当前位置: 仪器信息网 > 行业主题 > >

介穿电压介电强度试验仪

仪器信息网介穿电压介电强度试验仪专题为您提供2024年最新介穿电压介电强度试验仪价格报价、厂家品牌的相关信息, 包括介穿电压介电强度试验仪参数、型号等,不管是国产,还是进口品牌的介穿电压介电强度试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合介穿电压介电强度试验仪相关的耗材配件、试剂标物,还有介穿电压介电强度试验仪相关的最新资讯、资料,以及介穿电压介电强度试验仪相关的解决方案。

介穿电压介电强度试验仪相关的资讯

  • 技术升级|得利特升级版绝缘油介电强度测定仪(耐压仪)
    借助美国页岩气的大规模开采,北美新建或扩建乙烷裂解装置产能从2016年起开始逐步释放,预计2020年北美乙烯及下游衍生物净出口将从2015年550万吨增加到1400万吨,2025年将进一步增加至1800万吨以上。美国低成本页岩气开发将影响世界石化产品区域格局。(二)2020年新冠疫情对行业冲击明显,由于投资惯性难以迅速停止,预计全球石化产品产能整体供过于求的态势将会加剧。(三)世界经济环境“逆全球化”苗头显现,国际形势激烈变动,贸易环境复杂多变。根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国目前仍是全球最主要的石化产品净**国之一,贸易逆差巨大,但同时又是下游纺织、轻功等制品全球最主要出口国,国际贸易环境变化及不确定性将带来石化行业发展格局的深刻变化。A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,安全可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性更强。6、数据自动存储,并可随时调出和打印。7、采用先进的干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 绝缘油介电强度测定仪如何排除常见故障?
    绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。绝缘油介电强度测定仪常见故障排除方法 这样做就可以了⑴ 电源指示灯不亮,屏幕无显示① 检查电源插头是否插紧;② 检查电源插座内的保险管是否完好;③ 检查插座是否有电。⑵ 油杯无击穿现象① 检查线路板接插件插接是否到位;② 检查箱盖高压开关是否接触好;③ 检查是否高压接点无吸合;④ 检查是否存在高压断线。⑶ 显示器对比度不够① 调节线路板上的调节电位器。⑷ 打印机不打印① 检查打印机电源线是否插接到位;② 检查打印机数据线是否插接到位。
  • 【技术知识】绝缘油介电强度测定仪的作用有哪几点?
    绝缘油介电强度测定仪介绍绝缘油介电强度测定仪测试系统,在电力系统厂矿及企业都有大量的电器设备。其内部绝缘油大都是充电绝缘型的。绝缘油的介电强度测试是常规测试项目。为了适应电力行业发展的需要。产品都是依据的国家标准GB/T507-2002、行标DL429.9-91以及的电力行业标准DL/T846,7-2004设计制造,采用微机控制,机电一体全部自动化,测试精度高,提高了工作效率,同时也大大减轻了工作人员的劳动强度。绝缘油介电强度测定仪的作用01绝缘油介电强度测定仪使变压器心子与外壳及铁芯有良好的绝缘作用,变压器的绝缘油,是充填在变压器心子和外壳之间的液体绝缘。充填于变压器内各部分空隙间,使变压器外壳内没有空气,加强了变压器绕组的层间和匝间的绝缘强度。同时,对变压器绕组绝缘起到了防潮作用。02绝缘油介电强度测定仪使变压器运行中加速冷却,变压器的绝缘油在变压器外壳内,通过上、下层间的温差作用,构成油的对流循环。变压器油可以将变压心子的温度,通过对流循环作用经变压器的散热器与外界低温介质(空气)间接接触,再把冷却后的低温绝缘油,经循环作用回到变压器心子内部,如此循环,起到了加速冷却变压器的作用。03灭弧作用,变压器油除能起到上述两种作用外,还可以在某种特殊运行状态时,起到了加速变压器外壳内的灭弧作用。绝缘油介电强度测定仪由于变压器油是经常运动的,当变压器内有某种故障而引起电弧时,能够加速电弧的熄灭。相关仪器A1160绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9
  • 【技术指导】绝缘油介电强度测定仪的油杯清洗方法及注意事项
    绝缘油介电强度测定仪油杯清洗方法、注意事项A1160技术指导产品介绍产品名称:绝缘油介电强度测定仪产品型号:A1160概 述:绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9油杯清洗方法⑴ 用洁净的绸布反复擦拭电极表面和电极杆。⑵ 用标准规调整好电极间距。⑶ 用石油醚(忌用其它有机溶剂)清洗3次,每次须按以下方法进行:② 将石油醚倒入油杯,占油杯容量的1/4~1/3。 ② 把一块用石油醚冲洗过的玻璃片盖住油杯口,均匀摇晃一分钟,注意要有一定力度。 ③ 将石油醚倒掉,用吹风机吹2~3分钟。⑷ 用待测油样清洗1~3次。 ② 将待测油样倒入油杯,约1/4~1/3。 ② 用吹干的玻璃片盖住油杯,均匀摇晃1~2分钟,注意要有一定力度。 ③ 倒掉剩余油样之后即可做打压实验。搅拌桨清洗方法⑴ 用干净的绸布反复擦拭搅拌桨,直至表面无细小颗粒,忌用手接触搅拌桨表面。⑵ 用镊子夹住搅拌桨,浸入石油醚中反复洗涮。⑶ 用镊子夹住搅拌桨,用吹风机吹干。⑷ 用镊子夹住搅拌桨浸入待测油样内反复洗涮。油杯储放方法1:实验完毕后,用质量较好的绝缘油倒满油杯,并将油杯平稳放置。方法2:按上述清洗方法用石油醚清洗吹干后放入真空干燥器中储存。注:第一次测试前和测试劣质油后必须按上述方法清洗油杯和搅拌浆。注意事项1、试验前油样的选择,安放及电极间的距离应符合国标及行标。2、电源接通后,严禁操作人员或其它人员触及外壳,以免发生危险。3、本仪器在使用过程中如发现异常,应立即切断电源。4、新油杯或新清洗的油杯应先击穿24次才可进行试验,油杯在不进行试验时应用干净的油侵泡。
  • 绝缘油击穿电压测定仪:采用干式变压器组合
    A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性强。6、数据自动存储,并可随时调出和打印。7、采用干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 苏州热工研究院验收我司100kv电压击穿试验仪
    苏州热工研究院验收我司100kv电压击穿试验仪和ATI-212电阻率测试仪,我司工程师上门安装调试,成功验收得到客户的好评,下面是客户调试现场
  • 绝缘油击穿电压测定仪在润滑油行业中应用
    润滑油作为机械设备的润滑剂,其电气性能对设备的正常运行至关重要。击穿电压作为评价润滑油电气性能的重要指标之一,能够帮助工程师判断润滑油的电气性能是否达到设备要求。下面我们就来具体了解一下击穿电压在润滑油行业中的应用。1. 润滑油电气性能的表征润滑油的电气性能主要包括介电常数、介质损耗因数、电阻率等参数。其中,介电常数反映了润滑油在电场作用下的极化能力,介质损耗因数反映了电流通过润滑油时所消耗的能量,电阻率则反映了润滑油的导电性能。而击穿电压则可以进一步评价润滑油的电气绝缘性能,即当电压达到某一数值时,润滑油内部将产生放电现象,导致电流突然增加,这一电压值就是击穿电压。2. 击穿电压在润滑油选择中的应用在选择润滑油时,需要根据设备的运行工况和润滑油厂商提供的产品手册来选择合适的润滑油牌号在。产品手册中,通常会提供不同牌号润滑油的介电常数、介质损耗因数、电阻率和击穿电压等电气性能参数。在选择润滑油时,需要综合考虑这些参数,尤其是击穿电压,以确保设备在正常运转时,润滑油的电气性能能够满足设备要求。3. 击穿电压在润滑油品质控制中的应用在润滑油的生产过程中,由于原材料、生产工艺等因素的影响,润滑油的电气性能会发生一定的变化。为了确保生产出的润滑油符合产品要求,需要对润滑油的电气性能进行检测和监控。其中,击穿电压作为一项重要的检测指标之一,可以用于评估润滑油品质的稳定性。通过定期检测润滑油的击穿电压,可以对生产工艺和原材料进行及时调整,以确保生产的润滑油具有良好的电气性能。
  • 10000V!氮化镓功率器件击穿电压新纪录
    近日,美国弗吉尼亚理工大学电力电子技术中心(CPES)和苏州晶湛半导体团队合作攻关,通过采用苏州晶湛新型多沟道AlGaN/GaN异质结构外延片,以及运用pGaN降低表面场技术(p- GaN reduced surface field (RESURF)制备的肖特基势垒二极管(SBD),成功实现了超过10kV的超高击穿电压。这是迄今为止氮化镓功率器件报道实现的最高击穿电压值。相关研究成果已于2021年6月发表于IEEE Electron Device Letters期刊。图1:多沟道AlGaN/GaN SBD器件结构图(引用自IEEE ELECTRON DEVICE LETTERS, VOL. 42, NO. 6, JUNE 2021)实现这一新型器件所采用的氮化镓外延材料结构包括20nm p+GaN/350nm p-GaN 帽层以及23nm Al0.25Ga0.75N/100nm GaN本征层的5个沟道。该外延结构由苏州晶湛团队通过MOCVD方法在4吋蓝宝石衬底上单次连续外延实现,无需二次外延。基于此外延结构开发的氮化镓器件结构如图1所示,在刻蚀工艺中,通过仅保留2微米的p-GaN场板结构(或称为降低表面场(RESURF)结构),能够显著降低峰值电场。在此基础上制备的多沟道氮化镓肖特基势垒二极管(SBD),在实现10kV的超高击穿电压的同时,巴利加优值(Baliga’s figure of merit, FOM)高达2.8 ,而39 的低导通电阻率,也远低于同样10kV耐压的 SiC 结型肖特基势垒二极管。多沟道氮化镓器件由于采用廉价的蓝宝石衬底以及水平器件结构,其制备成本也远低于采用昂贵SiC衬底制备的SiC二极管。创新性的多沟道设计可以突破单沟道氮化镓器件的理论极限,进一步降低开态电阻和系统损耗,并能实现超高击穿电压,大大拓展GaN器件在高压电力电子应用中的前景。在“碳达峰+碳中和”的历史性能源变革背景下,氮化镓电力电子器件在电动汽车、充电桩,可再生能源发电,工业电机驱动器,电网和轨道交通等高压应用领域具有广阔的潜力。苏州晶湛半导体有限公司已于近日发布了面向中高压电力电子和射频应用的硅基,碳化硅基以及蓝宝石基的新型多沟道AlGaN/GaN异质结构外延片全系列产品,欢迎海内外新老客户与我们洽商合作,共同推动氮化镓电力电子技术和应用的新发展!
