当前位置: 仪器信息网 > 行业主题 > >

高精度激光位移传感器

仪器信息网高精度激光位移传感器专题为您提供2024年最新高精度激光位移传感器价格报价、厂家品牌的相关信息, 包括高精度激光位移传感器参数、型号等,不管是国产,还是进口品牌的高精度激光位移传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度激光位移传感器相关的耗材配件、试剂标物,还有高精度激光位移传感器相关的最新资讯、资料,以及高精度激光位移传感器相关的解决方案。

高精度激光位移传感器相关的资讯

  • 高精度激光水气传感器成功应用
    p & nbsp & nbsp & nbsp & nbsp 日前,“高精度激光调制吸收水气传感器应用技术”科技成果在北京通过专家评审,中科院院士姚建铨等评委会专家一致认为,该系统首次在国内无人机高空湿度测量、文物领域高湿环境监测等开展应用,在文物领域的应用填补了国内外空白,达国际先进水平。而市场上存在的传统测量方法在低温、高湿情况下,存在分辨率低、迟滞和误差大等问题。 /p p & nbsp & nbsp & nbsp & nbsp 北京航天易联科技公司总经理李刚说,该传感器将国外传统水气传感器误差从± 5%提升到本传感器的± 1.5% 将传统传感器响应时间从10—30秒提升至100毫秒,实现了传感器技术的跨越 由于采用半导体光源,光源发出的检测气体特定光谱效率高,并使用信号处理算法,检测精度极高,可达1ppm(百万分之一)量级等。 /p p   此技术由北京航天易联科技发展有限公司、中科院半导体研究所、中科院电工研究所联合研发,具有多项核心自主知识产权。经多年研究和大量试验、测试,该传感器有稳定性和防爆性好、寿命长,环境适应性好等优势,可应用于气象环保、文物保护、石油化工等领域的湿气监测。 /p p br/ /p p br/ /p
  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • 大连理工大学陈珂:高精度光纤光声气体传感器及装置
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。大连理工大学 陈珂副教授本次会议中大连理工大学陈珂副教授介绍了其课题组在光纤光声气体传感技术及应用方面开展的一系列工作(点击回看》》》),得到与会老师的关注和认可。会后,我们也再次邀请陈珂副教授分享大连理工大学光纤光声传感研究团队的系列成果。1、成果简介大连理工大学光纤光声传感研究团队开展了光纤声波/振动传感技术和光声光谱微量气体检测技术的应用基础研究工作。在光纤传感技术研究方面,首次提出并设计了超高灵敏度光纤悬臂梁声波传感器,信噪比相比于传统电学麦克风提高了1-2个数量级;研制出超高速振动/声波传感解调仪器,采用光谱解调法实现了200 kHz的解调速度,将解调算法集成到FPGA中,大幅度提升了解调的稳定性。在光声光谱技术研究方面,将光纤声波传感器用于光声信号探测,提出了干涉型光纤声波锁相探测方法,设计了新型的光纤悬臂梁增强型光声光谱仪器,实现了对多种微量气体的超高灵敏度检测。研究了基于光纤光声传感的变压器油中溶解气体原位检测技术,研究了气体绝缘设备中六氟化硫分解产物的光纤光声检测技术,并在多个变电站开展了示范应用。根据变压器油中溶解气分析和煤矿瓦斯突出应用需求设计了多套激光光声光谱多组分气体分析仪器,掌握了目前世界上唯一的高瓦斯背景中多组分微量气体光学检测技术。成果1:光纤振动/声波传感器及解调仪器设计的光纤振动/声波传感器采用MEMS悬臂梁结构,具有灵敏度高、稳定性好的特点。研制了基于光谱解调的超高速光纤法布里-珀罗(F-P)传感解调仪,在FPGA中集成光谱采集、光谱相位解调等功能,显著提升了解调速度和稳定性。成果2:光声光谱变压器油中溶解气体分析仪针对高电压油浸式变压器油中溶解气体分析需求,研制了多套激光光声光谱气体分析仪。其中对油中溶解乙炔气体的检测极限达到0.05μL/L。,同时课题组还开发了光声光谱油中溶解气体原位检测仪,可以直接将光声传感器安装于变压器取油口。 成果3:光纤光声传感解调仪器本团队创新性地将光纤F-P声波传感器用于微弱光声信号探测,研制了多套光纤光声传感解调仪器。在FPGA中集成了相位解调算法、数字锁相、激光调制等功能。对乙炔气体的检测极限可达到ppt量级。 成果4:光声光谱煤矿自然发火监测仪研制的光声光谱煤矿自然发火监测仪,可对多种特征气体进行同时测量。检测指标如下:乙炔:0.5ppm;乙烯:1ppm;一氧化碳:1ppm;乙烷:5ppm;甲烷:0.1%;二氧化碳:0.1%成果5:高精度光声光谱环境气体分析仪开发的二氧化氮和二氧化硫气体分析仪,可对环境中痕量气体进行实时监测。二氧化氮气和二氧化硫气体的检测限分别达到1ppb和10ppb。下图中实验数据是开发的二氧化氮气体分析仪与环境监控站的对比结果。成果6:多通道同步FPGA数字锁相放大器针对光谱探测中微弱光信号检测需求,开发了多通道同步FPGA数字锁相放大器。采用定制的线阵探测器对光谱进行同步快速读取,光功率检测极限达到10fW量级,动态范围达到120dB。2、产业化探索本团队开发的光谱检测、光纤传感类检测仪器具有较高的技术成熟度。在电力、石化等行业具有较好的应用前景。3、课题组未来研究计划光声光谱与光纤传感技术结合后,具有本质安全、抗电磁干扰、灵敏度高、可远距离探测以及多点测量等优势。本课题组将重点研究光纤光声传感技术中的基础科学问题以及工程应用关键技术。欢迎电力、石化、煤矿和环境监测等相关科研院所和公司联系我们。联系人:陈珂(大连理工大学)Email:chenke@dlut.edu.cn课题组介绍陈珂,大连理工大学光电工程与仪器科学学院副教授,博士生导师,大连市青年科技之星,光纤光声传感团队负责人,主要从事光纤传感、激光光谱和微弱信号检测等方面的研究工作。担任中国光学工程学会光谱技术及应用专委会委员,中国电气工程学会测试技术及仪表专委会状态监测学组委员,国家自然科学基金通讯评审专家。工作近8年来,共主持科研项目32项,其中,国家自然科学基金面上项目等国家级项目2项,省部级项目2项,大连市高层次人才创新支持计划项目1项,企业合作项目20余项;在Analytical Chemistry、Optics Letters等期刊上发表SCI/EI论文93篇,其中第一/通讯作者论文63篇;已申请和授权发明专利43项,其中第一发明人专利21项。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm, (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • “最黑”材料制成高精度激光功率检测器
    据美国科学促进会网站8月18日报道,美国国家标准技术研究院利用世界最黑材料——森林状多壁碳纳米管作涂层,研制出一种激光功率检测器,可用于光通讯、激光制造、太阳能转换以及工业和卫星运载传感器等先进技术领域的高精度激光功率测量。研究论文发表在最新的《纳米快报》上。   这种新型检测器几乎不会反射可见光。在波长从400纳米的深紫,到4微米的近红外线波段,反射少于0.1%,在4微米—14微米的红外光谱中,反射少于1%。这和伦斯勒理工学院2008年报告的超黑材料相似。2009年一个日本团队也有类似研究。   正是受到伦斯勒理工学院的研究论文《世界最黑人造材料》的启发,国家标准技术研究院的科研人员对精细碳纳米管进行了较为稀疏的排列,把它作为一种热检测器的涂层,制成了用于测量激光功率的设备。碳纳米管是热的良导体,提供了一种理想的热量检测器涂层。虽然镍磷合金在某些波段能反射更少的光,但不能导热。   纽约石溪大学的合作研究人员在一种热电材料钽酸锂上,生长出了碳纳米管涂层,涂层吸收激光转换成热量,温度上升产生了电流,通过测量电流大小能确定激光的功率。涂层越黑,光吸收的效果越好,测量结果就越精确。其独特之处在于,纳米管是生长在热电材料上,而其它研究中是生长在硅材料上。   国家标准技术研究院用过各种各样的材料来做检测器涂层,包括扁平状的单壁纳米管。最新的涂层是一种竖直的森林状多壁纳米管,每根细管直径小于10纳米,长约160微米,深管有助于吸收随机散射光和任何方向的反射光。   由于技术上要求检测器能测量的反射光谱更加广泛,国家标准技术研究院用了5种不同的方法花了数百小时来测量越来越弱的反射光,结果精确度都能达到要求。研究人员计划将设备的刻度运行范围扩展到50微米甚至100微米波长,这或许可为太赫兹射线功率测量提供一种标准。
  • “高精度多组分气体检测传感器研制”启动会召开
