当前位置: 仪器信息网 > 行业主题 > >

全息生物电检测分析仪

仪器信息网全息生物电检测分析仪专题为您提供2024年最新全息生物电检测分析仪价格报价、厂家品牌的相关信息, 包括全息生物电检测分析仪参数、型号等,不管是国产,还是进口品牌的全息生物电检测分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全息生物电检测分析仪相关的耗材配件、试剂标物,还有全息生物电检测分析仪相关的最新资讯、资料,以及全息生物电检测分析仪相关的解决方案。

全息生物电检测分析仪相关的资讯

  • 手机也能变成心电检测仪
    晚报讯手机除了当游戏机、MP3之外,还能变成心电检测仪器?这样的奇思妙想近日在第三届恩智浦杯创新设计大赛中成为现实,来自全国多所高校的12支决赛团队通过这些有趣的发明获得了多项大奖。   恩智浦杯创新设计大赛在9月至11月开赛,吸引了多所高校的217组学生设计团队踊跃参加,共递交了约140项微控制器设计,最终有12个最佳方案进入决赛。其中,“能够检测心电的手机”获得了最具网络人气奖,发明者是天津大学的李崇崇等3名同学。他们发现,现在普遍应用的生物电检测仪体积较大,不易携带,使用不便,于是便想到了现在越来越多样的手机功能,“给手机配备相应装置,手机屏幕完全可以显示心电检测结果,手机本身还有信号存储功能,为什么不能将手机和心电检测仪结合在一起呢?”   于是,他们研制出一个具有USB接口的模块系统,可以和手机相连,或直接植入手机中,再用手机屏幕显示、传输采集信号。虽然目前的模块较大,不过他们认为,完全可以通过技术手段,将模块缩小至当前的十分之一,也就是硬币大小,从而可以方便地植入手机。在他们的努力下,这款新颖的手机具有高性价比、高可靠性、多功能、智能化、微功耗的特点,相关技术目前已被深圳的一家公司采纳。
  • Nature:生物电子传感,实时监测环境污染物!
    研究背景淡水受到天然和合成化学物质的污染是一项全球性的环境挑战。特别值得关注的是影响脊椎动物繁殖的化学物质和刺激微生物繁殖的无机化合物,因为它们进入环境后都会产生严重的生态影响。由于化学物质的释放可能是动态且瞬态的,需要在原位实时检测这些化学物质。这种检测也必须具有不同非生物条件的环境准确性。实时化学传感对于环境和健康监测中的应用至关重要。生物传感器可以通过基因电路检测各种分子,利用这些化学物质触发有色蛋白质的合成,从而产生光学信号。关键问题虽然生物传感器可以满足污染物监测需求,但仍存在以下问题:1、传感速度通常较慢,难以实现原位监测生物传感器都依赖转录调节进行检测,而蛋白质表达过程将这种传感的速度限制半小时以上,光学信号通常很难原位检测到。2、工程化微生物传感器会降低信噪比和时间响应工程化的微生物虽然提供了机械完整性和支持连续传感,但它们会衰减信号传输,进而降低信噪比和时间响应。新思路有鉴于此,美国莱斯大学Caroline M. Ajo-Franklin等人将合成生物学和材料工程相结合,开发出能够产生电读数且检测时间为分钟的生物传感器。使用模块化的、八组分合成的电子传输链对大肠杆菌进行编程,使其产生电流以响应特定的化学物质。按照设计,该菌株在暴露于硫代硫酸盐后,在2分钟内产生电流。然后,对电流传感器进行了修改,以检测内分泌干扰物。将蛋白质开关纳入合成途径,并用导电纳米材料封装细菌,可在3分钟内检测城市水道样品中的内分泌干扰物。该研究结果提供了一种设计规则,可以用质量输运模型有限的检测时间来感知各种化学品,并为保护生态和人类健康的微型低功耗生物电子传感器提供了一个新的平台。技术方案:1、设计了基于大肠杆菌的生物传感器在大肠杆菌中设计了一种合成电子转移(ET)途径,制备了生物传感器,并评估了各个模块的性能,优化了输出模块的功能,并分析了其性能。2、证实了对硫代硫酸盐的快速检测和定量作者构建了I+C+O+菌株,测量了硫代硫酸盐依赖性EET。通过改进,获得了更高的信噪比,信号强度及再现性,证实了工程菌株产生的电信号能够快速、连续地检测和定量硫代硫酸盐。3、设计了多样化的活体电子传感器作者利用Fd开关以确定活体电子传感器是否可以多样化,证实了工程化Fd可测量合成ET途径中非代谢中间体的分析物,并将响应时间减少了约4倍。4、证实了传感器在城市水道样品的适用性作者证实了2-EWE传感器在具有不同非生物特征的城市水样中具有一致的功能,并通过改进实现了高度可再现的响应,提高了信噪比,获得了更高的稳态电流和更快的响应时间。技术优势:1、开发了超快的生物传感器作者开发了利用ET合成信号转导方法,通过结合合成生物学和材料工程开发了生物传感器,可以产生电子读数,并将检测时间由半小时以上缩短至几分钟。2、实现了城市水道内分泌干扰物的快速测量将蛋白质开关纳入合成途径,并用导电纳米材料封装细菌,可在3分钟内检测城市水道样品中的内分泌干扰物。快速的响应时间非常适合于环境中瞬时化学暴露的连续监测。3、开发了提高信噪比的改进方法利用细胞封装来实现比率传感,并加入导电纳米材料以提高EET的效率,这两种方法都提高了信噪比,并导致了质量传输有限的响应时间。4、为连续、实时环境传感的设计提供了研究平台本文研制的活体电子传感器为连续环境传感提供了一个可扩展的平台,可以在不同的环境中进行长时间的准确操作。技术细节传感器设计作者在大肠杆菌中设计了一种合成电子转移(ET)途径。使用硫代硫酸盐来测试该策略,用三个模块设计了硫代硫酸盐依赖的ET途径。为了评估各个模块的性能,使用了基因组编码和质粒编码的遗传电路的组合,使模块组件能够即插即用表达。为了优化输出模块的功能,作者分析了其表达、EET以及在不同诱导条件下对细胞适应度的影响。为了测量细胞色素的表达,监测了细胞颗粒的相对红色。为了以高通量的方式评估EET,测量了诱导细胞还原细胞不可渗透的WO3纳米棒的能力。使用最佳诱导策略,表明优化的输出模块是功能性的。作者确定了耦合模块的SQR,并证明了细胞可以在表达输出模块的同时在输入模块中合成全蛋白。图 带有合成ET链的大肠杆菌传感器硫代硫酸盐的快速检测和定量为了确定ET通过全合成途径是否依赖于硫代硫酸盐,将所有三个模块集成在一起以构建I+C+O+菌株,并在BES中测量浮游细胞的硫代硫酸盐依赖性EET。结果表明整个通路就像一个硫代硫酸盐传感器。为了改善低信噪比,将每个菌株和工作电极封装在藻酸盐-琼脂糖水凝胶中。与浮游细胞相比,封装细胞对硫代硫酸盐的反应具有更高的信噪比(平均增加30倍以上)。此外,相对于浮游细胞,它表现出更高的信号强度(增加5倍)、更高的再现性(标准偏差减少50%)和更高的线性(R2增加10倍)。探讨了该传感器对不同硫代硫酸盐浓度的响应,表明I+C+O+菌株的电流响应与硫代硫酸盐浓度呈线性关系,证实了工程菌株产生的电信号能够快速、连续地检测和定量硫代硫酸盐。图 活体电子传感器的封装实现了硫代硫酸盐的快速检测和定量传感器多样化为了确定活体电子传感器是否可以多样化,以响应影响脊椎动物繁殖的化学物质,利用Fd开关在翻译后对化学配体进行响应。为了量化每个反应器中4-HT诱导的电流变化,计算了IsC+O+应变相对于IC42AC+O+菌株的电流百分比差异。DMSO和4-HT信号的比较显示,在7.8分钟内以95%的置信度检测到4-HT,信号强度增加0.93%±0.33%。尽管工程Fd产生的信号低于野生型Fd,但它能够检测合成ET途径中非代谢中间体的分析物。因此,与以前的微生物生物电子传感器相比,IsC+O+活电子传感器按设计对4-HT作出响应,并将响应时间减少了约4倍。图 表达电子蛋白质开关的活体电子传感器能够快速检测内分泌干扰物城市水道样品测量在添加了硫代硫酸盐或4-HT的河流和海洋样品中测试了BES,证实2-EWE传感器在具有不同非生物特征的城市水样中具有一致的功能。由于这些城市水样的导电性差且氧化还原活性化合物丰富可能会干扰生物电子传感,引入了生物相容性和导电性TiO2@TiN纳米复合材料进入包封基质以增加接触表面并促进细菌-电极界面处的电子转移。这些纳米颗粒-活性传感器混合物在装置之间显示出高度可再现的响应,提高了信噪比,并且在1mM硫代硫酸盐存在下具有更高的稳态电流,并具有更快的响应时间。本工作开发的活体电子传感器可用来专门检测与环境相关的浓度和条件下的分析物,其传质限制动力学比之前的状态快十倍。图 用导电纳米颗粒封装的活体电子传感器能够快速检测环境中的污染物展望总之,本文研制的活体电子传感器为连续环境传感提供了一个可扩展的平台。实时传感需要快速的分析物检测,在没有样品准备的情况下,可以在不同的环境中进行长时间的准确操作。活体电子传感器可在各种环境条件下使用有限的仪器实时检测目标化学品。为了实现长期的环境部署,可以将碳源和辅助化学品纳入封装矩阵,以优化非生物-生物界面的电信号传输。此外,这些传感器可以被安装到通过清除环境中存在的能量来自我供电的设备中。小型、可部署的实时生物电子传感器可以分布在不同的环境位置,这将彻底改变监测化学品在生态系统中迁移的能力。这将为农业的可持续发展提供重要信息,减轻工业废物排放的影响,并确保水安全。参考文献:Atkinson, J.T., Su, L., Zhang, X. et al. Real-time bioelectronic sensing of environmental contaminants. Nature(2022).DOI:10.1038/s41586-022-05356-yhttps://doi.org/10.1038/s41586-022-05356-y
  • 回放视频上线!锂电检测21专家报告 20余类分析技术全回放
    回放视频上线!由仪器信息网于2021年6月1-2日主办的第三届“锂离子电池检测技术及应用”网络会议已圆满召开,来自科研院所、新能源汽车、电池生产企业、电池源材料等锂电全产业链1000余位相关人士线上参会并积极讨论。响应广大参会者需求,会务已积极征求21位专家意见,21个报告回放视频已全部上线,欢迎大家点击会看,温故知新。会议背景近年来,锂离子电池市场保持高速持续增长。随之锂电相关研究也在近十年来呈现指数增长,锂电高能量密度、高安全性等成为科研及市场广泛关注的焦点和难点,而这些性能与锂电材料多种性质相关,没有统一的规律,这给电池的研究带来很大挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种分析检测技术。基于此,仪器信息网将于2021年6月1-2日,组织第三届“锂离子电池检测技术及应用”网络会议,分设成分分析技术、失效/热性能分析技术、结构形貌分析技术、颗粒度/安全可靠性等测试技术四个专场,邀请锂电科研专家、锂电分析检测仪器技术专家等,以网络在线报告形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,搭建线上免费交流平台,促进我国锂电行业良性发展。报告日程及视频回放链接分会场回放链接 报告题目演讲嘉宾锂电成分分析技术(06月01日)点击回看使用俄歇电子能谱法(AES)分析锂离子电池材料的元素化合态张元(日本电子株式会社)点击回看电池材料的安全及性能评价覃冰(岛津企业管理(中国)有限公司)点击回看赛默飞锂电池无机元素分析解决方案贺静芳(赛默飞世尔科技(中国)有限公司)点击回看高分辨率电感耦合等离子体发射光谱在锂电池产业链中的应用浅析吴奋国(德国耶拿分析仪器股份公司)点击回看安捷伦气相色谱锂电池鼓包气分析解决方案李景林(安捷伦科技(中国)有限公司)点击回看气相色谱技术在锂电池成分分析中的应用高璟昌(天目湖先进储能技术研究院)锂电失效、热性能分析技术(06月01日)点击回看加速量热仪(ARC)在锂离子电池热失效分析中的研究进展薛钢(苏州玛瑞柯检测技术有限公司 )点击回看热分析技术在锂电池行业中的应用袁宁肖(梅特勒-托利多)点击回看锂电池性能失效解析石静静(天目湖先进储能技术研究院)点击回看微量热分析技术在电池开发之应用林明申(美国TA仪器)点击回看锂离子电池材料表界面改性与性能衰退机制原位电子显微学研究张跃飞(北京工业大学 )锂电结构形貌分析技术(06月02日)点击回看层状正极材料中裂纹产生机理的电子显微学分析闫鹏飞(北京工业大学 )点击回看赛默飞专利XRD技术加速锂电材料研究居威材(赛默飞世尔科技(中国)有限公司)点击回看HORIBA拉曼光谱在锂电池材料中的最新技术及应用进展孙琳(HORIBA科学仪器事业部)点击回看雷尼绍拉曼光谱系统在锂电池领域的应用李兆芬(雷尼绍)点击回看微焦点X射线透视及CT装置在锂电池行业中的应用黄军飞(岛津企业管理(中国)有限公司)点击回看TOF-SIMS&AES表面分析技术在锂电池领域的应用张硕(天目湖先进储能技术研究院)锂电颗粒度、安全性等测试技术(06月02日)点击回看电池正向设计:从材料模拟与人工智能到电芯正向设计初探李剑(鸿之微科技(上海)股份有限公司)点击回看牛津仪器AZtecBattery系统在锂离子电池清洁度检测中的应用陈帅(牛津仪器科技)点击回看锂电池及其材料安全性检测技术与应用邵丹(广州能源检测研究院)点击回看新能源用锂离子电池失效分析解析整体解决方案韩广帅(同济大学 上海智能新能源汽车科创功能平台有限公司)
  • 337万!西北师范大学生物电化学与环境分析重点实验室计划采购仪器设备
    西北师范大学招标项目的潜在投标人应在甘肃省公共资源交易网(https://ggzyjy.gansu.gov.cn/)在线免费获得获取招标文件,并于2021-11-03 14:30:00(北京时间)前递交投标文件。一、项目基本情况项目编号:0876-2111352项目名称:西北师范大学生物电化学与环境分析重点实验室仪器设备采购项目预算金额:337(万元)最高限价:337(万元)采购需求:生物电化学与环境分析重点实验室仪器设备 1批 进口产品,已论证。合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否二、申请人的资格要求1.(1)供应商须符合《中华人民共和国政府采购法》第二十二条规定,并提供《中华人民共和国政府采购法实施条例》第十七条所要求的材料;(2)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为记录名单;不处于中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为信息记录中的禁止参加政府采购活动期间的方可参加本项目的投标;如相关失信记录已失效,供应商需提供相关证明资料(查询时间为本项目招标公告发布之日起至投标截止时间前) ;(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本次采购项目。(4)本项目不接受联合体投标。2.落实政府采购政策需满足的资格要求:详见招标文件3.本项目的特定资格要求:无三、获取招标文件时间:2021-10-14 00:00:00至2021-10-20 23:59:59,每天上午00:00至12:00,下午12:00至23:59地点:甘肃省公共资源交易网(https://ggzyjy.gansu.gov.cn/)在线免费获得方式:社会公众可通过甘肃省公共资源交易网免费下载或查阅招标采购文件(详见《甘肃省公共资源交易网》首页“下载中心”中“电子服务系统v2.0电子版操作说明”)。拟参与甘肃省公共资源交易活动的潜在投标人需先在甘肃省公共资源交易网上注册,获取“用户名+密码+验证码”,以软认证方式登录;也可以用数字证书(CA)方式登录。以上两种方式均可进行我要投标等后续工作。售价:0(元)四、提交投标文件截止时间、开标时间和地点时间:2021-11-03 14:30:00地点:甘肃省公共资源交易中心(兰州市城关区雁兴路68号)第六电子开标厅五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜无①甘肃省公共资源交易网:https://ggzyjy.gansu.gov.cn②信用中国”网站:https://www.creditchina.gov.cn③中国政府采购网网址:http://www.ccgp.gov.cn/七、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:西北师范大学地 址:兰州市安宁区安宁东路967号联系方式:0931-79715402.采购代理机构信息名 称:甘肃西招国际招标有限公司地 址:兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层联系方式:189190632833.项目联系方式项目联系人:刘鑫电 话:18919063283
  • 报名!直播圆桌探讨:锂电检测市场风向标与热点分析技术剖析
