做。希望大家能验证这个实验,欢迎大家讨论及提出意见。我为此写了一篇论文,题为《关于本人在地表空间做的光线光斑移动实验及理论分析报告(定稿版 2015.3.14)》,已放在预印本系统及网络上,欢迎大家下载查看。我希望大家去下载看看我的论文,论文的理论分析更加精彩,我认为我的理论分析及逻辑推理非常的严谨,无懈可击。大家都知道Sagnac效应,其实迈克尔逊干涉仪和Sagnac是类似的,可以做到Sagnac一样的效果。大家一直在用迈克尔逊干涉仪做实验,讨论迈克尔逊的零结果,但是,如果将迈克尔逊干涉仪放在旋转的转盘边上,就可以观察到像Sagnac一样的干涉条纹。迈克尔逊没有迈出这一步,所以他得不到干涉条纹。这是为什么,请看我的论文。我在论文中提出一个证伪Sagnac效应的方法,用以证伪相对论解释,以及证伪其他解释。本论文投了几家期刊,都无一例外的退稿了。现在还在投稿中,希望能够发表吧。主流已经抛弃了以太,本论文能不能发表还是个未知数。言归正传。我的实验器材:一个激光笔,一个手机充电器,一个真空石英管(长1.5米,真空度0.00045pa,在网上请别人封装的,注意,真空石英管的两端必须要平整,不能有螺纹圈,光线透过不能发散),一个放大镜(放大倍数30倍,如果空间够大,任何倍数都可以),一个空圹空间(我是在家里,客厅到房间长10米),用磁砖做实验器材的底座,用割成三角形的木块托住磁砖(三角形的木块可以调整实验器材的高度),一堵墙。实验如图所示:请注意:V是假设的地球在以太中的运动方向垂直于光线传播方向上的分量。所有装置都是固定不动的。实验过程如下:用手机充电器连接激光笔(将激光笔电路板从外壳拿出来,这是很容易做到的,充电器连接激光笔的电源),使激光笔不断电发光。激光笔放在东边,激光向西穿过真空石英管,穿过放大镜,到达西面的墙上显示光斑。激光笔、真空石英管、放大镜各放在独立的平台上。用胶水粘住各个部件。实验时间为2014年3月10日。在某一个时刻,在墙上画出光斑的位置,经过一段时间之后,发现光斑往南方偏移,偏移非常明显。实验2天后(2014年3月12日),光斑偏移出了墙上,测得到墙边的偏移量为0.41米,实际上应该是0.41+0.15=0.56米。现场图如下:http://ng1.17img.cn/bbsfiles/images/2015/05/201505041419_544648_1916297_3.png经过我的推算,偏移出墙上的光斑最大偏移量为1.022米。光斑的偏移计算公式,请看我的论文,里面有详细的推导过程。我原先怀疑真空石英管的两端封装不平,造成了光线的折率方向有偏移。但不管怎么样,在实验仪器都粘贴固定的情况下,在几个小时内就看到光斑明显的偏移,也决然不是折射问题了。真空石英管对光线的偏移有没有影响呢?我对此又做了一个实验。实验时间在2015年3月14日。我为什么要将激光笔、真空石英管、放大镜各放在独立的平台上?目的就在于此。1、 不放真空管,记录光斑在墙上的位置。2、 放真空管,让光线穿过真空石英管,记录光斑的位置,发现光斑住南偏移了0.23米,这是非常明显的。3、 慢慢移动真空石英管,观察光斑的变化,发现光斑的位置没有改变,说明真空石英管是平的,真空石英管的两端折射对光线没有影响。真空石英管的平台是独立的,安装、拆除、移动真空石英管,对激光笔、放大镜没有任何影响。4、 在2015年3月15日19时20分,光斑往南偏移了0.73米。5、 在2015年3月15日19时24分,拆除真空石英管,光斑往北回缩0.15米。就是说放和不放真空石英管,光斑偏移了0.15米。6、 再次将真空石英管放回原位,1天后,光斑偏移出了墙边。如图所示:在不放真空石英管的情况下,经过几天的观察,同样发现光斑出现明显的偏移。这是因为激光光斑有漂移的结果。激光光斑漂移的原因,我想是不是因为激光笔里面也是真空的?激光笔的长度约0.006米,但我查不到激光笔的封装参数,不知道里面是不是真空,或者是真空度很低。激光光斑漂移的原因也许和真空度有关。用普通光源可以验证这个实验。普通光源没有光斑漂移,在任何时候,光斑就不会移动。我找不到这样的光线又强又小的光源,无法进行验证,希望有条件的人士去做一做。