    3月17日,“智能传感器”重点专项“跨地域复杂油气管网安全高效运行状态监测传感系统及应用”课题“高精度多组分气体检测传感器研制”启动会在安光所召开,会议由张志荣研究员主持。   项目承担单位国家石油天然气管网集团有限公司陈朋超教授级高工、课题承担单位中科院合肥物质院张志荣研究员、课题参与单位国家石油天然气管网集团有限公司科学技术研究总院蔡永军副总监等相关科技人员20余人通过线上线下形式参加了交流会。   课题负责人张志荣研究员就承担的研究任务、总体目标、实施方案、研究队伍等进行了汇报。该课题主要针对油气管网微小泄漏感知能力不足、特殊场景传感器缺乏、区域站场泄漏逃逸不明晰等痛点及热点问题,以集成探头研发、激光吸收光谱技术、组网方式等研究内容为核心,建立两类型高性能传感系统,为构建管网传感器及系统综合试验平台,开发管网智能传感系统数字化应用平台,建立管网状态感知指标体系和传感器谱系提供技术支持,并在中俄和中缅油气管道的多个典型场景进行示范应用,为全面实现管网状态监测水平的提升和管道感知技术的自主可控贡献力量。   与会人员听取了汇报后,针对目标、任务和实施方案进行了深入且细致的讨论,充分肯定了实施方案的可行性,并针对涉及的中俄、中缅管道及站场的示范应用情况作了详细的讲解和分析,希望所研发的多类型传感器能够在多个场景形成突出的特色应用,解决现场亟需的技术难题,以切实行动贯彻习近平总书记“打造平安管道、绿色管道、发展管道、友谊管道”的重要指示要求。会后,与会人员还参观了超导托卡马克大科学装置。   “跨地域复杂油气管网安全高效运行状态监测传感系统及应用”项目,由国家石油天然气管网集团有限公司、中科院合肥物质院、哈尔滨工业大学、沈阳仪表科学研究院有限公司、机械工业仪器仪表综合技术经济研究所、国家管网集团西南管道有限责任公司、山东微感光电子有限公司、中科院金属研究所、中国石油大学(北京)、国家管网集团北方管道有限责任公司等优势研究机构联合承担。
  • 国家重大科学仪器设备开发专项“一体化高精度称重传感器的研制及应用”项目启动
    2017年11月24日,国家重点研发计划“重大科学仪器设备开发”重点专项“一体化高精度称重传感器的研制及应用”项目在牵头单位上海舜宇恒平科学仪器有限公司召开了启动会。上海市科学技术委员会基地处领导,行业专家,项目参与单位的领导、科研骨干等参加了本次会议。该项目为期三年,由上海舜宇恒平科学仪器有限公司牵头,联合中国工程物理研究院机械制造工艺研究所、长沙湘平科技发展有限公司、四川中测测控科技有限公司共同承担。项目将开发十万分之一分辨的高精度称重传感器,并完成工程化产业化开发和计量测试标准方法,实现批量生产,在天平称重、水分测量、密度和热重测量等领域形成应用示范和产业化推广。 据项目负责人朱新强总经理介绍,高精度称重传感器不但在工业、制药、环境、医疗等诸多行业中不可或缺,广泛应用,而且也是精确量值传递的计量保障,具有重要科学意义。我国只能实现万分之一分辨,对这一传感器部件进行研究,不但可打破国外的垄断,使我国称量和计量领域进入国际先进行列,而且对各领域的基础研究可提供有力支撑。上海舜宇恒平科学仪器有限公司在精密称重技术和电子天平产品方面具有自己的核心技术和丰富研究经验,是我国首先开发出万分之一称重传感系统并商品化的企业,当前是国产天平品种最多、技术领先、国内产值最大的公司,开发的AE224型电子分析天平2016年被行业协会等权威机构评为“国产好仪器”中唯一称重类产品。
  • 空军高精度激光成像雷达入选国家重大仪器专项(图)
    资料图:激光雷达成像图    资料图:激光雷达样机   近日,空军装备研究院某所领衔的高精度激光扫描设备研发获得科技部“国家重大科学仪器设备开发项目”立项批复,成为该国家级重大项目设立两年来空军唯一入选项目。   据了解,该项技术通过高速激光扫描测量的方法,可大面积、高分辨率地快速获取被测对象表面的高精度三维数据,是测量技术的一次里程碑式革命,对于实现军事工程和工业测量的精细化管理具有重大意义。   “军民融合协作科研、联合攻关是成功立项的重要原因。”该所所长、中国工程院院士陈志杰表示。   据了解,这次项目申报工作由陈志杰领衔,副所长李光伟作为技术负责人牵头整体工作,一方面充分发挥院士领衔专家团队的人才优势和核心技术优势,另一方面与技术支撑单位中国科学院某研究所、联合产业化单位某地方光电技术公司通力合作,把合作从技术层面的项目协作提升为战略层面的联合攻关,从阶段性配合提升为全程式融合,充分发挥各家优势互补的特点,在技术开发、工程化和产业化上实现无缝对接,科研成果一旦出炉,马上投入产业化生产,迅速转化为军事价值和社会效益。
  • 四方光电激光扬尘传感器助力打赢蓝天保卫战
    p   根据“两会”期间公布的2020年政府工作报告,今年要实现单位国内生产总值能耗和主要污染物排放量继续下降 深化重点地区大气污染治理攻坚 要打好蓝天、碧水、净土保卫战,实现污染防治攻坚战阶段性目标。 br/ /p p   2020年是打赢蓝天保卫战、“十三五”规划的全面收官之年,我国大气污染治理进入攻坚“深水期”,剩下的都是难啃的“硬骨头”。作为一直以来的重点和难点,扬尘污染治理已然成为大气污染防治目标完成与否的关键点之一。 /p p   扬尘治理,需对症下药 而把脉问诊,监测为先。高性能的扬尘传感器对实现扬尘全面监测、精准治理、降低成本等多方面的重要性不言而喻。 /p p    span style=" color: rgb(0, 176, 240) " strong 扬尘传感器的需求及应用现状 /strong /span /p p   行业发展初期,扬尘监测设备多基于β射线吸收法,然而受仪器体积较大、成本高昂等因素掣肘,量大面广的需求无法得到真正满足。 /p p   基于光散射原理的粉尘传感器,在民用室内检测应用中,经历了从采用LED光源和扩散式采样,用于粉尘浓度变化的趋势检测,到升级为激光光源和风扇采样,可以精确检测PM2.5数值的创新发展过程。然而针对室外扬尘监测还需要PM10和TSP的精准监测要求,则无法得到满足。 /p p   因此,能够同时准确测量PM2.5/PM10/TSP、体积小、购买和维护成本低成为了扬尘监测设备配套传感器面临的主要挑战。 /p p    span style=" color: rgb(0, 176, 240) " strong 室外扬尘颗粒物监测的技术难点 /strong /span /p p   ① 与β射线原理的设备保持较高的线性相关性 /p p   国站监测设备采用的是β射线原理,其他的扬尘监测站的监测数据必须要与其保持高度一致性,但由于原理上的差异,要做到这一点,传感器需要采用更高性能的器件,有效提升颗粒物识别的能力。 /p p   ② 满足室外-30℃~70℃的工作温度要求 /p p   温度对传感器激光管的影响非常大,然而室外温度范围更宽,夏天在太阳下暴晒,温度可能会到达70℃ 冬天北方严寒地区最低温度可能达到零下30℃。这就要求传感器在此温度下不仅能够正常工作,还要确保检测的准确性。 /p p   ③检测精度不受水雾影响 /p p   由于室外环境经常会遇到凝霜与露水的情况,这些水汽进入到传感器后会严重影响到传感器的测量值,甚至会造成传感器永久损坏。 /p p   ④长期使用,精度不受积灰影响 /p p   扬尘传感器工作在室外,大颗粒的灰尘经过传感器采样风道内会受到重力影响附着在传感器内部,长期使用,会使得灰尘在传感器内部大量堆积,影响到测量准确性。 /p p    span style=" color: rgb(0, 176, 240) " strong 四方光电激光扬尘传感器的技术特点 /strong /span /p p   四方光电基于创新的光散射技术研究,陆续推出红外粉尘传感器、激光粉尘传感器等系列传感器产品,广泛应用于室内、室外及车内检测等领域。 /p p   在此基础上,四方光电针对扬尘传感器的应用场景,以及不同地方标准需求,推动技术革新升级,成功研发扬尘颗粒物传感器PM3003S及 PM3006。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/578caa97-49a6-4d7e-9c5f-e5fc398bc203.jpg" title=" 222_副本.jpg" alt=" 222_副本.jpg" / /p p style=" text-align: center " 图1:PM3006S(左)及 PM3006(右)激光扬尘传感器 /p p    strong 1、 扬尘颗粒物智能识别技术(API技术) /strong /p p   PM3003S,PM3006采用了独特的API(Auto Particle Identification,自动颗粒识别)技术,在多种尘源下进行标定,根据检测到的颗粒物分布进行自动判断,确保PM2.5、PM10和TSP的检测精度。 /p p style=" text-align: center" img style=" width: 580px height: 393px " src=" https://img1.17img.cn/17img/images/202006/uepic/bb9423a3-a58f-4a20-924e-5ae69424f42a.jpg" title=" 11.jpg" width=" 580" height=" 393" border=" 0" vspace=" 0" alt=" 11.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/8ddb10c0-114d-496b-bd0c-6b33eaad613f.jpg" title=" 22.jpg" / /p p    strong 2、 高温、恒功率、线型激光管 /strong /p p   PM3003S、 PM3006激光扬尘传感器采用了工作温度在-30~70℃的恒功率、线型光源,其光功率高达100mW,相比点光源高出20倍以上,原始信号更强,大大提升了颗粒物的识别效率。