当前位置: 仪器信息网 > 行业主题 > >

纳米磨砂机

仪器信息网纳米磨砂机专题为您提供2024年最新纳米磨砂机价格报价、厂家品牌的相关信息, 包括纳米磨砂机参数、型号等,不管是国产,还是进口品牌的纳米磨砂机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米磨砂机相关的耗材配件、试剂标物,还有纳米磨砂机相关的最新资讯、资料,以及纳米磨砂机相关的解决方案。

纳米磨砂机相关的资讯

  • 第五届纳米/微米工程国际年会在厦门召开
    日前,由国家自然科学基金委员会、厦门大学、厦门市科技局共同承办的第五届纳米/微米工程及分子系统国际年会在厦门开幕。来自美、日、德、英、法、中等十几个国家的300余名专家学者共聚一堂,就微米、纳米及分子系统学术界前沿问题和成果展开深入探讨和交流。   纳米技术无疑是人类科学技术史上的一场革命,虽然它目前还仅仅处在一些原理和关键技术的基础研究阶段,但参加第五届纳米/微米工程及分子系统国际年会的科学家们却坚信,这一技术必将渗透到人类生活的方方面面,让人们的生活变得更加美好。   本次年会共收录论文330余篇。期间,还将举行第一届MEMS传感器应用国际比赛,来自全球7个国家的17所高校的学生们将把一些美妙的微纳米科技想法变为具体实物,接受专家学者的评判。   作为每年一度的国际学术盛会,纳米/微米工程及分子系统国际年会由美国电气电子工程师协会主办,旨在推动最新研究成果的共享,促进跨领域学科信息的互通,从而增进相关技术领域的交流与发展。   厦门大学是中国较早从事微米纳米科研工作的单位之一。上世纪90年代,厦门大学在厦门市政府以及著名校友中国台湾新竹高科技工业园区创始人何宜慈,国际传感器学会原会长、美国凯斯西储大学葛文勋教授等的大力支持下筹建萨本栋微机电研究中心,为厦门大学及中国南方省区从事微纳米科技研究提供了重要的技术平台。厦门大学校长朱崇实表示,厦门大学从成立之日起,就把国家和人民的需求放在自己最关注的位置上。近年来,学校紧紧抓住中国创新型国家建设的重大战略机遇,着力增强自主创新能力,取得一系列高显示度的科研成果,加快了微纳米科技基础研究和应用开发的步伐。
  • 从0到1,“厦门智造”福流生物纳米流式仪助力疾病筛查
    福流生物工作人员正在进行设备测试。  福流生物分子实验室研发场景。  文/厦门日报记者 林露虹 通讯员 郭文晨  图/厦门日报记者 张奇辉  纳米有多小?如果将1纳米和1米比较,就好像是高尔夫球和地球作比。1纳米相当于4倍原子大小,比单个病毒的尺寸还要小得多。  厦门创新创业园企业福流生物自主研发的纳米流式检测仪,就好比打开了一扇通往纳米世界的窗口。比如,它可以精准识别出癌细胞分泌的“小囊泡”,助力癌症早期筛查和诊断;再比如,在食品安全领域,它可以快速鉴别致病菌,让危害人体健康的微生物无处遁形。  凭借着灵敏度高的硬核实力,福流生物的纳米流式检测仪热销海内外,成为“中国智造”高端科研仪器走向世界的典型代表,梅奥诊所、美国德州大学安德森癌症中心、约翰霍普金斯大学医学院、美国国立卫生研究院、牛津大学等全球最顶尖研究机构和百时美施贵宝、阿斯利康、武田制药等高科技生物制药公司都是它的客户。  回国创业  实现产业化“从0到1”的突破  福流生物的故事要从创始人朱少彬博士说起。在厦门大学化学化工学院取得博士学位后,朱少彬赴海外从事博士后研究。2014年,他回国创业,立志让研究多年的纳米流式检测技术走出实验室。  起初,产业化之路并不平坦。“纳米流式检测技术是一种流动检测的方法,流体的稳定性决定着设备的稳定性。光流体的设计我们就改了20多个方案。”这是一项艰苦且枯燥的工作,朱少彬用母校厦门大学的校训“自强不息,止于至善”来激励自己,一次次修正、升级方案。  针对光机电一体的研发需要,朱少彬勇攀技术高峰,努力学习机械设计、自动化、软件等相关知识。最终,在他的带领下,团队仅用时一年多就研发了5代原型机。朱少彬事后总结说:“不断学习,在学习中提升信心,用信心支撑创业激情,这对一名创业者来说非常重要。”  功夫不负有心人。2016年夏天,福流生物研发的第一代商品化纳米流式检测仪亮相国际流式细胞大会。起初,参会者们并不觉得这个只有微波炉大小的仪器有什么特别之处。直到有专家和研发机构试用过样机后,他们惊讶地发现,仪器居然蕴藏着“大能量”——可以对细菌、病毒、亚细胞器、细胞外囊泡、纳米药物、功能化纳米颗粒等,在单颗粒水平进行高通量、多参数定量分析,较传统流式细胞仪的散射检测灵敏度提升4-5个数量级,粒径表征分辨率媲美透射电子显微镜,这在行业尚属首创。  2017年,随着福流生物的知名度逐渐提高,公司获得来自外泌体领域的国际领头羊企业Codiak Biosciences的第一张订单,至此,福流生物实现了产业化“从0到1”的突破。  解码细胞外囊泡信息  助力疾病筛查  细胞外囊泡检测是福流生物纳米流式检测仪的高频应用。“细胞外囊泡可以理解为细胞‘吐泡泡’,是细胞间物质通讯的重要介质,相比正常细胞,癌细胞可分泌更多的细胞外囊泡,且在‘吐泡泡’的过程中,会把蛋白核酸等物质带出来,进入血液、尿液等,所以我们可以借由血液、尿液等人体组织液的样本,通过使用纳米流式检测仪,快速实现癌症的早期诊断。”朱少彬说,纳米流式检测仪如同一个“解码器”,能解码人体组织液中的细胞外囊泡的信息奥秘,进而协助疾病筛查以及术前、术后的效果跟踪。  面对突如其来的新冠肺炎疫情,全世界都在与时间赛跑,加强疫苗研究、病毒研究,这也为福流生物带来了新机遇。“我们的仪器可以检测病毒的信息,以及疫苗的纯度、药物承载量等。疫情期间,公司加强病毒应用方面的宣传,得到越来越多的生物医药企业的认可,仪器在国内市场的销量也随之走高。”朱少彬说。  随着福流生物在业界知名度的提升,新的挑战也随之而来。“客户数量的增多,意味着需求变得多元化,技术升级的步伐得跟得上客户及行业的需求,同时还得做好精细化的服务,提升品牌价值。”朱少彬说,公司研发团队持续推动产品的迭代升级,丰富产品线,满足科研、临床、生物制药等领域的客户需求,接下来还将顺应智能化趋势,打造支持自动检测的仪器,提升检测效率,实现“样品进、结果出”的目标。
  • 中澳功能纳米材料联合实验室在厦大揭牌
    中国—澳大利亚功能纳米材料联合实验室揭牌仪式日前在厦门大学隆重举行。   根据中澳联合功能纳米材料实验室合作协议,厦门大学与昆士兰大学将通过研究资源、设备和信息共享,研究人员互访交流,研究生联合培养等方式,建立有效的合作关系。   澳大利亚研究理事会功能纳米材料中心是由昆士兰大学、澳大利亚国立大学、新南威尔士大学、悉尼科技大学等4所澳大利亚最著名大学联合成立的。中心聚集了澳大利亚一流的纳米技术研究力量和最先进的研究设备,研究方向几乎涵盖纳米科学技术所有领域。该实验室将联合中澳双方实验室的技术力量,申请和开展纳米科学和技术前沿战略性的研究与发展项目,在促进亚太地区纳米研究的国际交流与合作中扮演重要角色。   厦门大学将大力支持该联合实验室的工作,开展纳米科学与技术在生物能源、信息技术、生态环境等领域的研究与应用,推动物理、化学、材料、生物医学等学科的交叉发展。同时,积极寻求政府、学校、企业等多方面支持,充分利用国内外两种资源,开辟更多的国际合作与交流渠道,将实验室打造成高水平的纳米研究国际国内合作平台。
  • 纳米粒子揭开微小世界“面纱”
    澳大利亚国立大学(ANU)的物理学家使用纳米粒子开发新的光源,将使人们有能力揭开比人的头发还要细小数千倍的极微小物体世界的“面纱”。发表在最新一期《科学进展》杂志上的这一发现,可能会对医学科学产生重大影响。这种技术成本低、效率高,有助于创造新一代显微镜,观察小到十亿分之一米的物体。  使用纳米颗粒,研究人员将相机和利用其他技术看到的光频率提高了7倍。研究人员说,光的频率可增加到多高是没有限制的。频率越高,使用该光源所能看到的物体越小。这项只需要一个纳米颗粒就能工作的技术,可被应用到显微镜中,帮助科学家以传统显微镜10倍的分辨率放大超微小事物的世界,例如细胞和单个病毒的内部结构。  传统的光学显微镜无法为纳米级物体生成高度放大的图像。依靠超分辨率显微镜技术或使用电子显微镜可帮助实现,但这样的技术速度慢、成本高,而且还可能破坏样品。基于光的显微镜有助于解决这个问题。研究人员借助“极紫外线光”,可看到今天使用的传统显微镜无法看到的东西。  ANU开发的技术也可作为一种质量控制措施,用于半导体行业,简化制造过程。电脑晶片由非常细小的元件组成,其特征大小几乎只有十亿分之一米。在芯片生产过程中,制造商使用微小的极紫外光光源实时监测这一过程,能及早诊断出任何问题,从而提高芯片制造的质量和产量。
  • 厦大科学家制备出新纳米材料 或可应用于癌症光热疗
    厦大科学家最近制备出一种新型的纳米材料——蓝色的钯纳米材料,它不仅具有很高的催化活性,而且或可成为癌症光热疗的“希望之星”。   日前,《自然-纳米技术》刊登了厦门大学化学化工学院郑南峰教授课题组的研究成果。该杂志被认为是英国《自然》杂志旗下报道纳米科学与技术相关研究最新成果的顶尖杂志。   钯是一种稀贵金属,在化学中主要用做催化剂,但是,高比表面积的钯纳米材料多为黑色,被科学家们通俗地称为“钯黑”。郑南峰教授课题组的研究成果却发现,通过形貌的精细调控,纳米钯可以展示出绚丽的蓝色。“钯蓝”不仅拥有“漂亮的外表”,更重要的是,它拥有独特的光学、催化等性能。   据介绍,厦大科学家制备的“钯蓝”的突出特点是“薄”——它由尺寸均一的六边形超薄钯纳米片组成,薄片的厚度仅为1.8纳米,边长可在20-200纳米间调控。郑南峰说,“这样超薄的结构特征不仅使‘钯蓝’具有高的比表面积,使催化性能更为优越,而且结合理论计算,我们还发现超薄结构是‘钯蓝’具有强近红外光吸收并呈现蓝色的主要原因。”   这样的发现使得课题组成员将之与当前用于肿瘤治疗的光热疗联系起来。经过一年多的反复实验,课题组发现,“钯蓝”的超薄厚度使其无法散射近红外光,所吸收的光被完全转化为热,导致周围环境快速升温,可直接应用于肿瘤的近红外光热疗。“同时,作为近红外光敏剂,‘钯蓝’的最大特点在于它的超高光热稳定性,这一特性是其他现有贵金属纳米近红外光敏剂所无法媲美的。”