  • 长春智能生产绝缘材料电气强度测试仪
    GJW-50kV计算机控制电压击穿试验仪 一、适用范围 本机主要适用于固体绝缘材料如:绝缘漆、树脂和胶、浸渍纤维制品、云母及其制品、、陶瓷和玻璃等在工频电压下击穿电压,击穿强度和耐电压的测试,符合GB1408.1-2006标准常温状态下的测试。 二、主要技术参数及精度 1、输入电压: AC220V 2、输出电压: 0~50KV(交直流) 3、测量范围: 5kV~50kV 4、高压分级及升压速率 1)0~5kV 升压速率 0.5kV/S 2)>5kV 升压速率 1kV/S 3)升压速率连续可调 5、耐压试验电压: 0~50KV连续可调整 6、耐压时间: 0~4H 7、功率: 5KVA 8、电源: AC220V ± 10% 50-60HZ 三、精度等级:1级 四、主要功能 该仪器采用计算机控制,能过人机对话方式,完成对、绝缘介质的工频电压击穿,工频耐压试验,主要适用于固体绝缘材料。并对实验过程中的各种数据快速、准确地进行采集、处理、存取、显示、打印。本仪器属我公司首创,国家专利批为我公司专利 五、基 本 配 置 1、主机 2、试验台一个 3、油箱一个 4、试验电极三个 5、试验软件 6、清华同方计算机一套 7、A4彩色喷墨打印机一台 公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号 联系电话:0431-848644218 13944864580 传真:0431-84642036 联系人:芮小姐 Http://www.znyq.com. E-mail:rsm-72@163.com
  • 榜单揭晓 | 2022年1-5月解决方案发布TOP10
    解决方案是以用户需求为中心,帮助用户了解仪器应用场景及方法的重要途径。同时,也是各大仪器厂商展示公司硬核实力,强大技术储备的重要依据。仪器信息网【行业应用】栏目自开设以来,广泛收录各大仪器厂商发布的解决方案。同时,也将不定期公布厂商解决方案发布榜单,及所属领域。根据2022年1月1日至2022年5月31日,各大仪器厂商在仪器信息网行业应用栏目发布且被收录的解决方案篇数由高到低排名,仪器信息网整理出“2022年1-5月解决方案发布数量TOP10”榜单。2022年1-5月解决方案发布数量TOP10榜单(点击可查看公司详细信息)排行榜公司名称TOP1岛津企业管理(中国)有限公司TOP2山东普创工业科技有限公司TOP3纳谱分析技术(苏州)有限公司TOP4上海仪电分析仪器有限公司TOP5美析(中国)仪器有限公司TOP6月旭科技(上海)股份有限公司TOP7海能未来技术集团股份有限公司TOP8北京盈盛恒泰科技有限责任公司TOP9来亨科技(北京)有限公司TOP10上海林频仪器股份有限公司本次榜单中,岛津企业发布解决方案数量位居榜首,主要集中在食品/饮料、制药、环保/水工业、石油化工、医疗卫生领域,占据了该企业发布数量的66%。其余领域还包括电子/电气/通讯/半导体、电池/电源、化妆品等。榜单后起之秀山东普创是一家专业从事包装检测理论研究与检测硬件开发的高科技企业。该企业产品及解决方案广泛适用于质检药检机构、印刷、包装、医药、日化等领域。纳普分析专注于研发液相色谱分离产品,其发布的解决方案主要集中在制药领域。上海仪电分析发布的解决方案主要集中于食品、制药、环保/水工业领域,方案数量占比60%,除此之外,还提供石油化工、医疗卫生等领域的解决方案。 美析仪器发布的解决方案主要在食品、环保领域。常用于食品、环境(如土壤、水质)中多种元素的测定。除此之外,还可用于农林牧渔领域,植物中超氧化物歧化酶(SOD)、叶绿体色素含量、植物样品中多种金属元素含量的测定。 我们还梳理了1-5月中,解决方案数量增长较快的十大领域,大致如下:【行业应用】1-5月热点方案速览 针对国六PEMS-PN测试设备线性度的检查计量解决方案 用颗粒计数器进行液压机械用油污染度测试方法 环境土壤中有机物检测解决方案GB36600-2018 以水为载流-土壤中砷汞同测的解决方案 电子特气解决方案--高麦双M体系 吹扫捕集-气相色谱法测定土壤和沉积物中的挥发性石油烃 C6-C9 厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析 使用液相色谱-三重四极杆质谱法检测饮用水中五种常见消毒副产物 土壤中多元素分析的ICPMS法 介电强度和耐电压击穿解决方案 【行业应用】栏目不仅可提供上述多领域解决方案,还将根据时事热点,定期制作行业应用专题,定向向不同行业用户精准推广。在此,诚邀各大仪器厂商积极发布优质的解决方案,与栏目共建专题内容。热门共建专题示例: 行业应用栏目简介:(http://www.instrument.com.cn/application/)行业应用栏目作为仪器信息网行业线查找仪器的产品,旨在帮助不同行业的仪器用户快速查找细分领域检测所需的产品及分析方法,帮助厂商树立细分领域的品牌形象,通过整合资源,2018年全新升级栏目产品架构,隆重推出行业检测方案专场。栏目汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域。目前,已经收录行业优质解决方案超过5万余篇。
  • 苏州纳米所报道长循环高电压聚合物基固态锂金属电池
    锂金属因具有高理论容量(~3860 mAh g-1)和低氧化还原电位(相对于标准氢电极为-3.04 V),是颇有前景的锂电池电极材料之一。然而,锂枝晶的生长将会顶穿隔膜,引起电池短路热失控,甚至引燃电解液等,存在安全隐患。使用具有高机械强度的固态电解质代替电解液,可以有效阻止锂枝晶生长,从而提高锂金属电池(LMBs)安全性。相比无机电解质较高的界面接触阻抗,聚合物电解质(SPEs)可与电极形成紧密的物理接触而备受关注。   然而,用于导锂的含氧极性官能团容易被氧化,成为限制电化学稳定性的瓶颈。虽然通过开环聚合消除弱键、引入含氟官能团等策略可拓宽电化学窗口(ESW),但宽ESW难以直接转化为长循环LMBs的高截止电压。一方面,测试ESW的线性扫描伏安法使用的阻塞电极通常是平坦的不锈钢,与具有高表面积碳导电剂的实际电极相比,显示出较低的反应活性,易高估ESW;另一方面,具有过渡金属的正极材料较强的催化活性,易加剧氧化。目前,适用于截止电压为4.5V或更高的长循环LMBs的聚合物电解质有待证明。   近日,中国科学院苏州纳米技术与纳米仿生研究所应用多氟化交联剂来增强聚合物电解质的抗氧化性。交联网络有助于传递多氟化链段的吸电子效应,并具有普适性。进一步通过组分优化后,基于多氟交联剂的聚合物电解质同时表现出宽ESW、高电导率和高机械强度。组装的Li||NCM523全电池在0.5C和4.5 V的截止电压,获得了~164.19 mAh g-1的高放电比容量,并在200次循环后容量保持率90%,是当前领域报道的最佳循环稳定性之一。   相关研究成果以Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院稳定支持基础研究领域青年团队计划、江苏省碳达峰碳中和科技创新专项等的资助,并获得苏州纳米所纳米真空互联实验站(Nano-X)的技术支持。新加坡南洋理工大学科研人员参与研究。图1.SPE的制备图2.SPE的ESW。a.Li|PVEC/P(IL-OFHDODA-VEC)|C的LSV曲线;b.PIL、POFHDODA、PVEC、P(IL-OFHDODA)、P(IL-VEC)和P(OFHDODA-VEC)的ESW。图3.Li|P(IL-OFHDODA-VEC)|NCM523全电池的电化学性能。a.Li|P(IL-OFHDODA-VEC)|NCM523全电池在0.5 C下的循环性能;b.Li|P(IL-OFHDODA-VEC)|NCM523全电池的第1-200次充放电曲线;c.Li|P(IL-OFHDODA-VEC)|NCM523全电池的倍率性能;d-f.充满电的Li|P(IL-OFHDODA-VEC)|NCM523软包电池在折叠前(d)和折叠后(e)或切割后(f)点亮LED灯的照片。
  • 多层输液袋共挤膜耐穿刺强度测试应该参照哪个标准
    随着医疗技术的不断进步,多层共挤输液袋以其优良的密封性、稳定性和环保特性,逐渐成为现代医疗领域中的主流输液包装材料。为了确保输液袋在使用过程中能够安全可靠,对其耐穿刺强度的测试显得尤为关键。一、多层共挤输液袋的结构与特性多层共挤输液袋采用先进的共挤工艺,将不同材质的薄膜层进行复合,形成具有优异性能的复合膜。其结构通常由多层薄膜组成,包括内层、中层和外层等,每层薄膜的材质和厚度都经过精心设计,以满足不同的功能需求。多层共挤输液袋具有优异的密封性、阻隔性、抗拉伸性和耐穿刺性等特点,能够有效保护输液袋内的药液不受外界污染和损坏。二、耐穿刺强度测试的重要性耐穿刺强度是衡量多层共挤输液袋性能的重要指标之一。在输液过程中,输液袋可能会受到各种外力的影响,如护士在操作过程中不小心刺穿输液袋等。如果输液袋的耐穿刺强度不足,就可能导致药液泄漏、污染等问题,严重影响患者的治疗效果和生命安全。因此,对多层共挤输液袋进行耐穿刺强度测试,是确保其安全使用的重要措施之一。三、耐穿刺强度测试应参照的标准目前,国内外对于多层共挤输液袋耐穿刺强度测试的标准已经相对完善。在国际上,一些知名的标准化组织如ISO、ASTM等制定了相关的测试标准和规范。这些标准通常规定了测试设备的精度、测试方法、测试条件以及评价指标等,为测试工作提供了明确的指导。在国内,国家相关部门也制定了一系列针对医疗包装材料的测试标准,其中就包括了多层共挤输液袋的耐穿刺强度测试。这些标准不仅参考了国际先进标准,还结合了国内医疗行业的实际情况和需求,具有更强的针对性和实用性。在进行多层共挤输液袋耐穿刺强度测试时,应严格按照相关标准的要求进行操作。测试设备应选用符合标准要求的穿刺力试验机,并确保其精度和稳定性符合要求。测试方法应根据标准规定的程序进行,包括样品的准备、测试速度的控制、测试次数的确定等。同时,测试条件也应符合标准的要求,如温度、湿度等环境因素对测试结果的影响应予以考虑。四、测试结果的评价与应用完成耐穿刺强度测试后,需要对测试结果进行科学的评价和分析。通常,测试结果会以一定的数值或等级形式呈现,用于衡量输液袋的耐穿刺性能。根据测试结果,可以对输液袋的质量进行评判,并为其在医疗领域的应用提供科学依据。此外,测试结果还可以用于指导输液袋的生产和改进。通过对不同批次或不同生产工艺的输液袋进行耐穿刺强度测试,可以找出其中的差异和原因,进而优化生产工艺或改进材料配方,提高输液袋的耐穿刺性能。五、结论多层共挤输液袋作为现代医疗领域中的重要包装材料,其耐穿刺强度的测试对于确保其安全使用具有重要意义。在进行测试时,应参照国内外相关标准的要求,确保测试结果的准确性和可靠性。同时,测试结果的评价和应用也是确保输液袋质量和使用效果的关键环节。未来,随着医疗技术的不断进步和输液袋材料的不断创新,耐穿刺强度测试的标准和方法也将不断完善和优化,为医疗行业的发展提供有力支持。
  • 123项行业计量技术规范报批,涉及9大行业,上百款仪器
    近日,工信部对《化学转化法低露点湿度发生器校准规范》等123项行业计量技术规范报批进行公示,公示截止日为2021年9月20日。本次公示的行业计量技术规范涉及兵工民品7项目、电子行业24项、纺织行业8项、机械行业23项目、建材行业14项、轻工行业19项、石化行业17项、通信行业6项和有色金属5项,涉及上百款仪器的校准规范。如对报批的行业计量技术规范有不同意见,请在公示期间填写《行业计量技术规范报批稿反馈意见表》(附件2)并反馈至工业和信息化部科技司,电子邮件发送至gaopengfei@miit.gov.cn(邮件主题注明:计量规范报批稿公示反馈)。这些标准将于2021年12月1日实施。