同时对光源采用了恒功率控制,保证原始信号的稳定输出,确保测量的稳定性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e6860d1a-bc80-4215-b684-13ef739fa43c.jpg" title=" 33_副本.jpg" alt=" 33_副本.jpg" / /p p style=" text-align: center " 图2:室外扬尘传感器与民用粉尘传感器光源差别,左:高功率线型光源,右:低功率点光源 /p p    strong 3、 自带除水雾装置,不受水汽影响。 /strong /p p   四方光电研制的PM3003S、 PM3006激光扬尘传感器前端配套了除湿装置,防止室外环境中细小的水珠进入检测气室,消除水汽对扬尘传感器的精度影响。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0c10a2cf-ddd2-450c-bf4b-330c21a12571.jpg" title=" 44_副本.jpg" alt=" 44_副本.jpg" / /p p    strong 4、 创新结构设计,长效防积灰。 /strong /p p   PM3003S、 PM3006激光扬尘传感器通过流体力学仿真对采样风道进行了长效防积灰结构设计,经过实际验证,可以减少室外环境对传感器检测精确度的影响,降低后期维护成本。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/efa66063-7146-489b-88b2-af426b89892a.jpg" title=" 66.jpg" alt=" 66.jpg" / /p p   我国室外扬尘网格化监测经历了早期的β射线吸收法,到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。同时网格化室外粉尘监控希望得到局部的可以与国家大气环境监测网数据具备的PM2.5/PM10/TSP的多项参数对比, 民用激光传感器由于激光功率小,采样流量小, PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。四方光电研制的PM3003S、 PM3006激光扬尘传感器通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样机构、高湿度环境的水雾去除装置等,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。 /p p br/ /p
  • 科技部重大专项“激光高温湿度传感器研发”启动
    9月19日,国家科技部重大科学仪器设备开发专项——“面向复杂工况的激光高温湿度传感器研制及产业化”项目启动仪式在北京召开。该项目牵头单位——北京航天易联科技发展有限公司项目负责人在启动仪式上宣布:将用两年时间,突破包括湿度大动态范围自适应测量技术在内的4项关键技术、成功研制工作温度在20℃~350℃的激光高温湿度传感器并最终实现产品化和工业化推广应用。 p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/b65a533d-af10-4879-9e93-fcc6b8f4c5f8.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 项目启动会现场 /p p   “激光高温湿度传感器研制及产业化”项目的主要任务是研发面向复杂工况条件的激光高温湿度传感器。该类激光湿度传感器基于TDLAS技术(可调谐半导体激光吸收光谱技术的简称)实现湿度的测量。19日上午举行的启动仪式上,该项目专家组负责人、我国著名激光和非线性光学专家、中科院院士姚建铨言简意赅地介绍了TDLAS技术的基本原理:即基于每种气体存在吸收特定波长光的现象,通过特殊波长的激光光源照射气体,气体吸收使之强度变弱,判断变弱程度计算气体浓度。相比于传统测量方式,在高温环境下使用该技术进行湿度测量,具有无交叉干扰、测量范围大、精度高、实时测量等优势,可实现高温湿度实时监测。该传感器一旦研制成功,可提升我国高温湿度监测水平,提高环保排放测算准确性、工业过程节能减排。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/129a5385-e382-4fc9-9137-e4a0196ea234.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " 中科院院士姚建铨担任该项目技术专家组组长 /p p   启动仪式上,来自科技部、航天科技集团、北京经济技术开发区、中国航天空气动力技术研究院的相关领导参加了该活动。科技部高技术研究发展中心的专家介绍了项目研制及产业化相关政策并同时表示,开展该仪器专项研制就是要解决我国环保、工业过程控制等多个领域高温湿度准确测量的难题。“高温环境下湿度测量,其准确性直接影响环保领域计算排放总量或工业生产领域过程控制效率。以环保领域为例,工业锅炉排放的污染物浓度测算需要测量烟气湿度。因此,烟气含湿量测量的准确性直接影响排放总量,影响国家环保指标考核。” 高温湿度测量如此重要,但其技术实现的难度却非常大,正因为如此,该项目于今年8月获批科技部重大科学仪器设备开发专项申请。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/1b8a8bca-d7e5-4b8a-9dae-a47cb33ad7d1.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " 项目组负责人、北京航天易联科技发展有限公司总经理李刚在汇报项目实施方案 /p p   根据国家重大专项研发的相关要求,此次启动仪式一项重要议题就是由项目牵头单位——北京航天易联科技发展有限公司向技术专家组和用户委员会汇报项目具体实施方案。此前,航天易联已经开展四年 TDLAS技术研发,具备相关基础,并于2016年6月开展高精度TDLAS湿度测量技术的成果评价,技术水平达到国际先进。该公司负责人李刚在汇报中对研究背景、目标、研究内容、技术路线、科研团队及研究基础、预期成果、项目研究周期等做了详尽汇报。据他介绍,项目组将围绕测量环境湿度大、工况干扰因素多(腐蚀气、静电、烟尘、液滴等)、缺乏高温高湿标定技术及恶劣工况下器件可靠性等关键问题,突破湿度大动态范围自适应测量技术、复杂工况多波长测量控制技术及激光器温度电流控制技术,研制工作温度20℃~350℃的激光高温湿度传感器,开展示范应用改进优化,达到烟道气、废气、锅炉汽等高温湿度实时测量的目的,实现最终传感器产品化、产业化。 /p p   来自环境监测、无线电、仪表仪器等相关领域的技术专家组和由电力、环保、航天、石化等行业用户组成的用户委员听取了项目组汇报,审阅论证材料并进行质询,同时针对产品示范应用阶段提出了相关建议。经过项目组答疑,专家组和用户委员会讨论后认为:方案目标准确,内容翔实,技术路线可行,一致同意该方案通过评审,建议尽快组织实施,围绕典型代表性工况开展更具针对性的设计开发、示范应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/e5c3f041-6316-4495-ae98-f28eafd252ed.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center " 与会嘉宾了解TDLAS产品 /p p   据了解,该项目研发是航天易联与中科院半导体研究所、中科院电工研究所、武汉市天虹仪表有限责任公司的强强联合。北京航天易联科技发展有限公司是航天科技集团公司第十一研究院控股公司,具有四年TDLAS技术研发基础,拥有三款具有自主知识产权产品,承担项目传感器研制和产业化工作 中科院半导体研究所在半导体激光器研发领域一直处于我国领先行列,为本项目研制小型化半导体激光器 中科院电工研究所长期从事电力电子控制研究,擅长信号处理、仪器设计,为本项目开发核心算法和测量技术 武汉市天虹仪表有限责任公司在环保仪器设备领域有近二十年的科研开发经验,为本项目现场测试、示范应用推广提供有力支撑。 /p p   在项目实施方案中,研发团队提出:将在两年时间内,将本项目开发的激光高温湿度传感器应用在便携式烟道气参数测量仪、烟气排放连续监测系统和工业过程气湿度分析仪器中,开展5项示范应用,解决我国环保、工业过程控制等多个领域高温湿度准确测量难题。同时,形成自主知识产权,申请发明专利3项,文章1~3篇,标准1项。完成传感器质量体系文件,技术就绪度达到9级,开展产业化推广,项目完成后三年内实现年销售500套,年销售额2500万。 /p
  • IDS3010高精度皮米激光干涉仪在齿轮箱机械载荷试验运动跟踪上的全新应用!