  • 自支撑纳米级碳膜的制备研究
    成果名称 自支撑纳米级碳膜的制备研究 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 在低能核物理、激光核物理、原子核化学试验等科研工作中,都需要用到自支撑薄膜作为靶膜、剥离膜或X 射线过滤器,这些膜的厚度范围覆盖几十纳米到几十微米。因此自支撑薄膜的制备成为这些实验成功与否的关键问题之一,这方面的研究已经成为核科学技术、材料科学与物理学的研究热点。此外,随着近年来激光驱动离子加速的兴起,人们发现激光轰击固体靶可以有效地加速质子到很高的能量(例如100MeV质子),从而可以提供一种台面大小的装置,用于取代体积庞大的常规离子加速器。这不仅对高能物理加速器具有重要意义,还可以显著降低癌症治疗等应用型加速器的体积和造价,而纳米级薄膜正是激光驱动粒子加速的关键元件。 2011年,北京大学物理学院颜学庆教授申请的&ldquo 自支撑纳米级碳膜的制备研究&rdquo 项目获得第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用阴极弧沉积方法在平面硅、玻璃和载波片上成功制备了厚度可以精确控制的纳米级碳膜,精确度达到(± 1nm)。该碳膜能够与基底分离,并被放到带孔的金属模板上。此外,课题组还为其将要开展的激光离子加速实验和串列加速器研究提供了厚度小于10nm的固体靶材。目前相关工作已经顺利结束,此项工作的成果已经申请了专利并有相关论文发表,课题组研制的自支撑薄膜将在低能核物理、激光核物理、原子核化学试验和激光驱动离子加速等科学研究中进行推广。2012年,该项目获得了科技部国家重大科学仪器设备开发专项支持。 应用前景: 不仅对高能物理加速器具有重要意义,还可以显著降低癌症治疗等应用型加速器的体积和造价,而纳米级薄膜正是激光驱动粒子加速的关键元件。 知识产权及项目获奖情况: 已申请专利。
  • 【网络讲堂参会邀请】如何沉积纳米粒子 ——纳米粒子单层膜沉积实用指南
    如何沉积纳米粒子——纳米粒子单层膜沉积实用指南 纳米颗粒的二维致密单层膜沉积是多种技术和科学研究的基础。例如,纳米粒子单层膜可以作为传感器上的功能层,也可以用来生产用于纳米球光刻的胶体掩模。但是,怎样才能高效、可靠地得到具有三维自由度的纳米颗粒溶液,并将这些颗粒限制在横跨大基底的(二维)单层中呢?传统的纳米颗粒沉积技术纳米颗粒沉积技术种类繁多。一些相对简单和快速的方法包括溶剂蒸发、浸渍镀膜和旋涂镀膜。然而,这些技术可能会浪费大量的纳米颗粒,并且无法有效控制纳米颗粒的密度和配位结构。溶剂蒸发溶剂蒸发容易产生所谓的咖啡渍圈环效应,这种效应是由马朗戈尼流动引起的。这将导致不均匀沉积,中心的纳米粒子沉积稀疏,而边缘则形成多层纳米粒子沉积。 浸渍镀膜另一方面,如果只是用纳米粒子覆盖基底,浸渍镀膜将是一种很好的技术。然而,使用这种方法沉积纳米颗粒单分子层是非常具有挑战性的。同时,浸渍镀膜需要大量的纳米颗粒,这在处理昂贵纳米颗粒材料时将成为一个大的限制因素。 旋涂镀膜旋涂镀膜也是一种很有吸引力的方法,因为它易于规模化放大,而且在半导体工业中是一种众所周知的技术。然而,使用这种方法,薄膜的质量和多个工艺参数紧密相关,如:自旋加速度、速度、纳米颗粒的大小、基材的润湿性和所用溶剂。这使得对薄膜属性的精确控制变得非常困难。而且,一般旋涂镀膜需要大量的纳米颗粒溶液。 气液界面的单层镀膜在这里,气液界面沉积纳米颗粒单层提供了一种高度可控的沉积方法,可以将其沉积在几乎任何基底上。纳米颗粒被限制在气液界面,界面面积逐渐减小,使得纳米颗粒更加紧密地聚集在一起,从而可以实现控制沉积密度的目的,因为单位区域面积沉积的纳米颗粒的数量很容易计算,这样对纳米颗粒的需求量就会大大降低。 单层薄膜形成后,可以通过简单的上下提拉基底即可将界面上的薄膜转移到基底上。 在线网络研讨会报名如果您对如何制备纳米颗粒单分子膜感兴趣,想获取更多这方面的知识,请报名参加由伦敦大学学院的Alaric Taylor博士举办的题为“纳米颗粒单分子层薄膜沉积实用指南”的网络研讨会。报告人Alaric Taylor简介:Alaric Taylor博士是伦敦大学学院工程和物理科学研究委员会(EPSRC)研究员,他在纳米光子材料的制造,尤其是通过在气-液界面开发胶体单层自组装方面有很高的造诣。 报告内容:? 详细讲解纳米颗粒沉积的具体操作? 指出需要注意的事情? 讲述纳米颗粒沉积的技巧 报告时间:2018年9月13日下午3:00(北京时间)报名联系:如需参会,请填好下列表格中的信息发送至,邮箱:lauren.li@biolinscientific.com;姓名单位邮箱电话特别提醒:因为可能会涉及电脑、系统、耳机等调试问题,建议大家提前5-10分钟进入链接。
  • Spex 应用分享 | 高能球磨法制备纳米晶氧化陶瓷
    SPEX MIXER/MILL® 8000系列高能球磨仪可将坚硬或易碎样品粉碎至可分析细度,部分样品研磨精度可达纳米级别。采用独家专利的∞式三维立体运动模式研磨,360°立体无死角,非正反转方式,可以在最短的时间内向样品输送最高的机械能量,为目前世界上所有球磨仪中能量最高、速度最快的球磨机。SPEX以其在球磨机研发和生产超过60年的经验以及在球磨机创新领域所做出的突出贡献,成为美国球磨机行业标准的制定者。SPEX高能球磨仪可用于岩石、矿物、金属合金、陶瓷、催化剂、玻璃、沙子、水泥、炉渣、医药、植物和动物组织、谷物、种子、油漆和油墨、电子、RoHS样品等分析用样品研磨。 下文将介绍SPEX高能球磨仪用于分析纳米晶体材料中的颗粒尺寸效应。该应用源自: S. Indris, D. Bork, P. Heitjans, J. Mater. Synth. Process 8, 245 (2000),经汉诺威大学物理化学和电化学研究所P.Heitjans教授同意。原文献阅读请联系科尔帕默公司。✦ ++高能球磨法制备纳米晶氧化陶瓷SPEX 高能球磨仪分析纳米晶体材料中的颗粒尺寸效应需要一种可以调节颗粒尺寸的技术。在本研究中,使用球磨机(8000M Mixer/Mill® , SPEX SamplePrep;配备有氧化铝和氧化锆小瓶)。球磨特别适合这项任务,因为它易于使用,并允许研磨相对大量的材料以及各种不同的材料。分析介质为:Li2O、LiNbO3、LiBO2、B2O3、TiO2和Li2O:B2O3混合物。通过研磨时间测定平均粒径,随后通过X射线衍射(XRD)和透射电子显微镜(TEM)进行分析。选择含锂材料是因为它们作为固体电解质的潜在用途。TiO2在用作光催化剂方面是令人感兴趣的。对于吸湿性材料,在氩气气氛中填充氧化铝研磨瓶并将其放入密封的不锈钢容器中。► 颗粒大小不同的氧化物表现出不同的研磨特性,但最小粒径约为在研磨8至10小时后获得20nm.通过XRD分析和TEM数据确定颗粒尺寸。差示扫描量热法(DSC)表明,纳米晶样品是亚稳态的,加热导致颗粒生长。在烧结过程中,当要生产固体致密陶瓷时,要考虑到这一点。其他研究小组先前的研究表明,两步烧结特别适合在第二步中使用较低的温度。通过两种方法分析,TiO2在研磨过程中发生了部分相变。当进行球磨时,包含另外杂质的金红石以较小粒径的纯金红石(不含杂质)形式获得。► 化学反应陶瓷组分的混合和随后的压制产生具有多个不同边界层的材料。这种不同界面的晶格可以通过改变颗粒尺寸来改变。在分析Li2O∶B2O3的50∶50混合物的过程中,检测到由于该化学-机械过程引起的化学变化。在短时间后,用XRD分析仅检测到原始化合物的谱线,而在4小时后出现新的谱线。新形成的产物是Li2B4O7。这表明反应的最终产物并不取决于混合物的组成,而是取决于边界层的条件。► 结论高能球磨特别适用于颗粒尺寸的减小以及后续化学和物理变化的研究。颗粒尺寸减小和随后生长的特征与所有分析的氧化物相似。开始时微晶材料没有发生化学反应,经过研磨后:一些材料表现出相变;另一些材料则表现出化学反应。更多推荐:SPEX8200高能行星式球磨机Spex 8200行星球磨机通过机械运动研磨样品,沿一个方向旋转震击器,而平台(太阳轮)沿相反方向旋转。机械磨具以2:1的比例进行,使容器相对于太阳轮的每一次旋转旋转两次。当容器移动时,相对离心力被传递到磨球上,使磨球以圆周运动的方式相互移动,并抵靠容器壁,从而研磨样品。
  • 纳米快报:纳米净水器可杀死水中98%细菌
    据美国物理学家组织网近日报道,斯坦福大学的研究人员将一种普通棉纱浸入银纳米线和碳纳米管的混合液中,制成了一种高效、廉价的新型净水过滤器,其能杀灭水中98%的细菌,杀菌速度是传统微孔网筛过滤器的8万倍。研究成果发表在近期出版的《纳米快报》杂志上。   碳纳米管具有良好的导电性,98%以上的埃希氏大肠杆菌只要在20伏的电流中呆上几秒就会被杀死。银也能杀菌,巴氏灭菌法和冰箱出现以前,人们常常在牛奶瓶底放一枚银币来消毒。   斯坦福大学材料研究生物工程专家小组的莎拉海尔肖恩称,碳纳米管和银这两种材料“携手”制成的过滤器可最大限度地发挥杀菌效能。其中的银纳米线能够杀死任何滞留在孔隙中的细菌,因此避免了传统过滤器普遍存在的一大缺陷,即细菌会在过滤器上形成生物膜从而污损设备。   传统的过滤器都采用物理方法来吸附细菌,而新型过滤器内含有的棉花纤维包了一层“纳米外套”,其形成的电场可以杀死流经的细菌,而且棉花纤维有多层,厚达6.4厘米,足以杀死水中的大部分细菌。   斯坦福大学材料科学与工程副教授崔毅(音译)介绍说,该新式过滤器的成本也很低。一方面,银纳米线所用的银很少,成本几乎可以忽略不计。另一方面,所需的电流很少。纳米材料的吸附性很高,银纳米线较长的一端和纳米管连接,另一端伸入棉花纤维中间的空隙,在棉纤维上会生成一层光滑无间隙的覆层,导电效果很好,因此,电流强度只需几毫安,一块小型太阳能电池或一对12伏的汽车电池就能满足。而传统的过滤器要用电泵把水抽进微孔,耗电量大,在实验室里过滤等量的水,新型过滤器的耗电量仅为传统过滤器的1/5。   崔毅也表示,新型过滤器的净化速度非常快。传统过滤器的过滤微孔很小,将细菌从水中吸附分离时很容易阻塞微孔 而新型过滤器孔隙比较大,只杀灭细菌却不吸附细菌,因此,不会减缓水流的速度,净水速度是传统过滤器的8万倍。这种过滤器在无法用氯气来给水消毒的偏远地区很实用,可以大大减少以水为介质进行传播的霍乱、伤寒和肝炎等疾病的大面积扩散。   研究人员计划下一步研发针对不同类型的细菌进行过滤的过滤器,并测试多重组合过滤器。
