当前位置: 仪器信息网 > 行业主题 > >

激光通过迈克尔干涉仪

仪器信息网激光通过迈克尔干涉仪专题为您提供2024年最新激光通过迈克尔干涉仪价格报价、厂家品牌的相关信息, 包括激光通过迈克尔干涉仪参数、型号等,不管是国产,还是进口品牌的激光通过迈克尔干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光通过迈克尔干涉仪相关的耗材配件、试剂标物,还有激光通过迈克尔干涉仪相关的最新资讯、资料,以及激光通过迈克尔干涉仪相关的解决方案。

激光通过迈克尔干涉仪相关的仪器

  • 迈克尔逊型干涉仪 400-860-5168转2255
    迈克尔逊型干涉仪 特性偏振相关耦合比(PDCR)的波动最小带有源混叠的集成平衡型信号探测指示光束输入(660纳米)以辅助对准包含干涉仪电源 迈克尔逊型INT-MST-1300B干涉仪组件设计用于波长范围在1250到1350纳米内,带有平衡探测装置的光学相干层析成像系统中。为了使用更快的扫描激光器,集成探测器的带宽已经增大到高达100MHz。该模块包括用于迈克尔逊干涉仪的光纤耦合网络,输出为参考臂和样品臂。内部所用的耦合器已经进行优化,具有平坦的波长响应和非常低的偏振相关耦合损耗。光纤的长度是与干涉仪的两臂均匹配,误差在0.2毫米以内,同时为了提高系统的坚固性和易用性,还配有FC/APC带角度的光纤适配器。为了抑制数字条纹信号中降低成像质量的混频的产生,集成的高增益的平衡型探测器(带宽100MHz)包含了一个有源的混叠滤波器。 为了支持将INT-MST-1300B对准到光学系统中,在组件中包含了一个660纳米指示激光器的附加输入,和一个专门设计的组合了扫描激光光源(1300纳米)和准直激光器(660纳米)的WDM耦合器。Item #INT-MSI-1300BOpticalInterferometer Wavelength Range1250 - 1350 nmFiber TypeSMF-28e+Input/Output PortFC/APCInsertion Loss*from 1300 nm IN to Sample Armand to Reference Arm Insertion Loss*from 660 nm IN to Probe4.5 dB MaxPath Length Difference0.2 mm MaxElectricalDetector Material/TypeInGaAs/PINTypical Responsivity Max1.0 A/WOutput Bandwidth (3 dB)DC - 100 MHzTransimpedance Gain100 kV/ASaturation Power**35 µ WMaximum Input Power**250 mWElectrical OutputSMADC Offset Power Supply± 12 V, 200 mA(PICO M8 con.)General Size4.72" x 3.15" x 0.827"(120 mm x 80 mm x 21 mm)* 包括输入和输出尾纤的接头损耗,在中心波长处测量。** 使用高阻抗负载,半值为50欧的阻抗,来测量相对输出功率的跨阻抗增益。图1显示了在时域OCT系统中的INT-MSI-1300B的示例装置。中心波长为1300纳米的输入宽带光源,通过一个环形器和宽带50/50熔融耦合器。来自干涉仪样品臂和参考臂的背反射光在50/50熔融耦合器中合束,产生干涉条纹,经过环形器和WDM耦合器后输入到平衡探测器。平衡探测器的输出信号被数据采集装置获取,经过处理后得到重建的OCT图像。图2描述了通过将参考臂的移动反射镜替换为固定式反射镜,IN-MSI-1300B如何集成到频域OCT系统中。图1: 在时域OCT设计中的INT-MSI-1300B的示意图图2: 在示例傅里叶域OCT设计中的INT-MSI-1300B的示意图干涉仪两臂的内部光纤长度匹配在0.2毫米以内,同时50/50熔融耦合器和平衡探测器的输入之间的光程也经过匹配,以获得最佳的噪声抑制(即最大的共模抑制比CMRR)。内部耦合器已经进行了优化,具有平坦的波长响应和非常低的PDCR(偏振相关耦合比),这使得探测信号几乎与输入的偏振变化无关。图3显示了在参考臂端和样品臂端输入功率的百分比。在1300纳米(中心波长)测量的两个端口的功率相等。图 3: INT-MSI-1300B在1300纳米测量的IN端口到样品臂和参考臂端口的耦合效率
    留言咨询
  • 拓普迈克尔逊干涉仪WMG-1型仪器介绍: WMG-1型迈克尔逊干涉仪是我公司新近研制开发的用于高等院校和科研所验证相关物理光学实验的仪器。该仪器采用平台式铸铁底座,有效地提高了仪器的稳定性。拓普迈克尔逊干涉仪WMG-1型可开设实验:观察点光源非定域干涉观察等倾干涉条纹观察等厚干涉条纹观察白光干涉现象测定光源或滤光片的波长(例:He-Ne激光、钠光)测定钠黄双线波长差测量透明介质薄片折射率测量透明气体折射率拓普迈克尔逊干涉仪WMG-1型规格参数: 动镜移动精度(微调):0.0004mm 动镜移动精度(粗调):0.01mm 动镜移动距离(微调):1mm 动镜移动距离(粗调):12mm 分束板和补偿板平面度:&le 1/20&lambda 激光输出功率:0.8-1mW 系统成套性: 迈克尔逊干涉仪主机 He-Ne激光器 一维可调升降底座等 可选附件: 低压钠灯 白光源 气室部件(气室、压力表、压气球) 法布里珀罗标准具
    留言咨询
  • 一,Mach-Zehnder干涉仪 800-1700nmOL-MZI系列马赫曾德干涉仪是用于扫描OCT系统,它内部包含一个固定臂差的MZI以及低噪声光电平衡探测器。该模块内平衡探测器用来提供K时钟信号。可以根据客户不同需求,定制不同波长以及不同臂差。该模块进行了减震隔热设计,最大限度确保模块的稳定性。技术参数型号OL-MZI-1300波长1225-1375nm自由光谱范围MZI输出103.3GHz±5%MZI两臂差2mm(其余臂差可以定做)纤类型SMF-28(PM可选)光纤接口FC/APC探测器类型InGaAs / PIN探测器波长800 - 1700nm平衡探测器带宽200MHz饱和功率50mW@1300nm连接器SMA工作电压/电流5V/0.5A(max)外形尺寸120*100*25mm二,λ/1000 D7系列超高精度激光干涉仪 632.8nm爱沙尼亚Difrotec公司的激光干涉仪是市场上高精度干涉仪的标杆产品,测量精度可达0.6nm(λ/1000). 其标杆产品D7激光干涉仪采用点衍射技术,主要用于高精度的表面(平面,球面,非球面,自由曲面)检测及透射波前检测。Difrotec在光学测试领域有多项世界纪录。λ/1000 D7系列超高精度激光干涉仪 632.8nm,λ/1000 D7系列超高精度激光干涉仪 632.8nm产品特点● 超高的绝对精度λ/1000 (0.6 nm)● 数值孔径:0.55 (f# 0.91)● 重复准确性(simple RMS): 0.06 nm● 基于工作波长:632.8nm产品应用● 光纤干涉仪● 光学表面测量● 光纤传感技术参数● 峰谷绝对精度:±0.6nm(λ/1000)● 峰谷分辨率:0.05 nm(λ/12000)● 波前均方根重复性:0.23nm(λ/2800)● 简单均方根重复性:0.06 nm(λ/10500)● 激光类型和波长:稳定He-Ne,632.8nm● 数值孔径 NA:0.55(f 0.91)● 数据采集:相移干涉法(psi)测试结构1. Spherical concave surfaces2. Spherical convex surfaces3. 水平表面4. 光学系统 (波前质量测量)光学测试测量结果光学测试和测量服务包括测试光学系统的凹面、凸面、角立方体、平面、非球面、自由曲面和透射波前的表面形状,以及曲率半径的测量。(测试您的光学系统)光学设计与制造基于在高精度光学系统计算机建模方面30多年的经验,我们建立了自己的合作伙伴关系来设计和制造高质量的光学系统。我们在光学制造领域的长期合作伙伴是韩国理工大学。产品尺寸图测试服务● 测试球面、平面、非球面和自由曲面● 光学系统传输波前的测试● 曲率半径测量● 光学设计与制造三, 水听器用法拉第旋转镜迈克尔逊干涉仪 1310/1550nm法拉第旋镜FRM (Faraday Rotator Mirror)法是抑制干涉型光纤传感系统偏振诱导信号衰落的一种重要方案,它在理论上可以完quan消除偏振衰落,但是由于所选FRM的旋转角度并非精确的45°,系统中会出现残余偏振诱导相位噪声.水听器用法拉第旋转镜迈克尔逊干涉仪可以控制两臂长度差再1mm以内,实现低成本小型化设计。水听器用法拉第旋转镜迈克尔逊干涉仪 1310/1550nm,水听器用法拉第旋转镜迈克尔逊干涉仪 1310/1550nm产品特点● 抗潮湿 ● 耐压力● 小型化 ● 专为水听器廓显著简化应用光学设计产品应用● 光纤传感● 光纤水听器技术参数结构单位1X2/2X2工作波长nm1310/1550工作带宽nm±20nm操作功率mW500插入损耗dB3.8偏振损耗dB0.1分光比偏差%3旋转角度Deg45臂长差误差mm1光纤型号SMF-28E+光纤直径um9/125封装尺寸mm2.4X25-2.4x12干涉光路极限测试条件高温贮存温度:+85P ±3,05000小时低温贮存温度:-55X) ±3t)5000小时咼温高湿温度:+85P ±2t) 湿度 2=85%2000小时局低温循环温度范围:-40P ~ +85Q 变温速率N 5t) /min保温时间(@-40,0, @85( ) : 30min1000个循环温度冲击温度范围:-551~ +85*0保温时间(@-55*0, @85*0) : 30min 高温与低温的转换时间w 5min10次机械冲击试验波形:半正弦波 实验方向:6个方向(3个轴)峰值加速度:1500g 脉冲持续时间:6 ~ 8ms毎个方向各5次机械振动试验波形:正弦波 试验方向:横向与纵向加速度峰值:20g 频率范围:20 ~ 2000Hz 持续时间:4min/次每个方向4次气密性检查起始压力:0.2MPa 氢示踪气体:95% ~ 100% 加压时间:2hrs漏率w 1.0x lO^Pa &bull m3/s高低温在线测试温度范围:-40 ~ +85P, 保温时间(@-40*0, @25七,@85*0) : 5min0.002dBTO四,Michelson 迈克尔逊PLX 单片干涉仪(NIR近红外 FTIR红外 )Michelson干涉仪能够永jiu对准,不需要调整,而且有着出色的光学稳定性和无与伦比的抗振能力。干涉仪与PLX中空后向回射器结合,能够为红外光谱仪(FTIR)提供基础。