    研究背景 驱动工程行业中的部件需要测试多种机械特性,例如,需要检查齿轮箱的长期平滑度、同步性、齿隙、扭转刚度、摩擦行为和机械弹性[1,2]。测试实验室通常配备各种测试台,以便于在接近真实世界的条件下分析齿轮,确定并确保其技术特性。 WITTENSTEIN alpha是attocube母公司WITTENSTEN SE的战略业务部门,负责精度需求超高的机电伺服驱动系统的开发和机械生产。WITTENSTEIN在垂直线性运动测试台上使用了attocube的皮米精度激光干涉仪-IDS3010。IDS3010能够提供皮米分辨率,1MHz的数据输出,可有效帮助测试齿轮齿条传动系统中行星齿轮箱机械参数的长期稳定性。 实验装置 试验台包含沿垂直轴移动的400 kg负载质量。该负载与齿轮齿条系统相连,齿轮齿条系统由WITTENSTEIN alpha齿轮箱和伺服电机驱动组成。传统的玻璃标尺在精度、灵活性和检测高频振动方面十分受限,无法收集该测试台所需的所有数据。为了更好地了解变速箱的性能,需要精度更高且易于集成到现有装置中的设备。皮米精度激光干涉仪-IDS3010具有皮米级精度、紧凑的传感器头和模块化设计、通过光纤传输激光等特性,工程师将其集成到装置中并实现了快速安装和快速对齐。在开始整合两小时内,使用IDS3010在整个0.747米的工作范围内完成了测量。图1显示了测试台,包括安装在400 kg重量上的角锥棱镜和M12/C7.6准直传感器头,同时以1 MHz带宽从IDS3010读取模拟Sin/Cos数据。 Figure 1: Test bench for mechanical load tests of a gearbox 测试结果分析 图2显示了工作范围内几个周期的位移数据。如下图(a)所示,循环结果接近正弦曲线;图(b)是运动的转折点放大的曲线数据。高分辨率位移数据为同步和传动误差的齿轮箱行为提供了新证据。探索纳米级细节的能力为频率和运动分析提供了新的机会。通过IDS3010和进一步优化,可以可视化完成行星齿轮箱中单齿的影响。此外,如图(e)所示,两种方法的差异表明,玻璃尺读数提供的测量数据准确性较差。两个信号之间差异的周期性明显,表明不是由于噪声或变化造成的数据误差,而是因为玻璃尺编码器位于远离感兴趣的测量点和玻璃刻度不精确。此外,IDS3010及其光学组件具有更明显的优点,例如紧凑的传感器头和质量可忽略的角锥棱镜。 Figure 2: Displacement data of the weight moved by the gearbox. (a) shows the position of the mass that was measured with the IDS3010. (b) is a 160 000 times magnified segment of a) to show the precision of the interferometric measurement. (c) is the speed measurement of the weight movement obtained from the data of a). (d) is the same measurement as a) but with an optical linear encoder – which looks similar until one looks at the detail of the difference – asseen in plot (e).结论 综上所述,IDS3010提高了测试台的精度和分辨率。基于激光的测量和小型化组件对无限接近感兴趣的点进行测量成为可能,且不会影响整个装置的运动行为。这使得测试和开发工程师能够确定更多无法使用玻璃尺检测到的机械和摩擦现象。此外,IDS3010紧凑的设计、易于安装和快速对准的特性,允许在一个实验室内的多个测试台上灵活应用和集成。由于IDS3010可测量长达5米的工作距离,多达三个的光轴,因此干涉仪也可用于更大的测试台。 References [1] R. Russo, R. Brancati, E. Rocca: “Experimental investigations about the influence of oil lubricant between teeth on the gear rattle phenomenon”, Journal of Sound and Vibration, Volume 321, Issues 3-5, 2009, Pages 647-661.[2] Y. Chen, A. Ishibashi: “Investigation of the Noise and Vibration of Planetary Gear Drives”, GEAR TECHNOLOGY, Jan/Feb 2006.相关产品1、皮米精度激光干涉仪-IDS3010
  • 国家重大科学仪器设备开发专项“一体化高精度称重传感器的研制及应用”项目启动
    p   2017年11月24日,国家重点研发计划“重大科学仪器设备开发”重点专项“一体化高精度称重传感器的研制及应用”项目在牵头单位上海舜宇恒平科学仪器有限公司召开了启动会。上海市科学技术委员会基地处领导,行业专家,项目参与单位的领导、科研骨干等参加了本次会议。 /p p   该项目为期三年,由上海舜宇恒平科学仪器有限公司牵头,联合中国工程物理研究院机械制造工艺研究所、长沙湘平科技发展有限公司、四川中测测控科技有限公司共同承担。项目将开发十万分之一分辨的高精度称重传感器,并完成工程化产业化开发和计量测试标准方法,实现批量生产,在天平称重、水分测量、密度和热重测量等领域形成应用示范和产业化推广。 /p p   据项目负责人朱新强总经理介绍,高精度称重传感器不但在工业、制药、环境、医疗等诸多行业中不可或缺,广泛应用,而且也是精确量值传递的计量保障,具有重要科学意义。我国只能实现万分之一分辨,对这一传感器部件进行研究,不但可打破国外的垄断,使我国称量和计量领域进入国际先进行列,而且对各领域的基础研究可提供有力支撑。上海舜宇恒平科学仪器有限公司在精密称重技术和电子天平产品方面具有自己的核心技术和丰富研究经验,是我国首先开发出万分之一称重传感系统并商品化的企业,当前是国产天平品种最多、技术领先、国内产值最大的公司,开发的AE224型电子分析天平2016年被行业协会等权威机构评为“国产好仪器”中唯一称重类产品。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/ee74af00-ad68-4bfd-8b50-828e3ceb74e1.jpg" title=" 微信图片_20171219134856(1)_meitu_1.jpg" / /p p style=" text-align: center " (一)项目启动大会 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/b791e411-dc3b-4cc4-885a-5c19d9754690.jpg" title=" 微信图片2_meitu_2.jpg" / /p p style=" text-align: center " (二)颁发技术专家组聘书 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/7de672c8-8b51-4a22-bf08-4b593324bf75.jpg" title=" 微信图片3_meitu_3.jpg" / /p p style=" text-align: center " (三)颁发用户专家委员会聘书 /p
  • 皮米精度激光干涉仪如何在众多前沿领域中大显神通?
