铆钉隔热材料粘结强度检测仪

仪器信息网铆钉隔热材料粘结强度检测仪专题为您提供2024年最新铆钉隔热材料粘结强度检测仪价格报价、厂家品牌的相关信息, 包括铆钉隔热材料粘结强度检测仪参数、型号等,不管是国产,还是进口品牌的铆钉隔热材料粘结强度检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铆钉隔热材料粘结强度检测仪相关的耗材配件、试剂标物,还有铆钉隔热材料粘结强度检测仪相关的最新资讯、资料,以及铆钉隔热材料粘结强度检测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

铆钉隔热材料粘结强度检测仪相关的厂商

  • 北京天地星火科技发展有限公司是一家从事检测(测量)仪器,、工程施工设备等机电产品的开发,生产,销售的专业新技术企业。同时为广大用户提供专业的售前售后服务和产品应用方案。公司的发展宗旨是以高新技术为先导,科、工、贸并举,通过开发高质量,多系列,多功能的产品为广大用户提供优质的服务,并以迅速快捷的售后服务和严谨的工作作风,力求让广大客户满意。检测仪器跟随国际检测仪器的前沿技术,先后开发了锚杆拉力计;锚杆(索)工矿测定仪;高精度智能粘结强度检测仪;混凝土强度检测仪;多功能强度检测仪;饰面砖粘结强度检测仪;铆钉、隔热材料粘结强度检测仪;收敛计;锚固胶固化测定仪;碳纤维粘结强度检测仪;锚杆综合参数测定仪;压力测量仪;圆环型测力仪;建筑电子测温仪及预埋式测温导线;渗透仪控制系统;混凝土氯离子电通量测定仪;裂缝测宽仪;楼板测厚仪;钢筋保护层测试仪;三维定向仪;钢筋位置测定仪;煤矿专用气体检测仪;甲烷检测报警器等。工矿产品先后开发了手动、电动、气动锚索张拉机具;锚杆钻机;气动锚杆安装机;液压泵;锚索锚具;液压剪;退锚器;锚杆预紧器;开口液压剪;双缸锚索张拉机具;锚索安装搅拌器;气动液压泵及脱摸油缸;支护设备;风筒加固器、密封沿口、快速风帐密闭支架等。北京天地星火科技发展有限公司将以“团结、创新、拼搏、奉献”的企业精神,利用多年的专业积累,紧跟时代步伐,不断吸取先进的技术和理念,潜心致力于高科技产品开发;建立健全现代企业管理体系,企业以尊重人才为立业之本。以创造高品质的产品和完美的售后服务为生存之本。“服务无止境,真诚到永远”。真诚欢迎广大顾客来本公司考察指导。顾客至上 品质第一 客户的需要是我们永远不懈的追求
    留言咨询
  • 上海纳威信保温节能材料有限公司,是一家专业生产、研发和销售高性能纳米微孔绝热材料(Microporous Insulation)的公司,工厂座落于宁波市杭州湾新区,交通便捷。厂房面积约4000平米,现有纳米隔热材料生产线4条。可生产平板,柔性毯,异形件,绝热粉等全系列纳米隔热材料产品。  公司由长期从事本行业的海外回国人员创立,技术实力雄厚,管理经验丰富。通过引进和吸收国外先进技术,自主研发适合国内的生产设备,真正实现了纳米微孔隔热材料的国产化。  所有产品均按照行业国际标准ASTM-C1676生产,为确保出口级品质,公司确立了严格的生产管理制度及完善的质检流程,产品各项性能指标达到国际先进水平,部分产品出口到美国,日本,英国等国家 。
    留言咨询
  • 400-860-5168转3509
    高铁检测仪器,1977年创立于台湾,专门从事各类材料物性检测仪器的研发和生产。产品包括:拉力强度试验机、万能材料试验机、硫化仪、制鞋皮革、橡胶轮胎、高分子/塑胶、纸业包装、电工器材、家具/办公桌椅、纺织、运动器材、混凝土、口罩检测及防护用品检测等行业所使用之质量检测仪器。高铁检测仪器自1998年在东莞奠基建厂以来,先后在青岛、上海、温州、泉州、宁波、天津、成都、沈阳、广州、深圳等地设立分公司。并于2009年再建东莞第二生产基地---东城分厂,扩大生产阵容,提升技术产能,满足业界广大客户需求。    高铁一直以国际水平的质量与世界先进同业同步竞争;产品创新的能力与速度,保持了在行业中的领先优势。在科技创新领域,高铁获得多项殊荣:「高新技术企业证书」、「企业创新奖」、「省重点新产品奖」、「市专利金奖」、「市专利重点企业」、「台湾十大杰出企业金鼎奖」、「台湾优良外销产品国际金球奖」等;另获得「准确度一级制造许可证」、「计量样机试验合格证」、「计量标准合格证」、「计量保证体系合格证」、「CE证书」…等资质证书。    高铁凭着自主创新理念,相继获得市级高分子材料物性检测设备工程研发中心、直属校准实验室被CNAS认定为国家级实验室、2008年奥运会《篮球、足球、排球》等产品八项国家标准方法审定成员单位资质。同时,高铁公司注重产学研合作,先后与华南理工大学、青岛科技大、沈阳化工大学、徐州工业技术学院等高校建立联合实验室,集高校科研力量和自身技术实力,推进我司产业升级。    高铁检测仪器,以其精确度、可靠度以及优异的软件功能为海内外广大产业界及科研机构所选用。在研发、设计方面精益求精,世界规范:ISO、ASTM、DIN、EN、GB、BS、JIS、ANSI、UL、TAPPI、AATCC、IEC、VDE、CSA.....均为所用。    40年的研发实力,巩固了高铁在检测仪器领域中的领航地位,产品所发挥的贡献无可计量,对产业界研发高质量、高价值的商品更是影响深远。展望未来,高铁将继续秉持科技创新、诚信经营之理念,在稳固提升的基础上实现进一步飞跃的发展。
    留言咨询

铆钉隔热材料粘结强度检测仪相关的仪器

  • 高精度铆钉拉拔仪外墙饰面砖粘结强度检测仪简介:产品采用S型高精度传感器、机电一体化设计,全套仪器为一个整体,手柄、S型传感器、丝杠、反力之座机械部分构成一个"门"是结构,数显表,可直接读取拉力值(kN)和强度值(Mpa),自动计算、峰值保持、存储和查询功能,特别适合试验室和现场使用,全套检测仪具有功能强大、重量轻、手柄操作省力、简单等特点。高精度铆钉拉拔仪外墙饰面砖粘结强度检测仪符合标准:JGJ144-2004《外墙外保温工程技术规程》JG158-2004《胶粉聚苯颗粒外墙外保温系统》JG149-2003《膨胀聚苯板薄抹灰外墙外保温系统》JGJ110-2008《建筑工程饰面砖粘结强的检验标准》JGJ126-2000《外墙饰面砖工程施工及验收规程》产品特点:1  一体化设计、轻质合金主体,2、 配有内置数显仪表,采用S型高精度传感器;3、 设置菜单,数据可记录、查询、删除操作;4、 超低功耗设计,无操作自动关机,连续工作时间可超过200 小时;5、 强度Mpa和力值KN两种测量模式。技术参数:仪器结构:一体式显示模式:力值KN /强度值Mpa可调测量范围:0-6.000KN /3.75Mpa分辨率:0.001KN测试精度:0.5%F.S峰值保持、液晶照明 数据存储:500条数值修正:10段折线供电方式:高容量锂电拉拔行程:65mm主题材质:轻质合金主题重量:2.8Kg产品配置:1、 拉拔仪主机1台2、 充电器和USB充电线各1个3、 试块40*40mm和100*100mm各3块4、 铆钉拉拔头6/8/10mm各1个5、 便携式仪器箱6、 AB胶1盒7、 说明书、保修卡、合格证各1份
    留言咨询
  • 建筑玻璃太阳得热系数、隔热材料综合检测系统(JP-AK3600T)测试方法:GB/T2680-2021《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射以及有关窗玻璃参数的测定》;ISO9050-1990《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射以及有关窗玻璃参数的测定》;ISO9050-2003《建筑玻璃光透率、日光直射率、太阳能总透射率及紫外线透射率及有关光泽系数的测定》;JGJ/T151-2008《建筑门窗玻璃幕墙热工计算规程》;JGT 235-2014 建筑反射隔热涂料;GB∕T 25261-2018 建筑用反射隔热涂料;JC/ T 1040-2020 建筑外表面用热反射隔热涂料。主要特点 :1.极其优良的光学系统,先进的电子学系统,高水准的机械系统,保证了0.010%T的超低杂散光。2.稳定可靠的品质:双光束动态反馈比例记录测光系统保证了基线稳定性,氘灯、光电倍增管等关键器件均用进口件,保证仪器的稳定可靠和长寿命。3.采用进口优质全息光栅,进一步降低仪器的杂散光,使仪器分析更加准确。4.轻松高效的人机对话:基于Windows环境设计的智能型建筑玻璃可将光透射比、遮阳系数半球发射率中文操作软件,提供了丰富的仪器控制和操作功能,简单易用,灵活高效,轻松满足使用者的分析需求。5.优异的可扩展性:反射光学积分球可选专用附件、建筑玻璃遮阳系数专用反射装置,使仪器的应用范围大大扩展。6.设备维护简单方便:独特的插座式钨灯和氘灯,换灯时免去光学调试,使设备仪器调试、维护更加简单方便,真空压力机进行油液的检测。7.日志记录功能:自动记录用户的操作;日志文件采用更为可靠的数据库格式保存;管理员可对日志进行分类查阅和其他处理。8.采用综合的光学及半球发射一体装置测试系统,性价比高,便于测试。技术参数:
    留言咨询
  • HC-D10S 电动粘结强度检测仪适用于建筑工程固定隔热保温材料铆钉拉拔力、墙体隔热保温材料粘结强度、外墙饰面砖粘结强度、碳纤维粘结强度、砂浆粘结强度及各种板材、混凝土表面的涂层及其他材料的粘结强度检测。重量轻不足5kg,一体式结构、超硬铝合金小型机身设计;加载 / 卸载速度灵活可调,符合行业标准要求;一键加载,试件拉断后自动停止,自动记录峰值;曲线、强度值(MPa)、力值(kN)同屏显示,检测过程数据完整记录;定荷载检测模式,达到预设试验力值自动停止,持荷倒计时、下降百分比同屏显示;50mm大量程设计适用多种检测工况;高精度S传感器、精准测量,数据峰值保持,折线修正;超低功耗设计,采用松下大容量锂电池,工作时间长;硬件、软件双安全保护装置设计,确保检测安全,有效延长仪器使用年限;USB接口导出数据,定制上位机软件,支持数据分析、可生成检测报告。
    留言咨询