Michelson 迈克尔逊PLX 单片干涉仪(NIR近红外 FTIR红外 ),Michelson 迈克尔逊PLX 单片干涉仪(NIR近红外 FTIR红外 )产品特点灵活的光路紧凑的尺寸支持近红外中红外波段产品应用中红外光谱分析仪技术参数迈克尔逊干涉仪的基本原理:MOST基本结构:NIR干涉仪INT 05这个装置是坚固的,永不需调整。在一个臂上增加一个移动反光镜以完成干涉仪,并允许光路差在零OPD附近变化。坚固的结构和永jiu对准的特点,意味着 INT 05 系列干涉仪很适合您更高精度的近红外分析仪的应用。 INT05-N“INT05-N 单片Michelson干涉仪”提供给那些希望拥有专用“近红外FTIR光谱仪” 的公司,具有坚固的结构和永jiu对准的特点specificationsClear ApertureΦ 0.50in/ 12.7mmExiting Wavefront0.10 waves P.V. @ 633nmOperating Range2940-7700 cm-1Mass210 gramsOperating Temperature15° - 40°COperating Thermal Gradient2°C ABSOLUTE 2°C/ 100mm六,1060±60nm MZI 干涉仪1060±60nm MZI 干涉仪 (平衡探测器 带宽1G) Mach-Zehnder Interferometer1060±60nm MZI 干涉仪,1060±60nm MZI 干涉仪产品特点光学相干层析可定制不同波长可定制不同臂差MZI带平衡探测器输出减震隔热设计结构紧凑产品应用光学相干层析其他科研应用通用参数产品型号OL-MZI-1060 单位探测器类型InGaAs波长1000~1100nm平衡探测器带宽1GHzMZI 两臂差6.8@光纤(10mm@空气)mm连接器SMA光线类型HI1060光学输入FC/APC电源接口航空插头工作电压/电流12V/0.2A(max)外形尺寸120*100*25mm结构尺寸 单位:mm
    留言咨询
  • 高分辨率激光干涉仪 400-860-5168转2831
    高分辨率激光干涉仪所属类别: ? 光学/激光测量设备 ? 波前分析仪 所属品牌:法国Phasics公司 产品简介高分辨率激光干涉仪便携式、高分辨率、高动态范围激光干涉仪! 法国Phasics公司超分辨剪切干涉仪(High-resolution Interferometer)是一款便携式、高灵敏度、高精度的波前分析仪。法国Phasics公司超分辨剪切干涉仪基于波前分析的四波剪切干涉技术,与传统干涉仪相比较具有结构紧凑,使用方便,无需标准件,优秀的检测稳定性,直接测量任意的波前、高分辨率(300x400采样点),3D显示等优点。 关键词:干涉仪、激光干涉仪、球面干涉仪、激光平面干涉仪、干涉光刻、传函仪、白光干涉仪、Zygo、波前分析仪、波前传感器、迈克尔逊干涉仪、便携式干涉仪、光学传函仪法国Phasics公司超分辨激光干涉仪基于便携式、高灵敏度、高精度波前分析仪。该激光干涉仪采用四波剪切干涉专利技术,与传统干涉仪相比较具有结构紧凑,使用方便,无需标准件,优秀的检测稳定性,直接测量任意的波前、高分辨率(300x400采样点)、激光波长覆盖400-1100nm、消色差、高动态范围(500um)等优点。 法国Phasics公司超分辨剪切干涉仪可用于激光波前检测、激光强度检测、等离子体密度检测、透镜检测、高功率激光自适应、光刻机检测、精密光学元器件检测、光学系统装调、镜头模组检测、传递函数(MTF)检测等。法国Phasics公司超分辨剪切干涉仪并可实时检测为客户提供最优化的数据支持。 产品特点:1、直接测量、无需标准件 图一、检测光路 2、高灵敏度(是普通白光干涉仪的8.4倍)、对振动不敏感 图二 与传统的干涉仪检测结果对比3、三维立体显示 图三、波前三维检测视图4、实时显示泽尼克系数 图四、多阶泽尼克显示界面5、传递函数(MTF)检测 图五、传递函数检测界面 干涉仪应用领域: ? 激光光束性能、波前畸变、M^2、强度等的检测 ? 红外透镜检测? 激光、天文、显微、眼科等复杂自适应光学系统波前像差检测? 光刻机物镜检测? 大口径高精度光学元器件检测? 透镜、镜头模组检测? 传递函数测量? 等离子体密度检测? 高功率激光自适应 产品系列: 相关产品 超高速液晶空间光调制器 PHASICS波前分析仪/波前传感器/波前相差仪/波前探测器
    留言咨询
  • 西格玛光机干涉仪 400-860-5168转4674
    干涉仪通常,我们不容易直接观测到1微米量级的动态现象的,此时,我们会选择光学干涉仪进行观测。例如,测量光学镜头的面精度的干涉仪,精密测量距离或位移的测长仪,需要精密测量位移变化的速度计或振动仪等,都是利用了光学干涉原理的典型仪器。市场上销售的大部分干涉测量装置是由光学干涉部分和信号解析部分组成的。 采用先进的电信号处理技术,可以同时实现高分辨率和很宽的测量范围。 但是,我们这里介绍的光学干涉装置,并不包含干涉条纹的电信号处理内容,我们重点介绍了其光学部分。因此,虽然其可观测的范围有限,但足以进行干涉计测的基础实验和理论验证。 业务范围l 通用干涉仪,如迈克尔逊干涉仪、马赫曾德干涉仪、斐索干涉仪等;l 集成光学干涉系统;l 流体可视化光学系统;l 干涉仪组件l 干涉仪相关组件接受订制特点分辨率小于1微米非接触(非破坏)测量面(2维)测量应用实例面精度测量测长仪速度计/振动仪
    留言咨询
  • 上海瞬渺提供的全光纤全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。 全光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员。产品特点: 低插入损耗 零光路失配 BNC调制接口 裸光纤型光纤干涉仪可选(无封装)应用领域 激光器相位噪声测试 激光器频率噪声测试 干涉型光纤传感系统模拟 科研实验室应用技术指标参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APCFC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7延迟光纤线圈指标可定制的延迟范围m0.5m ~1000m标准产品的延迟长度m50光纤连接器FC/APC应用举例1.激光器相位/频率噪声测试被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出,数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2. 激光器相位/频率噪声测试被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50: 1064nm光纤迈克逊干涉仪MFI-13-50: 1310nm光纤迈克逊干涉仪MFI-15-50: 1550nm光纤迈克逊干涉仪需要定制的光纤延迟长度或者其他的要求,请联系我们的销售人员。
    留言咨询
  • 上海瞬渺提供的全光纤全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。 全光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员。产品特点: 低插入损耗 零光路失配 BNC调制接口 裸光纤型光纤干涉仪可选(无封装)应用领域 激光器相位噪声测试 激光器频率噪声测试 干涉型光纤传感系统模拟 科研实验室应用技术指标参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APCFC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7延迟光纤线圈指标可定制的延迟范围m0.5m ~1000m标准产品的延迟长度m50光纤连接器FC/APC应用举例1.激光器相位/频率噪声测试被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出,数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2. 激光器相位/频率噪声测试被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50: 1064nm光纤迈克逊干涉仪MFI-13-50: 1310nm光纤迈克逊干涉仪MFI-15-50: 1550nm光纤迈克逊干涉仪需要定制的光纤延迟长度或者其他的要求,请联系我们的销售人员。
    留言咨询
  • 双光束干涉实验系统 400-860-5168转0185
    仪器简介:双光束干涉仪是通过分束镜得到两束光程和强度都接近而且夹角易于调节的光束,在光束的重叠区将产生干涉条纹,用于物理/光学专业教学的演示仪器。技术参数:氦氖激光器:1.5mW 平台底板:500mm×350mm开设实验: 1、马赫-泽德干涉实验并观察干涉仪的稳定性,了解全息光栅的制作方法 2、萨格奈特干涉实验并观察干涉仪的灵敏度 3、迈克尔逊干涉实验,估计激光器的相干长度,观察非定域干涉条纹及条纹反衬度随光程差的变化主要特点:采用铝质底板,利用便携式实验箱,摆放方便,节省空间。学生可自己动手调节光路,使学生了解各种干涉仪的原理和应用。
    留言咨询