    1.IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达中的应用自动驾驶是目前汽车工业为前沿和火热的研究,其中可靠和高分辨率的距离测量雷达的开发是尤为重要的。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010),该雷达测量系统在-3.9 um至+2.8 um之间实现了-0.5-0.4 um的超高精度。这种新型的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。更多信息请了解:S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019)图1.1 紧凑型FMCW传感器的照片图1.2 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果 2. IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通吐量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一种基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究由光压导致的形变特性。图2.1所示为测量装置示意图,测量装置是由5 x 5 共计25个M12/F40激光探头组成的网格,用于监测纳米的无轴承平面电机内部的移动器变形。实验目的是通过对无轴承平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544 nm,小形变量为110 nm(如图2.2所示)。更多信息请了解:Measuring the Deformation of a Magnetically Levitated Plate displacement sensor图2.1 左侧为5X5排列探头测量装置示意图,右图为实物图图2.2 无轴承磁悬浮机台形变量的测量结果,大形变量为544 nm 3.IDS3010在提高X射线成像分辨率中的应用在硬X射线成像中,每个探针平均扫描时间的减少对于由束流造成的损伤是至关重要的。同时,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。attocube公司的皮米精度干涉仪FPS3010(升后的型号为IDS3010),被用于测量及优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10 nm。更多信息请了解:Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)图3.1 实验得到的系统分辨率结果 4.IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在Nature上(doi:10.1038/nature25156)。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2 pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。更多信息请了解:Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)图4.1 实验中对对机械超材料微小振动的频率分析5. IDS3010激光干涉仪在快速机床校准中的应用德国亚琛工业大学(Rwth Aachen University,被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这又将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时且需要中断生产过程的安装和卸载校准设备变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪。其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较,六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性。值得指出的是,使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而在保持相同的精度水平下大的提高了生产率。更多信息请了解:Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)图5.1 自动校准激光探头安装示意图6.IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。几何测量系统是设计的锥束C-T系统的一大挑战。近期,瑞士联邦计量院(METAS)的科学家采用德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。该实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够进行样品台的角度误差分析。终实现非线性度小于0.1 um,锥束稳定性在一小时内优于10 ppb的高精度工业C-T。更多信息请了解:Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6.1激光干涉仪在系统中的测量定位示意图7.IDS3010激光干涉仪在增材制造3D打印中的应用微尺度选择性激光烧结(u-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。为满足导轨对定位精度高的要求,该系统采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。更多信息请了解:Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA 7.1系统示意图,其中激光干涉仪被用作位移的测量和反馈8. IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对系统稳定性提出了更高的要求。在整个实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,在40小时内表现出优于1.25 nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300 pm的分辨率。因此,IDS3010是对上述X射线显微镜装置的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40 nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45 nm。更多信息请了解:Characterizing a scanning fluorescence X ray microscope made with the displacement sensor 8.1荧光X射线显微镜的高分辨成像结果
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 仕富梅发布全球首款高精度数字氧气传感器
    2009年2月1日英国Crowborough - 仕富梅很荣幸地宣布,全球首款高精度数字氧气传感器----Paracube® Premus O2传感器模块正式上市。   Paracube® Premus是在 Hummingbird Sensing Technology 新品牌下研发的首款传感器模块,其专业系列产品能够满足每个OEM合作伙伴对传感器的特殊要求。   Premus采用仕富梅成熟的顺磁氧测量池技术,其非损耗、紧凑弹性设计实现了业内领先的精度,集成度,线性度和重复性。除了氧气测量精度媲美苛刻的医疗氧气测量精度外,它还提供完整的0-100% O2量程,独创的数字信号处理技术还使测量稳定性更加出色。   Premus已通过本安认证,并和所有 Hummingbird 传感模块一样,也在仕富梅先进的ISO9001认证生产设备上按最高标准打造。   Premus是诸多应用场合的理想选择,如持续排放检测系统(CEMS),车辆排放测试及实验室测量等。结合仕富梅专业的技术支持,它提供低拥有成本的解决方案,安装运行完全令人放心。   有关Hummingbird Paracube® Premus的更多信息,请联系仕富梅销售团队。   欧洲业务中心电话:+31 (0) 79 330 1581 / 00800 737866390(法国,荷兰,德国,比利时和英国免费客服电话)   美洲业务中心电话:+1 281 295 5800   亚太地区业务中心电话:+86 (0)21 6489 7570
  • 海尔欣科技 OPGM-2000系列 激光高精度 汽车尾气遥感模块