铆钉隔热材料粘结强度检测仪相关的资讯

  • 斯坦福热分析新概念 10原子厚隔热材料用于便携设备
    p    strong 仪器信息网讯 /strong 斯坦福大学教授Eric Pop发表在Science Advances上的最新研究,利用二维材料分层堆叠的方式制造出了10个原子厚的隔热材料,可在未来用于小型化电子设备的隔热设计问题。他们的实验已经证明了,仅用几个原子厚的材料,就可以达到比其厚 100 倍的玻璃可提供的相同隔热效果。 /p p   对于这项研究的独特之处,Pop 说:“我们的研究团队正以一种全新的方式看待电子设备中的热量——将其看作声音。”电线中形成电流,是依靠电子在其中运动形成电子流。当这些电子运动时,就会与它们所经过材料中的原子相碰撞(比如电阻),每发生一次碰撞,就会引起材料中的一个原子振动。电流越大,碰撞也就越频繁,最终可能就会发展为电子像撞钟一样不断敲击原子,而这种“刺耳”的震动远高于人们的听力阈值,所以对于其产生的能量,我们的感觉是热。 /p p   目前,如何更好地隔热是工程师们永恒的话题。如果参考录音室增加或增厚隔音玻璃,去增添隔热材料,那就会阻碍电子产品向着更轻薄的方向发展。所以斯坦福大学的研究人员借鉴了多层玻璃让室内更保暖的技巧(在不同厚度的玻璃之间填充一层空气),设计出一种多层结构的材料薄膜。由于纳米材料的异质结构能够集成各个结构基元的性质,可实现对原子和电子结构的调制,从而获得新的功能。研究团队通过将原子薄厚的二维材料分层堆叠的方式,开发出一种拥有超高隔热性能的超薄异质结构。他们成功地将单层石墨烯、MoS2 和 WSe2 堆叠在一起。在这个“三明治”结构中,石墨烯是单层的,而另外 3 种片状材料均为 3 个原子厚。这样就制成了只有 10 个原子厚的 4 层绝热体。该结构可以很好地抑制原子的热振动,当原子通过每一层时,都会损失大部分能量。这样形成的薄膜材料的热阻是 SiO2 的 100 倍,并且在室温条件下导热效率优于空气。 /p p   对于智能手机、平板电脑等其他电子设备来说,它们是追求散热还是隔热的问题一直困扰着工程师。对于 SoC(System on Chip,系统级芯片)来说,单纯追求隔热,会导致机身内部温度过高,SoC 则需要降频 而如果只追求散热,就会导致机身“烫手”,影响用户的使用体验。而该新型隔热薄膜可能就是平衡上述问题的良方。 /p p   负责人 Pop 对外表示:“作为工程师,我们已经学习了很多关于如何控制电力的知识,我们对光的掌握也变得越来越好。但是我们才刚刚开始了解如何控制在原子尺度上表现为‘热’的高频声音。” /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 183px " src=" https://img1.17img.cn/17img/images/201909/uepic/8e7e24ba-ec78-45de-8e07-afab71dec595.jpg" title=" 拉曼激光.jpg" alt=" 拉曼激光.jpg" width=" 600" height=" 183" border=" 0" vspace=" 0" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zc/34.html" target=" _self" 入射拉曼激光探测下,Gr/MoSe2/MoS2/WSe2 结构的截面示意图 B ~ E. 在SiO2衬底上混合 4 层(B)和 3 层(C 到 E)异质结构的横截面截图,由于碳原子的原子数相对较低,在每个异质结构顶部的单层石墨烯很难被识别出来(图自 Science Advances) /a /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 466px " src=" https://img1.17img.cn/17img/images/201909/uepic/964404f2-023e-4a50-9433-9655e8b8cc04.jpg" title=" SThM 热图.jpg" alt=" SThM 热图.jpg" width=" 600" height=" 466" border=" 0" vspace=" 0" / /p p style=" text-align: center " 4 层结构的扫描热显微镜(SThM)热图,显示出通道内均匀的温度分布,证实了叠层中热层间耦合的均匀性(图自 Science Advances) /p
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 借助FLIR T640,意大利建筑团队成功分析和诊断外部隔热系统
    随着城市建设的高速发展,我国的建筑能耗逐年大幅度上升,建筑总能耗已达全国能源总消耗量的45%。其中空调、采暖造成的能耗约占60%~70%。因此,建筑外部隔热系统在施工领域变得日趋重要。为了检测新建或已有建筑上大面积外部隔热系统是否安装,以及评估这些隔热产品的热性能,由意大利隔热隔音协会(ANIT)在内的多家公司组成的团队,在FLIR红外热像仪的帮助下,开展了一个研究项目。ANIT与该组织的两个会员企业(即:Caparol与FLIR Systems)发起了一项关于辨识隔热系统与安装异常现象的研究。该研究由Tep srl进行统筹,该公司是一家专业从事建筑物无损能效测试的工程服务公司。01建立测试样本为了研究以外部隔热系统安装为特色的热现象,建立了一份测试样本,在样本三侧覆盖隔热面板(带有石墨添加剂的EPS)。在样本的顶部,墙体采用常见的错误铺设方法进行覆盖,而底部采用正确的铺设方法(有/无EPS合板钉)。涂层前的试样布局02主动热成像分析在太阳能蓄热与放热循环期间,对一面虚拟墙体进行监控与分析,定期记录并存储热图像。借助主动热成像技术,蓄热通过影响测试样本表面的太阳能辐射实现。在放热阶段,已聚集能量的结构在阴凉处开始释放能量时,对其进行监控。在该项测试中,ANIT选择了FLIR T640红外热像仪,经证明是最适用于本项目的工具。上图显示了在热负荷期间试样上部出现的温差,其中存在故意设置的安装错误03各种条件下的热传递为了正确分析由热成像分析突显的各种情况,掌握可能存在的铺设异常情况,需要了解不同条件下隔热表面热传递的基本知识。在不同条件下的热传递中(拥有不同的表面温度),每一种材料的热阻、传导率与厚度已不足以定义各隔热层的热性能。事实上,必须考虑材料的密度与比热。蓄热系数是一种表示不同条件下材料属性的参数,该系数与覆盖有外部隔热层结构的表面辐射率有关。呈现试样上部的温度图显示,存在热传导率低、比热容有限的隔热材料,以及热传导率高、比热容大的粘合剂和PVC合板钉。考虑到由于太阳辐射而储存的能量,保温层冷却得更快,因为储存的能量较小,即其体积比热容较小。热辐射率是衡量材料热能穿透力的一项参数:受太阳辐射影响的外部隔热层,其表面温度与材料表面向子层传导热量的方式有关,借助材料的比热来蓄热,进而得以升温。在这种条件下,热辐射率表示材料经过太阳辐射后,内部升温的容易程度:值越低,表示加热该材料需要的能量越小。测试样本包含拥有不同热发射率值(eff.)的多种材料:粘合剂(eff.=906),带有石墨添加剂的EPS(eff.=27),合板钉上的PVC(eff.=530)。04FLIR T640红外热像仪ANIT选择FLIR T640,是因为其可满足各种技术要求。样本研究需要检测温差在0.5℃的情形,在不同的时间段,能够自动记录和控制表面温度的变化。热像仪同样需要生成优质的视频图像,能够证实表面热性能的有效研究。利用平均太阳吸收系数对外墙表面放电时的热像图分析FLIR T640红外热像仪是一款性能优质的高质量产品。作为一款高性能的红外热像仪,其配备500万像素的可见光相机、可互换镜头选件、自动对焦功能,以及宽大的4.3英寸液晶触摸屏。本产品集卓越的人体工程设计以及优质成像功能于一身,提供高质量的图像清晰度与精确度,以及可扩展的通信可行性。检测完成后,使用FLIR T640还可以通过Wi-Fi连接至FLIR Tools Mobile进行图像分析和分享,或通过METERLiNK® 传输测试和测量数据至热像仪。05测试样本分析对材料的特性分析表明了由辐射引起的储能,以及在阴凉处进行后续放热的不同行为。对具有平均太阳吸收系数的外墙表面充电时的热成像分析热分析清楚地表明:存在两种截然不同的表面层,一类是具有低热传导率及有限比热容的隔热材料,一类是拥有较高热传导率及比热容的粘合剂和PVC合板钉。在进行热像图分析时,热像师必须清楚,哪些为表面异常现象:此外,还必须熟悉外部隔热系统,以及在合适环境条件下观测时,哪些现象可认为是存在缺陷。除此之外,FLIR T640还有助于您发现隐藏的电阻、机械磨损和其它热相关问题的迹象。FLIR T640拥有307,200(640×480)像素,提供MSX® 丰富细节和FLIR UltraMax® 增强分辨率,可达2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。