  • “秒杀”全场全球最快的纳米及Zeta仪
    2013全球科学仪器盛会PITTCON贝克曼库尔特发布全球顶尖纳米粒度及Zeta电位仪 2013年3月18日贝克曼库尔特发布最新一款高效能纳米粒度及ZETA电位分析仪。每年一度的全球最大型科学仪器展---美国费城PITTCON上,贝克曼库尔特公司发布一款多通道高效能的 纳米粒度及Zeta电位仪---DelsaMax系列。该系列当前共推出DelsaMax Pro 及 DelsaMax Core 两个型号。该系列采用当前最尖端的并行测量技术,一次加样即可同步进行纳米粒径测量与Zeta电位分析,而且测量时间仅需1秒钟!最新的DelsaMax系列被赞誉为“最小的样品量,最快捷的分析,成就最极致的结果”。这又将是一项划时代的贡献! DelsaMax PRO 于3月18日至21日在PITTCON的2403展位展出。 DelsaMax PRO 堪称为全球最快的同步分析仪,仅需45微升即可在短短1秒钟内获得纳米粒径与Zeta电位的结果,完全不可思议却又成为事实! DelsaMax CORE 分析仪利用独立的动态和真正的静态光散射检测器,测量从0.4纳米至10,000 纳米的颗粒大小与分子量,样品量低至1uL。系统温控范围为-15º 和150º C。 DelsaMax ASSIST 样品辅助处理系统,可强制充入惰性气体以消除样品池中可能存在的小气泡的影响,使样品更稳定,数据更可靠。 欲了解更多信息,请访问www.delsamax.com。 关于Beckman Coulter公司,请访问:www.beckmancoulter.com。
  • 纳米流式检测技术,粒径表征媲美透射电镜——访厦门大学颜晓梅教授
    仪器信息网讯 厦门大学颜晓梅教授团队于2014年9月研制成功第一台纳米流式检测仪原型机,2015年10月第四代原型机研制成功,2016年1月中旬在北京计量科学研究院进行第一次试用,2016年6月第一代科研级纳米流式检测仪完美亮相CYTO 2016国际流式学术大会,2016年10月专业版软件NF Profession 1.0研发成功。纳米流式技术发展处于什么阶段?纳米流式技术成果商业化过程有哪些故事?国产仪器自主创新存在哪些痛点和不足?近期,仪器信息网在ACCSI2021现场特别采访了厦门大学颜晓梅教授,请她就上述问题进行了分享。三年实现快速成果转化,粒径表征媲美透射电镜目前,流式细胞仪在生命科学、临床医学等领域是重要的分析检测工具之一。据颜晓梅教授介绍,纳米流式检测技术是基于流式细胞技术,将检测下限推进到纳米尺度。颜晓梅教授团队首创性地结合瑞利散射和鞘流单分子荧光检测技术,研发成功具有自主知识产权的纳米流式检测技术,实现单个纳米颗粒(7-500 nm)以及外泌体、病毒、细菌、亚细胞器等天然生物纳米颗粒的粒径及其分布、颗粒浓度、和生物化学性状的高通量多参数同时表征。该技术的粒径表征分辨率媲美透射电镜,检测速率高达每分钟上万个颗粒,同时兼备电子显微镜难以实现的生物化学性状分析功能,填补了国际空白。项目团队积极推进技术产业化,成立了厦门福流生物科技有限公司,仅用3年时间就将“纳米流式检测技术”研发成果转化为“中国智造”。 厦门福流生物 纳米流式检测仪点击查看参数详情科学仪器研发平台离不开交叉学科人才培养在采访中,颜晓梅教授强调了复合型科研人才的培养对于国产科学仪器的发展至关重要,科学仪器研制的过程通常是创新技术密集(光、声、电等技术)、管理复杂的活动,需要不同学科的交叉融合,尤其成果转化过程也需要金融、市场等背景支持。因此培养兼具科研、工程和管理能力的复合型人才对于国产科学仪器成果转化具有推动作用。提高纳米医药业核心竞争力,纳米流式未来可期据颜晓梅教授介绍,纳米流式检测技术不仅应用于传统的生命科学、临床医学领域,还在食品药品安全以及能源材料等领域发挥重要作用。并且纳米流式检测仪产业化项目技术密集、附加值高、成长空间大、带动作用强,是纳米医药业核心竞争力的集中体现。 据悉,厦门福流生物科技有限公司生产的纳米流式检测仪目前已经出口到全球顶尖的医疗机构、科研单位和高科技企业,如梅奥诊所(Mayo Clinic,2018年全美排名榜首的医院)、美国德州大学安德森癌症中心(MD Anderson Cancer Center,全球排名第一的肿瘤科研与临床研究机构)、约翰霍普金斯医学院、美国国立卫生研究院(NIH)、外泌体诊断和治疗应用开发领军企业Codiak Biosciences公司、瑞士联邦理工学院(欧陆第一理工大学)、诺和诺德(世界领先的生物制药公司)、瑞典哥德堡大学、德国马尔堡大学、悉尼大学、台湾大学、复旦大学等。
  • 二十年磨一“尺”,纳米时栅用时间测量空间
    国之大器,始于毫末。“现代热力学之父”开尔文有一条著名结论:“只有测量出来,才能制造出来。”没有精密的测量,就没有精密的产品,高水平的精密测量技术和精密仪器制造能力,是发展高端制造业的必备条件。随着人类对世界的探索不断深入,被测对象不断延展,测量目的不断延伸,各种测量技术陆续登上历史舞台。时至今日,我们甚至可以做到以时间测量空间,这听起来也许很科幻,但绝不是天方夜谭。来自重庆的时栅团队基于我国精密测量技术发展现状,根据“时空转换”的思维方式提出了以“时间测量空间”这一重要学术思想,并由此诞生了这把原创于中国的“精密尺子”——时栅技术,实现了我国精密位移测量技术及器件的自主可控。从1996年的尝试探索,到如今成功研发出可媲美高端光栅的第三代纳米时栅,二十年的厚积薄发,浸透了科技工作者对自主创新、中国精度的坚守,凝聚着他们闯关夺隘、奋楫笃行的勇气,展示着中国人顽强拼搏、永不言败的精气神。从无到有,是“冲云破雾”的勇气担当在精密加工、工业测控(动态测量)领域,精密位移传感器是不可或缺的重要组成部分,被称为“智能制造之眼”,它的性能直接决定了加工制造环节的精度。定位精度高、可靠性好、使用方便的精密位移传感器在机床加工、检测仪表等行业中得到广泛应用。然而,精密位移测量器件作为核心功能部件,长期被国外巨头们严格战略性封锁,进口传感器存在价格高、货期长、售后难的问题,我国精密位移测量领域面临多重困境,亟待摆脱受制于人的局面,高端位移测量器件的国产替代已到了刻不容缓的地步。关键核心技术是要不来、买不来、讨不来的,要实现本领域的突破,必须依靠自主创新,需要变换研究思路,从原理上进行创新,从根本上解决问题。实现从0到1的突破绝非易事,必得风雨兼程、劈波斩浪。面对种种困难,时栅团队迎难而上,瞄准科技前沿,勇攀高峰。没有案例可模仿,他们自己就做拓荒人;没有经验可借鉴,他们就负重前行;没有理论可参考,他们创造性地提出了利用“时间测量空间”的重要原创学术思想,将梦想命名为“时栅位移测量技术”,突破了高端装备的精密位置检测难题,掌握了精密位移测量关键核心技术的自主知识产权。科技工作者用责任、担当,用勤勉、实干,实现了从微米到纳米精度的跨越,开辟出了一条高端核心功能部件的国产化道路,让智能制造业卡脖子短板破局重生,走出了一条自主可控之路,使我国精密位移测量领域摆脱了受制于人的局面。经过多年的沉淀和发展,时栅技术已发展成为我国智能制造领域的标志性成果,获得国家技术发明二等奖1项、中国专利金奖1项、重庆市技术发明一等奖2项,成功申请国外专利12项、国内专利25项。时栅团队研讨图从有到优,是精益求精的创新追求时栅技术作为我国自主研发的首创性成果,通过建立空间位移和时间基准之间的关系,发挥时间量是人类测量精度最高的物理量这一客观优势,利用时间上的时刻比较来实现位移测量,从而达到高精度的测量目的。可通俗理解为:在相对匀速运动的两个坐标系上互相观察对方,一方的位置之差(位移)表现为另一方观察到的时间之差。十年磨一剑,二十年磨一尺。时栅团队从1996年提出“时栅角度传感器”理念起,坚持自主研发道路,从第一代机械式时栅、第二代磁场式时栅到第三代电场式时栅(即“纳米时栅”),持续攻克“提高测量精度与增加测量范围的矛盾”“精度提高导致的误差溯源困难”与“突破光学衍射极限改善分辨力”三座技术大山,破解产品的可靠性、应用场景的多样化、市场的认可度等多只“拦路虎”,开发出高精度、高可靠性的时栅位移传感器。纳米时栅到底有多精密?在我国最高法定计量机构—中国计量科学研究院的两次现场测试结果和国家角度基准的比对结果显示,纳米时栅精度达到了惊人的±0.06角秒(1°等于3600角秒),精度水平已经达到了现有检测仪器水平的极限。在漫长的时光里,时栅团队用精益求精、一丝不苟的科学家精神,只争朝夕,在承载着责任与梦想的实验室,坚持不懈,让“精耕细作”焕发出新的时代风采。车间作业图从优到强,是全面提速的伟大跨越一粒种子的破土而生,需要合适的温度、湿度、环境以及优质胚胎。同样,任何一项科研成果的成功转化,离不开人才、技术、资金、政策的支持和帮助。“将纳米时栅技术走出实验室,实现产业化”——光有美好的愿景是不够的,闯过了技术关,随之面对的就是应用关和市场关。