    根据工业和信息化部8月3日发布的数据,今年上半年,我国锂电池产业延续增长态势,产量超过400 GWh,同比增长超43%,锂电池全行业营业收入达到6000亿元。上半年,我国锂电池产品出口额同比增长69%。随着新能源的发展与推广,锂离子电池在新能源领域的运用逐渐广泛,其相关材料检测的需求也日益提高。电池材料与电池的测试评价和分析对保证电池的质量非常重要,电池材料的微观结构决定其性能,也直接影响到电动汽车的安全性和使用性能。基于此,2023年9月26日,仪器信息网携手赛默飞共同举办“赋能技术,助锂制造”主题网络研讨会,邀请行业专家、检测技术专家针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨。点击直达 直播详情页面一、 主办单位仪器信息网赛默飞二、 举办时间2023年9月26日 下午14:00-16:30三、 圆桌环节讨论话题1. 新能源电池行业政策热点、趋势;2. 新能源电池检测技术、实验室建设发展现状;3. 新能源电池检测技术趋势前瞻四、 直播嘉宾韩广帅 上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理同济大学助理研究员,上海空间电源研究所博士后。上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理;国家质检总局缺陷产品管理中心汽车缺陷调查与鉴定和汽车三包特聘专家;工信部教育与考试中心电池制造工程师的高级培训导师;上海市科委新能源领域技术委员会委员,江苏储能协会副理事长。建立了完整的非破坏和非大气暴露下的破坏性锂离子电池健康状态与安全评价与研究体系的“新能源电池医院”。唐玲 国联汽车动力电池研究院有限责任公司检测事业部技术副总监国联汽车动力电池研究院有限责任公司检测事业部技术副总监,担任会国汽车标准化技术委员会电动车辆分技术委员会委员及全国有色技术标准化技术委员会智能制造标准工作组委员,拥有12年锂离子动力电池关键技术研发、动力电池材料及电池测试评价、检测方法建立与标准编制等方面相关经验,负责完成国家动力电池创新中心动力电池测试验证平台建设。参与制定国家标准2项,团体标准10余项,企业标准20余项;获授权发明专利4项、实用新型专利12项;骨干参与国家级及省部级项目7项,参与的“高比能动力电池及其正极材料产业化研究”项目获2017年度中国有色金属工业科学技术奖一等奖;此外,参与了《电动客车安全风险评估报告》及《国家新能源汽车技术路线图V2.0版本》等重要报告编写工作。李华锋 四川新能源汽车创新中心实验室主任,四川赛科检测公司总经理清华大学硕博,现担任四川新能源汽车创新中心实验室主任,四川赛科检测公司总经理,从事电池材料评估、电池失效分析、原位/工况动态表征技术、电池系统安全性与可靠性测试方面的研究。曾先后负责苹果iPhone电池、微软surface电池开发与量产导入,石墨烯粉体与碳纳米管导电浆料研发以及产业化,柔性电池与智能穿戴研发等项目。目前共发表论文5篇,负责及参与研究项目5项、国家标准2项,获得国家发明专利与实用新型专利30余项。王英 赛默飞世尔科技色谱质谱部门分析科学工业市场经理分析化学专业硕士,具有多年仪器行业和产品管理经验。目前在赛默飞色谱质谱市场部工作,负责气相色谱产线和工业行业。五、 会议日程09月26日 赋能技术,助锂制造——锂电行业技术交流会14:00-14:05开场主持人14:05-15:05圆桌论坛国联汽车动力电池研究院有限责任公司检测事业部技术副总监,唐玲上海智能新能源汽车科创功能平台有限公司锂电事业部副总经理,韩广帅赛默飞世尔科技色谱质谱部门分析科学工业市场经理,王英仪器信息网圆桌论坛主持人,杨厉哲15:05-15:10直播抽奖主持人15:10-15:40锂离子电池的先进表征技术及其在失效分析中的应用研究四川新能源汽车创新中心(欧阳明高院士工作站)实验室主任,李华锋15:40-16:10赛默飞色谱质谱技术助力锂电QC检测和研发需求赛默飞世尔科技色谱质谱部门分析科学工业市场经理,王英16:10-16:15直播抽奖&结束主持人注意!扫码报名集赞即可赢豪礼!兑奖方式:报名成功+转发海报到朋友圈保留2天集赞截图发送至微信:943858233。数量有限先到先得,行业用户优先。
  • 锂电检测有奖调研开启,邀您为锂电检测发展助力
    p   近年来,全球3C锂电池市场日趋成熟,动力锂电池市场已经成为全球锂电池市场快速增长的最大引擎。按照应用领域,锂离子电池可划分为消费电子类、储能及动力电池。 /p p   动力电池方面,受政府一系列优惠政策的刺激,新能源汽车近年迎来飞速增长。据统计,2014年中国新能源汽车销量暴增至7.5万辆 2015年33万辆 2016年50.7万辆 2017年超过70万辆。新能源汽车的爆发式增长拉动了对新能源汽车三大核心部件之一电池的需求。2016年我国锂离子电池产业规模达到1280亿元,首次突破1000亿元大关,同比增长30%,至 2020年预计将达2000亿元。 /p p   储能方面,2016年我国储能锂电池产量为3.1GWh,产值为52亿元,占全球产值比例超过50%,2016-2022年产值复合增长率达到18%左右。据预测,2020年我国锂电池需求量将达到16.64GWh,2016-2020年复合增长率达到44.75%。 /p p   各项数据表明,未来一段时间,锂电池市场需求将保持强劲增长。而锂电池检测及检测设备作为生产、研发过程中不可缺少的环节,随着锂电池市场的大势扩增,需求量也将大幅增加。 /p p   锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS检测系统、模组EOL检测系统、电池组EOL检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或X射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。 /p p   从市面锂电检测相关市场调研报告或资料统计来看,多数主要针对生产制造环节的锂电检测系统,却鲜有涉及研发必需的各类分析仪器。然而,纵观目前国内锂电企业,低端产能过剩,高端产能不足是行业现状,锂电产品质量走向高端是必然发展趋势。走向高端则必须保持高研发投入,来保证不断材料改进和技术革新。基于此,仪器信息网组织本次锂电调研活动,以期从市场应用角度,对锂电检测设备及仪器做更全面的梳理归纳,最终以资讯专题、盘点等形式共业界参考。 /p p   所以,转入正题: strong span style=" color: rgb(255, 0, 0) " 1分钟赢200份话费流量啦! /span /strong 仪器信息网特针对锂电检测用户开展有奖调研活动,并将结合调研结果,推出锂电检测专题盘点分析以飨读者。问卷调研活动期间( span style=" color: rgb(0, 176, 240) text-decoration: underline " 2018年6月13日-2018年7月15日 /span ),认真完成问卷,并经审核确定为有效问卷的用户,将获得10元话费或100M流量奖励,仪器信息网普通注册会员还将赠送20积分,奖励将于10个工作日送达,总共200 份,数量有限,先到先得! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/4ebad512-044f-42c2-a945-998dc894b409.jpg" title=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 长按识别二维码,参与调研 /span /p p    strong 或点击进入调研链接参与: /strong /p p a style=" color: rgb(0, 176, 240) text-decoration: underline " textvalue=" http://www.instrument.com.cn/market/onlineInvestInfo.aspx?tid=339& amp ttype=0" title=" " target=" _blank" href=" http://www.instrument.com.cn/market/onlineInvestInfo.aspx?tid=339& ttype=0" strong span style=" color: rgb(0, 176, 240) " http://www.instrument.com.cn/market/onlineInvestInfo.aspx?tid=339& amp ttype=0 /span /strong /a /p p strong & nbsp & nbsp & nbsp span style=" color: rgb(255, 0, 0) " 注意: /span /strong span style=" text-decoration: underline " 为尽量避免无效问卷,进入答题页面,需要以仪器信息网注册用户登录方可答题,若不是注册用户可点击对话框“免费注册登录”,手机获取验证码,快速登录答题。 span style=" text-decoration: underline color: rgb(0, 176, 240) " 如下图: /span /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/78ed31d6-bc65-403a-8f3f-11e7d4ed201a.jpg" style=" width: 300px height: 476px " title=" 01.jpg" height=" 476" hspace=" 0" border=" 0" vspace=" 0" width=" 300" / img src=" http://img1.17img.cn/17img/images/201806/insimg/4fc77a3f-8e89-406b-849f-95174381ec8a.jpg" style=" width: 300px height: 484px " title=" 02.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 300" / /p p span style=" text-decoration: underline " span style=" text-decoration: underline color: rgb(0, 176, 240) " /span /span br/ /p
  • 锂电行业专家深度剖析:十大成分分析仪器技术全攻略
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。5月28日全天,锂电成分分析技术主题专场,12位锂电科研与仪器技术专家将分别为大家介绍色谱、质谱、原子光谱、拉曼光谱、核磁共振、分子光谱、元素分析、电子顺磁共振技术、电化学仪器技术、X射线荧光光谱、ICP-OES和ICP-MS等主流成分分析技术在锂电产业中的最新应用与进展。一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.co m .cn/webinar/meetings/ldc2024/ 四、 锂电成分分析技术专场(注:以最终日程为准)05月28日 锂电成分分析技术专场报告时间报告题目报告嘉宾09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静安科慧生 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师五、 嘉宾简介及报告摘要(按分享顺序)陈瑛娜 德国耶拿分析仪器有限公司 应用工程师【简介】毕业于浙江海洋大学,食品工程硕士,发表SCI文章2篇,中文期刊6篇,发明专利10项。长期专注金属与总有机碳等分析技术的方法开发与技术支持工作,主要负责光谱类及总有机碳仪器实验方法优化和新行业新领域的应用拓展工作,有丰富的应用研发经验。【摘要】锂电池分析中经常存在痕量杂质元素测试时光谱干扰严重、主含量和杂质元素需采用不同仪器测试、基体复杂、维护频率高等问题,给分析人员带来很大的挑战,德国耶拿0.003nm超高分辨率使常见的光谱干扰问题迎刃而解;双向观测+Plus功能,高低浓度元素一次进样即可完成;耐盐性高达85g/L的multi N/C 总有机碳分析仪,使原料品质控制更得心应手。梁少霞 珀金埃尔默企业管理(上海)有限公司 高级技术支持【简介】毕业于中山大学化学与工程学院,现任珀金埃尔默原子光谱高级技术支持,有多年原子光谱(AAS/ICP-OES/ICP-MS)应用开发经验,熟悉锂电池材料中元素定量的分析难点及应用解决方案。【摘要】结合锂电池材料前处理的要点,讲解电感耦合等离子体质谱仪(ICP-MS)测定锂电池正极材料、原材料、磁性异物、负极材料、常用有机溶剂和电解液元素以及颗粒异物的难点和注意事项,为锂电池材料中元素分析提供充足的解决方案。代琳心 HORIBA(中国) 拉曼应用工程师【简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱、X射线荧光分析以及激光粒度分析等多项技术是研究锂电池相关材料结构性质的重要内容。本报告将介绍HORIBA技术,在锂电池研发、质控中不同材料成分分析的相关应用案例以及解决方案。方勇 布鲁克(北京)科技有限公司 EPR应用工程师【简介】方勇博士毕业于南京大学化学化工学院,博士期间主要从事具有新颖结构及性质的(元素)有机双自由基物种的合成及表征,并负责课题组内一台布鲁克 EMXplus 电子顺磁共振波谱仪的常规测试、简单维护及谱图解析。2020年年底博士毕业以后,随即加入布鲁克担任EPR应用工程师一职,目前主要致力于向具有不同行业基础和学术背景的顺磁用户推广EPR的多方面应用,同时针对用户各异的研究需求协助提出基于顺磁共振的高效解决方案,助力于他们的研究工作和生产活动。【摘要】对于工作状态下的锂离子电池而言,锂化-脱锂过程中金属锂的微结构改变,富锂金属氧化物正极材料本身的结构缺陷或过渡金属离子的变价、涉及自由基中间体的寄生化学反应等,都适于利用EPR技术来进行表征及机理推定,以助于电池的性能评估和优化,本次报告将援引一些相关的研究实例来展示EPR技术在锂离子电池研究领域的应用。任萍萍 布鲁克(北京)科技有限公司 核磁共振应用专员【简介】任萍萍,博士,布鲁克核磁共振应用专员。毕业于中国科学院武汉磁共振中心,在核磁共振和分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。【摘要】核磁共振与生俱来的定性定量属性,使得它成为锂离子电池分析的强大工具,可应用于快速的卤水定量检测、电解液降解产物和机理研究、锂离子扩散速率测量、电极浆料的分散性和相稳定性分析,常用的分析核包括1H、7Li、19F、31P、11B、23Na等。此外,原位固体检测探头可实时观测锂电池中的电化学过程,还可研究枝晶和死锂的形成机制。刘晓静 安科慧生 应用工程师【简介】毕业于天津大学化学专业硕士学位,现就职北京安科慧生科技有限公司应用市场部经理。精通元素分析方法开发、XRF与基本参数法理论研究、数值分析 参与国家、行业等标准制订5项;国内外核心期刊发表论文7篇。【摘要】单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量董盼盼西南交通大学 特聘副研究员【简介】董盼盼,西南交通大学前沿科学研究院特聘副研究员,博士及博后在美国Washington State University完成,主要从事先进功能复合材料在储能领域的基础与应用研究,具体包括:高比能锂金属电池电极与电解液、复合固态电解质、金属有机框架准固态电解质等方向。迄今为止,在Adv. Mater.(1), Energy Stor. Mater.(2), Nano Energy(1)等国际知名期刊发表论文20余篇,美国专利申请1项,PCT国际专利申请1项,中国授权专利2项,主持中央高校基本科研业务费科技创新项目。现为中国化学会会员,受邀担任Adv. Mater., ACS Nano等国际知名SCI期刊审稿人。文桦 钢研纳克检测技术股份有限公司 产品经理【简介】目前为钢研纳克ICP-OES产品经理,一直从事光谱质谱的元素分析的应用和市场开发工作,擅长多种化学成分分析技术,在材料和环境等领域的ICP-OES和ICP-MS应用研究上有丰富的经验。贺静芳 赛默飞世尔科技(中国)有限公司 高级应用工程师【简介】赛默飞世尔科技(中国)有限公司原子光谱团队高级应用工程师,2013年加入赛默飞,负责AA/ICPOES/ICPMS仪器及应用研究,具有十多年锂电池行业各类样品原子光谱仪器分析经验。【摘要】新能源行业近年来迎来爆发式增长,新能源材料的原材料、研发、生产、以及环保排放都离不开元素分析。本次报告将围绕使用赛默飞ICPOES/ICPMS技术以及IC-ICPMS联用技术对新能源材料进行主成分和杂质元素分析,以及元素形态分析,旨在为新能源行业提供最有力的分析工具。尹红军 安捷伦科技(中国)有限公司 AE - 应用工程师【简介】尹红军,硕士研究生,毕业于成都理工大学应用化学专业。安捷伦公司资深应用工程师,负责电感耦合等离子体质谱仪ICP-MS,电感耦合等离子体发射光谱仪ICP-OES,原子吸收光谱仪AAS的方法开发和技术支持。十五年的原子光谱应用支持工作,擅长石化、环境、锂电池、材料行业样品的样品测试和仪器的方法开发研究。【摘要】针对锂电材料无机元素检测的难点,例如主含量元素、碱金属、电解液和未知样品元素分析等难点,安捷伦将会提供完善的应对方法与解决方案,助力客户在锂电材料元素分析中实现高效快速的分析。李新颖 上海仪电科学仪器股份有限公司 产品应用【简介】李新颖,博士,任上海仪电科学仪器股份有限公司技术支持,多年的分析实验室经验,熟悉实验室各类设备操作、检测标准和相关应用,致力于实验室设备的技术支持和应用方法开发。【摘要】根据锂电行业上下游不同的测量需求,报告包括电池原料分析,正极材料分析,负极材料分析,电解液分析。刘建红 岛津企业管理(中国)有限公司 应用工程师【简介】岛津公司分析中心应用工程师,2007年加入岛津企业管理(中国)有限公司,长期从事EDX应用支持工作,在EDX应用于珠宝分析中积累了丰富的使用经验。【摘要】磷酸铁锂电池和三元电池仍为当前动力电池的主流,电池材料中的组成元素是电池的基本构成要素,是研发和生产过程的控制指标之一。X射线荧光光谱仪具有前处理简单、分析速度快、分析过程无损、运行成本低、分析结果准确度高、稳定性好的优点。本报告介绍了岛津EDX在磷酸铁锂、三元正极材料中主次元素含量分析的案例。六、 会议联系1. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn2. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 海南省食品安全协会关于《水质微生物检测 光电检测法》 征求意见的通知