铆钉隔热材料粘结强度检测仪相关的方案

铆钉隔热材料粘结强度检测仪相关的资料

铆钉隔热材料粘结强度检测仪相关的试剂

铆钉隔热材料粘结强度检测仪相关的论坛

  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    [b][color=#cc0000]摘要[/color][/b]:常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。[color=#cc0000][b]关键词[/b][/color]:真空玻璃、真空绝热板、传热系数、导热系数、U值、在线检测[hr/][b][color=#cc0000]1. 引言[/color][/b] 隔热材料(或保温材料)的热传递主要有对流换热、接触导热和辐射传热三种途径,前两种途径都需要传热介质。在真空环境下,由于气压的降低,气体密度随之降低,气体分子平均自由程将增大,气体分子间和气体分子与真空容器壁的碰撞频率和强度相对减弱,从而使得真空环境阻止了对流和接触这两种传热形式的发生,由此达到隔热效果。如果在真空环境的内壁上涂覆低辐射系数涂层,还可以阻止辐射传热实现绝热效果。 在传统隔热材料中,热辐射占热传递中的20~30%,接触材料占热传递中的5~10%,而隔热材料中气体的对流换热则占剩余的约65~75%。因而,隔热材料中减少这些热传递途径中最重要的一环就是空气传递热量,即通过将隔热系统抽成真空来减少热量传递,目前这种真空型隔热材料比较成熟的产品主要有真空玻璃和真空绝热板两类: (1)真空玻璃(Vacuum Glazing)是一种玻璃深加工产品,是基于保温瓶原理制作而成。真空玻璃的结构与中空玻璃相似,其不同之处在于真空玻璃空腔内的气体非常稀薄,几乎接近0.1 Pa的真空。真空玻璃是将两片平板玻璃四周密闭起来,将其间隙抽成真空并密封排气孔,两片玻璃之间的间隙为0.1~0.2 mm,真空玻璃的两片一般至少有一片是涂覆低辐射系数涂层的低辐射玻璃(Low-E玻璃),由此可将通过真空玻璃的导热、对流和辐射方式散失的热量降到最低。 (2)真空绝热板(Vacuum Insulation Panel——VIP)是由轻质芯材与专用复合阻气膜通过抽真空封装技术复合制成,其内部真空度约为10 Pa能有效地避免气体对流引起的热传递,可大幅度提高绝热效果。 真空隔热材料可广泛应用于建筑节能墙体和门窗、冷链冷藏设备、温室、太阳能和空调型运输工具等领域。在业内评价真空隔热材料一般采用两个技术参数,一个是传热系数(Wm-2K-1),另一个是导热系数(Wm-1K-1),业内也会将传热系数用K值或U值来定义。通常对于真空玻璃采用传热系数K值来评估,对于真空绝热板采用导热系数进行评估。 传热系数和导热系数测试技术是真空隔热材料的关键技术之一,相应的测试技术至少要实现两个功能,第一是需要检测证明真空隔热材料确实含有隔热功能的真空,第二是因为真空空间内存在支撑物和残留气体的导热传热以及辐射传热,有必要检测验证真空隔热材料的传热理论模型,并了解这些不同传热形式之间的相互作用方式。目前常规测试技术一般为成熟的稳态技术,主要包括保护热板法、保护热流计法和保护热箱法。尽管这三种常规方法可以从计量和质量层面可以对真空隔热材料进行准确的测试评价,但它们存在的明显劣势则是要求制作标准尺寸样品和测试周期漫长,无法用于大批量制造生产过程中逐件产品质量的在线检测,因此需要解决真空隔热材料的在线检测技术。 在线检测技术的目的是在真空隔热材料的生产制造过程中,实时验证每个真空隔热材料产品的质量都在规定范围内。在在线检测过程中,因为可以与标准合格产品或样品进行比较,在线检测并不一定需要绝对准确,重要的是生产过程中能保证检测工序可以快速进行,并且检测仪器具有很好的测量重复性。在线检测技术的另外一个目的是可以证明真空绝热材料产品在实际安装过程和使用条件下还能长期保持相应的真空度,即对处于生命周期内的真空隔热材料产品进行实时检测或监测。 针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上介绍了一种便携式快速的新型在线检测技术方案。[b][color=#cc0000]2. 在线检测真空隔热材料热性能的技术挑战[/color][/b] 真空隔热材料的最大特点就是具有超低的传热系数和导热系数,如果再考虑实现在线检测,这就给测量真空隔热材料热性能带来了以下几方面的严峻挑战: (1)所谓在线检测,就是要求采用很小面积尺寸的探头对板状真空隔热材料进行实时检测,同时又因为真空隔热材料的传热系数和导热系数极低,致使只有很少热流能够流经隔热材料。这就意味着在线检测只能检测很小面积的真空隔热材料,而且检测探头还需具有非常高的探测分辨率才能检测到此小面积上的热流变化(毫瓦量级)。 (2)真空隔热材料并非是均质材料,真空隔热部分一般被外部高导热材料(如玻璃或复合铝膜等)夹持在中间,真空隔热部分和外部高导热材料的导热系数相差五个数量级以上,因此在检测过程中非常容易产生沿隔热材料板材表面流动的寄生热损,在检测表面上形成面内温度梯度,这就对小面积在线监测提出了非常高的技术要求。 (3)既然是在线检测,就要求在线检测作为一道流水作业工序,能在真空隔热材料生产线上对每件产品进行实时快速检测,单件产品检测时间小于1分钟,最好能实现10~30秒这样的快速检测能力。 由此可见,真空隔热材料热性能测试对在线检测提出了两个层面的要求,一个层面是具备快速在线检测和判断产品质量是否合格的能力,这就要求在线检测仪器既要具有高分辨率和快速检测能力,还需具备很好的测量重复性。另一个层面是要实现高准确度的测量,准确测量出产品的传热系数和导热系数,与防护热箱法等标准方法测试结果相比要在允许偏差范围内。[b][color=#cc0000]3. 国内外测试方法研究[/color][/b] 面对上述真空隔热材料热性能在线检测的技术挑战,国内外开展了大量研究和探索。下面将对国内外的研究报道进行汇总,并对各种检测方法的优缺点进行讨论。[color=#cc0000]3.1. 稳态法:小面积保护热板法3.1.1. 澳大利亚Collins团队的研究工作[/color] 保护热板法是一种经典的板式样品材料热阻和导热系数稳态测试方法,对被测样品有严格的尺寸要求,样品尺寸一般都大于300×300 mm2的测试面积,而且测试周期至少4个小时以上,同时隔热性能越好则测试时间越长。但由于保护热板法是一种绝对测量方法,测试准确度高,因此常被用来作为标准测试仪器和计量溯源测试仪器,计量机构和检测认证机构通常都会配备这种保护热板法仪器以及相同原理的更大样品尺寸的保护热箱法设备来对真空玻璃和真空绝热板进行质量评估。 澳大利亚Collins团队基于经典的保护热板法开发了一种小面积尺寸的保护热板法用于真空玻璃热性能的测试和研究,其测量原理如图3-1所示。一个小的热导体,这里称为测量块,被放置在被测样品一侧并具有良好的热接触,测量块的所有其它侧面被一个保持恒定温度的等温防护装置包围,该热防护装置也与被测样品保持良好的热接触,由此使测量块上的热量只能在样品方向上传递而周围的热损近乎为零。被测样品的另一侧保持在恒定的低温下,热流从热防护装置流经样品到对面的冷板,热量也从热防护装置流到测量块,测量块热流通过样品流到冷板。 [align=center][img=,600,369]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191121404416_7563_3384_3.png!w600x369.jpg[/img] [/align][align=center][color=#cc0000]图3-1 小面积防护热板法测量装置结构示意图[/color][/align] 测量块与热保护装置之间的温差由嵌在这些元件中的温度传感器进行检测。测量块中的热量由内部电加热器产生并同时升高测量块温度,当测量块温度正好等于热保护装置温度时,这两个部件之间不会发生热流,在这个零温差条件下测量块中所产生的所有能量都流经样品形成所谓的一维热流。按照稳态一维热流傅立叶传热定律,利用测量块的已知面积,最终可以得到样品传热系数的绝对测量值。 澳大利亚Collins团队专门开发了小面积形式的保护热板法测试仪器用于测量真空玻璃中不同的热流传递过程,这些仪器可用来识别真空空间中由于辐射和气体传导而对热传递的单独贡献,其中就包括通过支撑柱进行的热传导。为了做到这一点,测量块所选择的尺寸很小,测量块截面积约为1 cm2,周围保护装置的面积约为100 cm2。由于测量是小面积和真空绝热样品,此仪器必须能够检测非常小的热量变化。 与保护热板法测量装置一样,小面积保护热板法测试仪器研制过程中的关键技术是最大限度减少测量块热损到可忽略的水平,并证明这种热损确实被有效消除。为了验证此测试仪器的热损确实被有效消除,需要测量的微小热量需要检测测量块和热保护装置之间极小温差。分别采用了两种真空玻璃进行了测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),图3-2显示了小面积保护热板法测试仪器所获得的典型实验数据。[align=center][img=,600,514]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124054860_7131_3384_3.png!w600x514.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 小型保护热板法测试仪器获得的典型数据[/color][/align] 为了进行精确的绝对测量,必须使用已知传热系数的样品来校准测量块的有效面积。两片未涂覆玻璃片之间的真空空间为这种校准测量提供了非常方便的样品,因为这种玻璃表面之间的辐射传热速率可以从这种玻璃已知的红外光学中计算得到非常高的准确度。 有限元模型分析可以用于确定玻璃薄板等温外表面上每个支撑柱所引起的热流横向扩散程度,这些数据可用于确定与单个支撑柱相关联的热流比例,这时的测量块的中心线与支撑柱轴线距离不远,而且支撑柱与测量块的圆形区域相交。