纳米时栅项目总工程师王勇说,“2021年4月,通用技术集团和重庆理工大学共同成立了通用技术集团国测时栅科技有限公司,标志着纳米时栅成果正式开启转化应用、服务市场用户的新阶段。”现实和理想的距离,正一步步靠近。纳米时栅产业化进程全面提速,当纳米时栅技术在数控机床、半导体行业、计量检测等领域得到批量应用时,当一把中国的精密尺子解决了高精度位置检测难题时,所有人的艰辛和汗水化成两个字:值了!纳米时栅正在逐步填补国内高端精密位移测量领域空白,成为国内高端装备企业发展道路中的坚强后盾。2021年10月,“大量程纳米时栅位移测量技术及器件”作为35项代表科技成果转化的典型案例之一,亮相国家“十三五”科技创新成就展,作为创新科技成果转化制度的第一典型案例参展,展示中国高端装备关键功能部件研发“智造”水平。时栅位移测量技术亮相国家“十三五”科技创新成就展走过万水千山,仍需跋山涉水。和时栅技术一样由我国自主研发的首创性成果不胜枚举。科研是一条严谨与浪漫并存的路,从无到有、从有到优、从优到强的蝶变跃升,是中国科技工作者“冲云破雾”的责任担当、精益求精的完美展现,更是他们沿着强国之路迎难而上、敢闯敢干的生动诠释,每一步脚印,都在书写、见证着一次次伟大的跨越。中国精度,央企智造。面向世界科技前沿、面向经济主战场、面向国家重大需求,无数的中国科研工作者和中国企业在方寸之间钻研、琢磨,努力实现更多“从0到1”的新突破,大步行进在中国精度的逐梦征程上。点击图片报名“精密测量与先进制造”主题网络研讨会
  • 纳米流式助力新冠病毒/疫苗快检,厦大颜晓梅团队Angew发布最新进展
    截至2021年2月26日COVID-19新冠病毒累计感染超过1亿1千万人次,严重影响了世界人民生活、生产秩序。世界各国均加大了病毒疫苗的研发和生产投入,目前新冠疫苗的接种工作也在大规模进行中。灭活病毒疫苗由于其可靠的安全性、有效性而被广泛应用,例如,我国已经上市的国药集团和科兴中维两家新冠疫苗均是灭活病毒疫苗。由于病毒的细胞培养物中通常含有细胞碎片、蛋白聚集体、病毒空壳、病毒缺陷颗粒、游离DNA等杂质,故需对疫苗进行纯化,生产出纯度高、安全有效的疫苗。而纯化过程中对病毒不同组分进行快速和可靠的检测,对病毒生产的上游工艺开发具有重要的指导意义。近日厦门大学的颜晓梅教授团队在Angewandte Chemie(IF=13)上发表了对病毒滴度和纯度快速测定的新方法,文章通过纳米流式(nFCM)对T7病毒和病毒疫苗等进行测定,对病毒的不同组分进行精确分析,研究病毒生产纯化过程中病毒组分和纯度的变化,实现病毒疫苗生产过程的动态监测。文中作者对T7病毒的不同组分进行分析,如下图,nFCM能够区分完整T7病毒、病毒空壳、游离DNA等组分,得到病毒各个组分的浓度和比例(图1)。同时测定过程中发现,完整T7的DNA强度和游离DNA强度有明显差异,但是游离DNA通过探测区的时间显著大于完整T7的DNA(图1f),表明游离DNA在溶液当中呈现“舒展”状态,而完整T7的DNA呈现“压缩”状态。分析发现它们峰积分却是一样的(图1e),说明完整T7和游离DNA的基因组大小一致,故而DNA荧光强度积分一致,显示出纳米流式在DNA测定的超高灵敏度和准确性。图1 病毒组分的鉴定:完整病毒、空壳、游离DNA病毒疫苗的生产步骤主要包括病毒接种、收获、纯化和乳化等过程。通过模拟病毒生产纯化过程,用纳米流式对猪流行性腹泻病毒(PEDV)和假狂犬病病毒(PRV)进行测定。结果显示在病毒粗提液中,完整病毒的纯度只有20%左右(图2bc),并且随着纯化次数的增加病毒纯度逐步上升(图2d),与传统WB和ELISA相比,纳米流式2-3min即可对病毒纯度进行快速检测,节省了大量时间和精力。为了进一步验证nFCM在病毒定量方面的准确性,对rAD-EGFP载体和RPV疫苗进行了qPCR检测。结果显示在病毒载体和疫苗制剂中存在大量游离DNA和不具有感染能力的病毒颗粒,用nFCM测定的物理病毒滴度比用qPCR测定的病毒基因组滴度更接近空斑法测定的病毒活性滴度(Table 2)。值得指出的是,对于以灭活病毒为基础的疫苗,发挥抗原作用的是完整的病毒粒子,灭活前并不要求病毒是否具有传染性,与空斑法测定感染效价相比,nFCM对疫苗物理滴度的测定更有意义。图2 病毒疫苗生产过程监测表2 不同方法测定病毒滴度比较 总的来说,基于纳米流式(nFCM)优越的灵敏度,通过散射光和荧光可实现病毒的高通量、快速检测,可应用于DNA,RNA,包膜和非包膜等病毒的工艺开发和生产过程中。除了核酸标记,纳米流式也可以对病毒表面蛋白、病毒膜、荧光修饰的病毒等进行检测,具有广泛应用前景。福流生物 纳米流式检测仪(外泌体检测)(点击查看参数详情)
  • 合肥研究院等在氧化石墨烯基磁共振纳米诊疗剂研究中取得进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所吴正岩课题组、上海交通大学医学院教授邹多宏、中科院强磁场科学中心研究员钟凯合作,在石墨烯基磁共振纳米诊疗剂的开发上取得进展,相关成果在线发表在 em Nanoscle /em 杂志(DOI: 10.1039/C7NR07957E)上。 /p p   传统石墨烯基磁共振纳米诊疗剂存在两个问题,一是石墨烯二维材料尺寸较大,在活体中滞留时间较长,难以代谢,对活体器官造成潜在危害;二是接枝钆螯合物效率低,磁共振成像效果差,难以发现微小肿瘤。基于此,吴正岩研究组利用化学手段将氧化石墨烯裁剪成80-100nm尺寸的纳米片,使氧化石墨烯在活体内具有合适的滞留时间,且易于代谢出体外;同时,将裁剪后的氧化石墨烯与金属化的树状高分子接枝,提高氧化石墨烯表面钆螯合物含量,使磁共振成像效果显著提高。在小鼠体内实验结果表明,该纳米诊疗剂能够显著提高肿瘤组织对比度,增加肿瘤组织检测敏感度,对肿瘤展现很好的抑制作用,提高肿瘤的治疗效率。此外,该纳米诊疗剂具有很好的血管造影功能,为心血管疾病的诊断提供了积极思路。 /p p   研究工作获得了国家自然科学基金委、科技部等的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171213292827906380.png" src=" http://img1.17img.cn/17img/images/201712/uepic/4f0b4415-f0ed-4596-be1e-e45b64c77067.jpg" / /p p style=" text-align: center " 技术原理图 /p
  • 厦门大学颜晓梅团队通过纳米流式细胞仪在单囊泡水平上分析细胞外囊泡DNA
    2022年4月4日,厦门大学颜晓梅团队在Journal of Extracellular Vesicles(IF=26)在线发表题为“Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry”的研究论文,该研究通过纳米流式细胞仪 (nFCM) 可以检测直径小至 40 nm 的单个 EV 和 SYTO 16 染色后 200 bp 的单个 DNA 片段,用于研究单个囊泡处的 EV-DNA。通过同时对单个颗粒进行侧向散射和荧光 (FL) 检测并结合酶处理,本研究表明:(1) 裸 DNA 或与非囊泡实体相关的 DNA 大量存在于由细胞培养物制备的 EV 样品中(超速离心培养基);(2) 单个 EVs 中 EV-DNA 的数量表现出很大的异质性,DNA 阳性 (DNA+) EVs 的数量在 30% 到 80% 之间变化,具体取决于细胞类型;(3) 外部 EV-DNA 主要定位在相对较小的 EVs 上(例如,HCT-15 细胞系+ EVs 的释放增加,外部DNA+ EVs和内部DNA+ EVs的数量以及单个EVs中的DNA含量均显着增加。这项研究为深入了解 DNA 与EV的关联提供了直接和确凿的实验证据。细胞外囊泡 (EVs) 是由几乎所有细胞类型分泌的纳米级膜囊泡,通过将蛋白质、核酸和脂质从供体细胞转移到受体细胞来介导细胞间通讯。最近的研究表明,EV中存在基因组 DNA、线粒体 DNA 甚至病毒 DNA。通过 DNA 的包装和水平转移,EV 在维持细胞稳态、调节免疫反应和调节肿瘤进展方面发挥着至关重要的作用。最近,基于 EV 中的 DNA (EV-DNA) 开发了用于肿瘤诊断的液体活检测试。尽管已经认识到 EV-DNA 的生物学意义,但对 EV-DNA 的探索较少,许多基本特征仍存在争议,例如 DNA 是否与所有或部分 EV 亚群相关?EV-DNA 是否位于内腔和/或 EV 表面?DNA含量和EV大小之间有什么关系?EV-DNA 是单链 DNA (ssDNA) 还是双链 DNA (dsDNA)?对 EV-DNA 的研究通常通过从 EV 分离物中提取 DNA,然后进行丰度、片段长度和序列评估来进行。通过将 DNase 酶消化与 Fragment Analyzer 系统相结合,研究了 DNA 的相对丰度和定位(管腔内或与 EV 表面相关)。为了阐明 EV-DNA 在 EV 亚群之间的异质性,对分离的 EV 进行 DNA 分析通过密度梯度离心或不对称流场-流分馏已经进行。尽管批量分析能够识别不同 EV 亚群中的 DNA,但结果可能存在争议,因为 EV-DNA 无法与无细胞 DNA 区分开来。由于 EV 的大小和货物含量差异很大,因此迫切需要单粒子技术来破译 EV-DNA 的巨大内在异质性,并将 EV-DNA 与游离 DNA 或其他污染物区分开来。然而,EV 的纳米级粒径(大多数大小一直致力于开发一种高灵敏度的纳米流式细胞仪(nFCM)。它已实现对单个 EV、病毒、二氧化硅纳米粒子和金纳米粒子的光散射检测,分别小至 40、27、24 和 7 nm。