  • 仪器简介:复旦大学研究中心利用&ldquo 全光纤白光干涉技术&rdquo ,在5项专利技术的基础上,成功研制出多功能光纤教学实验仪。其核心在于采用标准化、模块化的组合架构,通过共享主机、根据不同实验要求选用不同功能模块,灵活搭配,组装出不同功能的教学实验。系统的开放性特点还意味着易于拓展功能,便于将来升级。同时,系统还配备专门利用LABVIEW软件开发平台和数据采集卡开发的信号处理软件,结合物理量,提供强大的数据采集、存储、分析能力。 通过变换组件开发的实验均属于光纤应用技术范畴,覆盖了目前先进的光纤通信、传感技术。测试的物理内容在20项以上,一套综合实验系统的功能与20套分散的实验仪器实现的功能相当。此外,仪器还具有稳定光源、光电转换电信号放大器等独立功能。利用多功能光纤干涉教学实验仪主机,并配置相应配件,可实现下列实验功能: 1. 全光纤音频信号录入、传输、解调功能; 2. 双向音频传输系统(光纤电话) 3. 激光外调制、解调技术; 4. 光在介质中传播速度的测量; 5. 光纤长度测量; 6. 光纤定点应变测量; 7. 全光纤声纳测试实验 8. 全光纤振动测试实验 实验教学内容包括 (1) 光纤传感器的特性及其应用;光纤通讯;声光调试;迈克尔逊干涉仪 (2) 速度、加速度测定;力学传感器(位移、应力速度、加速度&hellip )与其应用;振动模式研究;傅里叶频率合成;电信号的傅里叶分析 (3) 声光调试; (4) 激光在实时测量中的应用;激光的倍频与混频 (5) 纳米材料制备与测量;光纤应用;仿真物理仪器。 (6) 半导体激光器特性的研究;光的色度研究;虚拟仪器在物理实验的应用 (7) 声速的测定;激光在实时测量中的应用; (8) 光纤通讯(全光通信);声光调试;白光干涉仪 提供完整的实验解决方案 利用&ldquo 多功能光纤干涉实验教学仪&rdquo 和辅件,能够完成以上八个实验的实验教学功能。完整的实验解决方案包括以下实验配置: 编 号 设 备 名 称 功 能 1 多功能光纤干涉实验教学仪(2台) 全光纤白光干涉 2 光纤光功率分配器(4支) 光功率分配 3 光纤跳线(6条) 光路连接 4 光纤准直器(1支) 光发射、接收 5 标准振动台(1台) 提供标准振动源 6 声源(2个) 提供声音 7 放音器(2套) 播放声音 8 声光调制器(1支) 光纤外调制 9 数据采集卡(1张) 信号采集 10 信号处理软件平台(1套) 分析信号测试特征 11 全光纤送话器(2个) 声音采集 12 单模光纤(2 12公里) 测试、传输用 13 光纤反射器(2个) 光纤中光波反射 14 信号发生器(1台) 提供信号源 15 示波器(1台) 看转化为电信号后的光信号的波形技术参数:多功能光纤干涉教学实验仪的优势 1、 实验再现的物理概念清晰 实验仪成功再现了&ldquo 白光干涉技术&rdquo ,光的干涉通过不断的完善,已经形成了传统的干涉方式,主要有:(1)迈克耳逊干涉;(2)F-P干涉;(3)M-Z干涉等。在上个世纪九十年代,出现了&ldquo 全光纤白光干涉技术&rdquo ,该技术作为一种全新的干涉方法与传统的干涉方法相比,具有更大的实用价值。但是,在全国范围内,所有的实验都未涉及&ldquo 白光干涉&rdquo 实验。&ldquo 多功能光纤干涉教学实验仪&rdquo 填补了&ldquo 全光纤白光干涉原理&rdquo 的实验空白,具有较高的学术价值和实用价值。同时,实验仪能够测量的物理量包括: (1) 光波在光纤中的传播速度 (2) 光纤等效折射率 (3) 振动速度、加速度和位移 (4) 水中声波传播特性 (5) 光纤弹光效应 (6) 光波相位调制、解调 (7) 光纤分布传感技术 (8) 振动信号频谱分析 (9) 光纤长度测量主要特点:2、 实验方式灵活 通过共享一套主机,结合不同的功能模块,能够按照需要组装不同的实验。通过该方式,能够充分发挥学生的主动性,在节约财力的情况下,完成了以往多套实验仪器设备才能完成的实验功能;同时,很好地培养了学生的主动性,一改传统实验内容过于死板,学生主动参与性不强的缺点。 3、 系统性能好不同实验通过一套系统来实现,节约了大量的财力, 4、 实验内容和方法包含的技术新颖 不同的实验内容都来自最新的专利和文章,包含的方法和内容属于新的科研成果,使得整个实验的学术水平属于国内领先水平,其中利用低频信号测试光速等实验在全国来说属于首次提出,国际上未见文献报告;保密通信利用了量子通信等先进技术,在国内也属于创新实验。 5、 实验内容贯穿理论-应用-推广应用这一过程 对明确的原理概念首先通过基础实验学习理论,通过工程应用实验学会该原理的工程应用,最后通过大型系统实验巩固物理概念、锻炼学生动手能力和拓展学生思维。通过实验学习理论知识,而不是通过学习理论知识来重复实验,是&ldquo 多功能光纤干涉教学实验仪&rdquo 开设实验的强度教学功能。 开设的实验介绍
    留言咨询
  • 428系列光通讯专用多波长计 光学测量仪特点:波长测量精度可达±0.3 pm内置标准稳频HeNe激光器实现连续校准测量置信水平≥ 99.7 %,NIST可追溯可以同时实现光功率测量,准确度可达± 0.5 dB自动计算信噪测试波长范围1270-1650 nm;1000-1680 nm,覆盖C、L、T、O光学波段测量速率10 Hz高灵敏度 -40 dBm (0.1 μW)可以用于测量连续激光器或者调制信号测量速率可达1 kHz,时间分辨率1 ms便捷的触摸屏显示测量数据可采用USB、Ethernet、GPIB进行通讯设计用于生产环境的坚实结构 428/438系列多波长计结合迈克尔逊干涉仪与快速傅里叶变换分析,实现波长、功率、信噪比的测量。具有精度高、测量速度快、操作简单、结构坚实的特色。438提供满足生产过程所需的高精度、可靠、高效的WDM波长测试。
    留言咨询
  • 法布里珀罗干涉仪 FPI 法布里珀罗干涉仪(Fabry-Perot Interferometer,FPI 100)是一款共聚焦扫描 FPI,它自带光电探测器单元,设计用于测量和控制连续波激光器的模场分布。其主要特点有: 激光模式分析简单方便可选八种反射镜用于波长范围 300 到 3000 纳米自由光谱范围 1GHz 或 4GHz标准反射镜反射率 99.8%,对应 finesse 大于 400可选配光纤耦合器套件 – 方便使用 FC/APC 光纤接头进行耦合光电二极管更换套件 – 可见光/近红外/红外,通过内置聚焦透镜自动对准用户规定 finesse 值扫描选项 – 集成光电二极管放大器的独立扫描发生器 miniScan 杭州谱镭光电技术有限公司(HangzhouSPL Photonics Co.,Ltd)是一家专业的光电类科研仪器代理商,致力于服务国内科研院所、高等院校实验室、企业研发部门等。我们代理的产品涉及光电子、激光、光通讯、物理、化学、材料、环保、食品、农业和生物等领域,可广泛应用于教学、科研及产品开发。 我们主要代理的产品有:微型光纤光谱仪、中红外光谱仪、积分球及系统、光谱仪附件、飞秒/皮秒光纤激光器、KHz皮秒固体激光器、超窄线宽光纤激光器、超连续宽带激光器、He-Ne激光器、激光器附件及激光测量仪器、光学元器件、精密机械位移调整架、光纤、光学仪器、光源和太赫兹元器件、高性能大口径瞬态(脉冲)激光波前畸变检测干涉仪(用于流场、波前等分析)、高性能光滑表面缺陷分析仪、大口径近红外平行光管、Semrock公司的高品质生物用滤波片以及Meos公司的光学教学仪器等。 拉曼激光器,量子级联激光器,微型光谱仪,光机械,Oceanoptics,Thorlabs 。。。热线电话: / 传真:网址: /邮箱:
    留言咨询
  • 热膨胀仪主要分为光干涉法膨胀仪和机械热膨胀仪,光干涉法为光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂。机械式法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,机械式式热膨胀仪受样品架、检测杆等夹杂物的影响,因此无法避免这些夹杂物对校准用标准样品的绝对精度和误差的影响。Super LIX-R非接触法激光热膨胀系统概述Super LIX-R非接触法激光热膨胀仪系统是采用线性偏转氦氖激光器的双光路型迈克尔逊干涉仪的高灵敏度非接触式热膨胀仪。这种高精度膨胀仪是基于激光波长对与样品两端接触的反射面之间的位移进行绝对热膨胀测量。该测定方法符合JIS(JIS R3251-1995)的低膨胀玻璃的热膨胀系数测定方法,适合于用于热膨胀系数低至5ppb/℃(即 5 x 10-9/K)级别零膨胀材料的测量,通过对实际样品测试结果分析:在30℃时三次测得的 热膨胀系数分别为:5 x 10-9/K,4 x 10-9/K,4 x 10-9/K,在10℃,20℃,30℃,40℃,50℃的重复性均优于5 x 10-9/K。(详见P36-41)特点:1)通过在系统内部加入抗振机构,可以防止振动干扰的影响,可以在稳定使用的环境下进行一般分析电子天平(分辨率0.01mg)的测量。(专利申请2016-058190、058191、058192)2)根据激光波长(632.8nm)测量样品的位移。光学元件的优化消除了杂散光,提高了边缘信号的信噪比。特殊位移校准无需测量或操作。3)图像传感器检测干涉条纹,对图像进行处理,计算膨胀率。4) 通过用绝缘结构的低温恒温器控制样品和样品周围区域的温度,可以将温度控制在每分钟 0.01°C。5) 自动样品设置夹具可实现稳定的样品设置,无需操作员经过特殊培训。夹具的样品设置是手动的。Super LIX-R 参数:温度测量范围:0~50℃ (采用高精度恒温循环系统)热膨胀检测系统:迈克尔逊型激光干涉仪光路:双光路样品尺寸:Φ5mm 或Φ5±0.5mm x 长度12-20mm 标准样品尺寸:φ5mm x 长度20mm 两端应进行 SR(球形)处理,以免顶端变得不均匀。 表面平均粗糙度:平均粗糙度优于0.8a测量精度:CTE值 5x10-9/K 或更低(基于标准尺寸的低膨胀材料)重复性:CTE值 5x10-9/K 或更低(基于标准尺寸的低膨胀材料)分辨率:<0.2nm显示:图形强度激光器:激光类型:He-Ne 气体激光器(连续振荡) 功率:5mW (IEC 60825-1 class 3B) 光源波长:632.8nm热电偶:PT-100 铂热电偶 JIS C 1604-1997测试气氛:低压He(100Pa)升降温速率:0.01℃/min ~ 1.5℃/min 高精度测试推荐使用0.1℃/min温度显示分辨率:0.001℃测温精度:精度符合 JIS-Class A (±0.15°C at 0 °C)
    留言咨询
  • 激光干涉仪 400-891-3319
    仪器简介: ML10 Gold 高性能激光干涉仪是机床、三坐标测量机及其它定位装置精度校准 用的高性能仪器。由于采用了独特的专利设计及最新的光电子技术,使ML10 Gold 激光干涉仪比市场上其它型号的激光干涉仪具有更高的性能和更先进的任选功能。 ML10 Gold 激光干涉仪提供有进行机器位置、几何精度测量的全套光学器件。 ML10 Gold 激光测量系统所有功能都设计与Laser 10 软件配合使用。除了测 量和分析诊断功能外,此软件包的标准配置还包括动态测量、旋转轴测量、双轴测 量和电子水平仪及千分表程序接口模块。 该激光干涉仪系统由激光头ML10 Gold、环境监测补偿器EC10,计算机接口卡 PC10* 或PCM20* 及高精度的光学器件组成。全部器件放在一个配小车的提箱内, 一人便可携带全部系统赴异地进行机器精度检定,大大改善了激光干涉仪的便携 性。 该激光干涉仪系统通过接口与IBM 兼容的PC 机(包括笔记本计算机)连接, 在灵活、直观的软件控制下进行自动测量,既节省了测量时间,又避免了人为误 差,并能按国际上通行的标准进行数据分析处理,如ISO230-2、JIS-B6330、 VDI3441、VDI2617、ASME B89等并适用中国国家标准GB17421-2000等,以便于按 不同标准进行机床精度的评定和比较。 技术参数: 1.线性测量分辨率: 0.001&mu m 2.线性测量范围: 40m(或任选80m) 3.线性测量精度: ± 0.7ppm 4.最高测量速度: 60m/min 5.长期稳频精度: ± 0.05ppm 主要特点: ML10 Gold是全球最畅销的用于长度计量的激光干涉仪,其最大的优点是所有测量功能均采用激光干涉原理,性能稳定,使用可靠,功能扩展性强,价格适中.