    各有关单位及专家:海南省食品安全协会关于《水质微生物检测 光电检查法》团体标准现已完成征求意见稿,进入征求意见阶段。为保证该团体标准的科学性、实用性及可操作性,现公开征求意见。请各有关单位及专家认真审阅标准文本,对标准的征求意见稿(详见附件1)提出宝贵意见和建议,并将征求意见反馈表(详见附件3)于2023年4月21日前以信函或邮件的形式反馈至联系人,逾期未反馈意见的单位及个人视为无意见。联系人:赵文阳联系电话:13034975678邮 箱:1013831649@qq.com 附件:1.《水质微生物检测 光电检测法》团体标准征求意见稿2.《水质微生物检测 光电检测法》编制说明3. 征求意见反馈表 海南省食品安全协会2023年3月21日《水质微生物检测 光电检测法》团体标准.pdf《水质微生物检测法 光电检测法》编制说明.pdf征求意见表.doc
  • 环境雌激素检测用化学发光免疫分析仪通过验收
    6月21日,计划财务局组织专家对中科院生态环境研究中心承担的“环境雌激素检测用化学发光免疫分析仪的研制”项目进行现场验收。验收专家组认为,该仪器的技术指标均达到或优于任务书规定的要求,该项目完成了任务书规定的各项任务,一致同意通过验收。   该仪器采用自行设计的加样、温育控制、洗涤和光电检测4个模块,是具有自主知识产权的全自动化学发光免疫分析仪,可以实现环境水样中雌二醇的高灵敏度和高精确度分析检测,为开展水体中痕量雌激素分布、含量等研究提供有力工具,还可应用于环境内分泌干扰物分析、农药检测、临床检验、卫生监测、制药工业等许多领域。      “环境雌激素检测用化学发光免疫分析仪的研制”项目现场验收会
  • 细胞电子显微学将是生物电镜发展的重要方向之一
    仪器信息网讯 2015年5月29日-6月2日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。   纽约州立大学奥尔巴尼分校隋海心教授在研讨会上做了题为&ldquo Cellular electron microscopy:back to the future&rdquo 的报告。 隋海心教授   隋海心在报告中提到,自上个世纪30年代电子显微镜发明以来,随着其技术的不断发展进步,人们对于细胞结构有了更多的认识,从而产生了细胞生物学这一新的分支学科。尤其是到了70-80年代,几乎所有的细胞生物学文章,没有电镜照片都发不了文章。然而到了90年代,随着荧光显微技术的发展,以及X射线晶体学技术在蛋白质研究当中的突出作用,电镜在这一领域的应用逐渐没落,可以说在这两种技术的夹缝当中求生存。   不过近年来,尤其是去年随着电子显微镜在蛋白质结构解析当中达到近原子分辨率水平,研究人员又重新对这一技术表现出了非常的热情。譬如,去年7月,在国家蛋白质科学中心&bull 上海(筹)举行的第七届郭可信暑期学校暨冷冻电镜三维分子成像国际研讨会,参会人员近300人,远远超过了原计划的150人的预期,会议还吸引了X射线晶体学界的结构生物学家们前来参加。   隋海心在报告中表示,&ldquo 其实目前电镜在蛋白质结构解析方面的应用和X射线晶体学技术是有所重合的,它使得蛋白质结构的解析更加简单,让这部分工作更完整,在未来5-10年会是一个重要的研究方向。但是电子显微技术更重要的应用应该是研究大空间尺度的亚细胞结构信息,也就是原位分析,细胞电子显微学将是生物电镜发展的重要方向之一。&rdquo   &ldquo 目前细胞电子显微学发展也面临着许多挑战,它无法像荧光显微镜那样对蛋白质进行定位研究,样品制备十分困难等。因此,如何利用电镜对蛋白质进行标记研究,如何将荧光的动态信息与蛋白质结构信息结合 如何更好的利用光学显微镜与传统电镜及冷冻电镜联用技术 寻找合适的样品制备技术 利用FIB-SEM获取大尺度的三维结构信息等是我们目前研究的问题。&rdquo 说到这里,隋海心教授对于生物电子显微学的未来发展表示了极大的信心。   撰稿:秦丽娟   相关新闻:   生物电镜发展:技术人才培养成关键点
  • 生物电镜发展:技术人才培养成关键点
    2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班开幕   仪器信息网讯 2015年5月30日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学开幕。本次会议由中国电子显微镜学会生物医学电镜专业委员会和农林电镜专业委员会主办,浙江大学农生环测试中心与德国徕卡公司联合承办。   本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。   会议的主题包括常规电镜制样技术、低温电镜制样技术、免疫金标记电镜技术、光镜-电镜关联技术等。 会议现场 中国电子显微镜学会农林电镜专业委员会主任洪健教授主持会议   电子显微镜可以对分子水平、细胞水平直至组织水平的生物材料的结构和功能进行研究,是唯一能在如此宽广范围内研究生命现象的技术。其在生物医学、农业、林业等领域的研究中都有着重要的作用。 中国电子显微镜学会副理事长、第二军医大学教授杨勇骥教授   中国电子显微镜学会副理事长、第二军医大学杨勇骥教授在开幕式致辞中说道:&ldquo 电镜技术已经成为生物学研究的最重要的技术手段之一,几乎所有的研究都要或将要用到电镜技术。上个世纪90年代,由于蛋白质研究的兴起,电镜技术受到分子生物学研究相关技术的冲击逐渐没落。然而多年的发展证明,单一的技术手段不利于科学研究的发展。从本世纪初开始,科学家们重新认识到电镜的重要性,随之而来的是电镜在生命科学领域的蓬勃发展,许多新的电镜实验室陆续筹建,新一代电镜设备和新技术不断被引进。&rdquo 中国电子显微镜学会理事长、浙江大学学术委员会主任张泽院士   中国电子显微镜学会理事长、浙江大学学术委员会主任张泽院士也表示,国家对于电镜平台的建设非常支持,无论是材料领域还是生物领域。据介绍,浙江大学目前平台建设最大的投资都是在电镜方面。其中材料电镜实验平台最初一次性投资4500万,经过三年的发展,目前的设备总值达到了1个亿。而目前筹建的生物电镜平台一次性投资了6000万。   都说&ldquo 工欲善其事,必先利其器&rdquo ,然而如何更好的发挥仪器设备的作用,却离不开优秀的技术人才。我们可以花钱买到仪器,但优秀的技术人才有时却是千金难买。   杨勇骥谈到,&ldquo 目前电镜在生物学领域应用面临的一个最大的瓶颈就是有经验的电镜技术人才的缺失。传统的电镜制样技术无法得到传承,新型电镜制样技术人才还没有成长起来。面对这种情况,许多生物电镜专家焦虑万分,在各种场合多次呼吁重振生物电镜技术,加快生物电镜技术人才的培养。&rdquo   &ldquo 此次浙江大学洪健教授勇挑重担,组织举办电镜技术研讨会及培训班,将我们多年的想法变成现实。许多知名的生物电镜专家都亲临授课,传授理论、技术及经验,希望能够促进电镜技术人才的培养,能够对我国生物电镜事业的发展有所推动,为以后举办提高班打下基础。&rdquo 杨勇骥说道。   对于技术人才的缺失问题,张泽表示:&ldquo 我们不得不承认,由于政策不到位等因素的限制,目前专门做技术的人是比较受歧视的,搞技术基本都是为他人做嫁衣裳,这也造成了我们现有的技术人才的缺失。事实上,如何将技术做好是在学术领域有进一步发展的必要条件。如果没有技术的支撑,许多科研人员可能一事无成。&rdquo   &ldquo 好在现在大家对于技术越来越重视。中国电镜学会在组织学术研讨会之前举办培训班就是为了加强技术人才培养。浙江大学也为技术人员提供了求是教授的评选机会,目前浙江大学技术岗的两名求是教授都来自电镜平台。一位是材料电镜平台的李吉学教授,另一位就是生物电镜平台的洪健教授。&rdquo 北京大学丁明孝教授   北京大学教授丁明孝多年来一直关心着电镜技术在生物领域的应用发展。他谈到,和自己八年前在同样的地点参加的生物电镜会议相比,本次会议的规模大了许多,而且有着许多年轻的面孔,可以说是生物电镜发展迎来了新的春天。   他还提到,为了更好的推动电镜技术人才的培养,希望能够组织生物电镜领域有经验的老师,每个人负责总结自己所擅长的技术方向的经验,大家共同出一本书。这样一个人的经验和诀窍就能变成大家的经验和诀窍,这对于提高大家的技术水平或许有所帮助。希望通过更多的沟通和交流,能够促进我国生物电镜技术的发展。   关于本次会议的精彩报告内容,敬请关注仪器信息网后续报道   撰稿:秦丽娟   相关新闻:细胞电子显微学将是生物电镜发展的重要方向之一
  • 生物电子学国家重点实验室建设验收会在南京顺利召开
    2009年1月9日,科技部基础研究管理中心在南京组织召开生物电子学国家重点实验室(东南大学)的验收会议。实验室验收专家组由9位国内知名专家组成,组长为中国科学院生物物理研究所的陈润生院士。科技部基础研究管理中心刘燕美主任、教育部科技司袁润松等出席会议并讲话。   验收专家组认真研读了实验室的建设计划任务书和建设验收申请报告,并通过听取实验室建设报告、现场考察、与实验室固定人员座谈等方式考察实验室的建设情况。一致认为,生物电子学国家重点实验室自2005年3月批准建设以来,瞄准生物电子学的国际发展前沿,形成了生物材料与器件, 生物信息获取和传感, 生物信息系统与应用三个主要研究方向,达到了国家重点实验室建设计划任务书设定的目标和要求。   实验室在建设期间,承担 “十五”和“十一五”国家重大研究计划、973计划、863计划、国家自然科学基金等国家级项目85项,承担部省级项目、企业合作项目等28项,到款经费7740余万元。在纳米生物材料与仿生器件、生物芯片技术与应用、高灵敏高通量生物分子检测、全基因组测序技术等方面取得了多项创新性成果。建设期间,发表SCI检索学术论文三百多篇 授权国家发明专利56项,主编和参编了国内外学术论著5部 获得国家和省部级奖励多项,在生物电子学的基础研究方面形成了强的创新能力。   实验室已经形成多学科交叉、结构合理的高水平研究团队,获得国家自然科学基金委“创新群体”的延续支持。建设期间实验室新增国家杰出青年基金获得者1人、长江学者1人、全国模范教师1人、教育部新世纪优秀人才4人、江苏省“333高层次人才培养工程”4人,引进具有博士学位研究人员12人,新增全国百篇优秀博士学位论文1篇、江苏省优秀博士学位论文3篇。建设期间有1人被聘为国家重大科学研究计划项目首席科学家。实验室形成了较为完善的高层次人才引进和培养机制。   实验室目前拥有3400多平方米的科研与办公集中用房 购置了1840多万元的大型仪器设备 完善了生物(纳米)材料安全性及生物相容性研究、单细胞与单分子研究及检测、微阵列芯片及基因组测序技术研究和应用、微纳结构构建与表征、生物信息分析等研究平台。实验室建设经费全部落实到位、使用合理,完成了建设任务书中的要求。   验收专家组认为,实验室全面完成建设项目计划任务书中所规定的各项任务。
  • 锂电技术高速迭代之下 锂电检测市场迎更大挑战——访纳凡检测技术(上海)有限公司创始人周健博士
    p   近年来,在全球3C锂电池市场日趋成熟的背景下,动力锂电池已经成为新的引擎,带动整个锂电产业链快速发展,预计未来几年国内对动力锂电池的需求将快速增加,全球锂电池设备市场也会逐渐向中国转移,中国也将成为最大的锂电应用市场之一。随之,锂电检测领域的多年深耕也迎来了新的发展机遇。那么当下锂电产业链对锂电检测的需求如何?锂电检测市场还有哪些亟待解决的痛点?锂电检测的未来市场在哪里?近期,仪器信息网采访了纳凡检测技术(上海)有限公司创始人周健博士,就这些问题进行了一一解答。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 2018年创立 致力世界一流失效分析测试服务 /span /h1 p   纳凡检测(上海)有限公司为卡尔伯克科技咨询(香港)有限公司的下属实验室,由几位年轻的海归科学家于2018年创立,致力于为中国本土和跨国科技生产企业提供比肩世界一流实验室的制程研发以及失效分析测试服务。与传统检测服务公司不同的是,纳凡所有咨询师均在美国顶尖名校理工领域获得博士学位,具有极强的跨学科跨平台进行知识整合的能力。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/15d547ff-2992-4352-a64d-1ccb0924865a.jpg" title=" 1.jpg" alt=" 1.jpg" style=" width: 450px height: 450px " width=" 450" vspace=" 0" height=" 450" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 纳凡检测技术(上海)有限公司创始人周健博士 /span /p p   创始人周健博士于2014年毕业于美国加州伯克利大学材料工程系,怀科技报国的愿望回到上海从事科技咨询行业,为诸多世界级客户提供深度的材料分析和失效分析服务。在此过程中,周健目睹国内科技咨询和检测服务领域因人才资源分散,资质门槛林立等条件的制约,无法为一流的人才提供跨学科的综合性平台的现状,故联合众多海归校友以及天使投资人于上海创建了纳凡。 /p p   周健认为,精英的人才理念是纳凡的最大优势。凭借创始团队高起点的学术背景,纳凡在创始之初便与国内顶尖的科研院所和大学建立了密切联系,并积极探索如何将最先进的材料表征手段运用在为客户解决在产品生产中遇到的实际问题。同时,纳凡在工业界和学术研究机构积极拓展外部顾问,其庞大的顾问团队包括了国家实验室首席工程师,世界知名科学仪器应用专家等,为纳凡团队提供行业见解。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/5c8e5120-7a4a-443f-a17a-6ededcc154bf.jpg" title=" 2.jpg.png" alt=" 2.jpg.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 纳凡检测实验室/办公室一角 /span /p p   作为一家高起点科技服务公司,纳凡坐落于上海虹桥商务区,通过机场和高铁与长三角珠三角科技企业紧密相连。目前公司尚处于初创阶段,拥有扫描电子显微镜(SEM)、气相质谱仪(Py-GC\MS)、傅里叶红外光谱(FTIR)、动态热机械分析仪(DMA)、差示扫描量热仪(DSC),卡尔费休水分仪,冷冻聚焦离子束切割 (cryo-FIB),电化学工作站,电池循环测试系统等,固定资产过千万。