对于荧光 (FL) 检测,检测到单个 R-藻红蛋白分子的信噪比为 17,有机染料的检测限确定为三个 Alexa Fluor 532 分子。在本研究中,尝试通过将酶消化与 nFCM 相结合,在单囊泡水平上分析外部和内部 EV-DNA。研究了 DNA+ EV 的百分比以及 DNA 含量分布与 EV 大小、ssDNA 和 dsDNA 之间的区别、EV-DNA 和组蛋白的关联以及抗癌药物治疗后 DNA 含量的改变。通过同时对单个颗粒进行侧向散射和荧光 (FL) 检测并结合酶处理,本研究表明:(1) 裸 DNA 或与非囊泡实体相关的 DNA 大量存在于由细胞培养物制备的 EV 样品中(超速离心培养基); (2) 单个EVs 中 EV-DNA 的数量表现出很大的异质性,DNA 阳性 (DNA+) EVs 的数量在 30% 到 80% 之间变化,具体取决于细胞类型; (3) 外部 EV-DNA 主要定位在相对较小的 EVs 上(例如,HCT-15 细胞系 外部 DNA+ EVs 的分泌可以通过抑制外泌体分泌途径显著减少; (4) 内部 EV-DNA 主要封装在相对较大的 EV 的管腔内(例如 HCT-15 细胞系为 80-200 nm); (5) 双链 DNA (dsDNA) 是外部和内部 EV-DNA 的主要形式; (6) EVs 中未发现组蛋白 (H3),EV-DNA 与组蛋白不相关,(7) 基因毒性药物诱导 DNA+ EVs 的释放增加,外部DNA+ EVs和内部DNA+ EVs的数量以及单个EVs中的DNA含量均显着增加。这项研究为深入了解 DNA 与EV的关联提供了直接和确凿的实验证据。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/jev2.12206
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 德国Retsch(莱驰)高能纳米球磨仪Emax全新上市
    “纳米”是最近的热门话题,因为纳米颗粒的产品渐渐成为我们日常生活的一部分。例如,遮光剂、纺织品、药物或油漆类都含有超细颗粒,纳米技术能够明显改善这些产品的性质。 RETSCH(莱驰)一直关注纳米技术!新上市的高能球磨仪革命性的设计使它能在极短的时间将样品研磨至纳米级。 Emax 作为一台高能量的新型球磨仪,转速高达2000min-1,结合特殊设计的研磨罐使用,产生巨大的研磨能量,撞击力、摩擦力和循环的研磨罐运动为短时间的高效研磨提供条件,创新的水冷系统,避免长时间高速运行产生的热量影响样品。所以Emax 适合于持续研磨,有别于其他球磨仪,无需停止运转冷却。 高能量的输入,独特的冷却系统,为机械合金制备和胶体的纳米研磨提供最佳条件! 德国品质的Emax 设计特别注重操作安全,研磨罐的位置自动受到监控,如果放置不规范,实验是无法进行的。Emax 操作无需配重,系统即时监控失衡状况。如果失衡超过可控范围,设备会自动停止运行。剩余操作时间会显示,一旦平衡恢复可以随时重启程序。 欲知更多Emax详情,请登录官方网站www.retsch.cn/emax 2014年9月24日,Emax将现身Analytica China上海慕尼黑生化展(龙阳路新国际博览中心),展位号N2 2310,欢迎参观!
  • 石墨烯和石墨表面的共价修饰纳米图案
    石墨烯和石墨表面的共价修饰纳米图案研究人员在本文中展示了一种共价修饰的方法,并由此在石墨烯以及高定向热解石墨(HOPG)的表面成功地控制了纳米图案的形成过程。他们在对制得的样品进行了纳米级的表征后发现可以通过改变电化学反应的条件来调控所得纳米图案的尺寸。这种可以在表面构建纳米图案结构的方法使得目前电子产品微型化这一趋势可以进一步发展,同时也有益于其它各种各样纳米技术的应用。虽然目前已经存在一系列的自下而上的技术(也就是从单个分子的基础上搭建特定结构 )并被应用于在石墨烯以及HOPG基底上形成纳米图案结构。但是这些结构通常由非共价键形成,因此其稳定性受到很大的局限。 由来自比利时、越南和英国的科研人员组成的团队报道了一种通过共价修饰来控制纳米图案形成的方法。石墨的表面暴露在电解液中,而电解液包含了芳基重氮盐 NBD(4-nitrobenzenediazonium)以及TBD(3,5-bis-tert-butylbenzenediazonium)。然后在电化学池中通过循环伏安法以及计时电流法进行接枝反应。 研究人员通过原子力显微镜(AFM)和扫描隧道显微镜(STM)对样品进行了表征并在修饰后的石墨烯或HOPG表面发现了近乎圆形的斑点。这种结构被称为”nanocorrals”,研究人员认为其是由实验过程中在近表面形成的气泡引起的。AFM图像表明这种nanocorral的直径(约为45-130 nm)以及密度(20−125/μm2)可以通过分别改变电化学活化条件以及电解质比例的方法来进行人为调控。 这一实验方法可以十分便捷的制备出可调控的图形结构,可以在纳米约束反应中用作微小的“培养皿”。这种方法还可以促进超分子自组装领域以及其它表面反应的研究。Instrument usedCypher ES Techniques used研究人员通过循环伏安法制得样品后,借助了牛津仪器快速扫描AFM Cypher ES,以轻敲模式(tapping mode)对样品的表面形貌进行了纳米级的表征。Cypher ES具备着对样品环境进行精确控制的能力,在本实验中研究人员由此保持了样品处于32°C的恒温下。除了精确的多元环境控制功能,Cypher ES还具备着快速扫描、简单易用以及优于传统AFM的空间分辨率等优点。 Citation: Thanh Phan, Hans Van Gorp, Zhi Li et al., Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13, 5559 (2019). https://doi.org/10.1021/acsnano.9b00439 Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.
  • 用磁场做导航 纳米机器人精准搏杀肿瘤细胞
    团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  上映于1966年的科幻电影《神奇旅程》,讲了这么一个故事:为给一名科学家实行高难度血管手术,5名医生被缩小成头发丝大小,置于针筒中,注射进他体内。5人驾驶着“潜艇”,躲过了免疫细胞的攻击,一路乘风破浪,成功完成任务。  50多年过去,当初的幻想,已经部分成为了现实。微纳米医疗机器人,就被认为是一种颇具前途的智能给药平台,目前被广泛用于肿瘤的靶向治疗。  近日,北京航空航天大学机械工程及自动化学院“卓越百人”副教授、博士生导师冯林课题组,研究出了一种新的更为智能的肿瘤靶向机器人。它有了伪装,还有了导航,能够在磁场的驱动下,精准抵达战场,投掷杀伤肿瘤的弹药。  让巨噬细胞吞下纳米药物,变身微纳米机器人  让纳米机器人装载药物,到达指定地点,定向治疗炎症或清除肿瘤,这是医学纳米技术的终极目标之一。但传统微纳米机器人在人体内的运动,其实靠的是分子之间的结合力,这是一种“被动靶向”,难免脱靶。“就好比我们知道,人群中具有某种特质的两类人可能会碰上。但茫茫人海中你最后碰上的是不是想要的人,其实要打一个问号。”冯林说。  而且,也如当初那部电影里所展示的,被注射进人体内的纳米机器人,稍有不慎,就会遭到兢兢业业工作的免疫细胞的攻击。  能不能让这类医疗机器人更为安全且精准地到达要去的地方?  2016年从日本回国后,冯林就一直思考这个问题。在北航机器人所的支持下,冯林和陈华伟老师合作申请获批了国家重点研发计划—机器人重大项目“靶向给药微纳米机器人”。在一次讨论中,陈华伟问可不可以让活细胞作为载体。这句看似很随意的提问提醒了冯林:直接让活的细胞吞进载药纳米颗粒变身微纳米机器人行不行?  他们想到了巨噬细胞——这是一种喜欢吞食并处理异物的细胞。  合适的载体和“伪装”找到了,接下来,就是设计机器人的“导航系统”。  磁性纳米颗粒可以由磁场来控制,药物释放可以利用红外或者超声波。几乎是从零开始,冯林团队自行设计了复合磁控系统。他们从电子线圈开始设计,一点点调整、摸索技术参数。磁性纳米颗粒进入小鼠体内后,通过这套系统,他们可以在体外对其行走路径进行高精度控制。  再接下来,就是让磁性纳米颗粒装载药物,并让它在合适地点,通过合适方式,释放药物。  这款机器人其实设计有许多层。在阿霉素外层,是聚乙二醇,一种具有良好水溶性的高分子化合物;再外一层,是吲哚菁绿,它是药物研究中常用的荧光标记物,帮助科研人员判断机器人所在的位置。最后他们还包裹了一层脂质体,它具有非常高的生物相容性。  团队还为机器人设计了一个开关——近场红外光。近红外光穿透表层皮肤,磁性纳米颗粒吸收光线,产生热量,会释放出阿霉素。  如此一来,纳米机器人基本实现“指哪打哪”的效果。  “接收指令,执行指令,完成任务,在我们做机械的人眼中,具备这些能力的,才是智能的机器人。”冯林说。  团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  9月,纳米科学领域权威期刊《小》(Small)以封面文章的形式报道了课题组的研究成果。  在机械学院,他们建立生物医学实验室  冯林的团队中,有好几个医学生物专业出身的博士。在他的机械实验室里,还有一块专门区域,用来做生物医学实验。  所以,你能看到这样一个略显奇特的景象——实验室里,有各类机械模型,有专业级的显微镜,以及小白鼠。  去采访时,由于已经结束了上一轮的实验,小白鼠所剩不多,正在笼子里踱来踱去,安度余生。  冯林是“80后”,本科学的电子信息工程,硕士专业是生物机器人,博士留学日本名古屋大学,跟着导师新井史人教授一头扎进了更为微观的世界——微纳米机器人。  回国后,冯林来到北航,获得北航“卓越百人”,加入了机械学院张德远老师领导的仿生与微纳系统研究所,之后又得到北京市“科技新星”资助。北航提倡“医工结合”,冯林也被聘入了北京市生物医学工程高精尖中心,更深入地进入到医疗机器人领域。  “不能只是炒概念,说纳米机器人未来能如何如何。”冯林一直存着这个念头,就是要真正把纳米机器人打入体内,真正杀死体内的肿瘤细胞。  就在不久前,冯林指导的学生团队凭借Medcreate磁悬浮胶囊机器人在第七届中国国际大学生“互联网+”创新创业大赛中获得本科生创意组全国第五名。  它用到的技术,也是“复合场磁控”。  这是一款主动可控高速图像传输型胶囊机器人,能对胃部等大体积消化道器官进行全方位无死角视频探查。胶囊机器人可以悬浮运动,无需改变患者体位,就能完成整个胃部的覆盖式检查。  冯林为学生取得的成绩高兴,但他也知道,要完善各类治疗型的微纳米机器人,还“路漫漫其修远兮”。  从小鼠到人体,从试验到临床,还需要一步步完善和摸索,这并非坦途。“你要舍得花一辈子的时间。”冯林说。