如果要忽略掉流经支撑柱热流的影响,从这些结果可以计算出与测量块相交的支撑柱需要远离测量块的距离。对于正常尺寸的支撑柱阵列(支撑柱间距约20~30 mm),如果测量块位于支撑柱阵列单元的中心位置,那么支撑柱对热流的测量仍然有一个很小但明显的贡献。为了使得测量忽略掉支撑柱热流的影响,悉尼大学在真空玻璃研究项目中采用了一些缺少一个支撑柱或无支撑柱区域直径约50 mm的真空玻璃样品,用这些样品做的测量为通过真空玻璃的辐射和气体热传递提供了非常准确的信息。 流经单个支撑柱的热流扩散建模分析结果也可以用来计算当测量块直接位于支撑柱上方时此热流在测量值中所占比例,通过减少辐射和气体传导引起的已知热流,可以确定流经支撑柱本身的热流速率,这些测量都已经被用来验证流经单个支撑柱的热流理论模型。在某些情况下在真空玻璃中使用了粗糙表面的支撑柱,这时的测量也可以用来提供关于这些支撑柱热流减少的定量信息,因为支撑柱表面和玻璃板之间的热接触不完整。 综上所述,澳大利亚Collins团队详细研究了在采用保护热板法仪器测量流经真空玻璃热流量,并对小面积保护热板法仪器操作和标定有影响的几个小效应进行了深入研究,由此证明小面积保护热板法装置是一个非常强大的工具来验证通过真空玻璃的热辐射和通过支撑柱热传导的理论模型,该仪器也被用来证明这两个热流过程之间的相互作用足够小而可以被忽略。同时,这种小面积尺寸的保护热板法也可以用于研究真空玻璃内部真空的稳定性及对真空玻璃寿命周期内的性能进行评价。 然而,因为这种小面积保护热板法通常需要大约1小时来进行一次完整测量,此外由于有必要保持热保护装置的温度在一个非常精确的恒定值,并且在室温或室温附近只能使用这个装置来测量样品,这种保护热板法测试仪器的使用实际上仅限于实验室研究用,无法应用于真空玻璃的在线监测。[color=#cc0000]3.1.2. 北京新立基公司研究工作[/color] 北京新立基公司的唐健正老师曾是澳大利亚Collins团队的成员之一,回国后针对真空玻璃的传热系数测试开展了大量研究,基于上述小面积尺寸保护热板法原理研制了精密热导仪和快速热导仪两种热导仪,建立了建材行业“真空玻璃”的传热系数测试标准方法。其中精密热导仪的量程为0~10 Wm-2K-1,标称精度高达0.1 Wm-2K-1,测量时间为30 min,体积小,重量小于15 Kg。快速热导仪量程为0~25 Wm-2K-1,标称精度为0.2 Wm-2K-1,测量时间小于5 min,同样具有体积小、重量轻的特点。与精密热导仪不同的是,其测量精度略低,但测量时间短。 精密热导仪的特点是精度高,能够鉴别出真空度是否达标,但必须有足够的热测量时间。而快速热导测量仪则放宽了精度要求,把测量时间缩短6 倍。这样,在线监测时,后者先把关,把真空度肯定达标的和肯定不达标的筛选出来,把剩下少量的难以判断的由前者作精密判断,这样构成在线热导检测线。 通过对北京新立基公司相关报道的研究,北京新立基公司所研制的热导仪还存在以下不足: (1)随着科学的发展,真空玻璃的传热系数已经小到0.3 Wm-2K-1,如此小的数值就需要精度更高的热导仪才能够测量,这就需要进一步提高热导仪的精度。 (2)热导仪能够测量真空玻璃整体的热导,是支撑物热导、辐射热导和内部真空度共同作用的结果,目前新立基公司研制的热导仪还不能够将这三种热导分别测量。如果能够分别测量出支撑物热导、辐射热导和内部真空度,就可以有目的的改善支撑物材质、改善玻璃表面辐射率或者提高内部真空度。 [color=#cc0000]3.2. 非稳态法3.2.1. 瞬态法[/color] 为了提高真空玻璃在线测试能力,澳大利亚Collins团队提出了一种瞬态测试方法,其测量原理如图3-3所示。温度传感器附着在真空玻璃样品的一侧,通常位于支撑柱阵列单元的中心位置,在真空玻璃板的另一侧放置一个与玻璃板热接触良好内部镶有电加热器和温度传感器的小面积(约10 cm2)导热板。[align=center] [img=,600,287]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124330000_7261_3384_3.png!w600x287.jpg[/img][/align][align=center][color=#cc0000]图3-3[/color][color=#cc0000] 真空玻璃瞬态法测试原理图[/color][/align] 整个样品的初始温度恒定和均匀,并且记录几分钟温度传感器的输出以证实温度确实恒定。然后将已知数量的电功率加载到电加热器上,使电加热器快速升温,升温幅度通常为20~30℃。玻璃板的内表面产生的温差导致热量流经真空夹层,与电加热器相对的样品一侧温度会缓慢增加,该温度的初始速率测量结合真空玻璃热容(由玻璃厚度、比热和密度的乘积给出)和台阶温度升高的幅度,可以得出温度传感器周围区域样品的传热系数。 同样采用了两种真空玻璃进行了瞬态法测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),所有玻璃片厚度都为3 mm,图3-4显示了用瞬态技术获得的典型实验数据。[align=center][img=,600,499]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124513950_3062_3384_3.png!w600x499.jpg[/img] [/align][align=center][color=#cc0000]图3-4[/color][color=#cc0000] 用瞬态技术获得的典型数据[/color][/align] 如果真空玻璃样品冷面上的温度传感器位于支撑柱阵列单元的中心点,则在台阶式升温后的最初几分钟内,几乎所测的温度缓慢变化都是由于真空夹层内的热辐射和气体传导所造成,流经附近支撑柱上的热量需要很长时间才能到达温度传感器,因为它必须沿试样的冷面横向扩散到玻璃片上。这就使得这项技术可以用来测量玻璃的辐射和气体传热系数,并认为热流通过支撑柱的贡献微不足道,即使是标准支撑柱阵列(支撑柱间距约20~30 mm)的真空玻璃也是如此。 瞬态技术也可用于测量高温下真空玻璃样品的传热系数,因此这种技术在真空玻璃长期存储在室温以上时可能导致真空降解的机制研究方面被证明非常有用,该技术已被用来检测真空玻璃在高温老化过程中会释放出大量气体,而当冷却到室温后玻璃表面会发生气体再吸收现象。质谱仪实验表明,在这样的条件下释放出来的气体几乎完全是水蒸气。已证明在制造过程的抽真空阶段充分烘烤真空玻璃可以消除这些真空玻璃数十年使用寿命中的任何显著热释气现象。 瞬态技术不是真空玻璃传热系数的绝对测量方法,所获得的数据必须与样品冷面上的玻璃片热容以及步进温度的增加幅度相结合才能给出热流流经真空玻璃的传热系数。理想情况下,在这个计算中应使用随时间变化的有限元模型分析过程,因为导热板热量需要大量时间通过玻璃板热面来扩散,这就会使得冷面温度的上升初期具有相应的延迟。当采用有限元分析瞬态法时,测量玻璃板冷面温度随时间变化给出了与其他方法吻合很好的传热系数数据。这样,通过测量已知传热系数的相同几何尺寸样品来对瞬态法进行校准就非常简单,即在瞬态法测试过程中,在经历指定时间后(如2分钟)可将被测玻璃冷面温度的总变化与已知样品中获得的相似数据进行比较。 用瞬态法所检测得到的数据具有很好的重复性,此外该技术易于使用、可自动化和可校准,实际测量时间相当短——一般为几分钟。因此,该方法非常适合于真空玻璃批生产中的质量保证测试。瞬态法的缺点是样品温度在测量开始之前必须非常稳定,因此有必要在测量前将样品储存在稳定环境条件下一段时间。[color=#cc0000]3.2.2. 动态冷却法[/color] 为了进一步提高真空玻璃在线测试能力,澳大利亚Collins团队还提出了一种高温动态冷却测试方法,其测量原理如图3-5所示。在冷却法中被测真空玻璃整个样品最初处于高温,然后在被测样品的一侧放置并接触第二块已知传热系数的真空玻璃标准样品形成绝热边界条件,这个标准样品的起始温度可能是高温或是室温,将直径约0.1 mm的细丝热电偶放置在这两个真空玻璃样品的接触面之间。该组件中两块真空玻璃接触面之间的小间隙确保它们有良好的热接触,从而使她们的温度相当迅速的趋于均衡,室温空气在此组件中的两块真空玻璃外表面吹过。与这种强制对流所对应的传热系数相当高,因此两个样品的外玻璃片温度很快就会相对接近室温。从真空玻璃内部玻璃板流出的热量会以两个独立的流动方向分别流经两个样品的绝热真空空间到外部玻璃片,然后再经外部玻璃片流到空气中,因此内玻璃片温度会随着被试样品和标准样品的传热系数以相应速度而缓慢降低。[align=center][img=,600,322]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191125181660_9521_3384_3.png!w600x322.jpg[/img] [/align][align=center][color=#cc0000]图3-5[/color][color=#cc0000] 瞬态法测试中所采用的仪器示意图[/color][/align] 由于标准样品的传热系数已知,因此可以计算被测样品的传热系数。对于由3 mm厚玻璃片制成真空玻璃被测样品和标准样品,图3-6显示了用冷却法获得的真空玻璃中心处的测试结果。对于这些数据,两个样品在测量开始之前都处于高温。外玻璃片温度的初始降低速率可用于确定与这些玻璃板材外表面传热有关的传热系数与流动空气的关系,接触内玻璃板的热量损失率受此外部传热系数的影响,但相对于样品本身的玻璃-玻璃传热系数这个影响程度较小,在较长时间内两个外玻璃板之间的温差与流经各样品的不同热流速率有关。