    1. 产品简介近几年国内机动车尾气遥感监测技术得到快速发展。技术路线由一、二代的NDIR非分散红外光谱、DOAS 紫外差分吸收光谱,逐渐演变至第三代TDLAS可调节半导体激光吸收光谱技术。 传统的尾气遥测系统采用 NDIR、DOAS 相结合的方式,设备造价低,但在户外尾气遥感监测应用领域受环境的温度、湿度以及其它背景气体影响较严重,测量响应时间慢,存在严重的漂移,导致无法准确测量尾气排放各污染物浓度值。新一代的TDLAS可调谐半导体激光吸收光谱技术路线,在抗干扰能力、测量分辨率、信号稳定性、光源寿命、运维成本以及测量响应时间等方面具有明显的优势。 海尔欣科技依托丰富的中远红外激光气体检测领域的技术积累,全新推出OPGM-2000系列高精度气体遥感全激光监测模块。采用近-中红外半导体激光器(QCL)测量 CO、CO2、NO、HC,四个气体组分采用独立灵活的单组分模块化设计,体积小,性价比高。既方便工程公司进行系统集成,也适合对传统非激光方案的遥测模组进行升级改造。单组分遥测模块示意图测量原理示意图2. 产品特色1. 基于激光吸收光谱遥感技术,非接触式测量,无背景气体交叉干扰,检测精度高;2. 采用单组分独立模块化设计,适合替换现有非激光NO、CH等测量方案,保留其他组分;3. 系统响应时间约为0.5秒,快速检测尾气排放;4. 内置参比校准池,实时校准波长和精度,系统漂移小;5. 集成温度和气压传感器,自动进行温度气压补偿,测量准确度高;6. 采用逆反射技术,实现高效的反射光信号收集,自动进行信号强度补偿,降低扬尘等引起信号衰减导致的测量误差;7. 利用绿色激光测量不透光度,同时作为引导光便于光路的调节;8. 适合同时测量汽油车和柴油车排放;9. 符合《在用柴油车排气污染物测量方法及技术要求(遥感检测方法)》(HJ845-2017)标准要求;技术参数表针对汽车尾气遥测应用的激光模块测量原理红外TDLAS技术,每组分由单独模块测量技术指标检测气体独立组分NO\CH\CO\CO2检测量程NO:0-10000ppmCO2:0%~16%CO:0%~10%HC:0-10000ppm检测精度NO精度:相对误差±10%且绝对误差±20ppm;CO2精度:相对误差±10%且绝对误差为0.25%;CO精度:相对误差±10%且绝对误差为0.25%;HC精度:相对误差±10%且绝对误差±10ppm;不透光度0-100%绝对误差为±2%且相对误差为±5%测量距离可实现4车道往返30米光程测量响应时间信号接口信号传输RS232/RS485输出频率10/20/50/100Hz可选工作条件环境温度-10~50 ℃环境气压80~120 kPa电源功耗24 VDC @ 200 W安装方式水平/垂直固定式安装尺寸/重量光学系统380′140′100 mm3(护罩内),~5 kgSDK 软件界面(示例) 设备清单序号名称数量备注1气体遥测主机1部2中控机1台3通信电缆1根RS232或以太网口选配件4SDK软件1套 不同遥测技术方案对比
  • 我国成功研制先进的高速高精度激光汤姆逊散射仪
    p   近日,中国科学院空天信息研究院和中国科学技术大学等单位联合研制出高速高精度激光汤姆逊散射仪。 /p p   今年5月,在“科大一环”磁约束聚变等离子体装置开展实验中,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现了小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的预警时间是国际同类系统的一半,指标提高一倍。这标志着我国在该领域进入国际领先水平行列,为我国未来磁约束聚变能装置的高精度测量奠定了坚实基础。 /p p   据了解,在磁约束聚变反应装置工作过程中,偏滤器将承受巨大的能量泄放,需要对等离子体电子温度进行提前预警和实时反馈控制,实现脱靶而避免等离子体损伤器壁进而导致灾难性后果。基于高频高能激光的汤姆逊散射测量是精确测量等离子体电子温度的唯一可靠测量手段,激光的工作频率决定了温度预警的采样时间间隔,间隔越小系统预警越及时,装置运行安全系数越高。 /p p   受限于激光器能量和频率水平,我国以往等离子体温度诊断采用数十赫兹的低频激光器,采样间隔宽,遇到紧急情况无法及时预警,导致装置运行存在巨大风险。虽然采用多台低频率激光器合束技术可以满足预警时间间隔要求,但是这种方法可靠性大幅降低。欧洲和日本已经掌握了100赫兹工作频率的高能激光技术,预警时间间隔达到10毫秒,但这个预警时间间隔仍然较长,无法完全保证装置安全运行。 /p p   从2015年起,空天信息研究院联合中国科学院光电技术研究所和同济大学等单位历时3年时间,突破了高能量高光束质量激光传输与放大、激光相位共轭波前畸变校正、大口径/大尺寸激光放大模块、大功率脉冲激光驱动电源等关键技术,于2017年4月在国际上首次发布重复频率200赫兹、脉冲能量5焦耳、脉冲宽度6.6纳秒、光束质量1.7倍衍射极限的高频高能激光指标,将我国纳秒脉宽激光器的功率水平提高了1个数量级。研究团队研发出基本完善的工艺流程,核心器件/部件实现国产化,形成整机工程化制造能力。以200赫兹/5焦耳激光器为光源,中国科学技术大学攻克了大功率激光传输系统综合降噪、收集光学精准对焦、弱光信号探测提取等难题,成功地研制我国迄今精度最高的激光汤姆逊散射检测系统。 /p p   未来,研究团队将开展更高功率、更高频率激光器研发和更高精度的诊断实验,计划将激光器的工作频率提高至500赫兹,检测系统提供2毫秒的安全预警时间间隔和1电子伏特的电子温度测量精度,为下一代磁约束聚变装置安全运行提供高速预警手段。 /p p br/ /p
  • 工信部:加快关键芯片、高精度传感器等研发和推广
    近日,工业和信息化部副部长辛国斌在新闻发布会上就汽车电动化、智能化、网联化发展表示,相比电动化,汽车网联化、智能化变革涉及的领域更多,程度也更深,可以想像的空间也更大。创新是第一生产力,辛国斌指出,下一步,新能源汽车产业发展部际协调机制各成员单位将重点开展以下几个方面工作:一是支持关键技术攻关。支持重点大企业牵头,大中小企业参与,开展跨行业跨领域协同创新。创新是第一生产力,要加快关键芯片、高精度传感器、操作系统等新技术新产品的研发和推广应用,进一步提升产业发展内生动力。二是进一步完善网联基础设施。加快C-V2X、路侧感知、边缘计算等基础设施建设,建立基于边缘云、区域云和中心云三级架构的云控基础平台,形成统一的接口、数据和通信标准,进一步提升网络感知、云端计算能力。三是深化测试示范应用。启动智能网联汽车准入和上路通行试点,组织开展城市级“车路云一体化”示范应用,支持有条件的自动驾驶,这里指的是L3级及更高级别的自动驾驶功能商业化应用。此前,辛国斌曾强调,要加强顶层设计,建立新能源汽车产业发展部际协调机制,统筹推进产业发展全局性工作;强化技术创新,支持产学研用深度合作,开展车用芯片、固态电池、操作系统、高精度传感器等技术攻关;完善政策体系,推动研究并尽快明确2023年后车购税减免政策,制定加快充换电建设、公共领域新能源汽车推广应用等支持政策;深化国际合作,加快规则对接和认证标准统一,建设海外政策、法规、标准等信息共享服务平台,营造市场化、法治化、国际化营商环境。
  • 应用案例 | 通过实施光学条纹噪声抑制方法的激光波长调制光谱技术实现气体测量的高精度和高灵敏度检测
    近日,来自安徽科技理工大学、安徽西部大学皖西学院、复旦大学大气与海洋科学学院、上海期智研究院的联合研究团队发表了《通过实施光学条纹噪声抑制方法的激光波长调制光谱技术实现气体测量的高精度和高灵敏度检测》论文。Recently, the joint research team from Anhui University of Science and Technology, West Anhui University, Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai QiZhi Institute published an academic papers High precision and sensitivity detection of gas measurement by laser wavelength modulation spectroscopy implementing an optical fringe noise suppression method.可调谐二极管激光吸收光谱(TDLAS)已被开发用于痕量气体测量,因其高精度、高灵敏度和无需任何样品准备的原位自校准的独特优势。通常,长光程的多次通过腔体(MPC)被应用于增强基于TDLAS的传感器的检测精度和灵敏度。然而,MPC中出现的意外光学干涉纹严重影响了传感器的检测精度和灵敏度。基于MPC的TDLAS传感器的检测精度和灵敏度通常受到光学干涉纹的限制,这些干涉纹由衍射、镜面表面瑕疵的散射、镜面畸变、热膨胀、冷收缩或应力变形引起。因此,MPC中观察到的光学干涉纹由不同的光学干涉纹组成。这些光学干涉纹主要是由于少量的激光以与主激光束相差ΔL的光程到达探测器所致。这些问题对于TDLAS是普遍存在的,尤其是在使用密集重叠斑点模式的MPC时,提出了一些不同的方法来消除光学干涉纹的负面影响。The Tunable Diode Laser Absorption Spectroscopy (TDLAS) has been developed for trace gas measurement, as its unique advantages of high precision, high sensitivity and self-calibration in situ qualification with-out any sample preparation. The multi-pass cell (MPC) with a long optical path is usually applied to enhance TDLAS-based sensor’s detection precision and sensitivity. However, the unexpected optical fringes occurring in the MPC often spoil the sensor’s detection precision and sensitivity seriously. The detection precision and sensitivity of the TDLAS-based sensors containing an MPC are often limited by the optical fringes that result from diffraction, scattering on the mirror surface imperfections, mirror aberration, thermal expansion, cold contraction, or stress deformation. Therefore, the complex optical fringe consisting of different optical fringe will be observed in the MPC. These optical fringes are due largely to a small amount of laser reaching the detector with an optical path length differing by ΔL from the main laser beam. Those problems are common for TDLAS, especially using dense overlapped spot pattern MPC and some di&fflig erent methods are proposed to eliminate the negative influence of the optical fringes.