    留言咨询
  • 双频激光干涉仪是在单频激光干涉仪的基础上发展而来的一种外差式干涉仪。传统单频激光干涉仪采用单频技术,容易受到外界环境干扰,微小的空气湍流都会引起直流电平变化从而影响测量结果,这是单频干涉仪的一个根本弱点。在测试环境恶劣或测量距离较长时,这一缺点十分突出,而双频激光干涉测量仪正好克服了这一缺点。双频干涉仪使用双频激光,其干涉信号是一个频率约为1.5-8 M H z的交流信号,当可动棱镜移动时,双频干涉仪的干涉信号只是使原有的交流信号频率增加或减少了△f,结果依然是一个交流信号。这个交流信号频率的改变取决于可动棱镜位置的变化,不受直流光平和电平变化的影响,因此抗干扰能力强,适合在各种环境条件下开展检测作业。 双频激光干涉测量仪采用外差技术,对环境干扰不敏感,先天具有抗干扰性好,工作稳定的特点,适合在车间生产环境中使用。镭测科技推出的LH3000双频激光干涉仪,基于清华大学精密测试技术及仪器国家重点实验室多年研发的核心技术,拥有自主知识产权,技术指标达到或优于国外产品同等水平。LH3000双频激光干涉仪通过与不同的光学组件结合,可实现对线性、角度、直线度、垂直度、平行度、平面度等几何量的检测,是高精度线性位移测量、数控机床校准、三坐标机校准、光学平台校准的高效率量测工具。 系统组成: LH3000双频激光头及附件 LC-2000环境补偿单元 Leice Measure测量软件、Leice Analysis 分析软件 线性位移测量镜组(选配:角度、直线度、垂直度、平面度测量镜组等) 光学调整附件 三脚架及其他测量附件产品优势: 采用双频激光,测量精度高 紧凑设计,适合外出服务携带 抗干扰能力强,大型机床长距离检测时也能保证稳定精准 自动环境补偿,不同温度、湿度、压力环境中也能精确检测 符合测校国家标准的测量分析软件 自动生成测量数据报表和误差校正补偿文件。 典型频差7±0.5MHz,测速高达2m/s。(欲了解更多单频与双频干涉仪的性能特点和差异,请阅览本网站解决方案栏目中的:双频激光干涉仪)
    留言咨询
  • 激光干涉仪 400-860-5168转5919
    1. 产品概述用于SENTECH Instruments等离子系统的SENTECH SLI激光干涉仪端点监测器与聚焦的相干激光束一起工作。激光束穿过等离子系统的顶部视口,并被样品反射。反射光照射到检测器上并测量强度。2. 主要功能与优势用于蚀刻和沉积工艺的自动激光终点检测使用SENTECH SLI激光干涉仪进行原位测量特别适用于监测透明层的终点检测、透明层界面的终点检测以及蚀刻不透明薄膜和在界面上停留的终点检测。多层模式顺序端点配方多终点配方包括 EPD 的多个条件,这些条件按顺序执行,从而可以在多层蚀刻过程中根据单个薄膜特性更改等离子体工艺参数。与SENTECH操作软件SIA集成的终点检测SENTECH SLI激光干涉仪可以与SENTECH操作软件SIA集成,用于特定的终点检测配方,通过使用简单的行业标准命令行直接参数化终点监测。3. 灵活性和模块化SENTECH SLI 激光干涉仪原位光学计量终点监测仪可与整个系列的 SENTECH 等离子蚀刻和沉积处理系统一起使用,它与穿过等离子系统顶部视口的聚焦相干激光束一起工作,然后被样品反射以准确测量强度。单独的照明 (LED) 和 CCD 摄像头用于观察样品和调整激光光斑。整个终点监视器由自动 x y 载物台移动,允许使用 SENTECH SIA 操作软件系统轻松进行点调整。使用 SENTECH SLI 激光干涉仪进行自动原位测量非常适合在蚀刻或生长透明层或层状结构时监测层厚度。
    留言咨询
  • 特点:用于连续激光测量,波长测量精度高达 ±0.0001 nm内置标准稳频HeNe激光器实现连续校准可以同时实现光功率测量,准确度可达±15 %工作波长375 nm-12 μm,输入功率可以低至10 μW对于visible与near-IR波长,提供便捷的预准直光纤输入口,对于IR 与mid-IR波长,提供可见光辅助校准软件基于Windows系统,可采用USB或者Ethernet实现与PC的通讯便捷的平板电脑、智能手机应用程序实现在实验室内随时随地可以实现波长数据的汇报采用用户或者Labview程序可以实现自动波长数据报告,无需专用PC激光波长计选型建议: 波长信息对于诸如高精度激光光谱、光化学、原子冷却/俘获、光传感等很多应用来说都是非常关键的。671系列波长计可以实现激光波长的精确测量。该系列产品采用迈克尔逊干涉仪实现连续激光器的波长测量,精度高达±0.2 ppm。采用内置波长校准保证实验数据结果所需要的可靠准确度。Bristol 671系列高精度激光波长计 光学测量仪
    留言咨询
  • 一、GPI系列激光干涉测量仪,运用移相干涉原理,提供高精度的平面面形,球面面形,曲率半径,样品表面质量,传输波前的测量和分析。可应用于:1、平面和球面的面形检测2、平面楔角测量、直角棱镜的直角偏差和任意角度的加工偏差3、光学材料均匀性测量4、角锥角度和面形偏差测量5、精密盘片质量检验6、三平板绝对测量7、双球面绝对测量8、静态干涉条纹判断9、泽尼克多项式分析10、球面曲率半径测量二、GPI系列高精度激光干涉测量仪的主机为Fizeau型干涉仪,具有光学器件少,精度高,易于使用等特点。光源为低功率氨氖激光,光束扩展为1英寸(25mm)至 32英寸(810mm)直径,自干涉仪输出。安装在输出孔之前的标准透射器件将部分激光反射回干涉仪,形成参考波面。余下激光穿过透射器至样品。根据光束在样品表面直接反射或透射后再反射回主机,形成测量波面。根据参考波面和测量波面干涉产生的干涉条纹,可以测量样品的表面面形和传输波面质量,样品为平面或球面。如果为非平面和非球面,则需通过加装补偿片等手段进行测量。GPI系列干涉仪采用精密移相技术和高分辨率CCD接收器件(最高可达 2048 X 2048),配合功能强大的MetroPro?软件可以获得高精确性和高质量的测量结果,其平面样品 PV绝对精度优于λ/100 !三、球面样品 PV绝对精度优于λ/140!并能模拟样品表面面形,包括鲜明的,可旋转的3D彩色图像,可选的剖面图以及各种统计数字结果等。同时,针对用户的各种样品、各种要求,可以通过提供各种精密可选附件,配合功能强大的MetroProTM软件,为用户提供完美的技术解决方案并获得满意的测量结果。四、GPI-XP系统最大的特点就是其功能强大的MetroProTM软件系统。使用互动的窗口显示,在屏幕上同时提供仪器控制,表面面形模拟,测量数据的统计分析等功能。测量数据可以存在磁盘上,或传输至其它计算机作进一步处理或统计分析。也可以使用彩色打印机打印出MetroProTM高质量的数据图像。 Mesa―平面度测量仪。 ZYGO公司专为精密机械加工件和薄型光学元件的平面度测量而设计的一种干步测量仪器,其测量对象是粗糙度为2.5μm(Ra)和平面面形误差150μm(Pa)以下的零件,测量样品直径可达Ф96mm。Mesa同样采用功能强大的MetroProTM软件,可在5秒钟内完成测量和分析,并向用户提供零件的三维面形图和各类测量数据。
    留言咨询
  • 干涉仪 400-860-5168转3912
    GEMINI-2D 干涉仪NIREOS的GEMINI-2D将您的瞬态吸收光谱仪转变为最先进的二维电子光谱仪。GEMINI-2D是一款结构紧凑、超稳定的干涉仪,可产生两束极其稳定、相位锁定、平行的飞秒激光脉冲。特点:吸收线形状的泵浦-探针(准直)几何构型。高光通量:1厘米透明孔径,不用任何光栅或输入/输出狭缝。支持各种超快放大器和光参量放大器(OPA 或 NOPA)作为输入,波长范围覆盖紫外到近红外。扫描范围和光谱分辨率自由选择,用户可以先进行快速测量,初步了解光谱特点,然后延长数据采集时间,提高信噪比和光谱分辨率。坚固耐用,工厂装配和校准后可轻松集成到任何现有的泵浦探测设备中。得益于独特的common-path几何结构设计专利,它对振动不敏感,工作非常稳定。它能够保证脉冲延迟的可控性和重复性,精度优于1阿秒。结构紧凑:尺寸仅为18 cm x 18 cm。应用:二维电子光谱(2DES)参数:版本SL光谱范围400 nm – 2300 nm (标准版)400 nm – 2300 nm (标准版)250nm – 3500nm (极宽版)250nm – 3500nm (极宽版)对称版最长时延@λ=600nm-400 fs - +400 fs-1050 fs - +1050 fs非对称版最长时延@λ=600nm-100 fs - +700 fs-100 fs - +2 ps延时稳定性≤1阿秒≤1阿秒工作模式步进扫描(用户可通过软件选择每次延迟的停留时间)步进扫描(用户可通过软件选择每次延迟的停留时间)尺寸长宽高:180mm x 180mm x 90mm长宽高:180mm x 180mm x 90mm重量2 kg2 kg二维电子光谱(2DES)是一种超快激光光谱技术,可以探测样品的电子、能量和空间分布 在选定的探测波长和固定的时间T2下,振荡瞬态信号是两个泵浦脉冲之间相对延迟T1的函数。Oscillating transient signal as a function of the relative delay T1 between the two pump pulses at a selected probe wavelengh and at a fixed population time T2.根据每个探针波长的T1函数进行傅里叶变换,就可以获得与探测波长和激发波长函数相关的二维谱图。A Forurier Transform ad a funcion of T1 for each probe wavelength allows one to retrieve the 2D maps ad a function of detection and exitation wavelengths.在三个不同布居时间T2(15 fs、45 fs和4000 fs)下,对Rhodospirillum Rubrum 样品的光收集(LH1)复合体测量得到的二维电子能谱测量的二维图。Bidimensional maps of 2D Electronic Spectroscopy measurements obtained on a Light Harvesting (LH1) complexo f a sample of Rhodospirillum Rubrum for three diferente populations time T2 (15 fs, 45 fs, 4000 fs).