  • 基于石墨烯的纳米电子平台问世
    纳米电子学领域的一个紧迫任务是寻找一种可替代硅的材料。美国佐治亚理工学院研究人员开发了一种新的基于石墨烯的纳米电子学平台——单片碳原子。发表在《自然通讯》杂志上的该技术可以与传统的微电子制造兼容,有助于制造出更小、更快、更高效和更可持续的计算机芯片,并对量子和高性能计算具有潜在影响。石墨烯器件生长在碳化硅衬底芯片上。图片来源:佐治亚理工学院  研究人员称,石墨烯的力量在于其平坦的二维结构,这种结构由已知最强的化学键结合在一起。相较于硅,石墨烯可微型化的程度更深、能以更高的速度运行并产生更少的热量。原则上,单一的石墨烯芯片要比硅芯片内可封装更多器件。  为了创建新的纳米电子学平台,研究人员在碳化硅晶体基板上创建了一种改良形式的外延石墨烯,用电子级碳化硅晶体生产了独特的碳化硅芯片。  研究人员使用电子束光刻来雕刻石墨烯纳米结构并将其边缘焊接到碳化硅芯片上。这个过程机械地稳定和密封石墨烯的边缘,否则它会与氧气和其他可能干扰电荷沿边缘运动的气体发生反应。  最后,为了测量石墨烯平台的电子特性,研究团队使用了一种低温设备,使他们能够记录从接近零摄氏度到室温下的特性。  团队在石墨烯边缘态观察到的电荷类似于光纤中的光子,可在不散射的情况下传播很远的距离。他们发现电荷在散射前沿着边缘移动了数万纳米。而先前技术中的石墨烯电子在撞到小缺陷并向不同方向散射之前,只能行进约10纳米。  在金属中,电流由带负电的电子携带。但与研究人员的预期相反,他们的测量表明边缘电流不是由电子或空穴携带的,而是由一种不同寻常的准粒子携带的,这种准粒子既没有电荷也没有能量,但运动时没有阻力。尽管是单个物体,但观察到混合准粒子的成分在石墨烯边缘的相对侧移动。  团队表示,其独特的性质表明,准粒子可能是物理学家几十年来一直希望利用的粒子——马约拉纳费米子。
  • 岛津倾情支持全国环境纳米技术大会
    4月9日,濛濛细雨中,在美如花园般的厦门大学,为期2天的“全国环境纳米技术及生物效应学术研讨会(National Symposium on Environmental Nanotechnology & Nanoimpact)”拉开帷幕。本次大会由江桂斌院士发起,中国化学会环境化学专业委员会和中国仪器仪表学会原子光谱专业委员会主办、厦门大学和中国科学院生态环境研究中心承办,来自全国各地的近500位行业专家与青年学者汇聚一堂,就纳米材料技术的发展与对环境和生物的影响展开了热烈的探讨。本次大会在厦门大学科学艺术中心召开开幕式前厦门大学学生以优美的弦乐四重奏迎接与会者大会现场传真著名专家学者出席大会 大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式。中科院生态环境研究中心江桂斌院士、国家自然科学基金委员会庄乾坤教授等致开幕词。他们在致辞中强调,纳米技术是国家重点开发技术,期待在大力发展纳米技术的同时,关注纳米材料环境安全性及生物效应。充分发挥纳米材料的特性,使其在环境领域大有作为,使天更蓝、水更清。并且,特别对岛津公司给予本次大会的热情支持表示了由衷的谢意。 大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式 中科院生态环境研究中心江桂斌院士致开幕词 国家自然科学基金委员会庄乾坤教授致开幕词 随着纳米材料制备和相关应用技术的迅速发展,纳米材料对环境和生物的潜在影响已经日益受到科学界、政府乃至社会公众的关注。本届会议旨在引起学术界对纳米材料环境安全性及生物效应的进一步关注,牵引相关领域学者开展了深入研究,围绕着环境纳米技术 纳米环境过程、纳米生物效应及安全性评价 纳米调控、表征技术与方法 大气超细颗粒物环境过程与效应等议题进行了深入讨论。会议邀请了包括多位中国科学院/工程院院士、美国工程院院士做了大会报告 还邀请了众多本领域知名专家做了特邀报告。 厦门大学的孙世刚院士做大会报告 美国Rice University的Pedro J. J. Alvarez教授做大会报告 北京大学的张远航院士做大会报告每个报告后都引起了与会者间的热烈讨论岛津公司作为主赞助商携与纳米技术与环境相关的众多解决方案积极参与本次大会,受到与会者的关注。在岛津展台还设置了一个有趣的互动活动,与会者找到整个会场内任意能够体现岛津的元素并与之合影后,将合影照片、姓名、联系方式和单位名称发送至岛津微信公众号,在岛津展台向工作人员展示发送信息,就可领取一份纪念奖。活动结束后,还将根据收到的照片,评选出三位”最具创意奖”的获奖者,每人将另外获得奖品,许多年轻的学者参与了互动活动。岛津展台传真许多年轻的学者参与了互动活动 岛津公司企划部资深专家安国昱先生做了题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告。他在报告中首先简单介绍了岛津分析技术创新和发展。随后他在报告中指出扫描探针显微镜(SPM)包括扫描隧道显微镜(STM)模式和原子力显微镜(AFM)模式,以及从AFM模式派生出的各种电流、磁力、静电及显微力学等多种模式。SPM被认为是现代纳米材料和纳米技术研究的基础性分析设备,是人类凭借SPM第一次观察到原子、分子的图像。在报告中他特别强调了高分辨率扫描探针显微镜(HR-SPM)是采用频率调制(Frequency Modulation)的新一代扫描探针显微镜,实现了在大气、溶液环境下,达到原来只有在超高真空(UHV)条件下才能获得的原子、分子分辨率的观察图像。同时,HR-SPM首次实现了固液界面的水化作用层(Hydration)/溶剂化作用层(Solvation)的观察。与固体接触的液体形成层状结构,这种现象被称为溶剂化作用。如果液体是水,则称为水化作用。这种区别于体结构的特殊结构很大程度上左右着固液界面的各种作用变化,例如液相内的溶解、化学反应、电荷转移、润湿、热传导等。但是,水化作用层/溶剂化作用层非常薄,一般的实验手段很难测量,特别在表面分布不均一的构造,此前是无法测量的。HR-SPM开拓了获得环境科学中固液界面各种过程的分子信息的新领域。岛津公司安国昱先生做题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告与会者和安国昱先生探讨高分辨率扫描探针显微镜的相关问题 在本届大会开幕当日傍晚,岛津公司特为与会者设置了一个轻松交流的平台“岛津之夜”。与会者借此平台继续探讨学术问题,建立起友情。岛津公司分析测试仪器市场部曹磊事业部长为与会者致欢迎词,他在致辞中强调:“岛津公司做为世界顶级分析仪器供应商之一,自1875年创立以来,始终坚持“以科学技术为社会做贡献”的创业宗旨,不断创新,推出符合市场需求的高科技产品。岛津公司提供的环境全面解决方案,不仅包括常规色谱光谱产品、适用于各个领域痕量物质检测的ICP-MS和UFMS串联质谱系列产品,还包括可以检测到纳米级别的激光粒度仪和高分辨率扫描探针显微镜。这些产品和应用方案,一定能够助各位专家一臂之力,取得更为丰硕的成果!”岛津公司曹磊事业部长为与会者致欢迎词本届大会设立了“研究生论坛”和“墙报展”,以吸引广大青年学子参会进行交流,并评选出“优秀青年科学家奖”和“优秀报展奖”。在大会闭幕式上,岛津公司分析测试仪器市场部胡家祥经理作为颁奖嘉宾分别向上述两个奖项的获得者颁奖,并向获奖者表示了真诚的祝贺。“优秀青年科学家奖”和“优秀报展奖”评奖结果发布岛津公司胡家祥经理作为颁奖嘉宾向获得者颁奖关于岛津  岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。  岛津官方微博地址http://weibo.com/chinashimadzu。
  • 岛津倾情支持全国环境纳米技术大会