以下为报批的标准,技术规范编号技术规范名称JJF(石化)041-2021化学转化法低露点湿度发生器校准规范JJF(石化)042-2021加油站油气回收测试仪校准规范JJF(石化)043-2021自热物质试验仪校准规范JJF(石化)044-2021液体氧化性试验仪校准规范JJF(石化)045-2021微量闭口闪点仪校准规范JJF(石化)046-2021化学品金属腐蚀性试验装置校准规范JJF(石化)047-2021氟化氢气体检测报警器校准规范JJF(石化)048-2021橡胶或塑料软管及软管组合件用无曲挠脉冲试验机校准规范JJF(石化)049-2021落球回弹测定仪校准规范JJF(石化)050-2021橡胶快速塑性计校准规范JJF(石化)051-2021力车胎里程试验机校准规范JJF(石化)052-2021漆膜流挂仪校准规范JJF(石化)053-2021间隙式湿膜制备器校准规范JJF(石化)054-2021润滑油泡沫特性测试仪校准规范JJF(石化)055-2021润滑油高剪切锥形塞黏度计校准规范JJF(石化)056-2021微量法残炭测定器校准规范JJF(石化)057-2021气体中微量硫色谱分析仪(火焰光度法检测器)校准规范JJF(有色金属) 0001-2021慢应变速率应力腐蚀试验机校准规范JJF(有色金属) 0002-2021激光诱导击穿光谱仪校准规范JJF(有色金属) 0003-2021周期浸润试验箱校准规范JJF(有色金属) 0004-2021材料力学性能测试用非接触式视频引伸计校准规范JJF(有色金属) 0005-2021有色金属材料用多维探测器X射线衍射仪校准规范JJF(建材)176-2021低辐射镀膜玻璃膜面辐射率测试仪校准规范JJF(建材)177-2021低辐射镀膜玻璃面电阻测试仪校准规范JJF(建材)178-2021建筑材料不燃性试验装置校准规范JJF(建材)179-2021铺地材料临界热辐射通量测定装置校准规范JJF(建材)180-2021智能坐便器温升及水温稳定性试验机校准规范JJF(建材)181-2021制动衬片压缩热膨胀试验机校准规范JJF(建材)182-2021建材产品挥发物检测用环境测试舱校准规范JJF(建材)183-2021密封材料蠕变松弛率测定仪校准规范JJF(建材)184-2021塑料管材耐压爆破试验机校准规范JJF(建材)185-2021基于微型热导检测器的便携式气相色谱仪校准规范JJF(建材)186-2021智能坐便器寿命试验机校准规范JJF(建材)104-2021水泥净浆搅拌机校准规范JJF(建材)123-2021行星式胶砂搅拌机校准规范JJF(建材)124-2021水泥胶砂试体成型振实台校准规范JJF(机械) 1056-2021残余应力超声检测仪校准规范JJF(机械) 1057-2021机动车转向机器人校准规范JJF(机械) 1058-2021重型汽车远程排放监测系统校准规范JJF(机械) 1059-2021机械手超声检测系统校准规范JJF(机械) 1060-2021机动车便携式排放测试系统(PEMS)校准规范JJF(机械) 1061-2021工频大电流测量系统校准规范JJF(机械)1062-2021绝缘油介电强度测试仪校准规范JJF(机械)1063-2021交流、直流、雷电冲击、通用分压器测量系统校准规范JJF(机械)1064-2021运动场地材料冲击吸收和垂直变形试验机校准规范JJF(机械)1065-2021汽车专用三维H点假人装置(HPM)校准规范JJF(机械)1066-2021超声显微镜性能校准规范JJF(机械)1067-2021霍尔电流传感器校准规范JJF(机械)1068-2021车辆倾翻试验台校准规范JJF(机械)1069-2021钢球直径检查仪校准规范JJF(机械)1070-2021氧化锌避雷器直流参数测试仪校准规范JJF(机械)1071-2021机动车淋雨试验间校准规范JJF(机械)1072-202140kV及以下冲击全波电压试验装置校准规范JJF(机械)1073-2021电力线感应/接触试验发生器校准规范JJF(机械)1074-2021水泵综合性能试验标准装置校准规范JJF(机械)1075-2021单颗粒抗压强度测定仪校准规范JJF(机械)1076-2021磨料堆积密度测定仪校准规范JJF(机械)1077-2021弹性元件特性仪校准规范JJF(机械)1078-2021轴承套圈宽度和油沟深度测量仪校准规范JJF(轻工)145-2021自行车专用量规校准规范JJF(轻工)146-2021自行车检测专用模拟器校准规范JJF(轻工)147-2021自行车盐雾试验箱校准规范JJF(轻工)148-2021自行车专用负荷试验砝码校准规范JJF(轻工)149-2021自行车专用角度量具校准规范JJF(轻工)150-2021整鞋剥离强度试验仪校准规范JJF(轻工)151-2021鞋类耐磨试验机校准规范JJF(轻工)152-2021皮革摩擦色牢度试验机校准规范JJF(轻工)153-2021鞋类橡胶部件喷霜试验箱(臭氧法)校准规范JJF(轻工)154-2021鞋类防滑性能测试仪校准规范JJF(轻工)155-2021鞋跟连续冲击试验机校准规范JJF(轻工)156-2021安全鞋鞋底抗刺穿试验机校准规范JJF(轻工)157-2021背胶剥离强度测试仪校准规范JJF(轻工)158-2021球形耐破度试验仪校准规范JJF(轻工)159-2021生活用纸及纸制品掉粉率测定仪校准规范JJF(轻工)160-2021生活用纸及纸制品可分散性测定仪校准规范JJF(轻工)161-2021家用新风机性能检测装置校准规范JJF(轻工)162-2021电坐便器便座电性能及舒适性检测装置校准规范JJF(轻工)163-2021洗碗机性能检测装置校准规范JJF(纺织)097-2021纤维比电阻仪校准规范JJF(纺织)098-2021振弦式纤维细度仪校准规范JJF(纺织)099-2021棉花分级室模拟昼光照明校准规范JJF(纺织)100-2021纺织品防静电性能电阻测试仪校准规范JJF(纺织)101-2021杠杆式土工合成材料厚度仪校准规范JJF(纺织)102-2021土工布动态穿孔测定仪校准规范JJF(纺织)103-2021曲面摩擦色牢度仪校准规范JJF(纺织)104-2021纺织品恒温恒湿实验室温湿度校准规范JJF(兵工民品)0004-2021原子吸收光衰减器校准规范JJF(兵工民品)0005-2021阿贝折射仪检定用低压钠灯光源校准规范JJF(兵工民品)0006-2021转角扭矩扳子校准规范JJF(兵工民品)0007-2021流量计式气体减压器校准规范JJF(兵工民品)0008-2021折射率法冰点仪校准规范JJF(兵工民品)0009-2021赞恩杯粘度计校准规范JJF(兵工民品)0010-2021旋转蒸发器校准规范JJF(电子)0056-2021网络实时动态差分接收机校准规范JJF(电子)0057-2021数字电视测试接收机校准规范JJF(电子)0058-2021航空无线电导航信号综测仪校准规范JJF(电子)0059-2021长线天线法暗室等效场强校准规范JJF(电子)0060-2021半导体工艺用安时计现场校准规范JJF(电子)0061-2021半导体直流参数验证件校准规范JJF(电子)0062-2021事件顺序记录系统(SOE)测试仪校准规范JJF(电子)0063-2021半导体激光器控制器校准规范JJF(电子)0064-2021二极管反向恢复时间测试系统校准规范JJF(电子)0065-2021固体继电器测试仪校准规范JJF(电子)0066-20212MHz以下通信电缆测试仪校准规范JJF(电子)0067-2021超高阻微电流测量仪校准规范JJF(电子)0068-2021音频功率放大器校准规范JJF(电子)0069-2021手持式雷达目标速度模拟器校准规范JJF(电子)0070-2021表面离子污染度测试仪校准规范JJF(电子)0071-2021电梯平衡系数检测仪校准规范JJF(电子)0072-2021非接触涡流法半导体晶片电阻率测试系统校准规范JJF(电子)0073-2021汽车电点火干扰模拟器校准规范JJF(电子)0074-2021防雷元件测试仪校准规范JJF(电子)0075-2021标准电容损耗箱校准规范JJF(电子)0076-2021模拟断路器校准规范JJF(电子)0077-2021晶体管特征频率测试仪校准规范JJF(电子)0078-2021电子用稳定性试验台校准规范JJF(电子)0079-2021锂离子电池重物冲击试验机校准规范JJF(通信) 052-20215G移动通信综合测试仪校准规范JJF(通信) 053-2021增强机器类通信(eMTC) 综合测试仪校准规范JJF(通信) 054-2021分布式光纤应变和温度测试仪校准规范JJF(通信) 055-2021传导骚扰抗扰度测试仪校准规范JJF(通信) 018-2021时间综合测试仪校准规范JJF(通信) 005-2021网络损伤仿真仪校准规范附件:1.123项部门计量技术规范编号、名称、主要内容等.zip2.行业计量技术规范报批稿反馈意见表.docx
  • LED灯具检测:检测结果存在误差
    led行业对于LED照明统一标准的呼吁,是行业一直以来讨论的话题。尽管各地已经在制订和试用自己的地方标准,但是标准混乱也缺乏权威的检测平台,整个行业乱成一锅粥。政府左右为难、企业摇头兴叹、百姓雾里看花,不知道谁是谁非,谁对谁错,谁好谁坏。   由于缺少统一的标准规范和检测方法,导致目前市场上种类繁多的LED应用产品性能各异、质量参差不齐,给整个行业发展带来了严峻的挑战。从目前的LED产品结构及技术发展的角度看,照明用LED产品质量的评判标准主要考虑光学性能、电性能、热性能、辐射安全和寿命等几个方面的参数,其中LED的光学性能主要涉及光通量、辐射通量、发光效率、色品坐标、相关色温、显色指数等。目前,光电检测、配光检测、光能量检测、衰减测试以及耐冲突测试等是LED灯具的常规检测项目。   抽检结果不容乐观   近日,广东省质监局发布了广东省自镇流LED灯产品质量省级专项监督抽查结果。抽检结果显示,在抽查的23批次自镇流LED中,检验不合格17批次,不合格率高达73.9%。据了解,不合格项目涉及到意外接触带电部件的防护、潮湿处理后的绝缘电阻和介电强度、机械强度、故障状态、色品容差、一般显色指数、骚扰电压、灯功率、耐热性、互换性、功率因数、初始光效/光通量、防火与防燃等项目。   关于LED照明产品检测不合格的消息,近期已经是多次出现。LED为何频出质量问题?追根溯源,LED照明标准缺失、检测体系建设尚未完善是关键。从电源到成品,LED照明都尚未有一套国家或者行业标准体系,更没有强制检测认证的要求。   “尽管灯具在出厂前都会进行例行的性能检测,然而并不是所有的企业都会严格按照规定来做。这既有企业不具备完整的检测设备条件的因素,也有降低成本的考虑。”东莞勤上光电股份有限公司相关负责人指出,目前大型企业在灯具检测方面都有国家认可的实验室,检测设备相对较为完善。而中小企业往往只简单地测试几个小时就算过关,检测设备也比较缺乏。这就造成了之前部分政府机构在对LED灯具进行抽检的时候,出现大量质量不合格的问题,对LED产品的市场普及造成了极大的负面影响。   通常在LED灯具的检测结果中,光通量和显指不达标、色温和功率有偏差等等问题是比较常见的。励测检测运营总监李胜指出,质检不过关的原因主要集中在以下四个方面:一、电气绝缘要求不能满足,主要表现在产品内部电气间隙和爬电距离不够,人体可触碰到的导体不是安全隔离低电压。特别是一些小体积的灯具,由于结构紧凑,往往忽视电气绝缘距离的要求。二、采用的驱动器不满足相应的LED驱动器安全要求,或者使用简单的降压电路来驱动LED。三、产品电磁骚扰电压超标,大多数LED采用廉价的驱动电路,在电路中未采取任何电磁骚扰抑制措施,导致传导电压和辐射超标。四、不能满足灯具的光色性能要求,LED灯的发光原理和传统的光源有比较大的区别,设计者只关心灯具是否发光,忽视了光度和色度质量的要求,造成灯具色温偏差较大、显色指数偏低。   “显色指数按规定要求不能低于80,否则初始光效就不能满足能效的要求,达不到节能的效果。”一位检测业内人士表示,当前有些产品片面追求高光效,忽视了流明维持寿命,导致灯具的实际使用寿命偏低,造成产品不符合节能指标。   检测结果存在误差   在灯具检测过程中,往往会出现企业的同一款灯具前后两次检测参数结果不一致的问题。对此,浙大三色仪器有限公司技术支持经理朱俊高表示,造成上述误差的原因主要在以下三个方面:第一是系统的误差,这种误差是在允许范围之内的,每套检测系统可能是不一致的,存在一定的误差。传统灯具的误差在1.5%以内就算是合格产品,但是LED灯具的标准还没有规范化,行业内对LED灯具的允许误差范围也比较模糊,一般在3%-5%之间就算合格。   第二是环境的误差,灯具所处的环境以及表面的污染会对测试结果造成很大的影响,误差量级可达到7%-8%,尤其是有一些出光面兼做二次光学透镜表面的产品。由于这些产品具有凹凸结构,容易藏污纳垢且不便于清理,从而严重影响光通量并进一步影响光型分布。   第三是设备和标准的误差,常规的灯具检测需要用到的设备主要为积分球,分布光度计和光辐射检测设备,这些设备分别用来测量灯具的光通量,配光性能和光生物安全。其中,光辐射检测是针对出口欧盟的紫外含量检测以及美国能源之星要求的蓝光、红外的能量检测。由于国家层面的标准与检测规范的缺失,使得各地检测中心使用的测试方法、检测设备和推出的检测标准各不相同,从而造成企业的同一种产品在不同的检测机构检测时出现不同的测试结果。   具体到积分球测试光通量,尽管方法比较简单,只需要光强计或者光谱仪配合积分球就可以完成测试,不需要去测量其他参数。但李胜强调,由于积分球的球内挡屏、接缝、球壁开孔、喷涂效果等因素都会影响积分球的测试准确性,所以对于积分球制造厂商也提出了很高的技术要求。   “积分球是一套精密测量设备,需购买有质量保证的大厂品牌,否则看起来积分球好像一样,但是测量时的结果会与真实值产生很大的偏差,而且稳定性较差。”李胜表示。同时,积分球测试对环境也有一定要求,通常要求环境温度在25±1℃。而积分球的大小则没有太严格的规定,只与被测灯具的大小有关。一般来说,被测产品的总表面面积必须小于球体内壁总面积的2%,线性产品的最长物理尺寸必须小于球体直径的2/3。例如,对于LED灯管,一个积分球能测试的最长尺寸不超过球直径的2/3。上述这些都是厂家在进行检测时需要注意的问题。
  • 手提袋疲劳强度试验机的测试原理与应用