    留言咨询
  • 机床校准激光干涉仪 400-860-5168转6117
    中图仪器SJ6000机床校准激光干涉仪是一种能够测量机床精度的高精度测量装置。具有测量精度高、测量范围大、测量速度快、高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。它利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点,在机床加工领域有着广泛的应用。在SJ6000激光干涉仪动态测量软件配合下,还可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。测量原理SJ6000机床校准激光干涉仪的测量原理主要包括相位测量和位移测量。相位测量是通过测量干涉条纹的相位差来计算被测量物体的形状、位置等参数;位移测量是通过测量干涉条纹的位移来确定物体的位移量。这两种测量原理在不同应用场景下有着各自的优势和适用性。产品优势1、激光干涉仪具有非常高的测量精度和重复性。2、激光干涉仪可以实现非接触式测量,不会对被测量物体造成损伤。3、激光干涉仪具有实时性测量能力,能够同时测量多个位置或参数,提高测量效率。产品应用1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过SJ6000机床校准激光干涉仪测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿部分技术规格稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • Zygo激光干涉仪红外干涉仪适用于高精度红外成像应用的测量方法光学成像的应用广泛,种类繁多。在系统的设计波长下进行测试对开发、最终对准和鉴定至关重要。用于航空航天和国防的夜视、红外和热成像系统、光刻子系统、遥感望远镜和外来材料鉴定对波长有不同的要求,而它们都受益于在红外干涉仪系统在设计波长下的测试。ZYGO长期以来被公认为是世界上干涉测试仪器的先行者,已经设计和制造了许多特殊装备的干涉仪系统,包括NIR、SWIR、MWIR和LWIR波长的系统。ZYGO还设计和制造了一系列用于这些波长的参考光学器件(透射球面镜和透射平面镜)。主要特点工作波长范围广:NIR:1.053μm&1.064μmSWIR:1.55μmMWIR:3.39μmLWIR10.6μm基于工作波长的QFAS十字快速对准视图简化了红外测试系统和组件的设置。ZYGO独有的QPSI™ 采集技术,可在振动较常见的环境中实现可靠的测量,NIR、SWIR和MWIR型号均配有这种技术。可选的DynaPhase™ 瞬时数据采集技术,对振动不敏感,可在最恶劣的环境中进行测量。
    留言咨询
  • Bristol 771系列激光频谱分析仪 光学测量仪特点:一台设备,既能实现频谱分析,又能实现波长测量光谱分辨率高达2 GHz,波长准确度高达±0.0001 nm,光学抑制比大于40 dB内置标准稳频HeNe激光器实现连续校准可以同时实现光功率测量,准确度可达±15 %。工作波长375 nm-12 μm,输入功率可以低至3 nW,测量时间只需1 s可以用于测量连续激光器,也可以用于测量高重频脉冲激光器对于visible与near-IR波长,提供便捷的预准直光纤输入口,对于IR 与mid-IR波长,提供可见光辅助校准软件基于Windows系统,可采用USB或者Ethernet实现与PC的通讯采用用户自定义或者Labview程序可以实现自动波长数据报告 771系列激光频谱分析仪通过结合迈克尔逊干涉仪与快速傅里叶变换分析,得到了包括高分辨率频谱分析仪与高精度波长计的特色设备。具有高达2 GHz的光谱分辨率,波长准确度高达± 0.2 ppm,光学抑制比大于40 dB,771系列激光频谱分析仪提供的是对激光器频谱特性的详尽信息。
    留言咨询
  • 镭测科技Leice激光干涉仪LH2000双频激光干涉仪 满足计量检测用户更稳定、更高精度、更便利的使用要求; 以光刻机用激光干涉测量系统为基础, 在保留高稳定性、高精度、高采样速率卓越性能的同时, 将光源和测量信号接收处理单元集成在主机里, 一体化设计为用户提供更加方便、易用、友好的使用体验; 典型频差7±0.5 MHz,测速高达2m/s。 系统组成: LH2000激光测头及附件 环境补偿单元 LaserLC测量软件 线性位移测量镜组(选配:角度、直线度、垂直度、平面度测量镜组等) 光学调整附件 三脚架及其他测量附件镭测科技Leice激光干涉仪LH2000双频激光干涉仪参数激光头尺寸330mm×110mm×95mm激光头重量3.3kg激光光束直径6mm激光功率 0.5mw真空波长632.99nm频差可定制 典型值7±0.5 MHz工作温度范围+10℃~+30℃储存温度范围+15℃~+45℃激光稳频精度±0.02ppm线性测量范围40m线性测量精度±0.1ppm(真空中)±0.4ppm*(使用LC-2000环境补偿器)分辨率1nm测量速度2m/s工作电源220V/50Hz北京镭测科技有限公司为您提供镭测科技Leice激光干涉仪LH2000双频激光干涉仪,镭测科技LH2000双频激光干涉仪产地为北京,属于国产激光干涉仪,更多激光干涉仪的参数、价格、型号、原理等信息欢迎您访问北京镭测科技有限公司官方网站。
    留言咨询
  • ZYGO新型VerifireHDX激光干涉仪是为超高精度的光学元件和系统设计和制造的,可以获得元件表面的中频特征信息。系统包含现有VerifireHD的所有功能-比如QPSI和长寿命稳频的激光器,并增加了重要的增强功能,如刷新行业水平的分辨率和成像能力,仪器传递函数(ITF)、出众的中频特征分析和大坡度表面测试,同时也兼具了ZYGODynaPhase® 系列动态采集技术,可以去除震动引起的问题并且能够在近乎任何环境中准确计量。特殊设计优化的分辨率和性能VerifireHDX激光干涉仪系统具有全新的光学设计,经过严格设计,可为其所配的3.4kx3.4k(1160万像素)传感器提供突破像素限制的性能,呈现增强的图像,可以显示出较低分辨率干涉仪难以辨识的表面特征。这种超高的空间分辨率不会以牺牲速度为代价,该系统在全分辨率下以帧率96Hz运行,比其它高分辨率干涉仪速度快10倍,那些由于采样速度较慢在采样的时候会引入震动误差从而测试能力受限。功率谱密度(PSD)和衍射分析工具完善了VerifireHDX激光干涉仪系统的中频特征分析能力,并通过简单直观的用户界面来分析和报告综合表面特性。光学面形测试下的中频特征分析高质量的参考光学元件和配件UltraFlat™ 和UltraSphere™ 超高精度透射平面和球面,面形可以达到λ/40PVr或更高,并且严格控制PSD特征进行制造,以*优化中频特征。推荐将这些高精度参考光学元件与VerifireHDX激光干涉仪一起配合使用,以完整实现和提升系统的性能。无论它们是被用于垂直构型还是水平构型,UltraFlat透射平板面形精度不变,从而在测试设置中提供更大的灵活性。超高精度平面和球面透射元件Mx™ 软件ZYGO自主设计研发的Mx™ 分析软件提供强大的操作功能和完整的数据分析功能,包括Zernike,斜率,PSD/MTF/PSF,棱镜角度,角锥以及更多。该软件集仪器控制,数据采集和分析软件包与一体,集成了制造过程控制,运行自动化和报告关键中频特征等工具包。软件操作界面简单,直观。它还包括了基于Python的脚本和远程控制接口,以实现更大的灵活性并集成到复杂的测试设置中。Mx软件,泽尼克分析结果ITF仪器传递函数-它是什么,为什么它是重要的很多年来,大家一直关注于光学元件表面的形状误差,但随着对光学系统性能需求的增加,控制中频特征(MSF)也变得同样重要。对于一些极高性能应用,需要严格控制MSF特性以减少光散射并提高光学效率。在校正形状误差方面非常有效的小工具确定性抛光技术也会将不期望得到的中频特征赋予光学表面。根据表面特性的频率和斜率,传统的干涉仪系统-非常适合测量表面形状-由于分辨率有限,无法测量和量化较高频率的表面特性。分辨率的缺失意味着更高的频率细节被过滤(见右图),并且在测量结果中可能根本不显示。这是仪器传输函数(ITF)的所在。激光干涉仪系统由于其自身的设计(光学设计,相机,波长)会衰减和过滤部分表面信息,决定了该系统的ITF(测量光学表面的空间频谱的能力)。VerifireHDX激光干涉仪系统具有高分辨率3.4kx3.4k传感器和优化的光学设计,具有比任何商业上可获得的干涉仪系统更高的ITF,使其成为可靠测量和量化光学表面中频特性的宝贵工具。这为光学设计师们提供了一种新能力,可以自信地指定光学表面到更高精度,并定义ITF测试要求来达到系统性能目标。用特殊设计的台阶板测量到的相位数据,台阶板上刻有密集的40nm台阶,按不同频率沿着径向发散变化。
    留言咨询
  • 皮米激光干涉仪 德国attocube公司在皮米精度位移激光干涉仪FPS的基础上,新推出了体积更小、适合集成到工业产品与同步辐射应用中的IDS型号皮米精度位移激光干涉仪。与FPS型号干涉仪相似,IDS型号同样适用于端环境如高真空与高辐射环境并且具有高精度与高采样速率。IDS产品是适合工业集成与工业网络无缝连接的理想产品。产品在工业应用中具有广泛范围前景,包括闭环位移反馈系统搭建、振动测量、轴承误差测量,实时位移测量等。 德国计量院(PTB)对IDS3010激光干涉仪的精度进行了认证。值得指出,在0-3米的工作距离内, IDS激光干涉仪的的测量数据与德国计量院激光干涉仪数据完全一致。德国计量院的认证使得IDS激光干涉仪的测量数据满足德国标准,使得IDS更加理想的成为位移台鉴定与机器加工等领域的测量工具。IDS3010激光干涉仪主机尺寸与接口IDS3010激光干涉仪应用领域IDS3010充分满足高分辨位移于定位的工业和科研需要,可应用于长度测量、同步辐射、精密仪器、半导体工业以及显微镜。IDS3010激光干涉仪产品特点 + 设计紧凑(50mm x 55mm x 195mm),适合工业集成+ 工业化界面,含HSSL、AquadB、CANopen、Profibus、EtherCAT、等界面+ 测量速度快,定位样品采样带宽10MHz+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 校正简单,配备可见激光(650nm)用于校正测量激光(1530nm)+ 测量精度高,探测器分辨率高达1 pm设备选件光纤式激光探头 IDS系列激光干涉仪可提供不同型号探头(探头尺寸,光斑大小不同)。探头直径范围:1.2mm – 22mm。典型准直激光光斑:1.6mm, 典型聚焦激光光斑:70 mm。低工作温度:10mK, 1E-10mBar超高真空适用, 10MGy强辐射环境适用。激光探头技术参数表激光探头型号尺寸mm (直径与长)工作距离(低反射,高反射材料)激光类型(聚焦、准直) 光斑大小D1.2/F7Ф 1.2 7.55-9 mm30-45 mm聚焦,焦距7mm70μm@7mmD4/F8Ф 4 11.56-10 mm15-30 mm聚焦,焦距8mm70μm@8mmD4/F13Ф 4 11.511-15 mm30-45 mm聚焦,焦距13mm70μm@13mmD12/F2.8Ф 12 32.32.8 mm聚焦,焦距2.8mm2μm@2.8mmM12/C1.6Ф 14 17.40-1000 mm准直1.6mmM15.5/C1.6Ф 22 20.60-1000 mm准直1.6mmM12/C7.6Ф 14 49.30-5000 mm准直7.6mm应用案例■ IDS3010在航天飞行器形变检测上的应用德国卫星制造商OHB公司(德国OHB-System 是一家专门从事小卫星系统、分系统研制工作的企业,在小型商业卫星、小型研究卫星及相关分系统的研制、制造和操作方面具有丰富的经验)采用attocube的激光位移传感器IDS3010,对三代气象卫星(MTG)柔性组合成像仪进行了高真空光-热-力学模型试验。