当前位置: 仪器信息网 > 行业主题 > >

冷冻断裂仪

仪器信息网冷冻断裂仪专题为您提供2024年最新冷冻断裂仪价格报价、厂家品牌的相关信息, 包括冷冻断裂仪参数、型号等,不管是国产,还是进口品牌的冷冻断裂仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合冷冻断裂仪相关的耗材配件、试剂标物,还有冷冻断裂仪相关的最新资讯、资料,以及冷冻断裂仪相关的解决方案。

冷冻断裂仪相关的资讯

  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 日立SU8000系列电镜与冷冻联用系统应用
    酵母细胞冷冻断面SEM 图像 SEM: SU8020 FE-SEM, Cryo-SEM 冷冻系统, PP3000T (Quorum) 利用Cryo-SEM冷冻系统可以快速得到芽殖酵母细胞的断面。在SEM下可观测细胞的内部及表面构造。PF, 芽殖酵母EF, 裂殖酵母 芽殖酵母细胞表面冷冻SEM 图像 SEM: SU8020 FESEM, Cryo-SEM冷冻系统, PP3000T (Quorum) 上图中可清晰观测到芽殖酵母细胞表面的内褶和膜蛋白,同时可发现膜蛋白在表面按一定规则分布排列。(表面内褶是芽殖角酵母的独有特征。) CMI, 细胞膜内褶芽殖酵母细胞内部断裂冷冻SEM 图像 SEM: SU8020 FESEM, Cryo-SEM冷冻系统, PP3000T (Quorum) 研究了冷冻芽殖酵母细胞的随机断面,左图中可清晰地观测到细胞壁,细胞膜及细胞器。 右图中,细胞核的三维结构可在断裂细胞内观测到,同时外部(*) / 内部 (#)核膜及核膜孔也清晰可见。 CM, 细胞膜 CW, 细胞壁 ER, 内质网 M, 线粒体 N, 细胞核 NP, 核膜孔 脂质体混悬液冷冻断裂SEM图像SEM: SU8020 FESEM, Cryo-SEM 冷冻系统, PP3000T (Quorum) 利用Cryo-SEM冷冻系统可快速冷冻脂质体并观察其断面。上图中可观测到脂质体表面及内部构造。 该产品更多信息请关注: http://www.instrument.com.cn/netshow/SH102446/C138508.htm 关于日立高新技术公司:   日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • 行走的种草机——徕卡全新冷冻电镜制样解决方案
    应用专家 肖丽国 期待已久的华东电镜会于10月24日在美丽的宜兴东氿湖畔落下帷幕,徕卡显微系统分别在材料分会与生命科学分会两个分会场进行专题报道,为大家介绍Leica在不同研究领域中的电镜制样解决方案。 生命科学专场中UM应用专家肖丽国在大家的心头种了一把草,通过介绍Leica在Cryo TEM与Cryo SEM方向的解决方案和多个应用实例,为大家安利了一套全新的电镜制样设备。图1 生命科学分会场专题报道自2017年的诺贝尔化学奖颁布,冷冻电镜技术就以不可阻挡的态势走进大家的视野。Leica作为专业的电镜制样设备专家,在冷冻电镜制样上有着全流程的解决方案。 Cryo TEM在Cryo TEM方向,想要实现在黑白成像的冷冻透射电镜中快速找到目标小样品,以前是非常困难的,耗时又费力。Leica结合自身的光学成像优势,推出了一套冷冻光电联用系统Thunder Imager EM Cryo CLEM,能够实现低温光学荧光成像。通过与各类电镜进行软件和硬件上的联用,利用荧光与电镜位置叠加,实现在电镜下快速寻找和成像,极大地提高了工作效率。图2 Thunder Imager EM Cryo CLEM 图3 样品展示Cryo SEM在Cryo SEM方向,Leica拥有真正的真空冷冻传输系统EM VCT500,在对低温样品进行安全传输和转移的同时,可以将常温SEM升级为冷冻SEM,实现冷冻扫描观察。当然,扫描不仅可以观察表面,Leica冷冻断裂镀膜系统EM ACE600可以实现冷冻断裂,将低温样品敲断后镀膜,通过EM VCT500即可转移至Cryo SEM中进行冷冻断面观察,实现立体断裂成像,极大扩宽了应用范围。图4 Cryo VCT500制样技术解决方案 图5 样品展示如需了解更多内容,请返回点击右下角联系我们吧!
  • 冷冻电镜:结构生物学研究的利器——访中国科学院生物物理所朱平研究员
    4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。   在这项研究当中,朱平研究员长期从事冷冻电镜三维重构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。   日前,仪器信息网编辑特别采访了从事冷冻电镜(注:下文提到的冷冻电镜特指300kV和200kV场发射冷冻透射电子显微镜)应用研究的朱平研究员,请他为我们介绍了自己与冷冻电镜结缘的故事,以及冷冻电镜的特点和应用情况,希望使广大网友能对冷冻电镜有更多的了解。 中国科学院生物物理所朱平研究员   因对三维重构技术的喜爱,与冷冻电镜结缘   Instrument:朱老师,您好!首先请您为我们介绍一下您和冷冻电镜结缘的故事。   