    手提袋疲劳强度试验机的测试原理与应用在当今快节奏的消费社会中,手提袋作为日常购物、物流运输及品牌宣传的重要载体,其耐用性与安全性直接关系到消费者的使用体验与品牌形象。特别是塑料手提袋、背心袋等广泛应用的提袋类型,其承受重量与抗疲劳性能更是成为了衡量产品质量的关键指标。为此,手提袋疲劳强度试验机应运而生,以其独特的测试原理与广泛的应用领域,成为了质检单位及手提袋生产厂家不可或缺的质量检测工具。重要性解析手提袋在使用过程中需承受不同重量物品的提携,若疲劳强度不足,易在多次使用后发生断裂,不仅影响使用便捷性,更可能因突然断裂导致物品散落,造成安全隐患。手提袋疲劳强度试验机通过模拟真实使用场景,提前发现潜在问题,确保产品在市场流通中的安全性。对于生产厂家而言,利用手提袋疲劳强度试验机进行严格的疲劳测试,能够精准评估产品的耐用性,从而指导生产工艺的改进与优化。测试原理与应用三泉中石的手提袋疲劳强度试验机SPL-30,核心在于其独特的测试原理:通过模拟手提袋在实际使用过程中的上下振动疲劳状态,对提袋的承重能力及耐久性进行全面评估。具体操作为,将相当于手提袋标称内装物质量两倍的颗粒混合物(如沙子、小石子等)装入袋中至四分之三容量,随后将手提袋悬挂于试验机上。根据预设的提袋次数或时间,试验机自动进行上下振动,模拟提携过程中的动态负荷变化。试验结束后,通过仔细观察提袋的提手、缝合处等关键部位是否出现破损、撕裂等现象,来判断手提袋的疲劳强度是否符合要求。广泛应用质检单位:作为质量监督的权威机构,质检单位利用手提袋疲劳强度试验机对市场上流通的手提袋产品进行抽检,确保产品符合安全标准,维护消费者权益。手提袋生产厂家:在产品研发、生产及质量控制等各个环节,手提袋生产厂家均需依赖该试验机进行性能测试,以优化产品设计,提升生产效率,确保出厂产品的品质稳定可靠。科研机构与高校:此外,手提袋疲劳强度试验机SPL-30还广泛应用于包装材料、材料力学等科研领域,为科研人员提供精准的实验数据支持,推动相关领域的科技进步与发展。综上所述,手提袋疲劳强度试验机SPL-30以其重要的测试意义与广泛的应用前景,成为了现代质检体系与工业生产中不可或缺的一部分。作为专业从事药品包装玻璃安瓿检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 强大的生物成像新工具!5kV低电压设计、无需染色的低电压台式透射电子显微镜
    在透射电子显微镜成像实验中,生物样品的成像操作为复杂,成像难度大。这主要是因为传统透射电子显微镜过高的加速电压引起的。上图为各种元素在传统透射电子显微镜的不同照射电压的反冲能量统计图。可以发现电子束加速电压在20kv就已经到达了碳碳单键的临界反冲能量,超过就很有可能使碳碳单键发生断裂,即使强的碳碳三键的临界反冲能量也仅仅在80 kV,这也是为何大多数生物样品在电镜观察的时候使用了透射电子显微镜的低电压80 kV。因此,传统透射电子显微镜在对由C/H/O/N等元素组成的生物样品进行成像时就需要使用重金属盐离子进行负染。负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,负染的处理手段会带来诸多的问题。负染会导致生物样品制样复杂,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变,重金属盐离子本身会对生物样品的形貌造成不可逆的损害,且负染液在电镜观察时容易产生“假象”。负染的操作对于制样者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度、染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在负染制样条件的摸索中了。Delong公司推出的LVEM5生物型透射电子显微镜,地解决了以上的问题。LVEM5生物型透射电镜采用的5kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对生物样品成像条件温和,摆脱了染液与负染过程本身可能对生物结构造成的损害,所得图像为“正像”,更加真实地展现生物样品的结构特征。 上图分布为传统电镜和LVEM5生物型透射电镜对未染色的小鼠心肌切片(上)和有机纳米颗粒(下)的成像实例。可以看到,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,未染色的生物样品和大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM5生物型透射电镜采用的5kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。LVEM5生物型透射电镜可以对外泌体、脂质体、噬菌体、病毒、细胞切片等生物样品进行无负染成像,所得的图像衬度更高。如下图所示。 LVEM5技术特点:高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.5 nm的图像分辨率。多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。
  • 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)
    p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 【作者按】 /span /strong span style=" text-indent: 2em " 扫描电镜测试条件的选择主要包括以下四个方面:加速电压、束流与工作距离、探头。前两个主要影响样品信息的溢出,后两者影响着信息的接收。测试条件选择的是否合适,决定了您能获得怎样的测试结果。 /span br/ /p p style=" text-align: justify text-indent: 2em " 本人在第一篇32载经验谈《扫描电镜加速电压与分辨力的辩证关系》一文中,就加速电压与图像分辨力的辨证关系进行了深入的探讨。充分分析了改变加速电压会给表面形貌像的分辨力带来怎样的变化;解答了为什么获取高分辨像,钨灯丝扫描电镜要选择较高的加速电压(10KV以上),而场发射扫描电镜需要选择较低的加速电压;阐述了场发射电镜为什么会比钨灯丝电镜有着更高的分辨能力。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 除了对图像分辨力的影响,加速电压的改变还会在样品的信息特性、荷电的产生及应对等方面对测试结果产生较大的影响。一直以来,许多专业人员对此,普遍存在一种单调的思维模式及处理方法,这将给最终的测试结果带来偏差。 /p p style=" text-align: justify text-indent: 2em " 这种认识上的偏差也存在于束流的选择上,对最终测试结果同样会形成很大的影响。错误的束流选择,你将无法获得完美的测试结果,还会给仪器的调整带来麻烦。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文将通过大量的实际测试事例,为大家充分展示,选择不同的加速电压及束流究竟能给测试结果带来怎样的影响。分析形成这种结果的原因,以及传统观念在加速电压和束流选择上存在怎样的认识偏离。为今后大家在进行扫描电镜测试时,合理的选择加速电压和束流提供一些参考。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 一、& nbsp 加速电压的选择 /strong /span & nbsp & nbsp /h1 p style=" text-align: justify text-indent: 2em " 加速电压的选择除了对表面形貌像的细节分辨力存在极大影响,还在以下几个方面影响着测试结果:1. 获取的样品信息在样品中所处的位置,表层还是内层;2. 荷电场形成的位置及强度。而无论在那一方面,改变加速电压所带来的变化都充满了辨证法的规律。下面将以充分的事例来加以展示。 /p p style=" text-align: justify text-indent: 2em " strong 1.1& nbsp 加速电压与图像分辨力的关系 /strong /p p style=" text-align: justify text-indent: 2em " 加速电压与图像分辨力的辨证关系,前文有充分的探讨,在此将只做简单的描述。本节主要是以充分及清晰的事例来展示,改变加速电压将带来怎样的图像分辨力变化。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压对图像分辨力会产生两种相互对立的影响: /p p style=" text-align: justify text-indent: 2em " 1. 从信息扩散来说,不利于获取高分辨形貌像。 /p p style=" text-align: justify text-indent: 2em " 2. 对电子束发射亮度的提升,有利于高分辨图像的获取。 /p p style=" text-align: justify text-indent: 2em " 这两方面的共同结果必然是存在一个最佳值或最佳范围。这个值与样品特性和其它测试条件的选择都有关联。 /p p style=" text-align: justify text-indent: 2em " 实际测试中,应先对图像所显示的样品信息特征作出正确研判,然后再做出正确的调整来找到这个最佳值。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/fa2635bd-6b96-4bce-9171-265cc0bb3c82.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " 想获取更好的介孔形态必须降低加速电压。改用小工作距离测试,可缩少电子束裙散和透镜球差形成的弥散并增加探头对信号的接收效果,使得对电子束发射亮度的要求降低。此时选择1KV加速电压即可获取更佳的图像效果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/9d154d57-9819-4674-bf25-23c1d0da39ff.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 0em " strong 实例二、小工作距离、减速模式的加速电压选择(kit-6介孔) /strong /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/23ccfeb0-85bf-47d4-b1ee-9189f64bb660.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 0em " br/ /p p style=" text-align: justify text-indent: 2em " strong 1.2 加速电压与样品中的信息分布 /strong /p p style=" text-align: justify text-indent: 2em " 样品中的信息分布:指样品信息所处位置,表层?内部? /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,电子束在样品表层激发的信息将减少,内部信息的激发会增多。选取不同加速电压对样品进行分析,有助于获取更全面、更充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、二氧化钛与银的复合膜& nbsp /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 该样品是将二氧化钛与银颗粒分层蒸镀在玻璃表面,银颗粒起先分布在极表层。高温烧结后观察薄膜表面形貌的变化及银颗粒存在的位置。先采用XRD与XPS检测银含量的变化,均未检测到银的存在。扫描电镜检测的结果如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/71cf90d7-a4fc-4797-bc79-d5f88a725f06.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " 上例我们可以看到,任何测试条件的选择都有其局限性,很难单独给出全面的样品信息。需要不停的改变测试条件,综合分析才能够获取更全面且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例二,含有钴颗粒的核壳结构碳球 /strong /p p style=" text-align: justify text-indent: 2em " 内部为结构紧密的碳球,包裹一个球形的碳壳层,中间有钴纳米量子点存在。以下组图将给我们提供完整信息: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b149b0cd-9014-4a7f-b45d-0f5e58750392.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 这组照片,合在一起才能提供样品的完整信息:一个核壳结构的碳球,内部是高密度球体,中间为絮状夹层,钴颗粒镶嵌于絮状夹层中,极表层较为平实。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/87b50fb1-9fcb-41ae-9720-81e2eb095201.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例三、石墨烯的观察 /strong /p p style=" text-align: justify text-indent: 2em " 单层石墨烯厚度仅不到一个纳米,个人观点:较难形成可被扫描电镜观察到的衬度。一般说,十来层左右的碳层被观察到的可能性更高,加速电压较低可观察到的碳层也较薄。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/652f21c2-13d1-45a3-ac00-f2be0b08c4c5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " 对簿膜样品加速电压选择低一些,效果较好,但有个度。 /p p style=" text-align: justify text-indent: 2em " strong 1.3改变加速电压对样品荷电场强度与位置的影响 /strong /p p style=" text-align: justify text-indent: 2em " 样品的荷电现象:高能电子束轰击足够厚的样品,如有电子驻留在样品中漏电性较差的部位,将形成静电场影响该部位及附近电信号的正常溢出。出现异常亮、异常暗或磨平的现象,这就是样品的荷电现象,该静电场也称“荷电场”。(关于样品的荷电现象,后期将有专文加以深入探讨)。 /p p style=" text-align: justify text-indent: 2em " 影响样品荷电场形成的因素有许多,加速电压正是其中最为重要的一个方面。 /p p style=" text-align: justify text-indent: 2em " 加速电压对样品荷电场的影响主要表现在以下几点: /p p style=" text-align: justify text-indent: 2em " 1.加速电压的升高,发射亮度增加,使得注入样品的电子数增加,荷电场强度得以加强,将加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 2.加速电压的升高,电子击入样品的深度增加,形成荷电场的位置下移,达一定值时,对样品电信号溢出的影响将会减弱直至消除。但SE2的增加,会影响表面细节的分辨。 /p p style=" text-align: justify text-indent: 2em " 3.加速电压的升高,使得背散射电子能量增加,背散射电子能量越大,其溢出量受荷电场的影响也就越小。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、介孔材料KIT - 6不同加速电压下的荷电现象 & nbsp /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f1a4138c-34fa-47e0-9b73-51fa3f0e6e15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/e691f38e-c9b1-4ea9-9cd5-c67cf0df65d4.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例二、二氧化硅小球,减速模式的加速电压与荷电 /strong /p p style=" text-align: justify text-indent: 2em " 二氧化硅小球。形态松软,容易形成样品的荷电现象。主流观点:减速、低电压是解决样品荷电问题的最佳方案,且加速电压越低,荷电现象越弱。真实情况却未必如此。 /p p style=" text-align: justify text-indent: 2em " 用减速模式500V、1KV,观察得出的是如下结果: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/764fd804-f00b-4e93-bed6-03b652d70f53.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " strong 实例三、钼化铬纳米颗粒 /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f222ae41-0b71-45ac-9969-ca0e2806ff94.jpg" title=" 11.png" alt=" 11.png" / /strong /p p style=" text-align: justify text-indent: 2em " 以上三例可见,无论采用何种模式,加速电压与样品的荷电现象之间都存在一个辩证的关系。 /p p style=" text-align: justify text-indent: 2em " 加速电压升高,会增加注入到样品中的电荷总量,提升样品中的荷电场强度,加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压,电子注入样品的深度增加,自由电子在样品中形成堆积的位置下移至更深处,荷电场位置也将下沉。荷电场的下沉会逐步减弱其对样品表面电子溢出量的干扰,荷电现象也将逐步减弱,但这是一个量变到质变的过程。当加速电压达到一定值,荷电场接地形成电荷通道,此时样品中多余的自由电子完全消失,样品中也就不存在荷电场。 /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,可以增加背散射电子的能量,达到一定值,背散射电子信息将克服荷电场对其正常溢出的影响,减弱并消除形貌像所显现出的样品荷电现象。 /p p style=" text-align: justify text-indent: 2em " 因此不能简单的认为:低加速电压是不蒸金解决样品荷电的唯一有效途径。以辩证的思维方式来综合评估各方面的影响,合理选择加速电压才是应对样品荷电的有效方式。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 二、束流大小的选择 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 目前主流的观点认为:束流越大,电子束斑的直径越大,束斑直径越大,图像的分辨率越差。各电镜厂家的工程师在进行分辨率测试时,都会选用小束流,但观察的都是信号量充足的标准样品(金颗粒)。 /p p style=" text-align: justify text-indent: 2em " 实际测试时,常发现小束流下样品的整体信息量较差& nbsp ,很难形成高质量表面形貌像。那么该怎样选择合适的束流? /p p style=" text-align: justify text-indent: 2em " 依辩证法的观点,降低束流强度将得到以下两个矛盾的结果: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 束斑直径降低,信号溢出区面积减小对图像清晰度有利且能降低荷电场强度,削弱样品荷电的影响。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 减少注入样品的电子量,信号量将减弱,不利图像分辨。 /p p style=" text-align: justify text-indent: 2em " 而现实的操作中,在主流观点的影响下,往往把眼光只放在第一点上,夸大束斑直径的影响,忽视束流强度不足所引起的信号量缺乏,故常常无法获得高质量的高分辨图像。 /p p style=" text-align: justify text-indent: 2em " 特别在面对氧化物、高分子等本身信号较弱的材料时,信号量常常是关键点,小束流的模式很难获得满意的结果。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong style=" font-size: 14px text-align: center text-indent: 2em " 实例一、钴纳米颗粒和碳材料,不同束流下图像质量的比较 /strong strong style=" font-size: 14px text-align: center text-indent: 2em " /strong /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/29ecf822-c796-4da0-a394-fa93a248c2d0.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/858092ec-e7c9-4e0e-a8e3-a1564d3b4800.jpg" title=" 13.png" alt=" 13.png" / & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f8de383e-1046-4e7d-a4d1-540843a72d14.jpg" title=" 14.png" alt=" 14.png" / span style=" text-indent: 0em " & nbsp & nbsp /span /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/34a0c424-2f08-44fe-8f0c-cd31c149f9ab.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 以上四例说明:束流的选择同样也遵循辩证法的规律,束流改变带来的往往是正、反两方面影响。如何平衡这些影响获取最佳的结果,还与样品的特性有关,必须全面考虑。 /p p style=" text-align: justify text-indent: 2em " 样品本身信号量充足且漏电能力较差,束流适当选择较低一些,可以减少荷电的影响,提升图像的清晰度,但图像信噪比就是牺牲的对象。反之,束流应当选择稍高一些,可以获得的样品信号量更为充分,图像的质量更佳。 /p p style=" text-align: justify text-indent: 2em " 依据个人的测试经验,起始条件选择的束流大一些,综合效果会更好。选择小束流,常常会使得图像的信息量不足,分辨力减弱过多,很多细节反而分辨不清。欲对仪器做出适当的调整,看清信息是基础,信息太弱会失去调整的方向。 /p p style=" text-align: justify text-indent: 2em " 任何测试条件的选择都应当坚持适度性原则。具体问题、具体分析,摒弃单调的思维模式,才能找到最佳的测试条件,获得满意的测试结果。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " strong 三、结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文通过大量的实例给大家展示,不同加速电压及束流的选择,究竟能带给我们怎样的测试结果。 /p p style=" text-align: justify text-indent: 2em " 辨证的观点要求我们能够做到具体问题、具体分析。 /p p style=" text-align: justify text-indent: 2em " 摒弃单调的思维模式,有助于我们选择正确的测试条件,获得满意的测试结果。 /p p style=" text-align: justify text-indent: 2em " 同样的样品、不同的测试条件获取的样品信息不同。单一的测试条件往往很难带给我们完整且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " 要获取充分的样品信息,需要测试者能准确预判出测试条件的改变对测试结果会产生怎样的影响。做到这一点,测试者的经验积累十分重要。希望本文的各种实例,能对大家在加速电压和束流选择方面的经验累积提供一些帮助。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /p p style=" text-align: justify text-indent: 2em " 华南理工出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /p p style=" text-align: justify text-indent: 2em " 中科大出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /p p style=" text-align: justify text-indent: 2em " 人民出版社 & nbsp /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月 /p p style=" text-align: justify text-indent: 2em " & nbsp 清华大学出版社 /p p style=" text-indent: 2em " strong 作者简介: /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 80px height: 123px float: left " src=" https://img1.17img.cn/17img/images/202005/uepic/6dc1a11e-8c90-4ad2-be79-65574928318f.jpg" title=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" alt=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" width=" 80" height=" 123" border=" 0" vspace=" 0" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp /p p style=" text-indent: 2em " strong 延伸阅读:& nbsp /strong /p p style=" text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-indent: 2em " a href=" http://电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • ​斯坦福大学Nature,电压成像技术揭示多巴胺如何重塑记忆!