公司目前与众多国内Tier One消费者电子产品制造商开展业务合作。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 用户锂电安全性/可靠性信息缺乏已成痛点纳凡专攻定制服务 /span /h1 p   锂电池的主要消费群体之一为众多消费者电子的生产企业-尤其是大量的中小型生产企业。锂电池对于他们来说,除了价格和基本的技术参数,其安全性和可靠性几乎是未知的。一旦发生安全问题,这些生产企业无法通过自己的技术团队去快速的甄别失效原因,并采取合适的对应措施对未来批次的电芯进行有针对性的监控,导致安全隐患无法消除。周健表示,针对锂电池应用行业的痛点,纳凡检测专攻锂电池在使用中的安全性和可靠性,为客户提供定制化的分析服务。结合自身团队的背景,通过对失效电芯进行root cause analysis, 并对参比电芯进行深度的理化测试,以找出症结所在。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e87d7efd-33d7-40f5-b8d3-16981d460e89.jpg" title=" 3.jpg.png" alt=" 3.jpg.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 对于劣化电池的代表性理化分析 /span /p p   据介绍,在锂电池分析行业,纳凡可谓拥有一个跨界团队,如结合他们在消费者电子产品领域的经验,主打从系统的角度去理解电芯的性能和失效,而非将分析局限在电芯本身。典型案例为某电动滑板车厂商发现其电池组在消费者使用一段时间后出现了个别电芯自放电增高的现象,而怀疑是电芯厂商的质量管控问题。而纳凡在接到该项目后,对失效电芯进行交流阻抗谱分析和惰性气氛拆解后,排除了因颗粒物夹杂或锂枝晶生长造成的软短路。通过进一步研究客户电池组的散热和功耗情况,发现其独特的配组方式和刹车充电模块的介入,有可能在某些低内阻电芯上通过超规电流,导致其电芯正极集流体附近出现了过百摄氏度高温,局域的SEI膜发生了分解导致了上述现象的发生。纳凡进一步对可疑发热区域的负极材料进行了惰性气氛提取和DSC分析,为客户证实了上述失效模式。客户在了解了该问题后,通过限制超规电流,提高电池组散热效率方面迅速改进其电池组,避免了大规模产品召回的风险,产生了可观的经济效益。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 锂电安全最大挑战:热失控极低概率和不可预测性 /span /h1 p   锂电检测设备除了生产制造环节必需的电芯分选检测系统、充放电检测系统、保护板检测系统、线束检测系统、BMS 检测系统、模组 EOL 检测系统、电池组 EOL 检测系统、工况模拟检测系统等外。锂电新技术研发、开发也离不开各种分析测试仪器,如电镜表征锂电正极材料或包覆材料结构及形貌、热分析仪或 X 射线衍射仪分析锂电正极材料结晶性能、粒度仪及比表面仪器分析锂电正负极材料粒度、孔径等。当问及常规科学仪器与大型锂电检测系统设备在检测需求及应用场景上有哪些不同?周健认为,大型锂电检测系统设备可以帮助我们在统计意义上了解大批量电芯的性能参数,再现失效工况,并为进一步的科学仪器研究提供有价值的指导。从本质上来说,二者相辅相成,缺一不可。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/247a2d10-982e-4597-81c5-78a4ca094c26.jpg" title=" 4.jpg.png" alt=" 4.jpg.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 对于发生内短路的18650电池的高精度CT分析 /span /p p   接着,周健补充道,纳凡更倾向于围绕具体问题制定高度定制化的测试分析方案,而非像常规的锂电检测机构的固定的检测流程。我们通常会使用工业高精度CT对问题电芯进行无损剖析,使用电化学阻抗谱(EIS)了解其内部劣化信息,必要时还会对电芯进行拆解,运用综合的理化分析手段(SEM/EDS, DSC, FIB, TEM/EELS, GC/MS)对电极材料,隔膜材料,电解液和集流体进行分析。 /p p   锂电安全研究最大的挑战在于热失控事件的极低的概率 (目前成熟厂商的电芯失效概率在ppm级别)和不可预测性。起火燃烧后的电池内部结构及化学组分被严重破坏,导致可靠的逆向根因分析几乎不可能完成。这对锂电安全分析机构提出了新的挑战,即我们必须有针对每一种电池平台的系统性测试,总结归纳其可能的失效模式,预防性的建立数据库以进行失效时的比对(即失效模式的正向模拟)。据介绍,纳凡联合上海地区某国家锂电研究所,正在有序的开展该方面数据库的搭建工作。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 锂电生活应用场景广泛渗透 锂电检测机构面临更高挑战 /span /h1 p   对于锂电检测机构的未来市场,周健认为,锂电产业在未来势必蓬勃发展,并渗透到更多的生活应用场景。与此同时,对电池的安全性和可靠性都提出了更高的要求。国内锂电检测,尤其是深度的分析方面尚缺乏权威机构,所以纳凡希望能与众多科研院所以及国内外检测机构一起开拓这方面的市场。由于锂电研发迭代速度快,许多之前尚处于实验室阶段的成果(例如高压电解液添加剂,正极材料包覆)正快速的被运用到商用电池中。所以对检测分析机构的研发和学习能力提出了极高的挑战,而这正是纳凡的优势领域所在。 /p p   针对以上锂电检测市场发展背景,周健表示,纳凡目前有两大发力方向,一是在锂电池安全与可靠性方面测试方面持续的投入资源,研发新的检测技术并推动其商业运用。二是运用公司与锂电池表征和测试相关的资源,继续为国内外客户提供一流的综合性材料研发以及失效分析测试服务。在人才培养方面,纳凡希望为国内外的理工科背景的青年博士们提供一个跨学科的舞台施展自己的才华,在中国建立一个现代化的高端科技服务集团。 /p p   span style=" font-size: 18px "   span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 后记 /strong /span /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   锂电产业蓬勃发展和广泛应用的背景下,锂电安全问题已逐渐成为广大用户关注的焦点,相关检测机构便成为助力解决这一问题的平台之一。而纵观中国检测机构市场,专注锂电检测的机构并不多,而针对锂电不同应用场景深度定制化的检测机构更是缺乏。在此背景下,以“定制化”、“深度分析”定位的纳凡检测的出现,或映射了锂电检测精细化蓝海市场的悄然开启。 /span /p
  • 日程公布|第四届“锂电检测技术与应用”网络会议第二轮通知
    一、 会议概述根据4月6日工信部网站消息,1至2月全国锂电总产量超过82GWh。锂离子电池环节,储能电池产量超过9GWh,新能源汽车动力电池装车量约30GWh。出口贸易稳步增长,1-2月全国锂电出口总额达到357亿元。我国锂离子电池行业保持高速增长态势。锂电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能与材料多种性质相关,没有特别统一的规律,这给电池的研究带来很大挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。2022年5月24-27日,仪器信息网将与中国化学与物理电源行业协会联合举办第四届“锂离子电池检测技术及应用”网络会议,按主要检测技术分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,促进我国锂电检测市场良性发展。主办单位:仪器信息网 协办单位:中国化学与物理电源行业协会直播平台:仪器信息网网络讲堂平台会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2022会议形式:线上直播,免费报名参会(报名入口见会议官网或扫码报名)扫码免费报名二、 会议日程第四届“锂离子电池检测技术与应用”网络会议5月24-27日时间专场名称5月24日 上午锂电成分分析技术专场5月24日 下午锂电结构形貌分析技术专场5月25日 上午锂电热性能分析技术专场5月25日 下午锂电粒度/表界面性能分析技术专场5月26日 全天锂电安全与失效分析技术专场5月27日 上午锂电环境可靠性试验技术专场报告题目演讲嘉宾致辞刘彦龙(中国化学与物理电源行业协会 秘书长)锂电成分分析技术专场(5月24日 上午)锂电材料的成分分析及表征技术进展许少辉(岛津企业管理(中国)有限公司 市场担当)清洁能源电池研发之材料选择策略王刚(默克化工技术(上海)有限公司 产品经理)待定赛默飞世尔科技分子光谱梅特勒托利多分析仪器锂电池材料成分检测方案冯师尚(梅特勒-托利多 产品专家)珀金埃尔默锂电池材料元素检测新方案程书莉(珀金埃尔默公司 首席无机分析应用科学家)锂电池电解液及气体成分分析技术介绍高璟昌(天目湖先进储能技术研究院 高级工程师)锂电结构形貌分析技术专场(5月24日 下午)锂离子电池材料的电子显微学表征闫鹏飞(北京工业大学 教授)欧波同锂电行业数字化显微分析解决方案张宁(北京欧波同光学技术有限公司 业务发展(BD)工程师)原子力显微镜在锂电池材料研发中的应用陈强(岛津企业管理(中国)有限公司 SPM产品担当)基于扫描电镜的气氛保护样品盒系统及在电池材料表征中应用周宏敏(中国科学技术大学理化科学实验中心 工程师)原位透射电镜技术在全固态电池领域的应用张利强(燕山大学 研究员)锂电热性能分析技术专场(5月25日 上午)基于等温量热的锂离子电池充放电产热测量方法研究许金鑫(中国计量大学 副研究员)电池及材料的热性能分析方法之绝热加速量热法(ARC)薛钢(苏州玛瑞柯检测技术有限公司 技术总监)电子探针在锂电材料表征中的应用崔会杰(岛津企业管理(中国)有限公司 应用工程师)锂离子电池热性能评估方法和产热规律陈诚(上海派能能源科技股份有限公司 高级热设计工程师)热分析相关技术在锂电池中的应用金诚(天目湖先进储能技术研究院 高级工程师)锂电粒度/表界面性能分析技术专场(5月25日 下午)锂电池界面结构与演变王雪锋(中国科学院物理研究所 研究员)锂电材料结构表征技术周琰(安东帕(上海)商贸有限公司 产品经理)锂离子电池中的表界面研究手段及应用张智寰(深圳市八六三新材料技术有限责任公司 研发工程师)XPS、TOF-SIMS、AES表面分析技术在锂电池研究中的应用王青青(天目湖先进储能技术研究院 高级工程师)锂电安全与失效分析技术专场(5月26日 全天)储能电池安全性与经济性评估余华强(国家化学与物理电源产品质量监督检验中心 技术总监/高级工程师)光学显微镜在锂离子电池质量管理中的应用姚永朋(徕卡显微系统(上海)贸易有限公司 徕卡工业显微镜应用工程师)EDS&EBSD技术在锂离子电池材料研发和清洁度分析中的应用陈帅(牛津仪器科技(上海)有限公司 应用科学家)提升安全性,降低次品率——如何找出锂电池中微小却“致命”的金属异物颗粒母起明(日立分析仪器 资深应用工程师)动力电池安全与失效分析技术马天翼(中汽研新能源汽车检验中心(天津)有限公司 技术总监/高级工程师)锂离子正极材料失效分析魏丽英(厦钨新能源材料股份有限公司 分析测试研究室主任)锂电储能系统安全解决方案牟建(上海派能能源科技股份有限公司 储能技术总监)待定赛默飞色谱与质谱量热技术及仪器在锂电池领域的应用汪光晨(杭州仰仪科技有限公司 市场技术支持工程师)新能源车电池安全及相关问题介绍厉运杰(合肥国轩高科动力能源有限公司 经理/高级工程师)锂电池失效分析技术介绍王愿习(天目湖先进储能技术研究院 技术经理)锂电环境可靠性试验技术专场(5月27日 上午)动力电池可靠性测试评价技术刘磊(中汽研汽车检验中心(常州)有限公司 高级工程师)电池系统的多因素耦合可靠性评价史冬(国联汽车动力电池研究院有限责任公司 高级工程师)锂电池安全可靠测试方法及痛点介绍杨超(国轩高科安全可靠部测试经理)三、 线上报告征集倒计时1、 大会报告还有少量名额:欢迎踊跃推荐或自荐;2、 推荐或自荐安排:1)凡期望能够在本次会议上发表演讲的单位与个人,都可直接推荐或自荐,演讲为线上PPT报告形式,每个报告30分钟(含约5分钟线上答疑互动时间);2)推荐或自荐演讲人时,请写明演讲人姓名、单位、主要从事研究内容以、拟演讲专场名称、演讲题目及详细联系方式(邮箱、电话号码),并发送至liuxiaoxia@ciaps.org.cn或yanglz @instrument.com.cn ;3)推荐或自荐演讲人截止时间定于2022年5月16日前。四、 往届会议回顾1)第三届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc202 1 2)第二届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc2020 3)第一届锂离子电池检测技术与应用网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/ldc/ 五、 会议联系会议内容:杨编辑(仪器信息网)15311451191 yanglz @instrument.com.cn 刘老师(中国化学与物理电源行业协会)15022617437 liuxiaoxia@ciaps.org.cn 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 全球首发!景杰生物全息空间蛋白质组学“透视”微观蛋白世界
    在世界经济论坛发布的《2023年十大新兴技术报告》中,空间组学被评选为未来最有潜力对世界产生积极影响的十大新兴技术之一。这标志着空间组学不仅在科研领域取得了显著成果,更有望为医学、农业等多个领域带来革命性的突破。在这一技术浪潮中,景杰生物以其卓越的科研实力和前瞻性的战略布局,成为空间蛋白质组学领域的佼佼者。自2021年6月首次推出空间蛋白质组以来,景杰生物不断对技术与体系进行全面优化,一次次刷新着空间蛋白质组学的研究边界。如今,景杰生物再次重磅推出“全息空间蛋白质组学”,为空间蛋白质组学研究提供了更为强大的工具。全息空间蛋白质组学依托于景杰生物创新的10X Proteomics平台,该技术能够支持组织微环境的全覆盖高深度蛋白质组空间检测。在实验中,景杰生物研发团队选择了癌症石蜡样本,运用全流程的先进仪器设施,如徕卡冷冻切片机、数字玻片扫描系统和蔡司激光捕获显微切割仪,进行一站式操作。经过烤片、脱蜡、复水、HE染色等一系列步骤后,成像技术精准定位目标区域,并进行无间隔地切割取样。酶解后使用Orbitrap Astral / timsTOF 最新款高性能质谱平台进行蛋白质组学检测,从而得到与组织微环境图像匹配的全覆盖空间蛋白质组学数据。通过对目标区域进行全覆盖检测,得到了带有空间位置信息的100份蛋白质组学数据,每份数据对应精细组织,无间隔地构成了“全息”的空间蛋白质组学数据集。这些数据集共检测到5500多个蛋白,平均每个样本可检测到4100多个蛋白,是目前最大最全面的全息空间蛋白质组学数据集之一。对于全息空间蛋白质组学得到的庞大数据集而言,如何有效地利用生信分析手段进行挖掘和展示是大家的重要关注点。为此,景杰生物生信和人工智能团队借鉴空间转录组的分析经验,针对全息空间蛋白质组学开发了一系列工具,帮助我们“看得见、挖得深、画得漂亮、画得清晰”。通过以上数据分析方案,可实现与空间转录组学类似的:全息空间样本点无监督聚类分析、类间差异分析/差异蛋白功能注释、单个差异蛋白空间可视化、基于清晰的组织病理特征注释和指定病理分组差异分析、基于反卷积等算法注释细胞类型得分/比例等等个性化分析。相信这样一套分析的组合拳,一方面可以将蛋白信息清晰还原到组织空间微环境中,另一方面也可以与临床病理信息精准结合,定会成为空间蛋白质组学研究的标杆,加速精准医学和基础研究。随着本次全息空间蛋白质组学发布,景杰生物已搭建成全球首个结合空间蛋白质组学、空间磷酸化修饰组学以及全息空间蛋白质组学的一站式空间组学平台。包含了既可以满足个性化选取不规则点位进行蛋白质组精准检测的空间蛋白质组学,又可以进行个性化选取不规则形状点位进行磷酸化修饰精准检测的空间磷酸化修饰组学,本次又实现对组织微环境进行高分辨率全覆盖式蛋白质组精准检测的全息空间蛋白质组学,满足蛋白质组研究的多项需求,为空间蛋白质组学研究提供更多选择。展望未来,全息空间蛋白质组学将在癌症研究、神经科学、免疫学等多个领域发挥重要作用。而景杰生物作为空间蛋白质组学的先驱和引领者,将不遗余力全面推进空间蛋白质组学的技术进步,为前沿研究保驾护航!