研究团队提出了一种抑制可调二极管激光吸收光谱中光学条纹噪声的新方法,并将其应用于由光学条纹扰动的CH4气体传感器,以提高检测精度和灵敏度。所开发的CH4检测仪的示意图如图1所示。宁波海尔欣光电科技有限公司为此项目提供锁相放大器(HPLIA 微型双通道调制解调锁相放大器),从光电探测器输出的信号发送到锁相放大器,锁相放大器相对于同步信号对2f模式进行解调,锁相放大器的时间常数设为1ms。In this work, a novel method to suppress optical fringe noise in the tunable diode laser absorption spectroscopy is proposed and applied to the CH4 gas sensor perturbed by optical fringes for higher detection precision and sensitivity.The schematic diagram of the developed CH4 detection instrument is shown in Fig. 1 . HealthyPhoton Co.,Ltd provided a HPLIA Miniature dual-channel modulated demodulation lock-in amplifier for this project. The lock-in amplifier demodulates the signal in the 2f mode with respect to the sync signal. The time constant of the lock-in amplifier is set to 1 ms.Fig.1. Schematic diagram of the developed CH 4 detection systemlock-in amplifier (Healthy Photon, HPLIA)对于被光学条纹和随机噪声干扰的20 ppm CH4的二次谐波(2 f)信号,通过该新方法,2f信号的信噪比(SNR)从17提高到182,优化平均光谱范围Δ𝜆 。与未经处理的原始信号相比,CH4测量精度改善了约1.5倍。相应的最小可检测浓度可从3 ppb改善到0.78 ppb。系统的相应噪声当量吸收灵敏度(NNEA)和噪声当量浓度(NEC)分别为6.13 ×10-11 cm&minus 1 W Hz&minus 1/2 and 0.181 ppm。For the 2nd harmonic(2f) signal of 20 ppm CH4 spoiled by optical fringes and random noise, by the novel method, the signal-to-noise ratio (SNR) of the 2f signal is improved about 6.5 times from 17 to 182 with an optimal averaging spectral range Δ𝜆 . A &sim 1.5 times improvement in the measurement precision of CH4 is achieved compared to unprocessed raw signal. The corresponding minimum detectable concentration can be improved from 3 ppb down to 0.78 ppb. The corresponding noise equivalent absorption sensitivity (NNEA) and the noise equivalent concentration (NEC) of the system is 6.13 ×10-11cmW-1Hz-1/2 and 0.181 ppm, respectively.Violet line from traditional averaging method and magenta line from the novel optical fringe noisesuppression method.Histogram plot of the 20 ppm CH 4 deviation.20 ppm CH 4 Allan-deviation stability of developed overlapped spot pattern MPC.参考文献:Reference:Yanan Cao, Xin Cheng, Zong Xu, Xing Tian, Gang Cheng, Feiyan Peng, Jingjing WangHigh precision and sensitivity detection of gas measurement by laser wavelengthmodulation spectroscopy implementing an optical fringe noise suppression method, Optics and Lasers in Engineering 166 (2023) 107570www.elsevier.com/locate/optlaseng
  • 空军高精度激光扫描设备研发立项
    近日,空军装备研究院某所领衔的高精度激光扫描设备研发获得科技部“国家重大科学仪器设备开发项目”立项批复,成为该国家级重大项目设立两年来空军唯一入选项目。   据了解,该项技术通过高速激光扫描测量的方法,可大面积、高分辨率地快速获取被测对象表面的高精度三维数据,是测量技术的一次里程碑式革命,对于实现军事工程和工业测量的精细化管理具有重大意义。   “军民融合协作科研、联合攻关是成功立项的重要原因。”该所所长、中国工程院院士陈志杰表示。   据了解,这次项目申报工作由陈志杰领衔,副所长李光伟作为技术负责人牵头整体工作,一方面充分发挥院士领衔专家团队的人才优势和核心技术优势,另一方面与技术支撑单位中国科学院某研究所、联合产业化单位某地方光电技术公司通力合作,把合作从技术层面的项目协作提升为战略层面的联合攻关,从阶段性配合提升为全程式融合,充分发挥各家优势互补的特点,在技术开发、工程化和产业化上实现无缝对接,科研成果一旦出炉,马上投入产业化生产,迅速转化为军事价值和社会效益。
  • 立仪科技获数千万A轮融资,专注研发光谱共焦传感器
    3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被基恩士等国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波表示:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。
  • 我国学者成功开发新型5 nm超高精度激光光刻加工方法
    p & nbsp & nbsp & nbsp & nbsp 近日,中国科学院苏州纳米技术与纳米仿生研究所张子旸研究员与国家纳米中心刘前研究员合作,在NanoLetters上发表了研究论文,报道了一种他们开发的新型5nm超高精度激光光刻加工方法。    /p p   据悉,研究团队设计开发了一种新型三层堆叠薄膜结构。在无机钛膜光刻胶上,采用双激光束交叠技术,通过精确控制能量密度及步长,实现了1/55衍射极限的突破,达到了最小5nm的特征线宽。 /p p   此外,研究团队利用这种超分辨的激光直写技术,实现了纳米狭缝电极阵列结构的大规模制备。同时,该团队还利用发展的新技术制备出了纳米狭缝电极为基本结构的多维度可调的电控纳米SERS传感器。 /p p   值得一提的是,研究团队所开发的具有完全知识产权的激光直写设备,利用了激光与物质的非线性相互作用来提高加工分辨率,其有别于传统的缩短激光波长或增大数值孔径的技术路径;并打破了传统激光直写技术中受体材料为有机光刻胶的限制,可使用多种受体材料,极大地扩展了激光直写的应用场景。 /p p   目前,该工作得到了国家重点研究计划项目、国家自然科学基金、Eu-FP7项目、中国博士后科学基金的支持。 /p
  • 打造智能传感产业大平台、大中心、大生态,2021世界传感器大会展会盛况直击!
    2021年11月1-3日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、郑州市人民政府、河南省科学技术协会、河南省工业和信息化厅、河南省发展和改革委员会、河南省科学技术厅、中共河南省委外事工作委员会办公室承办的2021世界传感器大会-展览会在河南省郑州国际会展中心隆重举办!本次展览会近10000平展出面积,近200家国内外企业积极参展,展览会将以传感器研发创新为核心,以传感器系统集成与应用为切入点,涉及传感器应用、标准发展和相关元器件,产业链上下游的关联企业同台展示传感器产业生态圈。松下作为中国工业自动化生产的行业领军者,通过精研传感器科技、精化传感器生产进一步占领传感器产业发展高地,现场展示CMOS型微型激光位移传感器HG-C、接触式数字位移传感器HG-S、超高速・高精度激光位移传感器 HL-C2等最新成品和技术。西门子作为世界500强,这次参展的产品主要有压力、温度、流量,分析表等。在行业中应用广泛,比如石化、冶金、电力、水行业等。易福门展示的产品有位置类的:电感式接近开关,光电开关,激光测距传感器;过程类的:液位、压力、流量、温度传感器;以及R360移动控制器,安全光幕,安全继电器、振动传感器等新产品。万可现场展示了丰富的自动化控制技术产品、工业接口模块及采用笼式弹簧连接技术的轨装式接线端子等创新产品,可满足物流行业智能化发展对设备的自动化及电气连接提出的更高要求。作为电子测试测量行业的佼佼者,福禄克公司的6个事业部联合参展,将携众多重量级产品亮相此次展会。届时用户将有机会近距离的了解到福禄克高端产品,同时现场将会有专家为用户答疑解惑。作为大会东道主的汉威科技集团,本部坐落于河南郑州。本届大会上,汉威携各类优质高效的传感器及其检测方案、物联网解决方案及其行业垂直应用等在2021世界传感器大会 1003 展位上精彩亮相,吸引了众多嘉宾驻足。产品介绍,应用交流,使得这抹蓝色成为现场最具人气的展台。目前高通除了展示汉字库信息处理芯片以外,有6000多家应用案例,在这个应用案例的过程当中,接触到各行各业,高通并做了很多终端的产品和部件,如今物联网已经遍布全世界,而且物联网的应用会越来越广。现场直播逛展环节世界传感器大会已经连续成功举办三届,依托“一会、一赛、一展”等系列活动,吸引了一大批权威的院士专家和知名的企业关注郑州,聚集了智能传感器产业发展的郑州共识,促进了人才成果、项目研发机构、技术标准等创新资源的聚集共享,大会已经成为国内外传感器产业创新发展的知名盛会。