[align=center][img=,600,526]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126140880_4604_3384_3.png!w600x526.jpg[/img] [/align][align=center][color=#cc0000]图3-6[/color][color=#cc0000] 动态冷却法测试得到的典型数据[/color][/align] 与瞬态法一样,冷却法不是测量通过真空玻璃热流值的绝对方法,然而该方法的校准可以使用瞬态法中所用到的任何一种技术——通过依赖时间的有限元模型分析,或者更简单地通过对具有已知传热系数的相同几何尺寸标准样品进行测量。由于两块真空玻璃组件中与内部玻璃板指数冷却形式相关的时间常数可能相当大,通常约为60分钟,这种相对缓慢的冷却速率可确保通过支撑柱的热流足够来沿着玻璃板进行扩散,而内部玻璃板的温度横向变化则是相当小。因此,冷却法能形成真空玻璃总传热系数(辐射+气体+支撑柱)的测量。 由此可见,冷却法可能会用于真空玻璃生产线上,特别是刚刚完成了抽真空过程,在那里它们经受高温下的脱气处理,此时的真空玻璃制品通常处于高温状态。与采用其他在线测试技术相比,将冷却法监测集成到真空玻璃生产线的末端可节省大量的时间和劳动力。[color=#cc0000]3.3. 国内外相关在线测试仪器3.3.1. 德国耐驰公司便携式复合玻璃 Ug 值测量仪[/color] 德国耐驰公司基于改进的动态热源法开发了一种瞬态在线测试技术和相应的便携式复合玻璃传热系数测试仪Uglass,如图3-7所示。此测试仪器通过两个带加热功能的温度传感器,根据一维传热差分模型和软件来测量真空玻璃的传热系数。这种测试技术是一种相对比较法,配备了中空玻璃标准样品。由于测试技术的探测器相对较小,可用于实验室检测,也可用于现场评估,对于普通真空玻璃整个测试过程约为10~15分钟,每次测量之间的时间间隔约 10 分钟。 [align=center][img=,600,643]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126433070_5719_3384_3.jpg!w600x643.jpg[/img][/align][align=center][color=#cc0000]图3-7 耐驰公司便携式复合玻璃传热系数测量仪[/color][/align] 如图3-8所示,测试过程中通过抽气泵将探测器真空吸附在被测玻璃两侧。安装完成后,将其中的一侧探测器加热到高于另一侧探测器温度7~8℃范围,并同时检测另一侧探测器温度的变化ΔT。[align=center][img=,600,263]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127021708_286_3384_3.jpg!w600x263.jpg[/img] [/align][align=center][color=#cc0000]图3-8[/color][color=#cc0000] 传热系测量仪安装布置和测量示意图[/color][/align] 通过分析短暂的不同温度变化过程,可测定真空玻璃的传热系数,其中传热系数测量范围为0.5~40 Wm-2K-1,操作温度范围为-10~60℃,探测器加热温度范围为室温~150℃。 采用Uglass测量仪Kim等人在常温常压下对内部不同间隔的中空玻璃进行了测量,如图3-9所示,分别得到了中空玻璃内部和外部的传热系数随间距的变化结果。[align=center][img=,600,357]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127235359_4034_3384_3.jpg!w600x357.jpg[/img] [/align][align=center][color=#cc0000]图3-9 中空玻璃内部和外部传热系数随中空间距的变化测量结果[/color][/align] 从图3-9所示的测试结果可以看出,随着间隔宽度的增加,内部和外部的双层中空玻璃板的传热系数呈线性减小而无视真空玻璃的内部还是外部。由此可见,双层中空玻璃的传热系数不受周围环境的影响,也就是说,没有边框的双层中空玻璃绝热性能,即使在不同环境下也可以解释为具有相同的绝热性能。 除了普通中空玻璃之外,Kim等人还对中空玻璃内部表面涂覆Low-E涂层对绝热性能的影响进行了对比测量,测量结果如图3-10所示。[align=center] [img=,600,386]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127453461_8401_3384_3.jpg!w600x386.jpg[/img][/align][align=center][color=#cc0000]图3-10 带Low-E涂层和无Low-E涂层中空玻璃传热系数随中空间距的变化对比[/color][/align] 从图3-10所示的测试结果可以看出,随着间隔宽度的增加,涂覆了Low-E涂层的中空玻璃传热系数随间距增大而更加快速的减小,随间距减小的斜率为-150.4 ×103 Wm-3K-1,要比无Low-E涂层时随间距减小的斜率-68.8 ×103 Wm-3K-1快了将近2倍多,当中空玻璃内部间距为15 mm左右时,增加Low-E涂层后的传热系数减小了将近一半,由此证明Low-E涂层在中空玻璃和真空玻璃中所起的重要作用。 从耐驰公司的相关报道可以看出,耐驰公式这款传热系数测试仪器整体尺寸偏大,测量覆盖面积将近400×400 mm2,可以满足中空玻璃的传热系数测试。尽管仪器测量精度标称可以达到±0.1 Wm-2K-1,但并没有看到对小于1 Wm-2K-1的真空玻璃传热系数的测试报道,也没有看到对真空绝热材料(VIP)的导热系数测量结果报道。同时十几分钟的测试时间,以及被测样品两侧夹持测试方法根本无法满足真空绝热材料生产过程中的在线质量监测要求。[color=#cc0000]3.3.2. 日本EKO公司导热仪[/color] 为了真正实现真空隔热材料的在线监测,日本EKO公司开发了HC-10快速导热系数测试仪,如图3-11所示。考虑到在线测试,测试仪采用了单端探头这种最佳的探测模式,只需将探测头放在各种被测材料上,可在1分钟内得到导热系数测量结果。[align=center][img=,600,450]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128042740_1715_3384_3.jpg!w600x450.jpg[/img] [/align][align=center][color=#cc0000]图3-11 日本EKO公司HC-10型快速导热系数测试仪[/color][/align] 这种快速导热系数测试仪的测量原理如图3-12所示,首先将探头加热到高于室温的一恒定温度,同时使被测样品处于室温条件下并达到热平衡。然后将探头放置在被测样品表面,如果样品导热系数低,探头上的热量Q将会缓慢的流经样品而散失,相应的探头表面温度快速上升;如果样品导热系数较高,探头上的热量Q将会快速流经样品而散失,相应的探头表面温度缓慢上升。[align=center][color=#cc0000] [img=,600,484]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128201186_3226_3384_3.png!w600x484.jpg[/img][/color][/align][align=center][color=#cc0000]图3-12 HC-10型快速导热系数测试仪基本原理[/color][/align] 由此可见,这种快速导热系数测试仪中探头加热器的热损失大小与样品的导热系数有关,如果使用已知导热系数的标准样品进行校准,则可以实现样品导热系数的自动测量。日本EKO公司开发的HC-10快速导热系数测试仪已用于各种材料的导热系数测量,其中包括真空绝热板(VIP)的导热系数测量,测试仪的主要技术指标为: (1)导热系数测量范围:1~5000 mW/mK (2)测量精度:+/- 5 % (3)样品尺寸:边长150 ~760 mm,厚度5~50 mm (4)测试时间:60秒 专门针对真空绝热板(VIP),基于HC-10快速导热系数测试仪日本EKO公司还开发了多探头形式的在线HC-121 VIP监测仪,如图3-13所示。 HC-121 VIP监测仪主要用于在线监测真空绝热板质量是否合格,即在1分钟内实时检测真空绝热板(VIP)导热系数是否小于规定数值,通过一个主机可以同时连接最多5个探头进行在线监测。[align=center][color=#cc0000] [img=,600,199]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128367430_3462_3384_3.jpg!w600x199.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-13 日本EKO公司HC-121 VIP监测仪[/color][/align] 与HC-10快速导热系数测试仪不同,HC-121 VIP监测仪只能进行相对测量,探测头需要用户自己进行单独校准,用户需要根据VIP材料生产的实际特征来进行使用。HC-121 VIP监测仪的技术指标与HC-10快速导热系数测试仪基本相同,只是导热系数测试范围基本只针对真空绝热板材料,为1~15 mW/mK。 有关日本EKO公司开发的这两种在线监测仪器,我们并没有看到实际应用方面的报道和测试数据,更没有看到在真空玻璃上的测试应用。从测试原理上来看,这两种仪器完全适合均质材料的超低导热系数测试,但对于真空隔热材料这类非均质复合结构材料而言,可能存在以下问题: (1)真空绝热板(VIP)表面一般都包裹一层高导热金属保护热,测试过程的初期探头上的热量会通过表面金属膜快速散失,所得到的温度变化曲线并不一定能完全代表真实的低导热材料测试过程中的温度变化。