    【科学背景】感官线索的固有效价和学习效价是动物在不断变化环境中评估和决策的关键。固有效价代表了对威胁或食物等生存相关预测的内在反应,而学习效价则是基于经验对这些预测的更新。许多物种通过不同的神经通路处理这些效价,这有助于提高行为的可靠性和灵活性。然而,固有效价如何影响学习效价信息的获取,以及这种相互作用可能带来的功能性益处,仍然不清楚。多巴胺被认为在调节学习和记忆过程中起着关键作用,尤其是在处理固有和学习效价信息方面。哺乳动物的多巴胺神经元(DANs)能编码奖励预测、预测误差以及动机价值,并对不熟悉的刺激做出反应。果蝇的DANs也参与了固有和学习效价的处理。PPL1和前脑前内侧(PAM)群体的DANs向果蝇的蘑菇体(MB)提供正向和负向的强化信号,从而驱动突触可塑性和学习。然而,尽管DANs对气味的固有反应是已知的,但其如何整合固有效价和学习效价信息,以及这种整合如何影响记忆动态,尚未得到全面理解。为了探索这些问题,斯坦福大学、华盛顿大学医学院Cheng Huang(清华大学校友)、斯坦福大学Mark J. Schnitzer教授团队、耶鲁大学Madhuvanthi Kannan,以及Ganesh Vasan在“Nature”期刊上发表了题为“Dopamine-mediated interactions between short- and long-term memory dynamics”的最新论文。作者进行了大规模的电压成像研究,涉及超过500只果蝇,揭示了PPL1-DANs和MBONs在调节短期和长期记忆形成中的复杂作用。研究表明,多巴胺基的效价整合调节了蘑菇体的记忆动态,能够保留能量消耗较大的持久记忆,特别是对于频繁遇到的关联。通过将脉冲率数据和连接组数据结合,作者的模型预测了这一过程,并验证了这些预测的有效性。【科学亮点】(1)实验首次揭示了果蝇大脑中固有效价和学习效价的多巴胺信号如何共同调控记忆动态。通过对500多只果蝇进行长期电压成像研究,作者获得了关键数据,说明多巴胺信号在调节短期和长期记忆之间的交互作用中起到了重要作用。(2)实验通过电压成像技术观察到PPL1-DANs在嗅觉联想条件反射中异质性和双向地编码了惩罚、奖励和气味线索的固有与学习效价。结果显示,PPL1-DANs的信号调节了蘑菇体(MB)输出神经元(MBONs)的记忆存储和消退。在初步条件反射阶段,PPL1-γ1pedc和PPL1-γ2α’1神经元控制了短期记忆的形成,并减弱了来自MBON-γ1pedcα/β对PPL1-α’2α2和PPL1-α3的抑制反馈。(3进一步的条件反射过程中,这种减弱的反馈使PPL1-DANs能够编码条件气味线索的固有加学习效价,从而调节长期记忆的形成。此外,基于果蝇连接组和电活动数据的计算模型解释了多巴胺信号如何介导短期和长期记忆痕迹之间的电路交互,并且实验验证了这一模型的预测。【科学图文】图1 | PPL1-DANs 和 MBONs 的电压成像。图2 | PPL1-DANs 异质性和双向地编码惩罚、奖励和气味效价。图3 | 学习引起 PPL1-DANs 和 MBONs 中分布性、双向的可塑性。图4 | 固有和学习效价都影响持久的可塑性和行为。图5 | 计算模型捕捉了蘑菇体学习单元之间的相互作用,并产生了可测试的预测。【科学启迪】本文揭示了多巴胺在果蝇蘑菇体(MB)中的作用,如何通过整合固有和学习效价来调节记忆动态。首先,研究表明,多巴胺不仅参与编码奖励和惩罚,还通过编码感官线索的固有效价和学习效价来调节记忆。这种基于多巴胺的效价整合机制,使得短期记忆和长期记忆能够在神经电路中进行复杂的交互和调整。这种机制的实现,可能在能量消耗方面具有优势,因为它有助于更高效地处理频繁遇到的关联,避免了不必要的资源浪费。其次,电压成像技术的应用提供了高时间分辨率的神经脉冲数据,克服了钙离子成像在捕捉神经活动细节方面的局限。这种技术使作者能够更准确地观察到多巴胺信号在调节记忆中的具体作用,从而为记忆和学习的研究提供了新的视角。最后,基于果蝇的电压成像数据建立的计算模型,结合了脉冲率数据和连接组数据,验证了多巴胺信号在记忆存储和调节中的关键作用。这种模型不仅解释了神经回路中的互动机制,还为未来的实验提供了可测试的预测,有助于进一步探讨类似机制在其他物种和脑结构中的普遍性。文献详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5
  • “细菌造”纳米纸经得起极端环境考验
    4月18日,科技日报记者从中国科学技术大学获悉,该校俞书宏院士、管庆方副研究员等科研人员,利用合成云母和细菌纤维素,合成了一种具有优异机械和电绝缘性能,对极端条件具有良好耐受性的纳米纸张材料,该材料表现出优异的交替高温和低温耐受性、抗紫外线和原子氧特性。这项研究成果日前发表在《先进材料》上。  这种纳米纸张材料,具有较高的抗拉强度、优异的可折叠性、抗弯曲疲劳性、较高的电击穿强度。与纤维素纳米材料相比,这种纳米纸张材料的电晕阻力寿命显著提高,甚至超过了商用聚酰亚胺薄膜。  如果把地球上的功能材料应用于火星和月球等极端环境,其在应用过程中的可靠性取决于其对极端环境的耐受性。通常,在这些极端环境中,一些不利因素包括紫外线、原子氧和高低温交替等,容易导致材料的物理化学性质发生变化,更有甚者会导致重要设备失效。  为了解决这些挑战,人们使用和开发了各种基于金属、陶瓷和聚合物的材料。其中,金属和陶瓷具有优异的力学性能和对极端环境的容忍度。但金属基材料同陶瓷基材料相比密度高;而陶瓷基材料也存在因太脆而不能制备成特定形状的缺点;聚合物虽然具备轻质和可塑性的优点,但大多数聚合物基复合材料存在着高温耐软化性能差、低温脆性、耐热冲击性能差等问题。  研究人员介绍,他们选用的细菌纤维素,具有高纯度、高结晶度、高弹性模量和天然三维网络结构。研究人员先将细菌纤维素的菌株木马孢杆菌引入固体培养基表面,为细菌纤维素的生长提供稳定的培养基—空气界面。在随后的细菌纤维素生长过程中,他们通过气溶胶辅助给料系统,为复合水凝胶的形成提供了条件。最后,通过热压,他们将得到的复合水凝胶组装成致密的云母纳米堆,得到了纳米纸张材料,其机械和介质强度性能优于大多数商业云母纸。  为了验证该材料对极高温和极低温交替环境的耐受性,研究人员引入了快速热冲击试验。他们将该纳米纸张材料在烤箱和液氮之间来回交替,如此一来,材料被快速加热到120℃,然后冷却到-196℃。随后,研究人员测试了该材料在20次热冲击循环后的力学性能。在热冲击后,该材料的力学性能没有明显下降,强度保持在初始值的98%。  为了进一步测试该材料对紫外线的抵抗力,他们将其在强紫外线照射下暴露216小时,力学性能和电学性能检测结果表明,该材料仍保持了90%的介电强度和99%的抗拉强度。此外,这种纳米纸张材料对原子氧也具有良好的耐受性,在原子氧大通量辐照6小时后,该材料的介电强度仍保持在96%。  研究人员表示,这项研究将为未来对极端环境的探索提供一种材料选择。
  • AMETEK LLOYD材料试验机针对显示屏物理强度测试解决方案
    LLOYD材料试验机用于LED,OLED显示屏的物理机械强度和可靠性测试,如三轴/四轴弯曲强度,单点/多点面压强度,水波纹测试,黄斑测试,Cell Gap强度,FOG拉力强度和FOG柔韧度测试等。LLOYD高精度的力学测试仪器可以辅助LED,OLED厂商测评产品的机械性能,以专业的数据指导产品的生产与研发,确保成品质量的稳定与可靠。三轴/四轴弯曲强度测试三轴/四轴弯曲强度测试用于LED和OLED屏的抗弯、抗折性能评价,测试可应用于原材料、成本和半成品。弯曲压轴长度可根据用户的实际需要进行定制,以满足不同类型用户对显示屏物理性能的测评。轴间跨距可根据屏幕尺寸灵活进行调整及锁定,可快速调整以测试屏幕的长边方向和短边方向。测试系统自动高精度采集弯曲力和屏幕形变量,为用户提供精准、可靠的试验数据。同时,搭配特殊辅具,该系统可进行便携设备屏幕被人体挤压,坐弯等情形的模拟。单点/多点面压测试面压测试采用专业探头对屏幕进行单点、多点压力测试,以评价屏幕物力抗压强度。搭配手动/自动X-Y定位平台,LLOYD力学测试系统可快速完成多点半自动和全自动面压测试。丰富的探头选择可协助用户完成电容屏、电阻屏等触摸式屏幕的性能测评。用户可灵活设定保压时间进行成品评估和新品研发。黄斑测试黄斑测试采用专用球面压头对屏幕施加阶梯递增式压力,以检测是否有黄斑产生。LLOYD力学测试系统采用模块化编程程序,全自动完成阶梯式力值递增。用户可通过观察镜,或数字摄像头实时观察屏幕变化,LLOYD Nexygen Plus软件动态视频捕捉功能可实时记录全部试验过程,以便后期回放分析,为用户提供数值以外的分析维度。水波纹测试水波纹是触摸屏常见问题之一,严重影响用户体验。屏幕成品和半成品出厂前,需抽样对屏幕进行划区水波纹测试,在每一区域进行5次阶梯式增压试验,以记录水波纹发生情况。搭配X-Y试验平台,LLOYD测试系统可快速完成多区域多力值的加载,为测试提供极大的便利性。X-Y试验平台LLOYD力学测试系统可搭配X-Y试验平台进行精确X-Y定位,以便用户快速、高精度移动样品测试位至主机探头处进行测试。手动式X-Y试验平台可根据用户需求自由进行调整,微调手轮可协助用户完成微小位移量的控制;全自动X-Y试验平台可预设好试验程序,通过与LLOYD力学测试系统的通讯全自动完成多点、多排的定位和测试,使高精度、高重复性定位成为可能。用户还可根据特殊需求选配视频定位系统,智能化完成复杂定位工作。LLOYD品牌简介 LLOYD品牌隶属于美国阿美特克(AMETEK)集团,是AMETEK Measurement Communications Technologies(MCT)事业部的一部分。LLOYD品牌材料试验机是全球专业的力学测试仪器制造商之一,诞生于1962年,拥有近60年的全球材料测试积累和经典力学测试产品的生产经验,产品可覆盖自0.0001N至100KN范围的高精度力学测试分析。LLOYD材料力学测试产品广泛的应用于产品研发,生产制造,质量控制,教育科研,航空航天等多个领域,为各行业提供精准、高效的力学测试仪器。LLOYD全球化的服务支持网络覆盖全球120多个国家,为广大用户提供高质量的技术支持,培训,设备维护和专业的方案定制服务。LLOYD材料试验机常规测试项目有:★拉伸强度测试 ★压缩强度测试 ★弯曲强度测试 ★弹性模量测试 ★撕裂强度测试 ★粘合强度测试 ★剥离强度测试 ★疲劳强度测试 ★穿刺强度测试 ★蠕变性能测试 ★摩擦系数测试 ★松弛性能测试 ★应力应变测试 ★温度环境测试 ★以及各类定制化测试方案LLOYD系统特点:▲单通道8KHz内部数据采样率,真实捕捉瞬间力值变化;▲读数级测量精度,更真实反映力学性能;▲测试速度最高可达2032mm/min,满足多数测试速度需求和未来扩展需要;▲超大测试空间,舒适、便捷的测试操作;▲单柱采用直线导轨导向技术,双柱超高刚度机架;▲独特的刚度补偿功能,确保最精确力值分析;▲即插即用式自动识别传感器,轻松扩展测试范围;▲开放式庞大国际标准数据库,即选即用;▲模块化程序编辑功能,轻松自定义试验标准;▲静态/动态视频捕捉功能,支持回放分析;▲内置SPC功能,专业数据统计与分析.
  • 中航工业噪声与动强度航空科技重点实验室揭牌
    中航工业强度所航空噪声与动强度航空科技重点实验室日前通过中航工业科技与信息化部的验收。   在验收会上,该所重点实验室主任黄文超从实验室研究方向和目标、专业设置、人员配置、成果绩效和人才队伍等方面向验收委员会详细汇报了重点实验室建设情况。验收委员会在仔细听取了工作汇报,参观考察了重点实验室现场,审阅了相关资料后认为:该实验室已按要求完成建设,符合航空科技重点实验室验收大纲的要求,试运行表明达到了实验室建设的预期目标,建议批准该重点实验室投入正式运行。   该所所长孙侠生表示,实验室正式运行后,一定按照重点实验室的要求,更加重视前沿技术的应用基础研究和关键技术攻关,加强实验室的运行管理,力争取得更多高水平的研究成果,使该所在学术进步、对外开放、科技创新等方面迈向新的台阶,为航空科技发展和武器装备的研制发挥更大作用。   最后,中航工业科技与信息化部副部长冷毅勋和该所所长孙侠生为航空噪声与动强度航空科技重点实验室揭牌。
  • 2013年便携式甲烷检测报警仪产品质量国家监督抽查结果
    2013年第四季度,共抽查了北京、天津、河北、山西、辽宁、上海、江苏、浙江、安徽、山东、河南、湖北、湖南、重庆、陕西等15个省、直辖市42家企业生产的42批次便携式甲烷检测报警仪产品。   本次抽查依据AQ6207-2007《便携式甲烷检测报警仪》等标准规定的要求,对便携式甲烷检测报警仪产品的外观及结构、基本功能、电源及充电、显示值稳定性、基本误差、工作时间、响应时间、报警功能、绝缘电阻(常态下)、绝缘介电强度(常态下)、工作低温试验、工作高温试验等12个项目进行了检验。   抽查发现3批次产品不符合标准的规定,涉及到基本功能、报警功能、绝缘介电强度项目。   另外,鹤壁市辉煌电子有限公司在抽查中拒检。
  • 便携甲烷检测仪抽查 3家不合格1家拒检