该试验包括在仪器的不同区域,并监控其后续光学元件相对位移测量哈特曼传感器。在真空环境中通过IDS3010激光干涉仪以小于1角秒的精度对平面基准相对位置的稳定性进行了一个多星期的持续测试。为了校准IDS3010不同探头之间的距离,需要进行初步测试(每个传感器探头与用于角度计算的距离,名义上为100 mm)。为此,平面参考镜的电动框架被用来产生任意角度的运动。这些角度是由IDS3010激光干涉仪和校准的自准直仪测量得到。IDS3010激光干涉仪在±720角秒范围内表现出良好的线性(0.1%),并且非常容易校准。再与MTG柔性组合成像仪对齐之后,即在Shack-Hartmann传感器和IDS3010传感器之间执行另一个交叉校准,以补偿IDS3010传感器相对于Shack-Hartmann传感器的时钟。三代气象卫星的柔性组合成像仪(MTG-FCI)的实验装置。紫色表示激光干涉仪组件:传感器探头支架和角角锥棱镜支架。以上信息由OHB System AG提供结果此次测量的目的是在一周多的时间内连续监测参考镜相对于卫星的稳定性,精度小于1角秒。使用如上所述attocube公司的激光干涉仪得到的测试得到角度精度甚至比一个角秒还要好。理论计算表明,其测试分辨率可以到达0.021角秒(等于5.8u°),但实际读数受试验装置振动的限制。■ IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达上的应用自动驾驶是目前汽车工业为前沿和火热的研究,而自动驾驶尤为重要的是需要可靠和高分辨率的距离测量雷达。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010)证明了测量系统在-3.9μm至+2.8μm之间达到了-0.5-0.4μm的超高精度。这种全新的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。图一 紧凑型FMCW传感器的照片图二 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果参考文献S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).■ IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变的测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一个基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究因为光压而导致的形变特性。图一所示为测量装置示意图,测量装置由5 x 5 共计25个M12/F40激光探头组成的网格,以此来实现监测纳米的无轴承平面电机内部的移动器变形。实验的目的是通过对无轴承的平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544nm,小形变量为110nm(如图二所示)。图一 左侧5X5排列探头测量装置示意图,右图为实物图图二 无轴承磁悬浮机台形变量的测量结果,大形变量为544nm参考文献Measuring the Deformation of a Magnetically Levitated Plate displacement sensor.■ IDS3010在X射线成像中提高分辨率的应用在硬X射线成像中,每个探针平均扫描时间的减少对于因为束流造成的损伤是至关重要的。此外,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。Attocube公司的皮米精度干涉仪FPS3010(升之后的型号为IDS3010),被用于优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性的测量。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。Attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10nm。 图一 实验得到的系统分辨率结果参考文献Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)■ IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙的利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上(doi:10.1038/nature25156)。研究人员通过测试了一种机械超材料的体,边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。图一 实验中对对机械超材料微小振动的频率分析参考文献Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)■ IDS3010激光干涉仪在快速机床校准的应用德国亚琛工业大学(Rwth Aachen University,长久以来被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时、需要中断生产过程、安装和卸载校准设备的手动校准变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪,其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较:六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性,值得指出的是:使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而通过保持相同的精度水平提高了生产率。参考文献Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)■ IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。设计一个的锥束C-T系统的挑战之一是它的几何测量系统。近,瑞士联邦计量院(METAS)的科学家将德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够实现样品台的角度误差分析。终实现了非线性度小于0.1μm,锥束稳定性在一小时内优于10ppb的高精度工业C-T。参考文献Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU■ IDS3010激光干涉仪在增材制造3D打印方面的应用微尺度选择性激光烧结(μ-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。由于该导轨对定位精度要求很高,所以采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。参考文献Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA ■ IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对于系统稳定性的要求提出了更高的要求。在整个过程中实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,表现出优异的性能。IDS3010在40小时内具有优于1.25nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300pm的分辨率。因此,IDS3010是对所述X射线显微镜装置中使用的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45nm。参考文献Characterizing a scanning fluorescence X ray microscope made with the displacement sensor■ 皮米精度激光干涉仪IDS3010在相位调制器的精密调制和控制上的应用相位调制器是相干合成孔径望远镜中光束合成机构的关键部件。提高相位调制器的调制精度和控制带宽有助于提高合成孔径望远镜的成像分辨率。相位调制器运动信息包括俯仰角、方位角和轴向位移3个自由度。目前3个或者多个自由度的实时测量还处于发展阶段。同时实现多自由度测量更是少之又少。来自中国科学院光电技术研究所光束控制重点实验室的方国明课题组采用德国attocube system AG公司的三轴皮米精度激光干涉位移传感器IDS3010通过获取待测目标平面内3个不共线点的位移量,而3个不共线的点可确定平面的法线,基于平面法线的性可解,从而可以获得目标的3个自由度运动信息,包括方位角、俯仰角和轴向位移。成功实现了三自由度的同时实时测量。图示: 三自由度测量原理示意图■ 皮米精度位移测量激光干涉仪助力声子四拓扑缘体观测电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。图示:实验装置示意图参考文献Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)■ 激光干涉仪检测纳米精度位移台误差在实际生产中的存在可能导致损失以及客户对产品信心的丢失。光学传感器可以在质量检测中帮助减少误差产生提高成品率。attocube激光干涉仪是理想的可在各个领域提供高精度探测来减少误差的一种光学传感器。作为纳米精度位移台供应商的德国attocube公司,对位移台的精密移动的测量与鉴定是一个非常重要的任务。例如,下图左,ECS3030型号的线性位移台可在真空中进行位移。ECS3030位移台的行程是20mm。技术参数要求的是可重复精度小于50nm。利用attocube激光干涉仪对位移台上样品进行测量,位移台被程序控制来回往复移动1mm,在20mm的行程内在多个不同地点进行来回往复移动。测量结果如下图中所示。通过分析,左图中的数据提取的偏差值是13.2nm,下图右数据的直方图显示标准差是13nm。因此,位移台的可重复性技术指标是合格的。通过使用attocube激光干涉仪可以实施对于纳米精度位移台ECS3030的全自动测量。这已经是德国attocube公司对于位移台的质量检测手段。并且,这样一个简便与实用的传感器可以直接集成到生产线中去提供高产出的质量检测。■ 激光干涉仪组建高精度X射线显微镜同步辐射中心具有广泛的应用领域,生物科技(蛋白质结构),医学研究(微生物),工程研究(裂纹的变化观测),先进材料(纳米结构测量)等。以上应用需要高精度去驱动聚焦镜,样品,光学狭缝等物品(下图左),这样的机械结构需要减少热漂移与定位误差。