类似的情况也会发生在使用了真空绝热板的冰箱生产线上的在线质量监测,因为冰箱的隔热结构也是金属材料包裹真空绝热板。 (2)同样,对于真空玻璃而言,也是高导热系数玻璃板与真空绝热层的复合结构,玻璃的导热系数接近1 W/mK,也是远大于真空隔热层的导热系数,测试过程中也会发生类似的问题。[color=#cc0000]3.3.3. 内部真空度测试仪器[/color] 真空隔热材料的一种重要特点就是材料内部是真空,因此在线测试技术中实时监测真空度的变化也是一种在线监测技术手段。 从目前的各种真空隔热材料内部真空度检测技术的发展来看,大多数是谐振式真空传感器,即将事先标定好的MEMS结构的LC微型传感器植入真空隔热材料中,通过外部探测仪器对谐振传感器进行外部激励得到谐振频率与内部真空度的关系数据。 内部真空度测试技术的最大优势是可以在几秒钟内实现对真空隔热材料内部真空度的检测,但最大的问题是要将标定好的传感器植入产品中。[b][color=#cc0000]4. 现有技术总结[/color][/b] 目前国内外常用于表征真空型隔热材料的标准方法,如保护热箱法和大面积保护热板法,主要是用来测量通过真空型隔热材料的热流速率,这两种测试技术都提供了有关真空型隔热材料的整体热流过程的信息。然而它们在测试过程中相对较慢,同时无法对真空隔热材料中不同传热机理而引起的热流分量进行单独评估。 为了对真空型隔热材料局部热流进行测量,以及适应工业生产和工程应用的需要,目前国内外提出了几种特别设计的测试方法: (1)小面积保护热板法测试装置提供了非常精确的流经真空玻璃的局部热流测量,该装置可用于验证由于辐射、气体热传导和通过支撑柱热传导而引起的不同热流过程的理论模型,也证明了该小面积保护热板法测试装置在考核真空玻璃内部长时间真空稳定性方面非常有用,同样这种方法也可以应用于真空绝热板的热性能测试和评估。小面积保护热板法是目前测试精度最高的方法,但这种方法是一种被测样品双面探测结构,测试时间最快也要好几分钟,比较适合实验室研究使用,但还是不能很好的满足在线测试需求。 (2)瞬态法提供了一种测量真空绝热材料传热系数和导热系数的快速方法,该方法可通过测量已知传热系数和导热系数的标准样品对测试装置进行标定。该方法快捷、易于使用并具有很高的测量重复性,并可在较高温度条件下对真空玻璃的气释过程研究中的作用非常明显。目前国外相关测试仪器基本都是基于这种方法,可见这种方法得到了基本认可。尽管采用这种方法有德国耐驰公司的中空玻璃双面测试结构的便携式测试仪器,也有日本EKO公司的真空绝热板单面探头结构的便携式测试仪器,但目的都是为了满足真空绝热材料传热系数和导热系数的在线测试需求,而我们认为单面探头结构更适用于在线测试,这将是今后这方面测试仪器的一个发展方向。 (3)冷却法提供了真空玻璃整体传热系数的测量。虽然这种方法在实践中不一定实用,但在将来可能将其集成到真空玻璃生产过程中,与其他方法相比,冷却法的成本和时间可能会有很大节省。[color=#cc0000][b]5. 上海依阳公司在线快速检测技术[/b][/color] 上海依阳实业有限公司基于瞬态法,提出了一种新型快速测试方法——动态热流法。动态热流法与日本EKO公司导热仪的测量原理类似,也是采用单面探头结构形式,但不同于日本EKO公司导热仪是测量加热器表面的温度变化,新型测试方法测量的是比温度变化更灵敏的热流密度变化,如图5-1所示为分别测量正常和非正常真空绝热板时的热流密度随时间变化曲线对比。 在动态热流法测量的初期,单面测量探头处于以恒定温度,探头未接触被测样品(真空玻璃或真空绝热板)之前,热流密度测量值较低。但将探头与被测样品表面接触后,探头上的热量经真空绝热材料表面(玻璃或金属保护膜)而迅速散失,材料表面的高导热材料表面的作用而产生较大的热流密度,即使得测量的初期热流密度测量值迅速升高。[align=center][color=#cc0000] [img=,600,433]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128571173_5310_3384_3.png!w600x433.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-1 正常和非正常真空绝热材料热流密度随时间变化测量曲线[/color][/align] 随着探头与样品表面接触时间的增大,流经表面材料的热流受到内部绝热层的阻隔,测量的热流密度会逐渐降低,从而反映出绝热层的低导热特性。由此可知,热流密度曲线降低的速率可以作为衡量样品绝热性能的测量指标,即如果被测样品处于正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“正常绝热状态”那样,向较低的热流密度值进行收敛;如果被测样品处于非正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“非正常绝热状态”那样,向较高的热流密度值进行收敛。 通过上述热流密度变化曲线可以看出,这种动态热流法可以很好的解决真空绝热材料表面高导热层对测试所带来的影响,解决了日本EKO公司在线监测仪器所存在的不足,绝热材料表面的高导热层只会使得初期的热流密度升到很大幅度,并不真正影响热流密度下降速率随内部绝热性能的变化。 动态热流法的整个测试时间主要取决于绝热材料表面的材质和厚度而定,对于普通真空绝热板的测试,测试时间一般为10~15秒;对于普通真空玻璃测试,测试时间一般为20~30秒,这样的测试速度已经完全可以满足在线测试需求。 动态热流法测试得到的热流密度并不能直接用来得到被测样品的导热系数,但因为导热系数与热流密度是线性关系,可以通过测量多个已知导热系数的标准样品来建立导热系数与热流密度的校准曲线,如图5-2所示。此校准曲线存储在测试仪器内,由此根据这种关系曲线通过热流密度测量值可以得到相应的导热系数和传热系数。[align=center][color=#cc0000] [img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191129342020_253_3384_3.png!w600x363.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-2 校准测试曲线[/color][/align] 校准用标准样品的制作基于真空绝热材料内部真空度与传热系数和导热系数的关系,标准样品可以是固定厚度的真空绝热材料,通过精确控制材料内部真空度并采用保护热板法或保护热箱法等仪器进行测量,得到标准样品不同真空度下所对应的传热系数和导热系数关系曲线,这样在采用标准样品进行动态热流法探头校准时,只要调节真空度就可以得到不同的传热系数和导热系数。 动态热流法作为一种高灵敏测试方法,可以用来快速的在线检测和判断真空绝热材料是否具有正常范围内的传热系数和导热系数,可以在30秒时间内检查真空绝热材料是否正常工作。另外,由于动态热流法测量装置是小型单面探头结构,实际测量操作时只需将探头与被测绝热材料表面接触,测试完毕后探头脱离绝热材料,通过机械结构很容易实现自动化测试,完全可以应用到真空绝热材料生产流水线上进行自动化实时监测。同时,动态热流法的检测探头非常小巧,可以实现一台主机配备多个探头对多个绝热材料的同时监测,而且还可以实现不同方向和位置上的测量,如探头放置在冰箱的顶部和侧面监测冰箱内部不同部位真空绝热板是否工作正常,监测窗体上已直立安装的真空玻璃是否工作正常。由于标准绝热材料样品由真空度的精确控制来确定,从而保证了动态热流法探头可以非常方便的进行定期校准。[b][color=#cc0000]6. 参考文献[/color][/b](1)Collins R E,Davis C A,Dey C J,et al. Measurement of local heat flow in flat evacuated glazing. International Journal of Heat & Mass Transfer,1993, 36(10):2553-2563.(2)Simko T M, Elmahdy A H, Collins R E. Determination of the overall heat transmission coefficient (U value) of vacuum glazing. Ashrae Transactions, 1999.(3)张金维, 王立国. 真空玻璃在线测量技术// 2013全国玻璃科学技术年会论文集. 2013.(4)唐健正. 真空玻璃传热系数的计算// 2006中国玻璃行业年会暨技术研讨会. 2006.(5)唐健正, 朱亚勇, 卫正纯. 真空玻璃传热系数相关参数的测量// 2007'中国玻璃行业年会暨技术研讨会(6)中华人民共和国建材行业标准,JC/T 1079-2008,真空玻璃(7) Turner G M, Collins R E. Measurement of heat flow through vacuum glazing at elevated temperature. International Journal of Heat & Mass Transfer, 1997, 40(6):1437-1446.(8) Ng N, Collins R E, So L. Thermal conductance measurement on vacuum glazing. International Journal of Heat and Mass Transfer 49 (2006) 4877-4885.(9) Kim I, Frenzl A, Kim T, et al. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass, Measuring Technique. International Journal of Thermophysics, 2018, 39(1):19.