  • 生物电镜冷冻制样:做了才知道有多难
    p   strong  仪器信息网讯 /strong 2015年5月29日-6月2日,“2015全国生物医学农林 a href=" http://www.instrument.com.cn/zc/1139.html" 电镜 /a 技术研讨会暨生物电镜前沿技术培训班”在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。 /p p   台湾中央研究院植物暨微生物学研究所简万能博士作了题为“Ultrastructure of plant cells using high pressure freezing and freeze substitution”的报告。 /p p style=" text-align: center" img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/201565105212.jpg" style=" width: 500px height: 333px" / /p p style=" text-align: center" strong 简万能博士 /strong /p p   据介绍,由于早年看到所有的教科书都说想要获得更好的电镜观察结果,就要用冷冻制样技术,简万能便开始了这方面的研究,然而不做不知道,一做才知道有多难。冷冻制样对于动物来说比较简单,而对于植物来说由于细胞壁的影响却非常难。20年来,在研究当中,他碰到的失败的次数永远比成功多。“但是当你成功后,你会发现你的眼界比以前做化学固定大得多。”简万能这样说道。 /p p   “电镜是生物学研究非常有用的工具。由于生物细胞的含水量可以达到80%-90%,所以制样能否成功主要是解决水的问题。传统的透射电镜制样技术,对样品损伤最大的步骤是脱水,往往使得细胞结构发生很大的变化。而利用冷冻制样最大的优点就是可以保持细胞原来的结构,并保持一些可溶性的物质。如果要做溶在细胞质里的元素分析,一定要采用冷冻制样技术。” /p p   由于水在冷冻的过程中会形成冰晶影响观察,所以在如何避免形成冰晶是冷冻制样的一个关键点。简万能表示:“在制样中一定要注意一些关键的温度节点。如-137℃是水的重结晶点,如果能迅速降低到这一温度,样品中的水就会形成玻璃态的冰。如果超过-70℃,玻璃态的冰就会形成二次冰晶。” /p p   在报告中,简万能介绍了目前常用的冷冻方法,如投入式冷冻、冷金属块撞击式冷冻、丙烷喷射冷冻、高压冷冻等。并指出高压冷冻的优点是可以做活的生物样品,可以做超过200& amp #956 m厚的样品。 /p p   此外,简万能还介绍了在冷冻固定之后,如何更好的实现冷冻置换。他表示,如果要做超薄切片,高压冷冻和冷冻置换是最好的选择,可以获得非常好的样品形态,会有更多的信息被保留。 /p p   在研讨会之后,简万能博士亲自指导参加培训的学员,进行了投入冷冻、高压冷冻、冷冻置换等实验操作。 /p p style=" text-align: right " 撰稿:秦丽娟 /p p style=" text-align: left " & nbsp & nbsp & nbsp & nbsp 第一届电镜网络会议: a href=" http://www.instrument.com.cn/webinar/icem2015/" _src=" http://www.instrument.com.cn/webinar/icem2015/" http://www.instrument.com.cn/webinar/icem2015/ /a /p
  • 全球首发!Incyton实时全息细胞能量代谢分析平台
    德国Incyton公司出品的全新产品“实时全息细胞能量代谢分析平台”- CYRIS Flox系统将于第十届慕尼黑上海分析生化展全球首发!能量代谢异常常见于代谢性疾病,肥胖、糖尿病、癌症、神经性疾病等。探索疾病发病机理、寻找药物作用靶点,往往是科研的首要任务,而细胞的能量代谢检测与细胞形态的观察,能够真实有效的反应细胞的状态与活力。德国Incyton实时全息细胞能量代谢分析平台可以从组织样本、活细胞样本到线粒体样本进行一站式无标记检测。CYRIS Flox系统采用全新的实时无标记荧光检测模块与铂金芯片传感器相结合方法,能够精准的获得多参数数据,实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率、细胞膜电阻值检测等功能的全自动测定和分析。具有显微扫描成像系统,首创细胞能量代谢数据与显微细胞影像同时在线实时监测和分析。▌性能指标24孔样本,每孔可单独进行实验耗氧率(OCR)、产酸率 (ECAR)、氧浓度、细胞膜阻抗显微扫描成像系统首创细胞能量代谢数据与显微细胞影像同时在线实时监测和记录氧气浓度和湿度控制氧气控制范围1-21%,可做低氧、厌氧等试验自动灭菌检测室全自动移液工作站,24通道独立换液6个不同试剂池多次精准加药可进行几周至数月的长期试验全自动化数据处理,可实现无人值守耗材可重复使用,配套试剂全部开放▌具体应用1、经典细胞氧化压力测量模式,测量细胞的基础呼吸、质子漏水平、最大呼吸、呼吸储备能力以及非线粒体耗氧等阶段。2、毒理药理学研究中,将细胞能量代谢实时检测与活细胞成像完美结合,诠释了细胞理化性质与细胞密度、细胞活力之间的耦联作用。3、细胞应激研究中,将细胞有氧呼吸和无氧呼吸同时检测,并结合细胞膜电阻抗电生理信号,可同时观察到细胞在应激调节中,细胞的抗压能力的高低。
  • FLIR Si声学成像仪——局部放电带电检测的“新手段”!
    局部放电高发马上进入盛夏,随着高温天气的到来,随之而来的就是用电规模的增长和用电负荷的增加,电力设备的安全运行又将受到新一轮的挑战。据电网统计,局部放电是造成高压电气设备最终发生绝缘击穿的重要原因,也是绝缘劣化的重要标征,其会造成输电设备损坏、电力质量下降、电能损失、大面积停电甚至火灾爆炸等重大安全事故,直接影响着人民群众的生产与生活质量。对局部放电的传统检测方法可能会面临人力成本高、人工效率低下检测结果不准确、人身安全风险等问题今天小菲就来给大家介绍一个高效、科学、安全的新型检测方法声学成像技术~看见隐藏故障的声音,确保人身安全电气绝缘设备的局部放电会发出一些声音,其发出的超声波信号一般不在人耳的可听范围内,因此就需要检测设备对其进行定位。声学成像技术已经过多年实践,被证实是“看见”局部放电故障的可靠技术。全新FLIR Si2系列声学成像仪,接收频率范围在2kHz至130kHz,几乎涵盖了局部放电的全部声波范围,搭配内置的124枚麦克风,用户在较远的安全距离范围(最远200米)或嘈杂环境中也能直观地显示超声波信息,生成精确的声像。声像实时叠加在可见光数码图像上,使用户可以准确地查明异常声音来源。区分放电类型,加快补救进程局部放电分为多种不同类型,其特征因类型而异。在实际应用中,可分为四类:负电晕放电、正负电晕放电、浮动放电以及表面或内部放电。不同放电类型的局部放电相位分布(PRPD)图谱略有差异,更多信息请点击下方图片,获取“FLIR Si2系列声学成像仪局部放电检测深度分析白皮书”,它能让您对局部放电有更深层次的理解!全新FLIR Si2系列声学成像仪内置了局部放电严重程度评估和纠正措施建议功能,通过对局部放电进行分类,能让用户迅速做出补救决策,减少故障的影响。这样的检测,比传统方法要将近快10倍哦~一键生成专业报告,简化工作流程对于电力设备的巡检,一般包含变电站、配电房等各类表计抄录、电气接头、开关等大大小小多种巡检项目,繁琐复杂,而且需要使用不同的检测工具对不同的设备进行检测,并且其检测结果的整理,对于巡检人员说都是令人头痛的琐碎工作。全新FLIR Si2系列声学成像仪具备简化设备集群运行的功能,用户可以通过设备集群管理、云数据集成和OTA软件更新,确保设备在大规模工业环境中也可以最佳使用和维护。其配备的插件还能让用户将声像直接导入FLIR Thermal Studio软件中,进行离线编辑、分析和创建高级报告。专业的报告和分析软件,让检测后的结果处理变得更加简单明了!目前可局部放电检测的声学成像仪主要是FLIR Si2-PD和Si2 Pro其还有GPS标签、二维码扫描和文本注释等功能在电网系统日益发达的今天电力设备的智能巡检和故障诊断成为趋势FLIR Si2声学成像仪能够帮助巡检人员直观了解设备内部声场的分布情况协助巡检人员及时准确发现故障位置有效提高了故障检测和巡检效率您在电力检测工作的过程中有哪些难题?FLIR专业人员将为您提供解决方案您可直接拨打官方客服电话一对一咨询哦~
  • 全自动实时PCR技术!万孚生物全自动核酸检测分析仪获证上市!
    近日,万孚生物子公司万孚卡蒂斯弈景® 全自动核酸检测分析仪(以下简称“弈景® ”)正式获批,取得了国家药品监督管理局三类医疗器械认证(国械注进20223220448)。作为全球第一个可以直接使用FFPE样本和血液样本进行肿瘤基因检测的创新性全自动核酸检测分析系统,弈景® (Idylla™ )致力于提供精确、灵敏、便捷的诊断及用药指导,系统全自动运行,只需不到2分钟的简单人手预备操作。万孚卡蒂斯开创国内先河,首次把全自动一体化理念引入肿瘤精准医疗领域,打造一体化全自动分子诊断中国智造新方案。弈景® 基于实时PCR技术,整合了从样本处理到分析步骤的全过程,创新地把上述全程缩短至约120分钟,能提供准确可靠的分子病理诊断结果,及时为治疗决策提供诊断依据。弈景® 突破了传统分子诊断的障碍和壁垒,打造盒式微型实验室,系统占地不到1平方米,即可实现传统PCR实验室的功能。系统采用全自动运行系统,内置程序,无需人为设定,只需不到2分钟的简单人手预备操作,降低手工影响,真正实现样本进、结果出,保证高准确性和重复性。防污染检测盒密闭设计,内置所有样本处理,即开即用,常温存储。该系统为模块化设计,通量灵活,每个控制台最多可连接8台主机,主机间独立运行、灵活上机、高效检测、结果准确,可用于各类型的实验室。作为创新性全自动核酸检测分析系统,弈景® 致力于使用更少样本,在更短时间提供检测结果,让分子检测更简单、更快速,让更多实验室可以开展伴随诊断等肿瘤分子标志物检测。目前,弈景® 已开发用于指导肺癌、结直肠癌和黑色素瘤等治疗的10多个伴随诊断产品,致力于为肿瘤患者提供精确、灵敏、便捷的诊断及用药指导!