德国attocube公司的激光干涉仪具备皮米精度分辨率,激光探头可在真空环境中使用,是同步辐射研究的良好选择。在现有激光探头中,标准激光探头M12是已经被证实可以在辐射环境中使用(大10MGy)。美国布鲁克海文实验室E. Nazaretski等人结合attocube激光干涉仪与纳米精度位移台搭建了X射线扫描成像显微镜(下图中)。通过attocube激光干涉仪作为实时检测与反馈位移台移动的工具,科学家实现了0.5nm的步进扫描(下图右)。并且,在真空环境中,系统的热漂移达到了2nm/h。综上所述,高精度的X射线显微镜可以实现纳米精度扫描成像,是实现硬X射线区域光学研究的有力工具。该显微镜使得X射线荧光光谱纳米精度成为了现实。参考文献E. Nazaretski , et.al. J. Synchrotron Rad. (2015). 22, 336–341 ■ 激光干涉仪无损探测轴承误差旋转物体的运动误差分析是高精度机械工程领域的一个主要兴趣之一。如果是高速旋转的转子,甚至1纳米的误差就会产生不想要的振动与运动误差。因此,纳米精度的运动误差监测是机械工程领域前沿的重要研究课题。一个主要的难题是:如何减小运动误差?为了减小误差,先需要测量误差。德国attocube公司的激光干涉仪可以提供一个无损,紧凑并且一插即用的解决方案。通常的线性位移测量需要一个平整的表面,而旋转运动的时候,遇到的是一个曲面(右图上)。attocube激光干涉仪测量的是一个直径为10mm的电动转子。由于attocube激光干涉仪的探头具有较大的容忍角度,激光探头很容易完成了校准并开始进行测量。转子转速为2160转每秒,两个激光探头对转子的运动误差进行了测量。右图下显示的为测量结果,红色实线为平均位置,而虚线显示了误差为5微米的两个圆环。黑色实现为实际测量数据。德国attocube公司的激光干涉仪软件使用界面友好,可提供亚纳米别的运动误差校正方案。即使是新用户,对于其激光干涉仪的使用也会很快熟悉。参考文献 Review of scientific instruments, 84, 035006 (2013) ■ 激光干涉仪校正低温非线性扫描通常扫描台在室温下扫描50微米 x 50微米的范围时候不会有显著的非线性效应。但是当在低温环境(4K或更低)中,压电陶瓷本身的性能发生变化,会产生下图右中的非线性扫描现象。通过德国attocube公司的激光干涉仪,可以在低温环境下使用激光探头对扫描台的扫描运动进行实时检测(高速扫描)。结合对扫描台的施加电压进行实时反馈控制,可解决低温下非线性扫描问题。测试数据■ 实验数据,皮米精度的稳定性图1 77mm长的腔在20个小时内的实验测量数据表明数据误差范围在55pm■ 测量速度快,定位样品采样带宽10MHz图2 样品移动速度2米/秒,移动范围1m发表文章1. Stability investigation of a cryo soft x-ray microscope by fiber interferometry Rev. Sci. Instrum. 91, 023701 (2020) 2. Vibration-heating in ADR Kevlar suspension systems James Tuttle et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 755 0120153. S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).4. Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)5. Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6. Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)7. In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement S. Fringes et al. J. Appl. Phys. 119 024303 (2016)8. Interferometric characterization of rotation stages for X-Ray nanotomography T. Stankevi? et al. Rev. Sci. Instrum. 88 053703 (2017)9. Measurement of forces exerted by low-temperature plasmas on a plane surface T. Trottenberg and H. Kersten Plasma Sources Sci. Technol. 26 055011 (2017)10. Mesh-type acoustic vector sensor M. K. Zalalutdinov et al. J. Appl. Phys. 122 034504 (2017)11. Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎.....国内部分用户北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……国外部分用户
    留言咨询
  • 一、产品简介 IR-880 型傅立叶变换红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理 而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、 检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性 和定量分析,具有较高的分辨率,优秀的噪声抑制,优异的波数精度,可以满足客户 研究级别的应用,是医药、环保、科研等领域的有力工具。 二、工作原理 BFH-960型傅立叶变换红外光谱仪的核心是 He-Ne 激光干涉仪,通过干涉调频的工作原理,把经过迈克尔逊干涉仪调制的干涉光照射样品,DTGS 或 MCT 接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的红外光谱图。三、规格项目技术指标光谱范围7800-350cm-1控温精度优于15000:1/30000:1,(4cm-1,一分钟扫描)分辨率优于1.0cm-1分束器溴化钾基片镀锗接收器进口高灵敏度DLaTGS检测器光源进口长寿命高强度空气冷却红外光源透过率精度优于50%T干涉器30°入射气密迈克尔逊干涉仪,内置自动光学准直系统通讯接口USB2.0,兼容USB3.0A/D转换500Khz,24位A/D转换器环境温度要求15~35℃尺寸450(L)×350(W)×235(H)mm重量14kg 四、产品特点 可靠的光学系统 ? 可靠的密封型干涉仪设计,采用带有防潮膜的分束器以及超大容量的可重复使用的干燥剂盒,达到同类产品的 5 倍防潮能力; ? 湿度观察窗采用 7°前倾设计,符合人体工程学原理,更易于观察,便于及时更换分子筛; ? 推拉式样品仓门设计,大大减小外界空气中水和二氧化碳对实验测试结果的干扰; ? 采用高效节能的电学系统设计,正常工作,整机功耗不到 30W,绿色节能; ? 对针定位安装方式,无需调整。 高稳定性 ? 干涉仪采用进口镀金角锥反射镜,具有极高的反射率和角度精确度; ? 采用高性能的长寿命陶瓷光源,发光效率高达 80%; ? 高灵敏度的进口 DLaTGS 检测器; ? 光学部件采用高精密金刚石切削,系统具有极高的一致性、稳定性; ? 高性能 VCSEL 激光器,可确保 10 年以上寿命。 人性化设计 ? 超大样品仓设计,方便扩展各种红外附件; ? 仪器设计紧凑、小巧轻便,节省实验空间; ? 模块化设计,维护简单,维护方便。 强大的人性化操作 ? 智能的人机交互设计,无论您是否接触过傅立叶红外软件,都能迅速熟悉操作; ? 可供选择的激光频率校正模式,无论是国家标准还是计量规范都能满足; ? 独到的数据采集预览全程监控模式,采集过程一览无余; ? 数据处理:谱图基线校准及平滑,导数光谱,数学处理,基础解析及官能团分析,峰面积、峰高及注释功能,高级 ATR 校正,批量 QC 比较等。 拥有多种专业红外图谱库,满足常规检索外,用户可自定义新的谱库,可自行添加维护。图谱库包括:国家药典谱图库,国家兽药典谱图库,橡胶谱图库,气体谱图库,高分子谱图库,蛋白质和氨基酸谱图库,司法谱图库,无机谱图库,有机谱图库,溶剂谱图库,食品添加剂谱图库,香精香料谱图库,涂料谱图库等等。
    留言咨询
  • SJ6000中图国产激光干涉仪品牌利用激光干涉现象来实现非接触式测量,其光波波长可以直接对米进行定义,具有测量精度高、测量范围大、测量速度快、高测速下分辨率高等优点。产品配置SJ6000激光干涉仪系统具有丰富的模块化组件,可根据具体测量需求而选择不同的组件。主要镜组如下图所列,依次为线性镜组、角度镜组、直线度镜组、垂直度镜组、平面度镜组、自动精密转台。主要镜组图其中,线性镜组为标配,由线性干涉镜、线性反射镜和夹紧孔座构成。可满足线性位移设备的定位精度、重复定位精度、反向间隙的测量与分析,以及反向间隙修正和螺距补偿。产品功能(1)可实现线性、角度、直线度、垂直度、平行度、平面度、回转轴等几何参量的高精密测量;(2)可检测数控机床、三坐标测量机等精密运动设备其导轨的线性定位精度、重复定位精度等,以及导轨的俯仰角、扭摆角、直线度、垂直度等;(3)可实现对机床回转轴的测量与校准;(4)可根据用户设定的补偿方式自动生成误差补偿表,为设备误差修正提供依据; (5)具有动态测量与分析功能,包括位移分析、速度分析、加速度分析、振幅和频率分析等,可进行振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等;(6)SJ6000中图国产激光干涉仪品牌支持手动或自动进行环境补偿。在机床加工领域的应用1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过SJ6000中图国产激光干涉仪品牌测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿激光干涉仪以光波为载体,利用激光作为长度基准,是高精度、高灵敏度的测量仪器。激光干涉仪不仅广泛用于数控机床、激光切割机、光刻机等,在计量检定领域也能大展身手。在计量检定领域的应用1、测长机检定传统的测长机示值误差主要采用量块进行校准,受环境因素影响较大,校准条件要求高,且量程大于1m的测长机需要分段校准,效率低,而使用激光干涉仪进行校准,不仅可以提高效率,还可通过环境补偿单元对空气温度、压力、湿度和材料温度进行补偿,提高校准精度。2、三坐标测量机示值误差测量随着三坐标测量机技术的更新和发展,使用传统的量块、球板等已经难以满足大型三坐标测量机的检测要求,激光干涉仪测量准确度高,测量范围大,测量数据丰富,适合测量三坐标各项几何误差。3、位移传感器检定利用激光干涉仪对位移传感器检定成为发展趋势,其特点是测量精度高、反应速度快、易于数字化测量。在测量中设计一个精密导轨,将反射镜同被测传感器放在一起同步检测,从而形成对比,位移传感器自动检定系统与SJ6000激光干涉仪(标准)对定长位移进行测试对比,得出往复测试实验结果。