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    [size=14px][color=#ff0000]摘要:针对气凝胶高效隔热材料低导热系数测试中存在的测试方法选择不合理、测试设备精度不高和测试条件偏离使用条件等问题,本文分析了目前气凝胶隔热材料热导率测试的常用方法及其适用范围,列举了各种测试方法的测试极限以及不合理使用的具体案例,重点介绍了实现低热导率准确测量的注意事项和具体措施,最后提出了今后进一步提高测量精度的改进方向。[/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]作为一种低密度和低导热系数的高效隔热材料,气凝胶隔热材料越来越得到重视和广泛应用,其导热系数测试的准确性往往决定了隔热系统的隔热效果和造价。从目前的市场反馈来看,气凝胶隔热材料导热系数测试中普遍存在测试不准确问题,这些问题主要归结为以下原因:(1)测试方法选择不合理。(2)测试设备达不到测试低导热系数的精度要求。(3)测试条件与实际使用条件严重偏离,导热系数测试结果无法代表实际隔热性能。针对上述问题,本文将介绍目前气凝胶隔热材料导热系数测试的常用方法,并对这些测试方法进行分析和特点介绍,并列举了各种测试方法的测试极限以及不合理使用的具体案例,最后重点介绍实现低导热系数测试准确性的具体措施和今后的改进方向。[/size][size=18px][color=#ff0000]二、低导热系数测试方法分析[/color][/size][size=16px]所谓低导热系数,一般是指0.001~0.1W/mK的导热系数。在高温下气凝胶隔热材料的导热系数一般不会超过0.1W/mK,在低温(液氮和液氦)和高真空环境下,有些气凝胶及其复合隔热材料会达到0.001W/mK甚至更低的超低导热系数。本文所做的分析主要是针对上述低导热系数范围内的测试方法。对于低导热系数的测试,目前常用的测试方法主要分为稳态法和瞬态法两类,如表1所示。[/size][align=center][size=16px]表1 低导热系数常用测试方法汇总[/size][/align][align=center][size=14px][img=表1 低导热系数常用测试方法汇总,690,288]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201133028253_3023_3384_3.png!w690x288.jpg[/img][/size][/align][size=14px][/size][size=16px]对于隔热材料而言,特别是气凝胶复合材料这类低密度隔热材料,其内部的传热形式主要有导热、辐射和对流三种传热形式。在不同温度、温差、气压和气氛条件下,这三种传热形式所起的作用不同。以温度变量为例并假设在真空环境下不考虑气体对流传热,低密度隔热材料中会存在固体和气体导热以及辐射传热形式,它们各自的导热系数以及多种传热形式复合作用后的总体等效导热系数随温度的变化,如图1所示。由此可见,在不同的实际应用条件下,低密度隔热材料中存在着不同的传热形式以及相应的导热系数,这决定了测试方法的选择。[/size][align=center][size=14px][img=气凝胶绝热材料超低热导率测试,640,395]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201138118496_2516_3384_3.jpg!w640x395.jpg[/img][/size][/align][align=center][size=14px]图1 固体、气体和辐射传热对应的导热系数分量以及复合作用后的等效导热系数随温度的变化[/size][/align][size=14px][/size][size=16px]测试方法和相应测试设备的选择主要依据以下原则:(1)测试方法要满足测量精度要求,导热系数越小所要求的测量精度越高。(2)测试方法具有较大温差的测试能力,大温差往往是隔热材料实际使用中的正常状态。(3)测试方法具有较快的测试速度,以满足工程应用中的高通量测试要求。(4)测试设备要具备实现各种试验条件(如温度、温差、气压和气氛等)的能力,同时具备保障测量精度的能力。按照上述原则,我们对表1中的常用测试方法进行分析,并得出如下结果:(1)气凝胶隔热材料普遍应用于大温差的隔热或隔冷,所选择的测试方法就需要具备大温差的测试能力。从表1中的各种测试方法温差可以看出,瞬态法都无法实现大温差条件,因此在气凝胶隔热材料的大温差导热系数测试中不建议使用瞬态法。(2)尽管无法进行大温差下的等效导热系数测试,但瞬态法在小温差下可以测试隔热材料中不含热辐射传热分量的固相导热系数和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]导热系数合成后的等效导热系数。瞬态法的另一个特点是还可以测试热扩散系数和比热容。从标准测试方法和相关文献可以看到[1,2],瞬态法对小于0.03W/mK的低导热系数测试存在较大误差,测试结果往往比稳态法测量值偏大约35%~40%,这主要是因为低导热系数测试过程中的探测器引线漏热和探测器热容影响所占比重变的不再可以忽略不计,需要尽可能减小探测器热容并进行复杂的修正计算[2]。(3)在表1所示的稳态法中,只有保护热板法无法进行大温差下的导热系数测量。但由于保护热板法是目前测量精度最高的小温差下导热系数测试方法,也是目前唯一能高精度校准稳态热流计法中热流传感器的方法,因此要真正高精度测量隔热材料的超低导热系数还是离不开保护热板法。为了实现超低导热系数(0.01W/mK)测试中,本文推荐采用准稳态法,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和更高的测试效率,另外准稳态法测试设备具有相对较低的造价。(5)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热法,一方面是因为这种方法的灵敏度和准确度都非常高,可以准确测量导热系数小于0.001W/mK的绝热材料,另一方面是可以测试大温差下的等效导热系数。但需要注意的是,蒸发量热法作为一种防护热板法的变形,同样需要精密的护热措施最大限度减小侧向漏热,否则测量精度也无法保证。[/size][size=18px][color=#ff0000]五、总结[/color][/size][size=16px]对于气凝胶这类绝热材料,实现超低导热系数的准确测试需采取以下措施和注意事项。(1)根据隔热材料设计和高低温应用场景选择合适的测试方法,测试方法和测试设备要具备模拟实际应用中的高低温温差能力。推荐的测试方法为热流计法、准稳态法和蒸发量热计法。(2)对于超低导热系数绝热材料测试,要确认测试仪器的低导热系数测试能力,要仔细考量和解决稳态测试设备中的漏热问题以保证超低导热系数测量精度。(3)稳态法测试中的漏热问题技术难度大,现有技术基本已经达到了极限,无法很好的解决微小漏热和超低导热系数准确问题,因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[/size][size=18px][color=#ff0000]六、参考文献[/color][/size][size=16px][1] Colinart T, Pajeot M, Vinceslas T, et al. How Reliable is the Thermal Conductivity of Biobased Building Insulating Materials Measured with Hot Disk Device?[C]//Construction Technologies and Architecture. Trans Tech Publications Ltd, 2022, 1: 287-292.[2] Zheng Q, Kaur S, Dames C, et al. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119331..[3] Fesmire J E, Ancipink J B, Swanger A M, et al. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 278(1): 012198.[4] Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1124-1131.[5] Adams J, Gangloff J, Stetson N, et al. Integrated Insulation System for Cryogenic Automotive Tanks (iCAT)[R]. Vencore Services and Solutions, Inc., Reston, VA (United States), 2018.[6] Coffman B E, Fesmire J E, White S, et al. Aerogel blanket insulation materials for cryogenic applications[C]//AIP Conference Proceedings. American Institute of Physics, 2010, 1218(1): 913-920.[7] Ilardi V, Busch L N, Dudarev A, et al. Compression and thermal conductivity tests of Cryogel Z for use in the ultra-transparent cryostats of FCC detector solenoids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 756(1): 012005.[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