  • 专题约稿|电化学工作站在锂电检测中的应用及展望
    p   近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。 /p p   为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。 span style=" color: rgb(112, 48, 160) " 锂电检测系列专题内容征集进行中: /span a href=" https://www.instrument.com.cn/news/20181204/476436.shtml" target=" _blank" style=" text-decoration: underline color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " span style=" color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " 【征集申报链接】 /span /a /p table cellspacing=" 0" cellpadding=" 0" border=" 0" align=" center" tbody tr class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 系列序号 /span /strong /p /td td style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 锂电检测技术系列专题主题 /span /strong /p /td td style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 专题上线时间 /span /strong /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 1 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——电性能检测技术 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 2019年 span 1 /span 月 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 2 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——形貌分析技术 /span /p /td td rowspan=" 5" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 2019年 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 3 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——成分分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 4 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——晶体结构分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 5 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列—— span X /span 射线光电子能谱分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 6 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——安全性和可靠性分析仪器及设备 /span /p /td /tr /tbody /table p style=" text-align: center " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 专题约稿|电化学工作站在锂电检测中的应用及展望 /span /p div p style=" text-align: center " span style=" color: rgb(127, 127, 127) " i ——“锂电 /i /span i span style=" color: rgb(127, 127, 127) " 检测技术系列——电性能检测技术”专题征文 /span /i /p p style=" text-align: center " i span style=" color: rgb(127, 127, 127) " /span /i span style=" text-decoration: none " i span style=" text-decoration: none color: rgb(127, 127, 127) " i (作者: 瑞士万通中国有限公司) /i /span /i /span /p /div p    strong 仪器信息网: /strong 请介绍贵公司锂电检测产品的定位、锂电检测产品在贵公司的地位、检测对象在锂电产业链中所处的环节。 /p p    strong 瑞士万通: /strong 瑞士万通Autolab电化学工作站是锂电阻抗检测必备的产品,是Metrohm旗下的重要品牌,在业内享有盛誉。锂电厂商在锂电新材料甄选的研发阶段和产品质量控制阶段都会采用Autolab电化学工作站。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/3729d729-d5ed-493f-9db9-22625ad0359f.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " Autolab电化学工作站对锂离子电池进行恒电流充放电测试 /span /p p    strong 仪器信息网: /strong 请回顾贵公司锂电检测的研发及技术进展历史,贵公司在锂电检测方面有哪些优势 /专利技术心 /p p    strong 瑞士万通: /strong Metrohm公司Autolab电化学工作站具有30多年的历史,一直专注于包括锂电在内的电化学研究和测量领域。Autolab电化学工作站在如下方面存在明显的技术优势: /p p   独特的外置差分静电计设计,可消除导线对高容量锂离子电池阻抗测量的影响; /p p   被视为业内标杆的NOVA软件除了提供常规的锂电测试方法外,还提供锂电测量的高级方法,如恒电位间歇滴定(PITT),恒电流间歇滴定(GITT),不同SOC下阻抗自动测量等; /p p   交流阻抗采用输出频率高达32MHz的硬件模块,频率可分段设置,保证高标准的阻抗测量精度; /p p    strong 仪器信息网: /strong 贵公司当前锂电检测相关的主流产品和主流技术?贵公司有什么样的产品发展计划? /p p    strong 瑞士万通: /strong 主流产品是电化学工作站和其提供的各种电化学测试方法。Metrohm Autolab正在研发下一代的电化学工作站,力求在保证Metrohm Autolab一贯的稳定皮实性能的基础上,为广大客户提性能更优越,操作更简便的产品。 /p p    strong 仪器信息网: /strong 贵公司锂电检测产品典型用户有哪些? /p p    strong 瑞士万通: /strong Metrohm Autolab的客户如下: /p p   比亚迪股份有限公司 /p p   上海杉杉科技有限公司 /p p   微宏动力公司 /p p   华为技术有限公司 /p p   惠州亿纬锂能公司 /p p   东莞凯兴公司 /p p   杭州金色能源公司 /p p   …… /p p    strong 仪器信息网: /strong 目前贵公司重点关注的锂电领域有哪些?最看好哪个领域?主推的解决方案? /p p    strong 瑞士万通: /strong 目前重点关注的锂电领域主要有车用动力锂离子电池,无人机用锂离子电池,手机用锂离子电池等。其中最看好车用锂离子电池的,我们的主推方案是PGSTAT302N电化学工作站和大功率电子负载的联用系统,该系统可实现电池组在大电流放电下的阻抗表征。 /p p    strong 仪器信息网: /strong 预测未来锂电检测市场发展潜力(包括应用方向、方法标准、政策法规等)。 /p p    strong 瑞士万通: /strong 未来锂电仍然将会以动力电池为重点,以新能源汽车安全、续航里程和充电效率为追求方向,开发新型的更安全、比容量更大、支持快充的锂离子电池。目前,我们认为相对于容量和充个电效率,安全是锂电政策法规最应关注的方向,国家应会发布更多的车用动力锂离子电池的安全标准。另外,在电池管理方面会出现技术的突破,将会高效快速的荷电状态(SOC)的检测方法。 /p
  • 杨勇骥:守望生物电镜三十年——访第二军医大学杨勇骥教授
    杨勇骥教授,1982年毕业于上海交通大学电子工程系。现任第二军医大学生物物理教研室暨电镜中心主任,生物物理学博士生导师。第二军医大学杨勇骥教授  见证我国生物电镜30年的发展历程   1982年上海交通大学毕业后,杨勇骥从事了3年的导弹研究工作。直到1985年,总后勤部第二军医大学装备了两台电镜,需要合适的操作和维护人员,组织上便安排他来做这项工作。在上个世纪八十、九十年代,电镜是科学研究领域最高端的仪器之一,所以能有机会从事这项工作,杨勇骥觉得非常的高兴和自豪。   他接受了这项工作,并深深地喜欢上了生物电镜技术,然后一做就是30年。在这三十年里,杨勇骥见证了生物电镜技术发展的繁荣、没落、复苏,以及新生。   &ldquo 从1985年到90年代初期,生命科学领域形态学研究的最高技术水平就是电镜,当时电镜的地位非常高,发文章只要配一张电镜的照片,基本上没有退稿的。那个时候,国内开电镜学术会议和现在的情形恰恰相反,当时是生物电镜唱主角。&rdquo 杨勇骥回忆道。   然而随着蛋白质研究的兴起,电镜技术便失去了优势,因为当时电镜的分辨率、自动化程度等都无法满足蛋白质研究的需要。所以从九十年代初中期到2005年前后,国内外生物电镜的发展受到了巨大的冲击,几近消亡。许多做生物电镜的研究人员,都转行去做分子生物学研究;很多电镜实验室都被撤掉、有的电镜甚至被当作废铁卖掉。   &ldquo 事实上,当时我也有机会转行去做分子生物学研究,但我太喜欢电镜了,所以就一直坚持了下来,目前国内一些优秀的生物电镜工作者的情况可能也与我一样。&rdquo 杨勇骥说道。   其实,到2000年之后,随着纳米材料研究的兴起,电镜在生物领域的应用开始慢慢有了复苏的迹象,因为人们需要知道纳米材料的应用对于生物体、对于环境有没有影响,而只有电镜才能观察到纳米材料并进行相关的纳米材料生物效应研究。   但是最大的推动力还是来自于2008年左右,电镜硬件技术的巨大进步,相较于之前最热门的蛋白质结构研究技术&mdash X射线晶体学技术有了很大的优势。目前的电镜技术,使得人们无需得到蛋白质的晶体,就能进行蛋白质结构的研究,并且可以达到近原子分辨率水平,这使得研究人员重新开始关注电镜这一技术。当前,电镜已成为生命科学研究领域发展最快的技术之一,国家在生物电镜研究领域的投资也很大,可以说生物电镜发展的第二个春天来了。  忧虑国内生物电镜人才培养   但是由于生物电镜发展经历了近十年的空白期,人才出现了断层,青黄不接。传统的电镜制样技术无法得到传承,特殊的样品制样技术近乎后继无人。这已经成为当前制约生物电镜发展的重要因素,是生物电镜发展急需解决的一个问题。   因为电镜是非常复杂的仪器设备,它的应用不像光谱、色谱那样普遍,人才比较难培养。对此,杨勇骥也十分忧虑,多次提到要加快生物电镜人才的培养。   一名优秀的生物电镜工作者是怎样炼成的   如何才能成为一名优秀的电镜工作者呢?杨勇骥这样说道:&ldquo 首先你得喜欢这项工作。只有喜欢,你才会心甘情愿的投入时间和精力;才会去仔细琢磨,追求精益求精。&rdquo   &ldquo 另外,一名优秀的电镜工作者还要有为人民服务的思想,要舍得付出。因为电镜仪器价格昂贵,技术难度高,很多单位只有电镜室才有,所以绝大多数时间,我们都是为别人服务的。&rdquo   &ldquo 最后还要耐得住性子,因为生物电镜制样技术精细、枯燥、繁复、寂寞、失败率高,是最能体现出细节决定成败的技术之一。&rdquo   在杨勇骥的办公室里,你会发现他将自己拍的比较好的电镜照片作为装饰画。因为喜欢电镜,杨勇骥总是全身心的投入到这份工作当中,在电镜室里,一呆就是大半天,常常因为看电镜而把吃饭时间错过,一看就看到深夜。有时有些实验步骤恰好赶在了夜里需要完成,他就直接睡在办公室,定好闹钟,半夜起来接着做实验。   在他从事电镜工作的前十五年时间里,杨勇骥甚至基本没有休过周末,没有休过寒暑假,每年大年初三准时上班。因为平时都要帮别人做实验,只有在假日里,他才有时间做自己的研究工作。   &ldquo 现在的大环境,很不利于生物电镜工作者的成长&rdquo   对于目前生物电镜人才的成长环境,杨勇骥有着自己的担忧。他表示:&ldquo 现在的大环境急功近利,很不利于生物电镜工作者的成长。有些技术很快就可以上手,有的技术就是不行,尤其是电镜,没有几年甚至十几年的积累,要想成为一名优秀的电镜工作者几乎是不可能的。&rdquo   &ldquo 但是现在,电镜工作者不仅要帮助别人做实验,还要自己做研究、申请科研项目、发文章,否则考评过不了就面临下岗的窘境。目前国内年轻且优秀的生物电镜工作者几乎没有,但是上个世纪六十至九十年代却有很多,因为那个时候没有各种考评的压力,我们可以仔细的去琢磨、去研究,最细致的问题都能想到。&rdquo   杨勇骥介绍说:&ldquo 从1985年初开始从事电镜工作,一直到1991年,在这六七年的时间里,我没有发表过一篇文章,但是我做了很多的技术研究工作,积累了很多经验,所以到1992年我一年就发了10篇文章(也是为了提高级职称的缘故)。而且这几年时间里我所琢磨积累的经验,对我日后的电镜工作有着很大的帮助。&rdquo   &ldquo 但是现在,怎么可能六年不发文章,就是一年不发文章也不行。而生物电镜又是一个不出活的技术,因此现在的生物电镜工作者可以说蛮累的,累的原因就在于和大环境不相容,需要付出比别人更多的时间和精力。&rdquo 杨勇骥说道。   &ldquo 在生物电镜领域,没有教授和技术员之分&rdquo   此外,大家对于生物电镜认识的误区,也影响着国内生物电镜人才的培养。杨勇骥谈道:&ldquo 目前,很多人都觉得样品制备工作应该是技术员做的事情。事实上,在生物电镜领域,没有教授和技术员之分,教授应该做的比技术员还好才对。国外生物电镜制样的大家,许多都是很有名的教授。&rdquo   &ldquo 看看目前国内生物电镜发展的比较好的几个单位,你会发现其实都是教授一直在致力于技术的研究,如浙江大学的洪健教授,他是1982年开始从事电镜工作,一直在制样技术的岗位上,还有北京大学的丁明孝教授、同济大学的祝建教授等。正是由于他们掌握了过硬的电镜制样技术,才能获得多项相关科研项目,并将所在的电镜室发展成为国内生命科学领域顶尖的电镜室。&rdquo   &ldquo 但是国内目前也有很多教授是不愿意做技术的,他们觉得只要申请到课题,技术工作由技术员来做就行了。而生物电镜技术十分繁复,需要一定的科学素养和科研精神才能有所收获,光靠技术人员很难有大的突破与进步,这也是国内很多单位生物电镜技术发展不起来的原因之一。&rdquo 杨勇骥说道。  30年,对生物电镜的喜爱有增无减   虽然从事生物电镜工作已经30年了,在这30年里,由于生物电镜技术的复杂性,杨勇骥投入了无数的时间和精力,遇到了不知道多少次挫折,经常辛辛苦苦做了半天,最后仍然以失败告终,然后接着重头再来。尽管如此,他对于这份工作的喜爱依旧有增无减,甚至专门挑最难做的工作来做。   从2009年开始,杨勇骥就开始了利用冷冻技术及电镜技术进行原位蛋白的三维重构研究工作,虽然目前做原位蛋白的三维重构研究还有很多技术难点,如蛋白质的识别、结构和定位,另外还需要成熟的计算机技术。而且由于目前原位蛋白三维重构的分辨率比较低,制样技术繁复,国内外同类型的研究工作很少,在投稿时总是被拒。但是杨勇骥认为蛋白质的结构和功能与细胞膜、细胞器是密不可分的,因而蛋白质结构研究的最终方向还是细胞内的蛋白质原位研究,因而就一直坚持了下来。   &ldquo 路虽然难走,但我还是喜欢这项工作。&rdquo 杨勇骥这样说道。   采访编辑:秦丽娟   附录:杨勇骥教授个人简历   杨勇骥教授,男,1982年毕业于上海交通大学电子工程系,获工学士学位。现任第二军医大学生物物理教研室暨电镜中心主任。生物物理学博士生导师。   兼任:中国电子显微镜学会副理事长;上海市显微学学会理事长;全国微束分析标准化技术委员会副主任委员;中国实验室国家认可委员纳米技术专门委员会委员;国家自然科学基金委员会一审专家;上海市科学技术评审专家;总后科学技术评审专家;教育部高等学校理工科教学指导委员会委员。   科研概况:擅长电镜、激光扫描共聚焦显微镜技术、膜片钳技术、超低温快速冷冻技术。率先开展超低温快速冷冻固定、冷冻置换、EDX能谱分析、膜片钳与共聚焦显微镜实时同步等研究,是国内知名的生物电子显微镜专家。近年来以第一申请人获国家重大科学研究计划项目、国家支撑计划项目、多项国家自然科学基金、上海市重大纳米专项及军队科研项目等各类科学基金课题13项;获军队科技进步二等奖 3项;军队科技进步三等奖 1项;常熟市科技进步二等奖1项;中国分析测试协会科学技术奖一等奖1项;主编专著2部;在国内外发表论文近130篇;制定国家级标准4项。