  • 红外光谱仪的种类和工作原理

    一、红外光谱仪的种类  红外光谱仪的种类有:  ①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。  ②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。  当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:  ①多通道测量,使信噪比提高。  ②光通量高,提高了仪器的灵敏度。  ③波数值的精确度可达0.01厘米-1。  ④增加动镜移动距离,可使分辨本领提高。  ⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。  近红外光谱仪种类繁多,根据不用的角度有多种分类方法。  从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模式是依据仪器的分光形式进行的分类,可分为滤光片型、色散型(光栅、棱镜)、傅里叶变换型等类型。红外光谱仪的原理在下面分别加以叙述。  二、滤光片型近红外光谱仪器:  滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。  仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。  该类型仪器优点是:仪器的体积小,可以作为专用的便携仪器;制造成本低,适于大面积推广。  该类型仪器缺点是:单色光的谱带较宽,波长分辨率差;对温湿度较为敏感;得不到连续光谱;不能对谱图进行预处理,得到的信息量少。故只能作为较低档的专用仪器。  三、色散型近红外光谱仪器:  色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。  该类型仪器的优点:是使用扫描型近红外光谱仪可对样品进行全谱扫描,扫描的重复性和分辨率叫滤光片型仪器有很大程度的提高,个别高端的色散型近红外光谱仪还可以作为研究级的仪器使用。化学计量学在近红外中的应用时现代近红外分析的特征之一。采用全谱分析,可以从近红外谱图中提取大量的有用信息;通过合理的计量学方法将光谱数据与训练集样品的性质(组成、特性数据)相关联可得到相应的校正模型;进而预测未知样品的性质。  该类型仪器的缺点:是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性;由于机械部件较多,仪器的抗震性能较差;图谱容易受到杂散光的干扰;扫描速度较慢,扩展性能差。由于使用外部标准样品校正仪器,其分辨率、信噪比等指标虽然比滤光片型仪器有了很大的提高,但与傅里叶型仪器相比仍有质的区别。  四、傅里叶变换型近红外光谱仪器:  傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品 信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采样系统,通过数模转换器把检测器检测到的干涉光数字化,并导入计算机系统;⑤计算机系统和显示器,将样品干涉光函数和光源干涉光函数分别经傅里叶变换为强度俺频率分布图,二者的比值即样品的近红外图谱,并在显示器中显示。  在傅里叶变换近红外光谱仪器中,干涉仪是仪器的心脏,它的好坏直接影响到仪器的心梗,因此有必要了解传统的麦克尔逊干涉仪以及改进后的干涉仪的工作原理。  ⑴ 传统的麦克尔逊(Michelson)干涉仪:传统的麦克尔逊干涉仪系统包括两个互成90度角的平面镜、光学分束器、光源和检测器。平面镜中一个固定不动的为定镜,一个沿图示方向平行移动的为动镜。动镜在运动过程中应时刻与定镜保持90度角。为了减小摩擦,防止振动,通常把动镜固定在空气轴承上移动。光学分束器具有半透明性质,放于动镜和定镜之间并和它们成45度角,使入射的单色光50%透过,50%反射,使得从光源射出的一束光在分束器被分成两束:反射光A和透射光B。A光束垂直射到定镜上;在那儿被反射,沿原光路返回分束器;其中一半透过分束器射向检测器,而另一半则被反射回光源。B光束以相同的方式穿过分束器射到动镜上;在那儿同样被反射,沿原光路返回分束器;再被分束器反射,与A光束一样射向检测器,而以另一半则透过分束器返回原光路。A、B两束光在此会合,形成为具有干涉光特性的相干光;当动镜移动到不同位置时,即能得到不同光程差的干涉光强。  ⑵改进的干涉仪:干涉仪是傅里叶光谱仪最重要的部件,它的性能好坏决定了傅里叶光谱仪的质量,在经典的麦克尔逊干涉仪的基础上,近年来在提高光通量、增加稳定性和抗震性、简化仪器结构等方面有不少改进。  五、传统的麦克尔逊干涉仪工作过程中,当动镜移动时,难免会存在一定程度上的摆动,使得两个平面镜互不垂直,导致入射光不能直射入动镜或反射光线偏离原入射光的方向,从而得不到与入射光平行的反射光,影响干涉光的质量。外界的振动也会产生相同的影响。因此经典的干涉仪除需经十分精确的调整外,还要在使用过程中避免振动,以保持动镜精确的垂直定镜,获得良好的光谱图。为提高仪器的抗振能力,Bruker公司开发出三维立体平面角镜干涉仪,采用两个三维立体平面角镜作为动镜,通过安装在一个双摆动装置质量中心处的无摩擦轴承,将两个立体平面角镜连接。  三维立体平面角镜干涉仪的实质是用立体平面角镜代替了传统干涉仪两干臂上的平面反光镜。由立体角镜的光学原理可知,当其反射面之间有微小的垂直度误差及立体角镜沿轴方向发生较小的摆动时,反射光的方向不会发生改变,仍能够严格地按与入射光线平行的方向射出。由此可以看出,采用三维立体角镜后,可以有效地消除动镜在运动过程中因摆动、外部振动或倾斜等因素引起的附加光程差,从而提高了一起的抗振能力

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制