    4月9日,濛濛细雨中,在美如花园般的厦门大学,为期2天的“全国环境纳米技术及生物效应学术研讨会(National Symposium on Environmental Nanotechnology & Nanoimpact)”拉开帷幕。本次大会由江桂斌院士发起,中国化学会环境化学专业委员会和中国仪器仪表学会原子光谱专业委员会主办、厦门大学和中国科学院生态环境研究中心承办,来自全国各地的近500位行业专家与青年学者汇聚一堂,就纳米材料技术的发展与对环境和生物的影响展开了热烈的探讨。本次大会在厦门大学科学艺术中心召开开幕式前厦门大学学生以优美的弦乐四重奏迎接与会者大会现场传真著名专家学者出席大会  大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式。中科院生态环境研究中心江桂斌院士、国家自然科学基金委员会庄乾坤教授等致开幕词。他们在致辞中强调,纳米技术是国家重点开发技术,期待在大力发展纳米技术的同时,关注纳米材料环境安全性及生物效应。充分发挥纳米材料的特性,使其在环境领域大有作为,使天更蓝、水更清。并且,特别对岛津公司给予本次大会的热情支持表示了由衷的谢意。大会组委会秘书长厦门大学王秋泉教授主持大会开幕仪式中科院生态环境研究中心江桂斌院士致开幕词国家自然科学基金委员会庄乾坤教授致开幕词  随着纳米材料制备和相关应用技术的迅速发展,纳米材料对环境和生物的潜在影响已经日益受到科学界、政府乃至社会公众的关注。本届会议旨在引起学术界对纳米材料环境安全性及生物效应的进一步关注,牵引相关领域学者开展了深入研究,围绕着环境纳米技术 纳米环境过程、纳米生物效应及安全性评价 纳米调控、表征技术与方法 大气超细颗粒物环境过程与效应等议题进行了深入讨论。会议邀请了包括多位中国科学院/工程院院士、美国工程院院士做了大会报告 还邀请了众多本领域知名专家做了特邀报告。厦门大学的孙世刚院士做大会报告美国Rice University的Pedro J. J. Alvarez教授做大会报告北京大学的张远航院士做大会报告每个报告后都引起了与会者间的热烈讨论  岛津公司作为主赞助商携与纳米技术与环境相关的众多解决方案积极参与本次大会,受到与会者的关注。在岛津展台还设置了一个有趣的互动活动,与会者找到整个会场内任意能够体现岛津的元素并与之合影后,将合影照片、姓名、联系方式和单位名称发送至岛津微信公众号,在岛津展台向工作人员展示发送信息,就可领取一份纪念奖。活动结束后,还将根据收到的照片,评选出三位”最具创意奖”的获奖者,每人将另外获得奖品,许多年轻的学者参与了互动活动。岛津展台传真许多年轻的学者参与了互动活动  岛津公司企划部资深专家安国昱先生做了题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告。他在报告中首先简单介绍了岛津分析技术创新和发展。随后他在报告中指出扫描探针显微镜(SPM)包括扫描隧道显微镜(STM)模式和原子力显微镜(AFM)模式,以及从AFM模式派生出的各种电流、磁力、静电及显微力学等多种模式。SPM被认为是现代纳米材料和纳米技术研究的基础性分析设备,是人类凭借SPM第一次观察到原子、分子的图像。在报告中他特别强调了高分辨率扫描探针显微镜(HR-SPM)是采用频率调制(Frequency Modulation)的新一代扫描探针显微镜,实现了在大气、溶液环境下,达到原来只有在超高真空(UHV)条件下才能获得的原子、分子分辨率的观察图像。同时,HR-SPM首次实现了固液界面的水化作用层(Hydration)/溶剂化作用层(Solvation)的观察。与固体接触的液体形成层状结构,这种现象被称为溶剂化作用。如果液体是水,则称为水化作用。这种区别于体结构的特殊结构很大程度上左右着固液界面的各种作用变化,例如液相内的溶解、化学反应、电荷转移、润湿、热传导等。但是,水化作用层/溶剂化作用层非常薄,一般的实验手段很难测量,特别在表面分布不均一的构造,此前是无法测量的。HR-SPM开拓了获得环境科学中固液界面各种过程的分子信息的新领域。岛津公司安国昱先生做题为“高分辨率扫描探针显微镜在环境和生物科学中的应用”的报告与会者和安国昱先生探讨高分辨率扫描探针显微镜的相关问题  在本届大会开幕当日傍晚,岛津公司特为与会者设置了一个轻松交流的平台“岛津之夜”。与会者借此平台继续探讨学术问题,建立起友情。岛津公司分析测试仪器市场部曹磊事业部长为与会者致欢迎词,他在致辞中强调:“岛津公司做为世界顶级分析仪器供应商之一,自1875年创立以来,始终坚持“以科学技术为社会做贡献”的创业宗旨,不断创新,推出符合市场需求的高科技产品。岛津公司提供的环境全面解决方案,不仅包括常规色谱光谱产品、适用于各个领域痕量物质检测的ICP-MS和UFMS串联质谱系列产品,还包括可以检测到纳米级别的激光粒度仪和高分辨率扫描探针显微镜。这些产品和应用方案,一定能够助各位专家一臂之力,取得更为丰硕的成果!”岛津公司曹磊事业部长为与会者致欢迎词  本届大会设立了“研究生论坛”和“墙报展”,以吸引广大青年学子参会进行交流,并评选出“优秀青年科学家奖”和“优秀报展奖”。在大会闭幕式上,岛津公司分析测试仪器市场部胡家祥经理作为颁奖嘉宾分别向上述两个奖项的获得者颁奖,并向获奖者表示了真诚的祝贺。“优秀青年科学家奖”和“优秀报展奖”评奖结果发布岛津公司胡家祥经理作为颁奖嘉宾向获得者颁奖  关于岛津  岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。  岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 魔技纳米 | 诚邀您莅临2024中国国际光电博览会
    【企业简介】魔技纳米科技创立于2017年,是一家高精度微纳三维装备制造与服务提供商、国家高新技术企业、省专精特新企业。主要业务为高端激光微纳三维直写光刻设备的研发、生产、销售及技术服务等。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
  • 新型石墨烯纳米抗菌材料研究获进展
    近日,美国化学会ACS Nano杂志报道了中国科学院上海应用物理研究所物理生物学实验室在新型石墨烯纳米抗菌材料方面的研究工作(Graphene-Based Antibacterial Paper. Wenbing Hu, Cheng Peng, Weijie Luo, Min Lv, Xiaoming Li, Di Li, Qing Huang and Chunhai Fan,ACS Nano, 2010, 4 (7), pp 4317–4323)。该工作发表以后,被Nanowerk、Qmed、Sciencedaily等多家媒体报道及转载,其中美国科学促进协会主办的Eurekalert!网站报道中指出,这可能是石墨烯重要的环境和临床应用。   研制和利用抗菌材料来抑制和杀灭有害细菌是提高人类健康水平的一个重要方面。传统的抗菌材料,如抗生素、季铵盐等不但会导致微生物的抗性,还会造成严重的环境污染。纳米技术的发展,为解决该问题提供了一条新的思路。   石墨烯是由单层碳原子紧密排列而成的二维晶体,其优异的电子传递、较高的机械强度特性使石墨烯成为纳米电子器件、太阳能电池、生物传感器等方面应用的新贵。上海应用物理所物理生物学实验室博士研究生胡文兵等在樊春海和黄庆研究员的指导下,探索了氧化石墨烯的抗菌特性,发现氧化石墨烯纳米悬液在与大肠杆菌孵育2小时后,对其抑制率超过90%。进一步的实验结果表明,氧化石墨烯的抗菌性源于其对大肠杆菌细胞膜的破坏。更重要的是,氧化石墨烯不仅是一种新型的优良抗菌材料,而且对哺乳动物细胞产生的细胞毒性很小。此外,通过抽滤法能够将氧化石墨烯制备成纸片样的宏观石墨烯膜,也能有效地抑制大肠杆菌的生长。   由于氧化石墨烯的制备简便、成本低廉,这种新型的碳纳米材料有望在环境和临床领域得到广泛的应用。
  • 踏樱寻“联”——记中科院苏州纳米所纳米生化平台联合共建实验室
    随着生物大分子制药的飞速发展,产业急需先进的技术平台以加快研究进程并提高整体效率。而苏州工业园区作为改革开放试验田、国际合作示范区的国家重点建设项目,近年来吸引了越来越多的生物制药及细胞研究企业入驻,规划于集齐产业力量,提高科研水平。中国科学院苏州纳米技术与纳米仿生研究所(下称“苏州纳米所”)更是产业内骄楚,此次珀金埃尔默公司有幸与苏州纳米所纳米生化平台进行联合共建实验室,依托其平台为周边企业展示在杂交瘤筛选、表型筛选、小动物活体成像及组织水平生物标记物等研究领域一系列先进的仪器和研究方案。通过本次共建合作希望把更先进的技术和方案带进园区,为生物制药产业发展和转化医学科研创新注入新的活力。双方领导签署合作协议:纳米生化平台主任李炯(右);珀金埃尔默中国区生命科学部业务总监严洁敏(左)双方领导为联合共建实验室揭牌:纳米生化平台主任李炯(左);珀金埃尔默中国区生命科学部业务总监严洁敏(右) 纳米生化平台是院地共建的面向生物制药及转化医学产业领域的开放式研发支持和服务机构,有利的支持了苏州及周边区域生物医药产业的快速发展。“非常感谢珀金埃尔默公司共同组织了如此有意义的共建活动。”中科院苏州纳米所纳米生化平台主任李炯首先致辞对与会者表达了欢迎,“纳米生化平台累积吸纳入驻企业约50家,并向上百家所外用户提供过技术服务。这有赖于大家对于我们的信任,以及合作伙伴给予我们的支持,我们也会在今后的科研工作中与业内专家共同学习探讨,力争为产业做出自己的一份贡献。” “苏州纳米所作为中科院在长三角地区重点建设的国家级科研项目,拥有强大的科学研发能力,对周边地区有十分重要的影响和示范作用。” 珀金埃尔默中国区生命科学部业务总监严洁敏随后谈到,“通过纳米生化平台丰富的行业经验和客户关系,以及珀金埃尔默在生命科学专业知识和先进技术,我们一起努力,必定能帮助周边企业在科研上取得长足进步。” 经过4年的耕耘及努力,珀金埃尔默已经在十余个城市与客户组建了近二十个共建实验室,仅上海复旦大学上海医学院就累计了近400的用户数。去年更是与生化工程国家重点实验一同,在寸土寸金的北京中关村投入了大量的人力和资金成立转换医学共建实验室及转化医学工程委员会。如此持续的巨额投资旨在与业内分享经验,从而辐射到产业链的每个环节,帮助我们的客户完成科研要求并促进产业蓬勃发展。 珀金埃尔默亚太区高级市场经理刘肖也表达了公司多年服务中国客户的感触:“2018年是珀金埃尔默进入中国的第40周年,也恰逢中国改革开放的第40个年头。作为第一批投身于中国的外资企业,这些年来我们始终秉持着以客户需求为先的宗旨。虽然目前共建实验室合作形式在一些城市获得了非常积极地反馈,但是相对于中国市场庞大的市场,这些仍微不足道。珀金埃尔默今后一定会以包括共建实验室等合作形式,持续、大力地对中国市场进行投资。”