4、影像仪定位精度测量影像仪传统检测方法采用线纹尺比对法进行,存在着检测精度低、测量系统误差大、成因分析功能缺失、改善方向不精准、 检测效率低下等问题。使用激光干涉仪可以对影像仪的定位误差进行快速检测,对测量数据进行运算分析,利用软件生产补偿文件快速实施二维平面多点位补偿,可大大降低设备制造过程中的精度检测难度、提升检测效率及补偿效率。部分技术规格稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组 长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • SJ6000高灵敏度超精密激光干涉仪是利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点。它集光、机、电、计算机等技术于一体,产品采用进口高性能氦氖激光器,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。产品功能(1)可实现线性、角度、直线度、垂直度、平行度、平面度、回转轴等几何参量的高精密测量;(2)可检测数控机床、三坐标测量机等精密运动设备其导轨的线性定位精度、重复定位精度等,以及导轨的俯仰角、扭摆角、直线度、垂直度等;(3)可实现对机床回转轴的测量与校准;(4)可根据用户设定的补偿方式自动生成误差补偿表,为设备误差修正提供依据;(5)具有动态测量与分析功能,包括位移分析、速度分析、加速度分析、振幅和频率分析等,可进行振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等;(6)支持手动或自动进行环境补偿。测量软件(1)友好的人机界面;(2)丰富的应用功能模块;(3)向导式的操作流程;(4)简洁化的记录管理;(5)支持中文、英文和俄文界面;(6)支持企业专属模板定制。SJ6000高灵敏度超精密激光干涉仪在机床加工领域有着广泛的应用。工作原理激光干涉仪利用激光光束的干涉原理来测量物体的形状和表面的高度差异。其原理是基于两束相干光在空间交叉的地方发生干涉,形成干涉条纹,通过测量干涉条纹的变化来推断被测量物体的参数。测量原理 激光干涉仪的测量原理主要包括相位测量和位移测量。相位测量是通过测量干涉条纹的相位差来计算被测量物体的形状、位置等参数;位移测量是通过测量干涉条纹的位移来确定物体的位移量。这两种测量原理在不同应用场景下有着各自的优势和适用性。产品优势1、激光干涉仪具有非常高的测量精度和重复性。2、激光干涉仪可以实现非接触式测量,不会对被测量物体造成损伤。3、激光干涉仪具有实时性测量能力,能够同时测量多个位置或参数,提高测量效率。产品应用激光干涉仪是一种能够测量机床精度的高精度测量装置。它利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点,在机床加工领域有着广泛的应用。1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过激光干涉仪测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿部分技术规格 稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组 直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • JASCO日本分光株式会社起源于东京教育大学光学研究所,于1954年研制出日本首台红外光谱仪DS-101,直至1958年成立以来,JASCO传承先进技术推陈出新,2022年推出全新傅立叶变换红外光谱仪FT/IR-6X/8X。 FT/IR-6X和8X是科研级FTIR型号。 具有出色的基础性能:高信噪比、高分辨率;可支持扩展测量波数和真空测量。 此外,也可以扩展VCD和拉曼测量,搭配各种配件支持多种分析。1.FT/IR-6X和8X科研级分析,支持 S/N 47000:1、S/N 55000:1选择2. 28° 入射迈克尔逊干涉仪高光通量特性。 采用高精度DSP对动镜进行控制,永久准直角隅棱镜,保持稳定的干涉状态3. 干涉仪安装在铸铝光学底座上,具有坚固的罗纹结构,具有振动和变形功能,保证测试数据的稳定, 内部光学元件由高度密封的干涉仪外壳保护。 高亮度、长寿命陶瓷光源、温控DLATGS探测器和防潮KRS-5窗片确保长期高质量测量4. 支持25000~20cm-1波数扩展 通过自动BS交换单元,可以可靠,安全地更换分束器。 (以下数据是通过切换光源和分束器来测量)5. 开机自行诊断仪器状态,Spectrum Manager Ver.2.5 光谱管理软件不仅满足各种测试、分析,而且配备的导航功能,可以根据导航提示设置测试条件实现快速测试。
    留言咨询
  • 一、产品简介 IR-880 型傅立叶变换红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理 而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、 检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性 和定量分析,具有较高的分辨率,优秀的噪声抑制,优异的波数精度,可以满足客户 研究级别的应用,是医药、环保、科研等领域的有力工具。 二、工作原理 BFH-960型傅立叶变换红外光谱仪的核心是 He-Ne 激光干涉仪,通过干涉调频的工作原理,把经过迈克尔逊干涉仪调制的干涉光照射样品,DTGS 或 MCT 接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的红外光谱图。三、规格项目技术指标光谱范围7800-350cm-1控温精度优于15000:1/30000:1,(4cm-1,一分钟扫描)分辨率优于1.0cm-1分束器溴化钾基片镀锗接收器进口高灵敏度DLaTGS检测器光源进口长寿命高强度空气冷却红外光源透过率精度优于50%T干涉器30°入射气密迈克尔逊干涉仪,内置自动光学准直系统通讯接口USB2.0,兼容USB3.0A/D转换500Khz,24位A/D转换器环境温度要求15~35℃尺寸450(L)×350(W)×235(H)mm重量14kg 四、产品特点 可靠的光学系统 ? 可靠的密封型干涉仪设计,采用带有防潮膜的分束器以及超大容量的可重复使用的干燥剂盒,达到同类产品的 5 倍防潮能力; ? 湿度观察窗采用 7°前倾设计,符合人体工程学原理,更易于观察,便于及时更换分子筛; ? 推拉式样品仓门设计,大大减小外界空气中水和二氧化碳对实验测试结果的干扰; ? 采用高效节能的电学系统设计,正常工作,整机功耗不到 30W,绿色节能; ? 对针定位安装方式,无需调整。 高稳定性 ? 干涉仪采用进口镀金角锥反射镜,具有极高的反射率和角度精确度; ? 采用高性能的长寿命陶瓷光源,发光效率高达 80%; ? 高灵敏度的进口 DLaTGS 检测器; ? 光学部件采用高精密金刚石切削,系统具有极高的一致性、稳定性; ? 高性能 VCSEL 激光器,可确保 10 年以上寿命。 人性化设计 ? 超大样品仓设计,方便扩展各种红外附件; ? 仪器设计紧凑、小巧轻便,节省实验空间; ? 模块化设计,维护简单,维护方便。 强大的人性化操作 ? 智能的人机交互设计,无论您是否接触过傅立叶红外软件,都能迅速熟悉操作; ? 可供选择的激光频率校正模式,无论是国家标准还是计量规范都能满足; ? 独到的数据采集预览全程监控模式,采集过程一览无余; ? 数据处理:谱图基线校准及平滑,导数光谱,数学处理,基础解析及官能团分析,峰面积、峰高及注释功能,高级 ATR 校正,批量 QC 比较等。 拥有多种专业红外图谱库,满足常规检索外,用户可自定义新的谱库,可自行添加维护。图谱库包括:国家药典谱图库,国家兽药典谱图库,橡胶谱图库,气体谱图库,高分子谱图库,蛋白质和氨基酸谱图库,司法谱图库,无机谱图库,有机谱图库,溶剂谱图库,食品添加剂谱图库,香精香料谱图库,涂料谱图库等等。
    留言咨询
  • 一、产品简介 IR-880 型傅立叶变换红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理 而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、 检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性 和定量分析,具有较高的分辨率,优秀的噪声抑制,优异的波数精度,可以满足客户 研究级别的应用,是医药、环保、科研等领域的有力工具。 二、工作原理 BFH-960型傅立叶变换红外光谱仪的核心是 He-Ne 激光干涉仪,通过干涉调频的工作原理,把经过迈克尔逊干涉仪调制的干涉光照射样品,DTGS 或 MCT 接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的红外光谱图。三、规格项目技术指标光谱范围7800-350cm-1控温精度优于15000:1/30000:1,(4cm-1,一分钟扫描)分辨率优于1.0cm-1分束器溴化钾基片镀锗接收器进口高灵敏度DLaTGS检测器光源进口长寿命高强度空气冷却红外光源透过率精度优于50%T干涉器30°入射气密迈克尔逊干涉仪,内置自动光学准直系统通讯接口USB2.0,兼容USB3.0A/D转换500Khz,24位A/D转换器环境温度要求15~35℃尺寸450(L)×350(W)×235(H)mm重量14kg 四、产品特点 可靠的光学系统 ? 可靠的密封型干涉仪设计,采用带有防潮膜的分束器以及超大容量的可重复使用的干燥剂盒,达到同类产品的 5 倍防潮能力; ? 湿度观察窗采用 7°前倾设计,符合人体工程学原理,更易于观察,便于及时更换分子筛; ? 推拉式样品仓门设计,大大减小外界空气中水和二氧化碳对实验测试结果的干扰; ? 采用高效节能的电学系统设计,正常工作,整机功耗不到 30W,绿色节能; ? 对针定位安装方式,无需调整。 高稳定性 ? 干涉仪采用进口镀金角锥反射镜,具有极高的反射率和角度精确度; ? 采用高性能的长寿命陶瓷光源,发光效率高达 80%; ? 高灵敏度的进口 DLaTGS 检测器; ? 光学部件采用高精密金刚石切削,系统具有极高的一致性、稳定性; ? 高性能 VCSEL 激光器,可确保 10 年以上寿命。 人性化设计 ? 超大样品仓设计,方便扩展各种红外附件; ? 仪器设计紧凑、小巧轻便,节省实验空间; ? 模块化设计,维护简单,维护方便。 强大的人性化操作 ? 智能的人机交互设计,无论您是否接触过傅立叶红外软件,都能迅速熟悉操作; ? 可供选择的激光频率校正模式,无论是国家标准还是计量规范都能满足; ? 独到的数据采集预览全程监控模式,采集过程一览无余; ? 数据处理:谱图基线校准及平滑,导数光谱,数学处理,基础解析及官能团分析,峰面积、峰高及注释功能,高级 ATR 校正,批量 QC 比较等。 ? 拥有多种专业红外图谱库,满足常规检索外,用户可自定义新的谱库,可自行添加维护。图谱库包括:国家药典谱图库,国家兽药典谱图库,橡胶谱图库,气体谱图库,高分子谱图库,蛋白质和氨基酸谱图库,司法谱图库,无机谱图库,有机谱图库,溶剂谱图库,食品添加剂谱图库,香精香料谱图库,涂料谱图库等等。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制