  • 【Sievers分析仪】新视角看污水生物处理的有机物监测
    在废水处理中,细菌起着很大作用,因此确保细菌在合适的环境中获得养分非常重要。生物处理是污水处理的重要组成部分,在许多行业中被普遍采用。此二级处理工艺依靠各种细菌来分解污水中的污染物并对水进行净化,最终排放到环境中。常规生物处理系统采用活性污泥去除水中的有机污染物。但还有许多其它生物处理方法对净化污水也非常有效,包括固定床系统,如移动床生物反应器(MBBR)和膜系统,如膜生物反应器(MBR)。各种生物处理方法之间可能存在差异,但保持微生物的健康状况对于优化污水处理工艺中污染物的去除至关重要。确保将适当数量的“食物”输送给微生物,有助于维持生物处理系统的健康。一般采用“食物与微生物比”(food to microorganism)或“F:M比”参数。当F:M比太低时,“食物”不足,微生物就会“挨饿”。如果F:M太高,污水中的有机物含量高,微生物会很快变得不堪重负,导致污水中污染物的去除不充分。两种情况都会导致生物处理效率低下,因此有必要找到并保持最佳的F:M平衡,以确保充分去除污染物以符合法规排放要求。F:M比通常由两个常见的检测值确定。在F:M比参数中,F(食物)部分是有机污染物含量,一般使用生化需氧量(BOD5)来检测。5日测试用于检测当细菌分解有机物质时消耗的氧气,从而间接推断水中的碳含量。在F:M中,M(微生物)部分一般通过混合液悬浮固体(MLSS)来检测。这些检测存在一些缺陷,会导致F:M不适用于有效的工艺控制。用于量化微生物水平的MLSS检测无法区分活生物量和死生物量,这不仅使维持最佳F:M比变得非常困难,而且对于理解生物系统的整体健康情况也无法保证。为期5天的BOD检测速度太慢,无法用于工艺决策。当污水处理装置发现碳负荷不平衡时,生物质的不健康状况事实上已持续了多日。这对于污水负荷可变的处理装置尤其是个问题。此外,由于BOD5取决于细菌的使用,因此缺乏可接受的准确性和精确度,且样品中存在的有毒化合物可能会严重干扰检测结果。对生物质的“食物”进行更准确和有效的监测方法是采用总有机碳TOC分析来直接测定污水中的碳含量。与间接BOD测量不同,TOC分析仪直接检测样品中的碳含量。检测更准确,不存在BOD测试常见的干扰问题。TOC检测可以在数分钟内完成,从而使其成为用于工艺控制和处理优化的更有效工具。通过使用TOC分析来检测生物处理有机物负荷,处理装置可以确定“更真实的F:M比”。案例一美国一家大型炼油厂实施了一项为期12个月的研究,对在传统活性污泥生物处理装置中采用TOC分析来确定“真实F:M比”带来的优势进行了分析。通过使用TOC分析快速获得的准确结果,该处理装置能够快速识别有机物负荷变化并确定理想的F:M平衡。工厂认为,当处理装置在其可接受范围内运行时,去除效率非常稳定,且与典型的需氧量测试相比,TOC分析是保持F:M平衡的更有效工具。此外,TOC分析提供的连续在线数据使处理装置能够快速调整流速,并通过确保适当数量的“食物”供给,以使用F:M比,对工艺进行更有效的控制。这减少了生物处理存在的工艺紊乱,并最终节省了与不良微生物健康状况相关的时间和成本。案例二除F:M比,TOC分析已成为优化污水生物处理营养平衡的有用工具。许多处理装置要求污水中的碳含量与养分(通常为氮和磷)保持适当的平衡。美国一家大型饮料厂决定将其传统的生物处理系统升级为高流量膜生物反应器(MBR)系统。虽然这有助于降低工厂的占地面积并改善污水中有机物的去除程度,但由于新上的MBR系统流量大且工厂排放污水中糖负荷会发生变化,这就意味着需氧量测试太慢而无法确保生物处理系统的营养平衡。该工厂要求C:N:P养分平衡比为100:5:1,在增加TOC分析后,该工厂能够跟踪污水中有机物含量的变化并快速进行工艺调整。工厂操作人员能够确定碳含量并调整添加到污水中的氮,以保持最佳的养分平衡。新的工艺可以连续地脱除有机物,大大减少了工艺紊乱,每年为工厂节省数十万美元。传统上,使用生化需氧量确定废水处理是否有效。采用总有机碳TOC分析直接监测碳含量,对于尝试优化生物处理工艺的污水处理装置而言可能是一个强大的工具。与传统的需氧量测试不同,TOC分析可在几分钟内提供准确数据,使操作人员能对工艺快速做出控制决策。使用TOC数据保持有效的F:M比或C:N:P养分平衡,可以确保生物处理工艺的优化。通过TOC分析来监测生物反应器的健康状况,有助于工厂最大程度地减少工艺紊乱,有效去除污染物,获得符合法规要求的外排水。作者简介Adit Jatkar,苏伊士旗下水务技术与方案——Sievers分析仪全球产品应用专员,获得普渡大学化学学士学位,拥有分析仪器和工艺化学技术背景,并在水处理和石油化工行业有丰富的工作经验。本文原文英文版刊登于《Rocky Mountain Water》2020年9月刊。
  • SLST分子影像平台招聘生物电镜制样工程师
    上海科技大学生命学院分子影像平台主要为科研工作者提供高效率、高质量的光学显微镜技术支撑服务,除了多台高级光学成像设备之外,平台还配备了针对3D电镜成像的SEM、连续超薄切片机等制样和成像设备,以及Imaris、Amira等专业三维重构图像软件。现面向社会招聘生物电镜制样方向技术人员,欢迎转发、推荐或自荐。岗位职责1.负责常规化学固定制样、高压冷冻、低温替代固定、超薄切片(含连续超薄切片)等技术服务和支持; 2.负责电镜的日常操作和使用管理,协助平台电子显微镜及相关设备的管理维护和培训考核; 3.协助建立三维电子显微成像实验解决方案及光电联合等相关新技术开发,平台将提供相应的光学成像技术和软件培训; 4.根据需要,参与学院的服务工作。招聘条件1.生物、化学或材料等相关专业背景,硕士及以上学历,特别优秀者可以放开到本科学历;2.有生物或材料电镜制样经验,愿意长期从事电镜制样工作,如有超薄切片机使用经验更佳;3.具有扫描电镜、透射电镜等大型仪器设备的操作及数据分析工作经验优先;4.具有Imaris、Amira、ImageJ、Matlab、Python等图像处理经验者优先;5.积极上进、有责任心、善于沟通、乐于学习新技术、动手能力强。工作条件和工资待遇1.按照上海科技大学相关规定执行,根据个人具体情况,提供具有竞争力的薪酬、津贴和福利;2.提供良好的工作环境,研究平台设施完善,具有很好的发展前景。应聘方式1.请应聘者通过人才招聘系统(http://jobs.shanghaitech.edu.cn/)上传个人简历、学历和工作经验的相关证明及2位推荐人联系方式,并提交应聘申请。应聘流程为:注册、填写并提交基本信息、应聘选择岗位。2.请同时将相关申请材料的电子版发至lixm@shanghaitech.edu.cn,邮件标题请注明:生物电镜工程师申请+姓名。3.对应聘者进行资格审查,对初审通过者,将另行通知面试时间;未通过初审者,恕不另行通知。招满即止。欢迎转发、推荐或自荐!!!【仪器信息网|行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld@instrument.com.cn微信/电话:13683372576
  • 超导与生物电子学中德联合实验室揭牌
    王曦和Andreas Offenhaeusser为联合实验室揭牌 10月21日,中国科学院上海微系统与信息技术研究所、德国尤利希研究中心(Forschungszentrum Jülich)生物与纳米系统研究所(Institute of Bio- and Nanosystems, IBN-2)超导与生物电子学联合实验室揭牌仪式在中科院上海微系统所举行。上海微系统所所长王曦院士、尤利希研究中心生物纳米系统研究所所长Andreas Offenhaeusser教授为联合实验室揭牌。来自美国、德国、日本、印度等国家的超导应用专家及我国知名学者吴培亨院士等专家,以及上海微系统所相关人员参加了揭牌仪式。 超导与生物电子学联合实验室是在中科院副院长江绵恒和尤利希研究中心董事会副主席Achim Bachem的关心和推动下成立的。揭牌仪式上,王曦和Andreas Offenhaeusser分别宣读了江绵恒、Achim Bachem发来的贺信,回顾了上海微系统所与尤利希研究中心的合作发展历程。 上海微系统所与尤利希研究中心在学术交流、人才培养等方面有着长期而紧密的合作。2008年和2010年成功地举办了第一届和第二届双边学术交流研讨会。上海微系统所已派遣七名研究生前往尤利希研究中心开展联合培养。此次成立的国际联合实验室,将推动双方在生物电子学和超导器件、电路及应用等方面开展更加深入的合作。 由上海微系统所主办的第二届超导器件前沿应用研讨会于揭牌仪式后举行。
  • 航天科工紫外成像漏电检测仪问世
    记者日前从中国航天科工集团公司二院获悉,该院207所自主研发的紫外成像漏电检测仪近日正式面世并投入市场。该产品可为高压设备的运行评估和维修决策提供可靠依据。  紫外成像漏电检测技术是近年新兴的一种远距离检测高压线路、输电设备状态的新技术,它主要通过检测电力高压设备电场发射的紫外线,发现引起电场异常的设备缺陷,观察放电情况并判断危害。  207所研制的这款紫外漏电检测仪,将紫外和可见光技术结合形成融合图像,可快速发现、精确定位漏电位置。该产品还创造性地搭载无人机平台,适合对远距离、大范围的高压输电线进行空中巡检,在电力系统、高铁等领域有广泛应用前景。
  • 分析仪器如何成为新质生产力?|ACCSI2024分析仪器创新应用场景探索论坛全日程
    随着技术和市场的不断深入发展,传统的分析仪器在制药、食品、石化、环境等常规领域的应用不断拓展和深化,寻找新的应用场景愈加困难。而底层物理化学的基础创新正在为科学仪器行业的发展和应用拓展带来许多可能性。这种创新可以引领出更灵敏、更精确的传感器技术,从而改进分析仪器的性能和功能,为创造与众不同的创新应用场景提供了新的基石。科学仪器的不断创新确实能够深刻改变我们的生活。想象一下,新型的分析仪器可以在精准医疗、智慧农业、深海深空探测、智能环境监测等许多领域带来巨大的变革。那么,底层物理化学的基础创新,能为科学仪器行业发展和应用拓展带来哪些可能?跨学科不断交叉合作的背景下,能否通过多学科知识的自由组合创造出全新原创的新技术新仪器?分析仪器如何成为新质生产力?仪器技术能在哪些新的应用场景里创造价值?学术界和企业界如何深入合作,共同推动科学仪器行业进一步发展?为了探寻以上话题的答案,仪器信息网联手中国仪器仪表学会分析仪器分会将共同举办“分析仪器创新应用场景探索论坛”,于2024年4月19日(ACCSI 2024同期)在苏州狮山国际会议中心召开。本次论坛将以专家报告+主题讨论的形式,共同探讨当前环境下,分析仪器在各行业的创新应用场景。我们特别邀请到多位创新技术领域专家进行分享并展开讨论:载人航天与深海探测:载人航天和深海探测是国家战略规划和重大需求。中科院大连化学物理研究所微型分析仪器研究组关亚风、耿旭辉团队以上述领域中需要的检测技术为主要研究方向,研制出我国首套空间站双通道气相色谱仪,2套仪器已分别在轨稳定运行34个月和19个月,经中国仪器仪表学会成果鉴定为:检测器、色谱柱均温加热组件和富集热解析组件的性能,以及体积、重量、功耗等指标达国际领先水平。与中科院深海科学与工程研究所联合研制出:系列我国首套4500 m级深海原位荧光传感器,灵敏度比国际同类仪器高3.5至10倍,最大潜深3961.9 m,在南海海底长期应用示范(央视CCTV-13报道);我国首套4500 m级深海原位气相色谱仪和气相色谱-质谱联用仪,最大潜深4536 m,测得了有重要意义的有效数据。智慧农业:技术的不断进步,催生了农业4.0,也就是智慧农业。在这个阶段,传感技术和数据科学是核心。尤其是农业传感器技术,在2018年美国国家科学院、工程院、医学院联合预测的报告中,明确了农业传感器技术是智慧农业发展的底层驱动技术,是未来农业发展亟待突破的五大方向之一。随着环境污染的加剧和可耕地面积的减少,农作物生命信息的高精准、高可靠、实时监测对于现代农业生产的重要性已日益凸显。尤其是随着精准育种、精细园艺等农业新业态的出现,针对植株个体生命信息的全周期连续监测和植株个体全尺度生命信息的深度挖掘,已变得越来越迫切和重要。浙江大学平剑峰教授将介绍课题组近年来在植物生命信息在体感知技术与传感器方面的进展,包括柔性传感器制备技术、植物在体传感系统以及无源传感技术等。分子电子学:分子电子学是研究在晶体管、二极管和存储单元等器件中用分子作为电子元件的研究领域,其背后的理念是制备比传统硅基技术更节能、更快、更小的纳米级微型器件。清华大学李远副教授报告将对分子电子学的发展,特别是基于自组装单分子层的分子电子器件,进行一个简要的概述。并将重点介绍课题组近期的一些研究成果与最新进展,包括精确调控分子-电极相互作用从而实现高性能和高稳定性的分子隧穿结,以及利用聚集诱导发射特征制备的机械可控分子光电开关,利用超交换隧穿和其他分子的化学特性实现高效能量转化的分子热电结等相关实验研究和理论预测。水凝胶生物电子材料:基于水凝胶的高效人机融合交互界面构建已成为当前最前沿的科技挑战之一,然而现有水凝胶材料电学、力学、生物学等性能尚不能满足应用需求以及先进加工集成技术缺乏等问题严重限制了其实际应用。为解决这一科学挑战,江西科技师范大学卢宝阳教授团队提出来导电聚合物水凝胶生物电子设计材料设计新理念,以PEDOT:PSS类导电聚合物为核心材料,通过分子工程、聚合物链工程、晶相工程等手段调控构建电学-力学相网络结构的多尺度优化设计方法,设计研发了多种高性能PEDOT:PSS类导电聚合物水凝胶电子材料,所研发水凝胶兼具优异的电学、力学、生物学性能,并实现了水凝胶电导率的突破;发明了流变性能可控的导电聚合物墨水,开发了导电聚合物水凝胶直接3D打印技术,实现了30 µm级导电聚合物水凝胶高精度加工及快速“升维制造”技术;进而开发了导电聚合物水凝胶电子器件多材料一体化制造技术,设计制造了系列导电聚合物水凝胶软神经电极、应变传感器等系列器件,构筑并推动了实现了脑机接口、运动识别、机器人智能控制等人机融合交互应用。水域环境监测与渔业生态保障:随着我国工业化和城镇化进程的加速,渔业环境和生物多样性受到工业废水和生活污水的严峻胁迫,尤其是微塑料、持久性有机污染物等新污染物增长态势加剧。人们长期食用受污染水产品增加了癌症的发病风险,如胃癌、食管癌等。为保障消费者健康,美国、欧盟及日本研制了先进的水域环境传感器,应用于水体污染物浓度实时监测,最大限度地降低新污染物对环境和人体健康的影响。而我国渔业环境传感器研究起步较晚,无法满足水域环境监测的需求。目前,市面上95%以上的传感器仍依赖进口,传感器已经成为制约我国水域环境监测和渔业生态保障的“卡脖子”技术。在此背景下,中国水产研究院吴立冬研究员多年来致力于渔业环境专用传感器特异性识别原理及信号放大机制等关键科学问题研究。利用自行设计、创制的传感器平台,申请人在渔业环境新污染物分离、识别元件开发、增敏材料研制、信号级联放大机理、柔性传感芯片制备及数据训练等方面开展了系统研究工作,并在国内科研机构和企业推广应用。本次论坛除了将通过这些创新性的研究成果展示科学仪器在载人航天、深海探测、渔业环境监测和智慧农业等领域中的重要应用,同时也设置了讨论环节,就新应用场景话题展开开放讨论,欢迎广大业内人士参与到讨论中来,提出您的真知灼见。希望能够通过分享实践经验、专家见解、创新成果和行业趋势,探索分析仪器真正的创新应用场景,为行业创新发展提供启示。论坛日程时间主题报告人9:00-9:00致辞刘长宽(中国仪器仪表学会分析仪器分会 名誉副理事长)9:00-9:25微型分析仪器在载人航天和深海探测中的应用耿旭辉(中国科学院大连化学物理研究所)9:25-9:50植物生命信息在体感知技术与传感器平建峰(浙江大学)9:50-10:15多功能自组装分子电子器件李远(清华大学)10:15-10:40导电聚合物水凝胶生物电子界面设计及应用卢宝阳 (江西科技师范大学)10:40-11:05生态环境修复及对分析仪器需求郭行(北京泷涛环境科技有限公司)10:05-11:30渔业探测器吴立冬(中国水产研究院)11:30-12:00讨论环节主持人(吴立冬)论坛联系方式:仪器信息网:赵仪,15650766910,zhaoy@instrument.com.cn中国仪器仪表学会分析仪器分会:孙立桐,15801142901参会报名:ACCSI 2024大会官网报名:https://accsi.instrument.com.cn 或扫码报名