    据质检总局官网信息,在日前结束的便携式甲烷检测报警仪产品质量国家监督抽查中,共抽查了北京、天津、河北、山西、辽宁、上海、江苏、浙江、安徽、山东、河南、湖北、湖南、重庆、陕西等15个省、直辖市42家企业生产的42批次便携式甲烷检测报警仪产品。其中,镇江中煤电子有限公司、镇江市煤达矿用电器有限公司、淄博瑞安特自控设备有限公司3家企业的3批次产品不合格,原因是基本功能、报警功能、绝缘介电强度项目不符合标准的规定。另外,鹤壁市辉煌电子有限公司在抽查中拒检。   本次抽查依据AQ6207-2007《便携式甲烷检测报警仪》等标准规定的要求,对便携式甲烷检测报警仪产品的外观及结构、基本功能、电源及充电、显示值稳定性、基本误差、工作时间、响应时间、报警功能、绝缘电阻(常态下)、绝缘介电强度(常态下)、工作低温试验、工作高温试验等12个项目进行了检验。
  • 《电子天平》国家标准征求意见稿征求意见
    2021年8月3日,全国实验室仪器及设备标准化技术委员发布关于对《电子天平》国家标准征求意见稿征求意见的通知。请各位专家于2021年10月3日前以电子邮件、传真或信函形式将意见反馈至全国实验室仪器及设备标准化技术委员会秘书处。根据《国家标准化管理委员会关于下达2020年第二批推荐性国家标准计划的通知》(国标委发[2020]37号),GB/T 26497-2011《电子天平》已列入2020年国家标准修订计划(立项编号20202542-T-604),标准牵头起草单位为上海天美天平仪器有限公司,归口单位为全国实验室仪器及设备标准化技术委员会(SAC/TC 526),主管部门为中国机械工业联合会。该国家标准的起草工作组成员主要包括上海天美天平仪器有限公司、机械工业仪器仪表综合技术经济研究所、中国计量科学研究院、上海市计量测试技术研究院、沈阳龙腾电子有限公司、天津市计量监督检测科学研究院、云南省计量测试技术研究院、浙江省计量科学研究院、江苏省计量科学研究院、中国测试技术研究院、 广州广电计量检测股份有限公司、长沙湘平科技发展有限公司、沈阳龙腾电子有限公司、 长沙高新开发区湘仪天平仪器设备有限公司、赛多利斯(上海)贸易有限公司、普利赛斯称重设备有限公司等单位。该标准主要内容和技术差异如下:1、标准的主要内容 本标准规定了电子天平的术语和定义、计量单位、基本参数、要求、试验方法、检验规则、标志及包装、运输、贮存。本标准适用于以电磁力平衡式、电阻应变式、电感式、电容式等称重传感器为核心部件,检定分度值不小于 1 mg 的电子天平(以下简称天平)的设计与制造。本标准不适用于真空天平、热天平、遥控天平、自动天平和按协议制造的天平。本标准主要内容如下:第一章:范围;第二章:规范性引用文件;第三章:术语和定义;第四章:计量单位;第五章:基本参数;第六章:要求;第七章:试验方法;第八章检验规则;第九章,标签、标记;第十章,包装、运输、贮存。2、主要技术差异本文件代替 GB/T26497-2011《电子天平》,与 GB/T26497-2011 相比,除结构调整和编辑性改动外,主要技术变化如下: a) 更新“1 范围”及“2 规范性引用文件”,增加电子天平核心部件—称重传感器的型式描述等;b) 更新“3 术语和定义”及“4 计量单位”,增加实际分度值、检定分度值、检定分 度数及除皮等定义,取消“微克”,“公斤”变更为“千克”等;c) 更新“5 基本参数”要求,包括检定分度值与实际分度值的约束关系更新,“最小 秤量 Min”公式更新,“正常工作条件”中取消温度波动度范围及相对湿度下限、放宽相对湿度上限;d) 更新“6.1 外观及结构”及“6.2 计量性能”要求,增加适应性、安全性、“置零 准确度”及“除皮称量”等要求;e) 更新“6.3 由影响量和时间引起的变化”要求,包括倾斜、温度、供电电源及时间, 删除级天平空载倾斜试验的要求等;f) 更新“6.4 功能”、“6.5 称量结果指示”、“6.6 置零装置和零点跟踪装置”及“6.7 除皮装置”要求,包括读数装置、示值形式、数字示值、示值变化、平衡稳定等;g) 更新“6.9 抗干扰要求”要求,将“与”关系改为或“或”关系,增加备注及例外描述;h) 新增“6.12 耐久性”章节,更新“6.10 湿热,稳态”及“6.11 量程稳定性”要求;i) 更新“7.5 计量性能试验”要求,包括新增“置零准确度试验”及“除皮称量试 验”、细化“称量试验”及“重复性试验”中型式评价试验及其他试验的次数要求、“偏载试验”新增加载位置示意图、针对 d<5 mg 天平“称量试验”增加“部 分测量点再加 1 mg 砝码的载荷测量”等;j) 更新“7.6 影响因子试验”要求,包括倾斜试验要求、静态温度试验范围、空载示值影响试验、电压变化试验及蠕变试验等;k) 新增“7.8 预热时间试验”、“7.9.3 平衡稳定性试验”及“7.16 耐久性试验”;l) 更新“7.10 置零装置及零点跟踪装置试验”、“7.12 安全要求试验”及“7.13 抗干扰性试验”要求,包括介电强度试验删除“双重绝缘”试验要求、增加“配置电源设配器天平不适用”备注,抗干扰性试验方法(附录 A)调至正文等;m) 更新“8 检验规则”要求,删除周期检验要求、细化“检验项目及对应的要求、试验方法”表;n) 更新“9 标签、标记”及“10 包装、运输、贮存”要求,更新产品标签、包装要求等。n) 更新“9 标签、标记”及“10 包装、运输、贮存”要求,更新产品标签、包装要求等。国家标准《电子天平》(征求意见稿)如下:附:1、国家标准《电子天平》(征求意见稿).pdf2、国家标准《电子天平》(征求意见稿)编制说明.pdf3、国家标准征求意见稿意见反馈表.docx联系地址:北京市西城区广安门外大街甲397号 100055单位名称:机械工业仪器仪表综合技术经济研究所联系人:王凯联系电话:13001080500 传真:010-63490489电子邮箱: wk@tc124.com
  • 红山研制出国内首台50MN高强度试验机 填补国内空白
    日前,从天水红山试验机有限公司传来喜讯,该公司研制的国内首台“50MN高强度舰船宽板拉伸试验机” ,结束了我国5000吨级以上大型拉伸试验机长期被外国公司垄断的历史,填补了国内对钢结构焊接件进行大力值拉伸强度试验的空白,属国内首创,经济和社会效益十分显著。   在星火工业园宽大的厂房内,记者看到了这台庞然大物,据介绍,该试验机整机重400多吨,长20米,宽5米,高4.5米,试验机最大拉伸力为50MN(5000吨),精度等级达到一级。进行拉伸试验的高强度舰船板材厚度达到120毫米,宽2.2米,长度5米,具有镶嵌式加载框架、多套油缸组合协调加载控制技术等在内的多项专利技术。该机的平稳性、可靠性、工作效率可与国外同类产品媲美,其核心技术优于国外同类产品,价格仅为国外同类产品的70%。控制系统自动化程度高、操作方便,得到用户高度评价。   近年来,随着我国国防工业的快速发展,大力值、高强度钢板拉伸试验机设备的需求日益增长。长期以来,这种设备的关键技术一直被国外厂家垄断,国内科研单位及生产厂家急需的5000吨级以上的拉伸试验设备一直依赖进口,采购成本居高不下,备件周期长,价格十分昂贵。中国船舶重工集团公司经过广泛市场调研,决定由国内厂家研制。2012年2月,红山公司与中国船舶重工集团公司某研究所签订了设备研制合同。红山公司在不断引进消化吸收国内外先进制造技术的基础上,刻苦攻关,仅用一年多的时间,依靠自主创新研制成功“50MN高强度舰船宽板拉伸试验机”。   近日,中国船舶重工集团公司专家组对该机主机加载框架刚性、测量控制精度等主要技术指标进行了严格测试,各项指标均符合标准要求,顺利通过出厂验收。该试验机是目前国内载荷最大的大型试验检测设备,主要用于进行大尺寸、高强度舰船钢板等材料的焊接强度试验,是国内船舶制造、海洋钻井平台、大跨度桥梁、超高层建筑钢结构制造等行业急需的大型试验检测设备。该试验机将用于中国船舶重工集团公司某研究所承担的国家“863”重点高科技攻关项目。
  • ETT-01电子拉力试验机除了可以测试薄膜的拉伸强度还能测试薄膜的哪些性能
    在当今这个科技日新月异的时代,薄膜材料因其优良的物理和化学特性,在包装、医疗、电子等众多领域得到了广泛应用。然而,如何准确评估薄膜的各项性能,确保其在各种应用场景下的可靠性,成为了摆在科研人员和生产企业面前的重要课题。幸运的是,ETT-01电子拉力试验机的出现,为薄膜性能的全面检测提供了强大的支持。ETT-01电子拉力试验机,作为一款专业的力学性能测试设备,不仅可以测试薄膜的拉伸强度,更能深入探索薄膜的剥离强度、断裂伸长率、热封强度、穿刺力等多项关键性能。这些性能参数对于评估薄膜的耐用性、密封性以及在实际应用中的表现至关重要。首先,剥离强度是衡量薄膜材料间粘附力的重要指标。通过ETT-01的精确测试,我们可以了解到薄膜与不同材料之间的粘附性能,为产品设计和生产工艺提供有力依据。其次,断裂伸长率是反映薄膜材料在受到外力作用时变形能力的关键参数。ETT-01能够准确测量薄膜在拉伸过程中的伸长率,帮助我们判断薄膜的柔韧性和抗拉伸能力。此外,热封强度也是薄膜性能中不可忽视的一环。ETT-01电子拉力试验机能够模拟薄膜在实际应用中的热封过程,测量热封后的强度,确保薄膜在包装、密封等应用场景下具有良好的密封性能。值得一提的是,ETT-01电子拉力试验机还具备测试薄膜穿刺力的功能。通过模拟实际使用中可能出现的穿刺情况,我们可以评估薄膜的抗穿刺能力,为产品设计和质量控制提供重要参考。除了以上提到的性能参数外,ETT-01电子拉力试验机还能测试薄膜的压缩、折断力等多项性能,实现对薄膜性能的全面解析。这一功能的实现,得益于ETT-01的高精度测试系统和先进的位移控制技术。通过这些技术手段,ETT-01能够确保测试结果的准确性和重复性,为用户提供可靠的数据支持。在实际应用中,ETT-01电子拉力试验机已经成为了众多薄膜材料生产企业、科研机构以及质检部门的得力助手。它不仅能够帮助用户全面了解薄膜的各项性能参数,还能为产品设计和生产工艺提供改进方向,推动薄膜材料行业的持续发展和创新。总之,ETT-01电子拉力试验机以其全面的测试功能和精准的测试结果,成为了薄膜性能全面解析的利器。它不仅能够满足科研人员和生产企业对薄膜性能评估的需求,还能为产品的质量控制和工艺改进提供有力支持。在未来的发展中,我们有理由相信,ETT-01电子拉力试验机将继续在薄膜材料性能测试领域发挥重要作用,为行业的进步和发展贡献力量。
  • 协助油液检测公司实验室|加急出厂多台油品检测仪器
    人类运用摩擦、磨损、润滑方面知识的记载,可以追溯到公元前3000多年。但人们对润滑剂的检测却较运用润滑剂的历史短得多,通过润滑剂实现对机器工况和故障的监测与诊断则更晚,只是20世纪的事情。最初的油液监测源于油污染分析(oil Contamination Analysis),主要是通过油品理化指标的常规检测,反映油品的质量和评价油品的润滑性能。当时这类分析常作为石油公司产品销售后的技术服务项目而进行。 1941年美国铁路行业的Denver Rio Grand和 Westen Railroad公司首次采用光谱分析方法检测在用内燃机车润滑油中的磨粒元素种类和含量。随着60 年代工业界对监测与诊断技术的需求,特别是70年代初,铁谱技术的问世,油液监测技术与其他监测方法一样,产生了飞速的发展。通过80年代学术界和工业界的积极探索,油液监测技术已成为设备诊断技术体系中与振动监测、温度监测、性能参数监测共同发展的主要方法之一。进入90 年代以后,油液监测技术正日益朝着多种方法集成、在线与离线并举、监测诊断维修管理融为一体和方法与仪器的智能化方向发展,取得了不少令人振奋的进步。 油液监测技术是通过分析被监测机器的在用润滑剂(或工作介质)的性能变化和携带的磨损微粒的情况,获得机器的润滑和磨损状态的信息,评价机器的工况和预测故障,并确定故障原因、类型和零件的技术。这一技术的工业应用表明:油液监测技术适用于低速重载、环境恶劣(如噪音大、振动源多、外界干扰明显)、往复运动和采用液体或半液体润滑剂且以磨损为主要失效形式的设备的监测。国内外实施油液监测所获得的经济效益推动着这一技术的发展和完善。通常,油液监测可以延长设备的换油期或者正确选用润滑剂而取得效益,更重要的是通过及时预报潜在的故障避免灾难性损坏或者使处于正常运转的设备减少不必要的维修而增加产值和效益。 如今营运而生的油液检测公司也多了起来,得利特研发生产的油品分析仪器,也被这才公司很好的运用到生产中。最近北京得利特油品分析仪得到河北检测公司顺利验收,河北检测公司新建实验室成功投入了使用。 近日,由北京得利特生产的一批油品检测设备顺利完成出厂检测,成功发往河北检测公司实验室。 据了解,此次发往电厂设备较多,设备清单如下:A1180自动水溶性酸测定仪 、A1160绝缘油介电强度测定仪 、A1170自动油介损及体积电阻率测定仪 、A1050液相锈蚀测定仪、A1031油液颗粒污染度检测仪等一批仪器。 合同签订后,得利特从材料采购、工艺、制造、装配等全过程进行严格监督,深入一线严把质量关;经常召开进度协调会,对各类问题事无巨细进行讨论决策。为了确保了该批检测设备交货进度风险可识别和可管控。 仪器发往客户实验室后,已经安排售后进行了安装调试,经过一台安装调试,实验室完成搭建! 得利特公司整合石化科学研究院,中国计量科学研究院,北京铁道科学研究院,计量总站等油品方面、仪器方面、设备方面的专家为技术班底,集思广益,推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等产品,得到用户的广泛赞誉。公司以技术实力为用户提供专业贴心的咨询培训服务,包括设备润滑咨询服务,设备润滑知识培训,润滑系统方案设计、实验室建设方案,第三方油品检测。确保客户解决设备润滑的相关问题!