铆钉隔热材料粘结强度检测仪相关的耗材

  • 7890/6890/6850 火焰光度检测器点火器和隔热片组件_安捷伦耗材
    7890/6890/6850 FPD 点火器和隔热片组件项目 说明 单位 部件号1 FPD 出口管组件,铝 19256-60700 FPD 出口管组件,不锈钢 19256-207052 FPD 点火器更换工具包 19256-608003 点火塞夹头 19256-206904 点火器电缆组件 G1535-606005 螺丝,M3 x 66 mm,T10 0515-06806 毛细管接头座,FPD 19256-211407 毛细管接头螺帽 19256-211508 硫滤光片 1000-1437 磷滤光片 19256-800109 滤光片垫片,仅与火焰光度检测器硫 滤光片配合使用(部件号1000-1437) 19256-2091010 压簧,适用于火焰光度检测器 1460-116011 聚酰亚胺/石墨密封垫圈,1/8 英寸 10/包 0100-133212 螺帽,1/8 英寸,不锈钢 0100-005713 1/4 英寸填充柱接头 G1532-2071014 色谱柱工具,黄铜 19256-8064015 FPD 检验样品 5188-5953 FPD 样品 5188-5245 单FPD 预防性维护工具包 G2647-60501 双FPD 预防性维护工具包 G2648-60501
  • GX-2003E复合气体检测仪 GX-2003E复合气体检测仪 GX-2003E复合气体检测仪
    GX-2003E复合气体检测仪 GX-2003E复合气体检测仪 特点: ● 尺寸小 重量仅11盎司 ● 检测可燃气 氧气 一氧化碳和硫化氢 ● 甲烷的检测量程可达1-100%VOL ● %VOL和%LEL检测量程可自动切换显示 ● 内置泵吸式采样 ● 震动声光报警 ● 报警时自动开启背景灯 ● 校正提示和校正锁定功能 ● 电源可使用NI-Cad电池组或碱性电池 ● 电池组可直接在仪器内充电也可单独充电 ● 报警锁定或非锁定功能 ● 可记录达600小时的带有报警趋势的数据记录 ● 可自动校正或单独校正 ● 报警静音功能 ● 只须90分快速充电 应用 · 个人检测 · 有害物质检测 · 区域环境检查 · 炼油厂 · 水厂/污水处理厂 · 公共设施 · 化工厂 · 消防 · 采矿 说明 GX-2003E是理研公司运用高质量的微传染技术制造的世界上最小的带有内置泵吸式采样的更携式四种气体检测仪。其重量仅为11盎司,并具有先进的功能。GX-2003E颇具竞争优势。譬如,它可以检测特定区域的气体(LEL可燃气、缺氧、一氧化碳、硫化氢),而且,它可以检测100%VOL量程的可燃气体,并且其量程自动转换功能可以自动显示%LEL或%VOL。 GX-2003E的大型液晶显示屏同时显示4种气体的读数,电池量,目前时间,并且在报警时,会自动开启背景照明。每个检测通道有两极可调的报警点,对于CO和H2S还具有的TWA和STEL检测值。TWA和STEL检测值带有一个&tilde 午休&tilde 模式,该模式可防止仪表关闭时,读数被消除。它具有震动,声光标准报警显示,报警可以设定为锁定或非锁定状态。 在微处理器控制下,GX-2003E可以连续对传感器连接,低电量,线路故障、低流量和校正故障等进行自查。GX-2003E可以使用Ni-Cad电池组或3节AA型碱性电池。电池不需要任何工具就可以简便的更换。Ni-Cad电池组可以直接在仪器内充电也可单独充电,不耽误仪器使用。 GX-2003E带有内存达600小时的数据记录功能。其较大的内存可贮存100个报警信息、100个故障信息。最近20次校正数据和8个报警趋势数据,在每次报警发生前后30分钟内,每隔5秒钟自动中采集一次数据。可以使用一个专用校正设备,同时校正10台仪器。 规格 检测气体 可燃性气体%LEL 可燃性气体%VOL 氧气 硫化氢 一氧化碳 (甲烷标准气标定) (甲烷) (O2) (H2S) (CO) 检测原理 催化燃烧方式 热传导方式 原电池原理方式 电化学电池方式 电化学电池方式 检测范围 0~100%LEL 0~100%VOL 0~40.0%VOL 0~100ppm 0~500ppm 采样方式 内置采样泵(泵吸式) 流量:0.5Ipm 显示方式 LCD数字夜晶显示,报警时自动开启背景灯。 报警设置 第一报警点 100%LEL 第二报警点19.0%VOI 第一报警点10ppm 第一报警点25ppm 第二报警点 50%LEL N/A 第二报警点18.0%VOI 第二报警点30ppm 第二报警点50ppm 超量程报警点 100%LEL 超量程报警点40.0%VOI TWA报警点15ppm TWA报警点25ppm STEL报警点15ppm TWA报警点200ppm 超量程报警点100ppm 超量程报警点500ppm 报警类型 气体报警:报警等闪烁,间歇蜂鸣和振动。 故障报警;报警灯闪烁,故障类型显示和振动。 报警方式 气体报警:2级气体报警STEL、TMA和超量程报警 故障报警:传感器接触不良,电池电量低,电路故障和校正错误。 特殊功能 1、手动控制LCD背景灯(报警时转为自动) 2、STEL、TMA检测值功能; 3、峰值保持功能; 4、连续显示现在时间; 5、自动校正或单独校正功能; 6、数据记录(600小时); 7、记录最后8次报警的报警趋势数据; 8、校正提示和锁定功能; 温度及湿度 -20℃~+50℃(-4to122° ),0~97%RH(无凝结) (防止溅入水) 反应时间 30秒以内反应(T90) 连续时间 Ni-Cad电池组 充满电量(无任何报警动作)时,10小时 碱性电池 充满电量(无任何报警动作)时,14小时 外壳材料 防尘、防水、防电磁干扰的高强度塑料 电源 Ni-Cad电池充电池,可随机直接充电或取出来充电,3节AA型碱性电池 安全设计及认证 本质安全型设计,CSA认证和C/US(CSA认证号:NO.186718-2500028218) 尺寸及重量 约171(H)x65(W)x39D(mm)约300克 控制键 5个控制键:POWER/ENTER\\\\DISPLAY\\\\AIR\\\\RESET\\\\SHFT 标准附件 提带、橡胶护套、橡胶探测管、碱性电池3节AA型 选配附件 数据下载电缆和软件、充电器、Ni-Cad电池组、采样管、校正装置 订购型号 GX-2003 A型 5种气体 LEL%/VOL%/O2/H2S/CO GX-2003 B型 4种气体 LEL%/O2/H2S/CO GX-2003 C型 3种气体 LEL%/O2/H2S GX-2003 D型 3种气体 LEL%/O2/CO GX-2003 E型 3种气体 LEL%/VOL%/O2 GX-2003 F型 2种气体 LEL%/O2
  • GX-2003E复合气体检测仪
    GX-2003E复合气体检测仪 GX-2003E复合气体检测仪 特点: ● 尺寸小 重量仅11盎司 ● 检测可燃气 氧气 一氧化碳和硫化氢 ● 甲烷的检测量程可达1-100%VOL ● %VOL和%LEL检测量程可自动切换显示 ● 内置泵吸式采样 ● 震动声光报警 ● 报警时自动开启背景灯 ● 校正提示和校正锁定功能 ● 电源可使用NI-Cad电池组或碱性电池 ● 电池组可直接在仪器内充电也可单独充电 ● 报警锁定或非锁定功能 ● 可记录达600小时的带有报警趋势的数据记录 ● 可自动校正或单独校正 ● 报警静音功能 ● 只须90分快速充电 应用 · 个人检测 · 有害物质检测 · 区域环境检查 · 炼油厂 · 水厂/污水处理厂 · 公共设施 · 化工厂 · 消防 · 采矿 说明 GX-2003E是理研公司运用高质量的微传染技术制造的世界上最小的带有内置泵吸式采样的更携式四种气体检测仪。其重量仅为11盎司,并具有先进的功能。GX-2003E颇具竞争优势。譬如,它可以检测特定区域的气体(LEL可燃气、缺氧、一氧化碳、硫化氢),而且,它可以检测100%VOL量程的可燃气体,并且其量程自动转换功能可以自动显示%LEL或%VOL。 GX-2003E的大型液晶显示屏同时显示4种气体的读数,电池量,目前时间,并且在报警时,会自动开启背景照明。每个检测通道有两极可调的报警点,对于CO和H2S还具有的TWA和STEL检测值。TWA和STEL检测值带有一个&tilde 午休&tilde 模式,该模式可防止仪表关闭时,读数被消除。它具有震动,声光标准报警显示,报警可以设定为锁定或非锁定状态。 在微处理器控制下,GX-2003E可以连续对传感器连接,低电量,线路故障、低流量和校正故障等进行自查。GX-2003E可以使用Ni-Cad电池组或3节AA型碱性电池。电池不需要任何工具就可以简便的更换。Ni-Cad电池组可以直接在仪器内充电也可单独充电,不耽误仪器使用。 GX-2003E带有内存达600小时的数据记录功能。其较大的内存可贮存100个报警信息、100个故障信息。最近20次校正数据和8个报警趋势数据,在每次报警发生前后30分钟内,每隔5秒钟自动中采集一次数据。可以使用一个专用校正设备,同时校正10台仪器。 规格 检测气体 可燃性气体%LEL 可燃性气体%VOL 氧气 硫化氢 一氧化碳 (甲烷标准气标定) (甲烷) (O2) (H2S) (CO) 检测原理 催化燃烧方式 热传导方式 原电池原理方式 电化学电池方式 电化学电池方式 检测范围 0~100%LEL 0~100%VOL 0~40.0%VOL 0~100ppm 0~500ppm 采样方式 内置采样泵(泵吸式) 流量:0.5Ipm 显示方式 LCD数字夜晶显示,报警时自动开启背景灯。 报警设置 第一报警点 100%LEL 第二报警点19.0%VOI 第一报警点10ppm 第一报警点25ppm 第二报警点 50%LEL N/A 第二报警点18.0%VOI 第二报警点30ppm 第二报警点50ppm 超量程报警点 100%LEL 超量程报警点40.0%VOI TWA报警点15ppm TWA报警点25ppm STEL报警点15ppm TWA报警点200ppm 超量程报警点100ppm 超量程报警点500ppm 报警类型 气体报警:报警等闪烁,间歇蜂鸣和振动。 故障报警;报警灯闪烁,故障类型显示和振动。 报警方式 气体报警:2级气体报警STEL、TMA和超量程报警 故障报警:传感器接触不良,电池电量低,电路故障和校正错误。 特殊功能 1、手动控制LCD背景灯(报警时转为自动) 2、STEL、TMA检测值功能; 3、峰值保持功能; 4、连续显示现在时间; 5、自动校正或单独校正功能; 6、数据记录(600小时); 7、记录最后8次报警的报警趋势数据; 8、校正提示和锁定功能; 温度及湿度 -20℃~+50℃(-4to122° ),0~97%RH(无凝结) (防止溅入水) 反应时间 30秒以内反应(T90) 连续时间 Ni-Cad电池组 充满电量(无任何报警动作)时,10小时 碱性电池 充满电量(无任何报警动作)时,14小时 外壳材料 防尘、防水、防电磁干扰的高强度塑料 电源 Ni-Cad电池充电池,可随机直接充电或取出来充电,3节AA型碱性电池 安全设计及认证 本质安全型设计,CSA认证和C/US(CSA认证号:NO.186718-2500028218) 尺寸及重量 约171(H)x65(W)x39D(mm)约300克 控制键 5个控制键:POWER/ENTER\\\\DISPLAY\\\\AIR\\\\RESET\\\\SHFT 标准附件 提带、橡胶护套、橡胶探测管、碱性电池3节AA型 选配附件 数据下载电缆和软件、充电器、Ni-Cad电池组、采样管、校正装置 订购型号 GX-2003 A型 5种气体 LEL%/VOL%/O2/H2S/CO GX-2003 B型 4种气体 LEL%/O2/H2S/CO GX-2003 C型 3种气体 LEL%/O2/H2S GX-2003 D型 3种气体 LEL%/O2/CO GX-2003 E型 3种气体 LEL%/VOL%/O2 GX-2003 F型 2种气体 LEL%/O2 保证 对材料和工艺保质一年 GX-2003E复合气体检测仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制