  • 科研院所参会名单篇|第六届锂电检测技术与应用网络千人大会(第二轮)
    一、 会议概述据工信部发布数据,2024年1-2月,我国锂离子电池行业继续保持增长态势,在市场需求和政策扶持的双向驱动下,全国锂电池总产量再创新高,超过117GWh,同比增长15%。下游应用端,一季度新能源汽车产销分别完成211.5万辆和209万辆,同比分别增长28.2%和31.8%,市场占有率已达31.1%。在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。点击此处即可报名 主办单位:仪器信息网 国联汽车动力电池研究院有限责任公司直播平台:仪器信息网“3i讲堂”平台会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ (内容更新中)会议形式:线上直播,免费报名参会(报名入口见会议官网)二、会议日程1.专场安排时间专场名称5月28日 全天锂电成分分析技术专场5月29日 上午锂电结构形貌分析技术专场5月29日 下午锂电粒度/表界面性能分析技术专场5月30日上午锂电热性能分析技术专场5月30日 下午锂电安全与失效分析技术专场5月31日 上午锂电回收相关检测技术专场2.会议日程(以最终日程为准)三、参会方式1. 本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ 2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。四、会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn【会议赞助】(截止至5月16日)德国耶拿分析仪器股份公司梅特勒托利多HORIBA 科学仪器事业部赛默飞色谱与质谱钢研纳克检测技术股份有限公司安捷伦科技(中国)有限公司珀金埃尔默企业管理(上海)有限公司岛津企业管理(中国)有限公司日立科学仪器(北京)有限公司日本电子株式会社(JEOL)布鲁克磁共振事业部上海仪电科学仪器股份有限公司杭州仰仪科技有限公司 北京安科慧生科技有限公司 【报名单位】
  • 工业企业参会名单篇|第六届锂电检测技术与应用网络千人大会(第二轮)
    一、 会议概述据工信部发布数据,2024年1-2月,我国锂离子电池行业继续保持增长态势,在市场需求和政策扶持的双向驱动下,全国锂电池总产量再创新高,超过117GWh,同比增长15%。下游应用端,一季度新能源汽车产销分别完成211.5万辆和209万辆,同比分别增长28.2%和31.8%,市场占有率已达31.1%。在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。点击此处报名 主办单位:仪器信息网 国联汽车动力电池研究院有限责任公司直播平台:仪器信息网“3i讲堂”平台会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ (内容更新中)会议形式:线上直播,免费报名参会(报名入口见会议官网)二、会议日程1.专场安排时间专场名称5月28日 全天锂电成分分析技术专场5月29日 上午锂电结构形貌分析技术专场5月29日 下午锂电粒度/表界面性能分析技术专场5月30日上午锂电热性能分析技术专场5月30日 下午锂电安全与失效分析技术专场5月31日 上午锂电回收相关检测技术专场2.会议日程(最终日程以官网为准)三、参会方式1. 本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ 2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。四、会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn【会议赞助】(截止至5月13日)德国耶拿分析仪器股份公司梅特勒托利多HORIBA 科学仪器事业部赛默飞色谱与质谱钢研纳克检测技术股份有限公司安捷伦科技(中国)有限公司珀金埃尔默企业管理(上海)有限公司岛津企业管理(中国)有限公司日立科学仪器(北京)有限公司日本电子株式会社(JEOL)布鲁克磁共振事业部上海仪电科学仪器股份有限公司【部分工业企业类报名单位】
  • 远方光电斥资3亿建光电检测设备研发生产基地
    远方光电3月15日晚间公告,3月15日,公司与萧山经济技术开发区管委会签订了《投资协议书》,拟在萧山经济技术开发区设立全资子公司,投资建设颜色科技及光电检测成套设备研发生产基地项目。总建筑面积约6万平方米,总投资额3亿元人民币。   公司公告称,该项目是远方光电在光源测量领域成功实现产业化后,对于光电检测分析技术更大应用的科技研发和产业化拓展。项目主要功能为颜色科技和光电检测成套设备的研发和生产。有助于公司扩展业务领域,成为公司发展新的增长点,提高公司市场竞争力。
  • 2024年全国农业、林业、医学生物电镜应用技术及学术交流大会圆满召开
    仪器信息网讯 2024年3月27日-29日,“2024年全国农业、林业、医学生物电镜应用技术及学术交流大会”在南京恒大酒店圆满召开,大会由南京农业大学作物遗传与种质创新利用全国重点实验室主办,现代作物生产省部共建协同创新中心、江苏省电子显微学学会协办,江苏博东检测科技有限公司承办。电子显微镜技术已广泛应用于农业、林业、医学生物等研究领域,成为生命科学基础研究工作中必不可少的实验手段。据介绍,该会议每两年举办一届,由于疫情等原因,今年是该系列会议空窗7年后再次重启,为期三天的会议汇聚了国内近400位专家学者、一线电镜工作者及相关仪器企业代表出席,共同探讨电子显微技术在农林、生物医学等诸多领域的前沿应用与发展趋势。大会现场浙江大学 教授 洪健 介绍参会领导及嘉宾南京农业大学 教授/党委副书记/纪委书记 吴荣顺 致欢迎词海军军医大学 教授 杨勇骥 致辞南京工业大学 教授 吕忆农 致辞大会学术报告集锦(一)本次大会邀请到19位来自全国高校和科研院所的知名专家学者报告了最新的电子显微镜理论以及在农林、生物医学领域的研究应用成果,一些电镜主机及附件厂商介绍了最新发展的仪器和技术。以低温电镜、体电子显微术为代表的前沿新技术在生命科学中广泛应用,传统电镜制样技术和医学电镜诊断也得到进一步发展,这一切均体现在如下报告中。杨勇骥教授应用冷冻固定-电子显微镜tomography技术,观察研究了骨骼肌肌浆网膜上钙离子通道蛋白RyR1的结构与排列,获得其原位三维结构信息。该技术显示RyR1的完整三维结构,RyR1主要以跨膜方式分布在肌浆网膜上。通过IMOD软件重构分析,建立了相关结构的三维图像。该技术对研究膜镶嵌蛋白,特别是离子通道蛋白与膜关系具有重要意义。王益华教授分享了实验室的高压冷冻包埋/冷冻替代技术,结合GFP-目标蛋白融合材料,实现了目标蛋白的精准亚细胞定位。同时,该技术还成功应用于成熟水稻种子的包埋与细胞壁观察。未来,实验室计划进一步探索光电子结合成像与三维重构技术,以拓展电镜在稻米品质研究中的应用范围,推动相关领域的发展。蒋争凡教授应用光镜-电镜联合技术结合免疫电镜研究STING蛋白的结构和功能,多种电镜技术的应用很好地支持了立方体膜结构的形成可能受相关跨膜蛋白相分离的驱动,而由膜蛋白相分离形成的这类膜结构是细胞正常生命活动的一部分,并在多种生理、病理过程中扮演重要角色。体电子显微技术(vEM)是近年来快速发展的生物样品三维结构研究技术。然而,其各向异性分辨率和截面损失是技术挑战。孙飞研究员开发了IsoVEM算法,提升了轴向分辨率并实现各向同性重建,成功修复丢失/损坏切片,提高分辨率,已在模拟和实验数据集上验证。IsoVEM优化了超结构分割效率和统计精度,实现了大规模生物结构的各向同性重建,增加了vEM研究吞吐量。孙飞研究员在报告中还介绍了首台国产120kV场发射透射电镜的研发成果。陶小荣教授利用冷冻电镜解析了TSWV RNA聚合酶的三维结构,揭示了其结构特征和与病毒RNA的相互作用。TSWV L蛋白结构独特,其C端结构域模拟eIF3亚基,促进转录与翻译耦合。该研究是首个解析植物病毒全长复制酶结构的工作,有助于理解sNSVs聚合酶的RNA合成调控和转录机制,为抗病毒药物研发提供新思路。张仲凯教授介绍了布亚尼病毒目的负义单链RNA植物病毒正番茄斑萎病毒属(Orthotospoviruses)的研究成果,其种子和果实传播是新发或早生区Orthotospoviruses的主要来源,为源头与绿色防控提供依据。病毒在寄主细胞中的分布特征因病毒种类不同具有明显的差异,可能与N或NSm与寄主蛋白互作的差异相关。病毒以RNPs在细胞间形成系统侵染,同时可能存在溶解细胞壁的发生到达相邻细胞。刘铮教授采集了5例临床长新冠并发心血管疾病患者的心肌活检样本,开展病理学、免疫组化和电镜超微结构研究。结果显示心肌纤维化、肌丝束损伤及间质水肿,线粒体肿胀空泡化、内嵴扭曲破裂。应用新型体电镜技术FIB-SEM对线粒体损伤进行3D分析,推测损伤由新冠感染所致,并在小鼠模型中得到验证。研究为新冠并发心血管疾病提供了病理基础,有望为治疗策略提供新思路。魏太云教授介绍了多种水稻病毒在媒介昆虫叶蝉中的侵染机制,综合运用常规电镜技术、免疫胶体金标记和免疫荧光标记技术,利用电镜和共聚焦显微镜,从不同尺度对水稻病毒在媒介昆虫中的垂直传播、水稻病毒与昆虫共生菌互作,以及水稻病毒与媒介昆虫免疫机制的博弈进行了解析。并在报告中对体电子显微学未来在生物研究中的应用给予了肯定。大会学术报告集锦(二)常云杰研究员利用冷冻断层扫描技术首次解析了哺乳动物PDC完整结构,发现其外周装配的E1四聚体和E3二聚体数量不一。并解析了PDC中底物传递机制,揭示其结构不具有单一化学配比,外周组成高度动态。据此,提出PDC可通过调整外周组装的E1、E3多聚体及参与底物传递的LD数量来调控催化活性,以适应不同糖酵解需求。沈庆涛教授应用冷冻电镜解析了对虾白斑综合症病毒(WSSV)杆状核衣壳的高分辨结构,发现WSSV核衣壳以环状堆叠的结构形式存在,在侵染过程中核衣壳会出现椭球状和杆状两种结构形式的转变,核衣壳由椭球状变为杆状会释放病毒基因组,伴随着内部容积变小、压力丧失。该研究有助于更好地认识WSSV侵染过程,为其防治提供理论借鉴。李霞教授在研究中使用基于聚焦离子束扫描电子显微镜(FIB-SEM)的体电子显微技术(vEM)来生成大体积附睾上皮细胞不同节段的3D重建。3D重建首次揭示了附睾上皮细胞之间的横向细胞间隙(LIS)中存在细胞间细胞器库(IOR)。确定了自噬体和线粒体残留物是IOR的主要成分。王亚林教授研发了一种可以用于冷冻替代仪的震荡装置,可以更好地控制冷冻替代过程中的温度变化并提高可重复性。另外,也尝试了更为便捷的冷冻替代方法,用极短的时间达到与常规冷冻替代相近的结果。这些方法可以大大减少样品制备的时间,而不会牺牲样品的超微结构的质量。颜梦雨高工提到低温透射电镜技术可以保持样品的天然状态,突破传统透射电镜技术易造成辐照损伤的缺点和样品需要完全脱水的限制,从而实现对生物类电子束敏感材料的表征。为医药、农业、食品等领域的应用研究提供了重要支撑。此外,在材料、化工等领域,结合电子衍射和tomography技术实现了对MOF/COF、薄膜等样品的表征。孙异临教授谈到作为超微病理医生在诊断一个病例时,首先要有整体观念(病和人两字缺一不可),一定要详细了解该患者的全部临床资料,包括症状、体征、影像学特点、取材部位、光镜病理和免疫组织化学等检查结果;并对送检电镜病理标本的组织学、解剖学和普通病理学以及相对应组织的正常超微结构特点要了如指掌,这样才能在电镜下观察超微病理变化时做到心中有数、发现问题。朱燕华高工介绍了X射线显微镜的成像原理以及在生命科学中的应用,作为一种无损的显微成像分析技术,其分辨率可以达到亚微米级,适用于植物组织、昆虫、骨骼、软组织、器官等,与传统电镜技术和体电子显微术配合,将在农林医学生物领域发挥重要作用。於修龄博士在研究中以X射线显微镜为主要研究方法,结合数字图像处理和基于深度学习的图像识别技术,对土壤新生体及不同农田管理措施下土壤的三维微结构开展了研究。深入揭示了土壤的形成过程和环境意义,同时也为农田合理施肥以及农田土壤结构的精细化管理提供了科学依据。刘莹莹教授应用SST和NK1R免疫电镜双标记技术,结合线粒体细胞色素氧化酶(CO)组化技术,进行了pre-BötC神经元超微形态学三标记。SST分布于pre-BötC神经元胞体和突触前神经终末,NK1R分布于胞体和树突,二者形成非对称(兴奋性)和对称(抑制性)突触联系。毛倩卓副研究员以辣椒轻斑驳褪绿病毒为例,对免疫标记技术在植物病毒研究中的应用进行了探讨。运用负染标记、超薄切片胶体金标记以及免疫荧光标记,对经基因改造携带了绿色荧光蛋白(GFP)标签的辣椒轻斑驳褪绿病毒的形态、分布和侵染能力进行了评估,并在此基础上对植物样品电镜制样过程中遇到的问题进行了讨论。刘峰副教授创建了含19种植物叶片电镜照片的大型注释数据集,并开发了OrgSegNet识别管线,能精确识别叶绿体等细胞器。其嵌入的数字指标可量化细胞器形态。发布的Plantorganelle Hunter工具可用于精细考察植物亚细胞表型,该自动分割方法也适用于体电镜图像识别,提高3D重构效率。农林分会场与医学分会场集锦在3月28日下午及29日上午,大会还分别设置了农林分会场和医学分会场,数十位代表发言,深入地探讨电子显微技术在这两个领域的最新应用与进展。此外,3月28日晚上特别设置的生物电镜技术答疑解惑专场,吸引了与会代表尤其是年青师生的踊跃参与。为时两小时的面对面交流讨论,针对代表们平时所遇的各种问题和心中疑惑,专家们一一解答,悉心赐教,大家畅所欲言,会场气氛达到高潮。生物电镜技术答疑解惑专场集锦大会合影致此,本届大会圆满结束,丰富的会议内容让参会者们满载而归,正如一位参会者这样表达参加此次会议的收获:如果说白天的每一场报告是帮助大家了解到生物电镜技术的最新进展,而晚上颇具特色的答疑解惑则是切实帮助大家解决掉很多长久以来的困扰,让大家期待而来,满意而归。最后,经研究决定,下届大会将于2026年在云南举办。2026年,全国生命科学电镜领域的同行们将在云南再相聚!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制