  • 仪器新应用,科学家利用电压成像技术揭示多巴胺调控下的记忆网络机制!
    【科学背景】多巴胺(Dopamine)是神经系统中一种关键的神经递质,其在调节行为和记忆方面发挥着重要作用。由于多巴胺在学习和记忆过程中的核心作用,研究其在不同记忆单元之间的调节机制成为了研究热点。然而,现有研究主要集中于固有和学习效价的分离处理,忽视了固有效价如何影响学习到的效价信息及其对记忆动态的影响。这一问题在动物对变化环境的适应中显得尤为关键,因为它涉及到如何有效地整合内在和外部信息来优化记忆的可靠性和灵活性。有鉴于此,斯坦福大学、华盛顿大学医学院Cheng Huang(清华大学校友)、斯坦福大学Mark J. Schnitzer教授团队、耶鲁大学Madhuvanthi Kannan,以及Ganesh Vasan教授合作携手采用了果蝇作为模型生物,通过对500多只果蝇进行长期电压成像,探讨了多巴胺如何整合固有和学习效价来调节记忆动态。结果表明,多巴胺基于效价的整合机制在调节蘑菇体(MB)记忆动态方面具有重要作用,并适合于储存持久记忆,这种记忆对于频繁出现的关联尤其重要。研究还表明,通过电压成像能够提供比钙离子成像更为细致的神经脉冲数据,从而揭示了短期和长期记忆的复杂交互。模型的定量预测验证了结合脉冲率和连接组数据作为建模约束的有效性,为深入理解多巴胺调节记忆动态提供了新的视角。【仪器亮点】(1)实验首次发现了固有效价和学习效价在果蝇蘑菇体记忆动态中的整合作用。作者首次通过对500多只果蝇进行长期光学电压成像研究,揭示了PPL1-DANs和MBONs在记忆形成中的关键角色。这些发现展示了固有效价和学习效价的整合如何调节记忆的存储和消退,揭示了短期和长期记忆的复杂交互。(2)实验通过电压成像技术详细研究了PPL1-DANs如何编码和整合固有及学习效价信号。结果显示,PPL1-DANs在学习过程中通过调节短期记忆形成来影响长期记忆的形成。特别是在初期条件反射中,PPL1-γ1pedc和PPL1-γ2α’1神经元控制短期记忆的形成,随后这种控制通过减少MBON对DANs的抑制反馈来影响长期记忆。(3)条件反射过程中,PPL1-DANs编码条件气味线索的固有和学习效价,从而调节长期记忆的形成。作者的计算模型结合了脉冲率和连接组数据,提供了对这些交互的定量和可验证预测,展示了这种混合生理-解剖机制在其他物种和脑结构中的潜在普遍性。【科学图文】图1 | PPL1-DANs 和 MBONs 的电压成像。图2 | PPL1-DANs 异质性和双向地编码惩罚、奖励和气味效价。图3 | 学习引起 PPL1-DANs 和 MBONs 中分布性、双向的可塑性。图4 | 固有和学习效价都影响持久的可塑性和行为。图5 | 计算模型捕捉了蘑菇体学习单元之间的相互作用,并产生了可测试的预测【科学启迪】本文揭示了多巴胺在感官效价整合中的核心作用,进一步加深了作者对果蝇记忆动态调节机制的理解。研究表明,果蝇的大脑通过多巴胺信号调节蘑菇体(MB)中的短期和长期记忆单元,从而实现对固有和学习效价的综合处理。这种机制允许动物在不断变化的环境中有效地调节和更新其记忆,使其能够在经历不同的刺激时做出适应性的行为决策。通过对超过500只果蝇进行电压成像研究,本文揭示了PPL1-DANs神经元如何通过编码固有和学习效价,影响记忆的存储和消退。特别是,短期记忆的形成和长期记忆的构建是通过复杂的反馈机制进行调控的,这种机制涉及短期记忆和长期记忆之间的动态交互。这种整合机制表明,多巴胺不仅在学习过程中发挥作用,还在记忆的持久性和可靠性中起到重要作用,尤其是在处理频繁遇到的关联时。此外,本研究通过与电压成像相结合的计算模型展示了脉冲率和连接组数据的有效整合,提供了一种新的建模约束手段。这种方法展示了在多巴胺调控下的记忆动态如何通过结合生理数据和结构数据来进行更为精准的模拟。这为理解复杂的神经计算机制提供了新的视角,也为未来在其他物种和脑结构中探究类似机制奠定了基础。原文详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5
  • 高速电压成像:揭示大脑神经网络三维协调模式!
    【研究背景】电压成像是研究神经元活动的一种重要技术,因其能够直接测量膜电位并实时监测神经元群体的活动,广泛应用于神经科学等领域。与传统的钙成像技术相比,电压成像具备更高的时间分辨率和更全面的信息获取能力,使得研究者能够更深入地理解神经电路的信息处理机制。然而,电压成像在实际应用中面临着成像速度、信噪比、体积覆盖以及光漂白率等多重挑战,这在很大程度上限制了其在大规模神经元群体中的应用。近期,中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)的博士后白璐和副研究员丛林以及王凯研究员携手在电压成像技术方面取得了新进展。他们设计并制备了一种共聚焦光场显微镜,成功克服了传统成像技术在速度和噪声性能方面的限制。该团队通过集成高速增强相机、快速稳健的扫描机制、激光散斑噪声消除以及优化光效率,实现了在小鼠大脑中对800微米直径和180微米厚度体积内的300多个神经元进行同时记录,且可持续超过20分钟。利用这种新型显微镜,该团队显著提高了电压成像的通量,成功获取了三维神经元协调模式的数据。通过整合空间和电压活动图谱,研究者能够深入分析分布在三维空间中的神经元群体之间的快速时间协调,识别正相关与负相关神经元组之间的不同空间模式。这一研究不仅为电压成像技术在复杂神经网络研究中的应用提供了新方法,也为未来神经科学领域的研究奠定了基础。【仪器解读】本文通过优化光场显微镜(LFM)的原理和技术,具体来说,结合高速摄像机、快速稳健的扫描机制、激光散斑噪声消除及优化光效率,进而首次研发了共聚焦光场显微镜,从而实现了对小鼠皮层中300多只神经元的同时电压成像,最终揭示了神经元在空间分布中的三维协调模式。针对电压成像面临的挑战,本文通过结合电压指示剂的亮度和敏感性,提升成像速度与信噪比,得到了较为理想的成像效果,进而挖掘了神经回路中的信息处理机制。文章强调,电压成像在快速成像和大规模神经元成像方面的潜力,尤其是其在理解神经网络复杂动态方面的应用。在此基础上,通过结合长时间电压成像的能力,作者在不同时间段内进行了连续成像试验,有效控制了数据传输和存储的挑战,确保了在连续成像过程中数据的完整性。这些技术手段和发现的结合,使得对神经元活动的研究不再局限于表面层,而是能够深入到大脑的更深层次,为研究复杂的神经网络提供了新的视角和方法。此外,本文提出的技术路线不仅适用于小鼠皮层的电压成像,还为今后的神经科学研究提供了广泛的应用前景,特别是在研究动物行为与神经活动之间的关系、探索神经病理机制等方面具有重要意义。最终,研究者们通过对成像数据的系统分析,揭示了在小鼠视觉皮层中,响应视觉刺激的神经元之间的空间相关性,深入了解了神经元之间的相互作用和信息传递,为理解大脑的功能提供了新的理论依据。用于电压成像的共聚焦光场显微镜的示意图及特征描述参考文献:Bai, L., Cong, L., Shi, Z. et al. Volumetric voltage imaging of neuronal populations in the mouse brain by confocal light-field microscopy. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02458-5
  • 科学家揭秘魔角石墨烯中的二阶超晶格,光电压调制新发现!
    【研究背景】随着二维材料研究的快速发展,石墨烯和氮化硼等材料在超晶格结构和相关现象中的应用引起了广泛关注。特别是魔角扭曲双层石墨烯(MATBG)由于其在电子相关现象中的独特表现,成为了研究的热点。MATBG中的莫尔超晶格效应可以引发一系列新奇的电子行为,如强关联相、异常霍尔效应和铁电性等,这些都在推动着该领域的前沿探索。然而,尽管在理论和实验上都取得了一些进展,仍存在许多未解之谜。例如,二阶超晶格(SOSL)的实际分布及其对MATBG物理性质的具体影响仍然不清楚。二阶超晶格是由具有相似周期性的莫尔超晶格之间的干涉所形成的,其周期性远大于单一的一阶超晶格。这种二阶结构在调节二维材料的电子性质方面具有潜在的应用价值。然而,现有的实验技术主要集中在局部尺度的成像,如扫描隧道显微镜,仅能提供纳米级区域的局部信息,而对二阶超晶格在中尺度上的实际分布和影响的了解仍然有限。此外,超晶格的应变和扭转角度的变化对其结构和物理性质的影响也没有得到充分研究。为了解决这些问题,西班牙巴塞罗那科学技术学院(The Barcelona Institute of Science and Technology)Petr Stepanov & Frank H. L. Koppens等携手采用了低温下的纳米尺度光电压测量技术,揭示了魔角扭曲双层石墨烯中与氮化硼紧密对齐的二阶超晶格。通过在红外激光照射下对电子输运进行精细探测,作者能够在远低于衍射极限的尺度上观察到SOSL的实际分布。实验结果显示,即使是微小的应变和扭转角度变化(小至0.01°)也能导致SOSL结构的显著变化。这些观测结果不仅验证了二阶超晶格的存在,而且为理解其对MATBG中平带物理的影响提供了新的视角。作者的研究通过提供二阶超晶格在实际应用中的可视化,为深入理解和调控二维材料中的奇异量子相提供了重要的实验数据和理论依据。【表征发现】1. 实验首次在魔角扭曲双层石墨烯(MATBG)中揭示了与氮化硼(hBN)对齐的二阶超晶格(SOSL)。通过电子输运测量和低温纳米尺度光电压测量,研究团队成功地在实空间中观测到二阶超晶格的存在,并且验证了其长程周期性光电压调制的特征。2. 实验通过低温近场光电测量技术,展示了SOSL的两组空间条纹,这些条纹与底层石墨烯和hBN对齐的第一阶超晶格干涉形成的SOSL相对应。结果表明,即使是极小的应变和扭转角度变化(小至0.01°)也会导致SOSL结构的显著变化。3. 实验中观察到的SOSL的局部势变化对局部应变和扭转角度变化具有高度敏感性,这为探究扭曲双层石墨烯中的空间对称性破缺机制提供了新的视角。此外,SOSL的存在破坏了MATBG中的反演对称性,对平带物理具有重要影响。这些发现为理解石墨烯基莫尔异质结构中的奇异量子相以及结构特征对这些相的稳定性提供了重要信息。【图文解读】图1:温度T=10K时,双层魔角石墨烯magic-angle twisted bilayer graphene ,MATBG/六方氮化硼hBN 二阶超晶格second-order superlattice,SOSL的纳米级光电压测量。图2. 实验观察到了光电压特征和反转对称性破缺的栅极和温度响应。图3. 电子传输测量。图4: 二阶超晶格性质的计算。图5: 转角和应变大小函数的二阶超晶格SOSL实空间图。【科学启迪】本文的研究揭示了魔角扭曲双层石墨烯(MATBG)与氮化硼(hBN)对齐时形成的二阶超晶格(SOSL)的实空间可视化,展示了极小的应变和扭转角度变化对超晶格结构的显著影响。通过低温纳米尺度光电压测量,研究者不仅确认了SOSL的存在,还展示了该结构对局部应变和扭转角度变化的高度敏感性。这一发现为理解二维材料中奇异量子相的形成机制提供了新的视角。实验中,利用金属涂层的AFM探针和红外光照射,实现了对超晶格势的精确探测,并通过理论模型进一步解释了SOSL的形成和特性。这些结果不仅揭示了超晶格应变对超晶格势的深远影响,还为二维材料中的平带物理研究提供了重要的实验证据。未来的研究可以借助这些新发现进一步探索超晶格结构在量子计算和电子器件中的潜在应用,推动相关领域的技术进步和理论发展。原文详情:Hesp, N.C.H., Batlle-Porro, S., Krishna Kumar, R. et al. Cryogenic nano-imaging of second-order moiré superlattices. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01993-y
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制