  • Nature:皮米精度位移测量激光干涉仪助力声子四极拓扑绝缘体观测
    电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。 图1:实验装置示意图(图片来源:doi:10.1038/nature25156) 值得指出的是,Sebastian Huber教授利用细金属丝将100片硅片组成一个10cmX10cm的平面,以此来模式二维拓扑缘体(如图1所示)。关键点是,当硅晶片被超声激励时,只有中心点有振动;其他角尽管连接在一起仍然保持静止。这种行为类似于二维拓扑缘体的带隙边缘和隙内拐角态的电子行为。而如何探测硅晶片的微小振动是整个实验成功的关键,Sebastian Huber教授利用德国attocube system AG公司的IDS3010皮米精度激光干涉仪(如图2所示)来测量硅晶片不同位置的微小振动变化,整个测量系统的不确定度达到5pm的精度,测量统计误差达到10pm,后在通过超声激励后测得硅晶片的中心位置的振动位移为11.2pm,通过傅里叶变换之后在73.6KHz(如图3所示)。通过attocube皮米精度激光干涉仪IDS3010成功实现声子四拓扑缘体的次观测。 图2:皮米精度位移测量激光干涉仪IDS3010 图3:测量系统示意图和经过傅里叶频率变换的测量结果(图片来源:doi:10.1038/nature25156)IDS3010皮米精度位移测量激光干涉仪体积小、测量精度高,分辨率高达1 pm,适合集成到工业应用与同步辐射应用中,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等。同时也得到了国内外众多低温、超导、真空等领域科研用户的认可和肯定。
  • 应用实例|STFC-UKRI:用于高功率激光实验的高精度微流控装置
    在英国科学与技术设施委员会(STFC-UKRI)中央激光研究所,微靶制造科学家们正积极投身于高功率激光实验的微靶研究。新一代激光器提升了重复频率(高达10Hz),这让高重复制靶法成为了重要的研究途径。在这些高功率激光实验中,科学家们依赖微流控装置实现亚微米级的液体片靶。然而,他们发现,依赖传统的机械加工或蚀刻来制造微流控通道,既耗时又昂贵。因此,研究小组正在寻求一种创新的解决方案,以便能够快速制作新的靶设计几何体原型来满足他们的实验需求。01、研究开发靶研究团队利用微流控设计了一种液体靶,当液体从微通道流出时产生了液体叶片靶。通道的设计会直接影响到叶片的质量,通过叶片的宽度和厚度判断。设计目标为制造出宽度为几毫米、厚度为几百纳米的叶片,以实现高精度实验需求。图1:当液体从通道中流出时产生的液体叶片靶由于液体的行为随通道的变化而变化,因此通道设计对实验来说尤为关键。需要平滑的通道以减少湍流,同时要严格控制出口的形状,因为它对最后的叶片质量起到重要影响。02、精密3D打印制造通道为了创建液体片,该团队利用摩方精密microArch® S240打印出 20mm x 15mm x 5mm 的结构,其中有一个30μm 深的通道和一个 100μm 的出口。当然,与微型且精确的通道相比,该结构尺寸相对较大。但使用摩方精密设备打印较大的零件时,可同时保持通道所需的精度和准确度。现今通道选用钨材质,得益于钨能实现精确加工。在这种背景下,研究团队运用摩方精密 microArch® 系列设备的高精度 3D 打印系统,迅速准确地构建通道,为科研和快速原型设计提供了高效且成本较低的解决方案。图2:原钨件图3:高精度3D打印制造零件的特定部分原文链接:https://bmf3d.com/resource/high-precision-microfluidic-devices-for-high-power-laser-experiments/microArch® S240microArch® S240 作为摩方精密一款面向工业批量生产的超高精密3D打印机,不仅荣获全球光电科技领域最高奖—"棱镜奖(Prism Award)",且具有以下突出特点和优势:高公差低层厚:光学精度高达10μm,±25µ m的加工公差,打印层厚10~40μm 打印体积扩大:满足工业打印的需求,可达100mm×100mm×75mm,实现更大规模的小部件产量;打印速度提升:最高提升10倍以上,快速缩短加工周期,为客户节省时间和成本;多种材料支持:支持多种高粘度陶瓷浆料(≤20000cps),以及耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料的打印;应用领域广泛:卓越的精度、扩大的打印体积和多材料兼容性,满足客户在尺寸、性能和效率方面的多重需求。摩方精密作为目前全球唯一可以生产最高精度达到2μm精度,微尺度3D打印技术及颠覆性精密加工能力解决方案提供商,会持续专注于精密器件免除模具一次成型能力的研发,为客户提供制造复杂三维微纳结构技术解决方案。
  • 我国首个碱金属原子光学传感器专用激光器诞生
    日前,中科院长春光机所在国内首次研制出碱金属原子光学传感技术专用的795nm和894nm 垂直腔面发射激光器(VCSEL)。该器件采用完全自主的结构设计、材料生长和芯片工艺研制而成,芯片体积仅为0.05立方毫米(0.5mmx0.5mmx0.2mm)。器件高稳定单模态激光输出高于0.2毫瓦,工作电流低于1.5毫安,功耗低于3毫瓦,工作温度超过100℃,可作为核心光源用于芯片级原子钟、原子磁力计、原子陀螺仪等碱金属原子传感器。   基于原子光学技术的精密传感需要一些特定的波长(如795nm和894nm等)并且满足窄线宽、低功耗、可直接调制、单模和稳定偏振态的光源来激发碱金属原子。传统灯泵浦光源方案的传感器存在的体积大、功耗高、稳定性差等问题一直是困扰原子光学传感器小型化的主要难题。垂直腔面发射激光器(VCSEL)作为一种新型的半导体激光器,具有窄线宽、低功耗、高调制频率、小体积和容易集成等特征,因此基于VCSEL的相干布居俘获(CPT)方法使得原子光学器件的微型化和低功耗应用成为可能。   目前,国外只有个别实验室和公司具有制作该类原子光学传感器专用VCSEL的能力。中科院长春光机所大功率半导体激光组在十余年研究基础上成功制备出性能符合要求的VCSEL器件,为国内原子传感器的研制提供了必需的核心元器件并掌握了自主知识产权,目前正在与国内相关单位开展合作研究,促进芯片级原子传感器的产品开发。这些产品将应用于航天、国防以及民用领域,例如:精密计时技术、单兵卫星精确定位,长航时远距离惯性导航,高灵敏度水下金属磁场测量等。    795nm VCSEL 芯片(左)和TO46封装器件(右)
  • 德国发明新型高精度激光断层扫描仪
    德国萨尔大学21日发表公报说,该校研究人员研发出能观察单个细胞内部情况的新型高精度激光断层扫描仪,可用于检验抗衰老产品效果以及分辨皮肤癌细胞病变等。   仪器发明者柯尼希介绍说,该仪器的分辨率比传统超声波仪器高上千倍,它不仅能观察单个细胞,甚至能观察线粒体等。借助此仪器能检验出防晒霜等抗衰老产品是否有效。它还能用以检验尼古丁、激素药物等对皮肤老化的影响。   此外,由于癌细胞在激光照射下会比健康细胞更亮,医生还能借助此仪器提供的三维图像判断皮肤癌患者的皮肤细胞是如何癌变的,而无需取下病人组织细胞进行分析。   柯尼希以该发明获得了德国贝特霍尔德莱宾格应用激光技术创新奖。
  • 超高精度相移式激光干涉仪赋能光电产业升级——访金燧奖获奖单位慧利仪器
    近期,由中国光学工程学会、辽宁省科学技术协会主办的全国光电测量测试技术及产业发展大会暨辽宁省第十七届学术年会在大连成功召开。会议同期举办首届“金燧奖”中国光电仪器品牌榜颁奖典礼。仪器信息网作为大会独家合作媒体参与了本次会议,并采访了金燧奖银奖获奖单位代表苏州慧利仪器有限责任公司(以下简称“慧利仪器”)市场负责人庄锦程。本次获奖项目为“超高精度相移式激光干涉仪”,由慧利仪器、上海理工大学联合申报。超高精度相移式激光干涉仪集光学干涉与计算机数字化测量技术于一体,可实现纳米级精度的非接触式测量,主要面向国家高端计量、国家大科学仪器装置以及高端装备加工检测等领域,可以检测光学平面、球面的平面度,球面的曲率半径,柱面的表面面形,光学材料的均匀性,光学系统透射波前,光学平板的平行度等关键参数。近年来,国内在光学计量、国家大科学仪器装置、大规模集成电路、强激光系统等项目中对超高精度光学元件的检测需求越来越高,亟需在非稳环境下进行检测,同时对检测精度要求也越来越高。然而国际形势骤变,国外对中国的技术封锁与产品禁运愈发严重。正是在这样的背景下,慧利仪器坚持走产学研用相结合的道路,与上海理工大学、长春理工大学、苏州科技大学等高校合作创新,研制了超高精度相移式激光干涉仪。该成果实现了怎样的创新突破,解决了什么样的关键问题?该成果当前的产业化情况如何,取得了怎样的经济效益或社会效益,未来的市场前景如何?随着技术的进步和产业的发展,未来还将对相关技术提出哪些技术需求和挑战?有哪些发展建议?更多内容请观看视频: 首届“金燧奖”中国光电仪器品牌榜由中国光学工程学会联合多家单位于2022年发起,旨在积极面向国家重大战略需求,进一步突出企业的创新主体地位,促进关键核心技术攻关,突破卡脖子技术。本届“金燧奖”重点围绕分析仪器、计量仪器、测量仪器、物理性能测试仪器、环境测试仪器、医学诊断仪器、工业自动化仪器等7个类别进行广泛征集,得到了社会各界积极的参与和热情的响应。经过严格评审,71个优秀仪器产品脱颖而出,遴选出金奖10项、银奖16项、铜奖28项、优秀奖17项。这些产品都是我国自主研发、制造、生产的专精特新的高端光学仪器,较好地展现了我国在高端科学仪器中的自主核心竞争力,提升了民族品牌在激励市场竞争中的自信心,鼓舞了国产厂商的攻关热情。
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制