珀金埃尔默亚太区高级市场经理刘肖致辞随后双方技术专家及参会嘉宾进行了技术交流。相关资料请点击下载:分子影像技术在转化医学研究中的应用:http://www.instrument.com.cn/download/shtml/880945.shtml组织切片多标记技术与新型生物标记物发现:http://www.instrument.com.cn/download/shtml/880943.shtml生物大分子整体解决方案:http://www.instrument.com.cn/download/shtml/880940.shtml 珀金埃尔默技术专家及参会嘉宾珀金埃尔默除了拥有科研合作能力,也不乏一双发现客户美丽之处的眼睛:我们的产品技术经理为各位倾情拍摄苏州纳米所外美景,请您共同欣赏。关于珀金埃尔默作为全球领先的科研仪器和服务提供商,珀金埃尔默公司致力于为创建更为健康的世界而不懈努力。我们的业务涵盖医学诊断、科研和分析仪器等。我们在全球拥有9000名专业技术人员,时刻准备着为客户提供最优质的服务,帮助客户解决各项科学难题。我们在分析检测、医学成像、信息技术和售后服务方面的专业知识,以及深入的市场洞察力,可协助客户为改善我们的生活环境而不懈探索。2016年,珀金埃尔默年应收达21亿美元,为超过150个国家和地区提供服务,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默公司的信息,请访问PerkinElmer官方网站。
  • 国内自主研发“纳米纸”亮相10月纳博会
    碳纳米纸是以碳纳米材料(碳纳米管、碳纳米纤维和石墨烯等)为主制成的纸状材料。1998年,诺贝尔奖获得者Richard Smalley首次合成了碳纳米纸——buckypaper(巴基纸)。此后,比表面积远大于碳纤维纸,有着良好的导电导热性、透气透液性和化学稳定性的碳纳米纸,逐渐走入了人们的视野。  据报道,2008年美国佛罗里达州立大学的科研人员开发出一种看上去像复写纸的碳纳米纸,比重仅为钢的1/10,但强度达到了钢的250倍。这种碳纳米纸用碳纳米管制成, 即buckypaper。因为质量轻强度高,以及其他优良特性,成形的碳纳米纸一问世,美国等发达国家就将其应用于军事、航天等领域,而它在国外的商业化发展也已经初具规模。  “碳纳米纸在航天科技、锂离子电池、燃料电池、吸波材料、导热材料、力学增强材料、阻燃材料、过滤材料、生物材料等方面都有巨大的应用潜力。但碳纳米纸的产业化和商业化在国内相关领域仍是空白。”昆明纳太科技有限公司创始人刘铸曾表示,其创业的目标就是实现中国制造碳纳米纸的量产,打破国外在高新战略材料上的垄断。  为此,纳太科技自主研发出一套连续生产碳纳米纸的工艺技术和生产设备,成为目前中国唯一一家具备低成本连续生产碳纳米纸的企业,主营碳纳米纸及碳纳米复合材料,并进行碳纳米纸市场终端产品应用方案的设计。所开发的包括碳纳米纸在内的各类产品,用途颇广,在新能源、流体净化、高导热应用、航空航天复合材料等领域均有十分广阔的市场前景。图为国内自主研发的纯碳纳米纸  据了解,纳太科技利用碳纳米材料的抗菌、微细、导电等特性,结合其他人工纤维复合成型,开发出应用于净化领域的碳纳米纸产品,可进行高效空气净化和水净化。其新一代碳纳米高效抗菌空气滤膜经过国家空调设备质量监督检验中心检测,0.3微米颗粒过滤效率达到99.9997%,阻力212.2Pa 经过广东微生物研究所检测金黄色葡萄球菌、大肠杆菌的抗菌率达99.9%,抗霉菌等级为最高的0级,极具市场竞争力。而其开发的应用于新能源领域的碳纳米纸产品,不同的型号可分别用在锂离子电池阴极、电化学超级电容器、燃料电池气体扩散层和金属空气电池气体扩散层等。空滤纸  纳太纳米纸究竟有哪些神奇之处?在不同的行业可以应用到何种程度?这些疑问都可以在第七届中国国际纳米技术产业博览会上得到解答。  据悉,由江苏省纳米技术产业创新中心主办的第七届中国国际纳米技术产业博览会(简称纳博会)将于2016年10月26日-28日在苏州国际博览中心举办,这是中国最具规模和影响力的纳米技术应用产业交流大会,也是纳米企业形象展示、产品推介、技术交流、市场拓展的最佳舞台。本届大会期间,包括昆明纳太、厦门纳诺泰克、天津中正华美、台湾奈星、合肥开尔等在内的众多国内外纳米材料企业将齐聚苏州,展现纳米新新材料的神奇世界。更多详情可登陆纳博会网址:www.chinanosz.com
  • 邀请函|珀金埃尔默邀您参加第四届中美纳米医学与纳米生物技术学会年会
    第四届中美纳米医学与纳米生物技术年会由中美纳米药物与纳米生物技术学会(CASNN)主办,旨在共同探讨纳米药物/纳米医学的发展愿景、面临的挑战及解决策略,推动纳米医学与纳米生物技术相关产业的蓬勃发展, 促进中美纳米医学与纳米生物技术领域项目和技术的交流、合作。会议已邀请来自中国、美国、加拿大、日本、韩国、新加坡等国家和地区的院士和专家及国内知名药企人员,预计参会人数约500人。会议将于2019年8月19号报到,20-22日在杭州开元名都大酒店举行。珀金埃尔默作为全球领先的解决方案供应商,将亮相此次会议,欢迎莅临珀金埃尔默展台!珀金埃尔默可提供纳米检测整体解决方案:诚挚邀请参会代表莅临珀金埃尔默展位参观交流,珀金埃尔默与您不见不散!扫描二维码参与抽奖,会前抽奖到珀金埃尔默展位领取,或留地址邮寄均可。关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 金相师太会选,用这款金相砂纸立马解决样品磨糊问题!
    金相样品磨糊问题几乎是每一位金相工程师都遇到过的问题,磨糊的原因有多种,因此解决方法也各不相同,其中较常见一种情况是由于金相砂纸的质量达不到技术要求而导致的。金相砂纸的质量优劣将直接影响样品表面的研磨效果,有经验的金相师太会选,用这款金相砂纸立马就能解决样品的磨糊问题!金相师们优选的美国QMAXIS金相砂纸,解决样品磨糊问题十分有效,研磨样品不但又快又好,还能节约制样成本。QMAXIS金相砂纸具有半个多世纪的应用历史,技术非常成熟,被广泛应用于各种质量控制、科研教学等金相实验室,是经过了漫长时间和应用实践严苛考验的金相耗材之一,毋庸置疑,质量是备受用户肯定的!美国QMAXIS金相砂纸是以碳化硅为研磨介质的湿磨砂纸,适用于各种常规材料的样品制备。具有非常好的耐水性,纸基强韧,耐磨,耐撕裂,平整度高,不易卷边,这些特点都是金相工程师关注的重点,可以说,QMAXIS金相砂纸的每一项都很出彩!美国QMAXIS金相砂纸植砂工艺好,碳化硅磨料颗粒分布均匀,致密,磨削性能突出,快速研磨,制样效率可比普通砂纸高出30-50%。我们从显微镜下来看用QMAXIS金相砂纸制备的样品表面效果。使用QMAXIS金相砂纸制备样品,磨糊的概率大大降低。此外,QMAXIS金相砂纸因其具有非常好的耐磨性,用量少,相比普通金相砂纸平均用量大概可以节约25%左右,直接降低了制样成本。不得不佩服这些有经验的金相师,太会选了,用了这款金相砂纸就把样品磨糊问题解决了!方法简单还好用,愿金相师们的经验可以给读此文的您一些帮助,让您的金相制样工作越来越好!
  • 新型纳米材料的流动合成法
    p    strong 爱沙尼亚塔尔图大学物理研究所选用了一款搭载Flow-UV& #8482 探测器的Uniqsis FlowSyn& #8482 连续流动反应器来帮助他们开发可用于下一代应用的新型纳米材料。 /strong /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/aac6b0cc-ddae-46ee-b9eb-5de725939aa7.jpg" / /p p   材料科学研究小组的Aile Tamm博士在采购Uniqsis FlowSyn系统之前评估了不同种合成纳米材料的技术路径。 /p p   Aile Tamm博士谈到:“我们已研究过具有先进电磁性能的纳米颗粒和纳米复合材料。例如,我们已成功制备出含有平均粒径在5-50纳米的氧化铁、氧化铁铒、氧化锰铁和氧化镧微粒的薄固体膜粒子复合涂层。这些新型复合材料已被证明具有电子设备开发所需要的非线性饱和磁化及强制磁滞现象。除这些纳米材料以外,我们研究所也正在研究若干其他形式的纳米颗粒。” /p p   Uniqsis总经理,Paul Pergande评论道:“我们很高兴欢迎Tamm博士的知名研究团队加入到这一日渐发展的群体中来,这一群体涵盖了多家国际领先的使用Flowsyn来研究纳米颗粒合成的材料科学实验室。”他还补充道:“Flow-UV内嵌式二极管阵列探测器可被用于确定何时达到稳态,从而可确定何时开始与停止收集反应产物。紫外-可见吸收光谱测量法对于纳米颗粒分布具有特别重大的意义,并可提供有关粒径及是否发生团聚的信息。” /p p   FlowSyn& #8482 是一种被设计成可简单、安全、有效运行的集成化持续流动反应系统。FlowSyn& #8482 包含了一系列可进行单重或多重的均相或非均相反应的产品型号,并具有手动或自动运行功能。反应的范围通过Uniqsis的集成模块化流动化学系统的不断探究,已变得越来越广,并被越来越多发表于学术刊物和Uniqsis应用注释中的应用文章所证明。 /p p br/ /p p   获取更多有关FlowSyn& #8482 连续流动反应器的信息,及讨论该系统的试验请联系Uniqsis的电话+44-845-864-7747或电子邮箱 info@uniqsis.com /p p   Uniqsis擅于设计中等规格的,用于各种不同化学和药学研究应用的持续流动化学系统。公司目标是使初学者和经验丰富的使用者都易于使用我们的流动化学系统。 /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制