朱平:其实我并不是生物专业出身,我的本科是在浙江大学学习金属材料热处理,1990年毕业后,我被保送到西安交通大学断裂疲劳国家重点实验室读硕士研究生,博士研究生期间又到清华大学机械系开始学习焊接专业,研究焊接接头断口分析,当时有一个很热门的研究方向是断裂表面的分形研究,断裂表面的分形维数和断裂性能被认为是密切相关的。开始我们只是做断口轮廓线的分形研究,但发现由于断裂表面不是各向同性的,不同的方向可能会对应不同的分形维数,所以我们就尝试利用扫描电镜立体对照相方法将断裂表面三维形貌重构出来,来研究断裂面的二维分形维数。   博士毕业后我在清华做了一年讲师,由于对电镜三维重构比较感兴趣,我就据此联系国外的进一步研究机会。恰好这时美国佛罗里达州立大学一个研究艾滋病毒结构的实验室需要做电镜三维重构的人员,于是我就将在材料研究中积累的关于电镜和三维重构的知识转到了对生物样品的研究,从而有机会开始接触冷冻电镜。   Instrument:到美国佛罗里达州立大学后,您主要开展了哪些方面的研究工作?   朱平:当时,我所在的实验室是比较早开始艾滋病毒表面包膜蛋白结构重构研究的单位。开始我们只是想通过电镜技术来研究艾滋病毒表面很重要的一个包膜蛋白gp120的结构。后来,研究者发现虽然不同的艾滋病毒抗体具有毒株特异性,但有几种抗体它们对于多种艾滋病毒都有中和活性,所以我们也开始研究这些广谱中和抗体的结构特点。   在最初的研究中,我们主要利用普通电镜,通过负染色方法研究表达纯化出来的艾滋病毒表面包膜蛋白gp120以及它们与不同的中和抗体形成的复合物的结构。后来我们的研究发现这些包膜蛋白在真实病毒表面的三维结构及分布对艾滋病毒的感染非常重要,所以就转向研究整个艾滋病毒颗粒及表面蛋白的三维结构。我们是最早将电子断层成像方法应用于艾滋病毒三维结构重构的研究组,并利用负染色电子断层成像方法获得了艾滋病毒表面的包膜蛋白的一个高清晰三聚体结构和分布图,发在美国科学院院刊上。由于负染色法对病毒结构影响很大,虽然观察到了艾滋病毒表面的gp120蛋白的结构为三聚体,但同时结构信息损失也很多。所以之后我们逐渐开始采用冷冻电镜电子断层成像法来开展研究,并做出了一个艾滋病毒冷冻电镜三维重构图像,于2006年在Nature上发表了一篇文章,也产生了较大影响。   Instrument:2008年您以&ldquo 百人计划&rdquo 身份加入到生物物理所生物大分子国家重点实验室,请问促使您回国发展以及加入生物物理所的原因主要有哪些?  朱平:在美国待了几年后,我也有了回国工作的念头,于是就开始和国内的相关研究单位联系。结构生物学研究是生物物理所的传统优势研究学科,所里也非常看好冷冻电镜在结构生物学研究方面的发展前景,已经在采购相应的设备,可以说这里有一个非常好的平台。   回国后,我们依然做一些艾滋病毒及疫苗的研究工作,同时也开展一些其他病毒的研究,如高对称性病毒的高分辨结构解析等。   另外,回国后我参加了以&ldquo 千人计划&rdquo 身份回国的许瑞明老师主持的科技部的一个&ldquo 973&rdquo 项目,其中我负责的一个课题就是利用冷冻电镜研究染色质的结构。后来,李国红老师回国,我们一起开始做染色质的冷冻电镜三维重构研究。   冷冻电镜是结构生物学研究的重要手段,但入门和上手都有一定难度   Instrument:请问和普通电镜技术相比,冷冻电镜在生物研究当中有哪些特点和优势?   朱平:普通电镜主要用于观察样品形貌,要看到原子分辨率的细节很难做到 另外制样方法如染色、固定等对样品的结构破坏很严重。而冷冻电镜可以将样品瞬间冻成玻璃态,冷冻速度平均可达以几万摄氏度每秒,这样样品所有的结构细节则都被保留下来。但是由于没有经过染色,直接观察样品的衬度就会差很多,所以需要三维重构来慢慢挖掘它的结构信息。   另外,结构生物学研究当中最常用的方法蛋白质晶体学的一个很大的瓶颈就是样品结晶,如将蛋白质产生结晶,需要各种各样的条件 此外在生物体中蛋白质往往不是单独起作用,而是多个蛋白质结合到一起的超大分子复合体,这样的超大分子复合物要长晶体就更难。但冷冻电镜不需要长晶体,直接将样品冰冻即可进行分析。 300kV Titan Krios场发射冷冻透射电子显微镜   Instrument:目前,国际上冷冻电镜研究的热点主要集中在哪些方面?   朱平:这两年冷冻电镜的应用主要集中在结构生物学研究,分析的样品类型从病毒、核糖体扩展到了其它蛋白。冷冻电镜三维重构早期比较多的应用是病毒分析,因为病毒结构比较对称,可以得到比较高的分辨率。近年来,随着仪器硬件及软件性能的提升,冷冻电镜结构解析的分辨率越来越高,现在我们可以做到近原子级别的分辨率。对于一些不对称的样品也能获得比较高的分辨率,所以冷冻电镜三维重构在其它蛋白质的结构分析研究上也比较热。   Instrument:冷冻电镜技术应用的难点有哪些?要让冷冻电镜更好的在科学研究当中发挥作用,需要哪些积累?   朱平:冷冻电镜的操作程序比较多,入门和上手都有一定的难度。先从制样来说,单冷冻这一步,就有许多的玄机在其中。冻的冰层太厚,电子束穿不过去,冰层太薄又会被完全蒸发 而冷冻的速度如果慢了就会形成冰晶,冰晶遇到电子束发生衍射,我们就无法观察到样品 此外,环境的变化,如空气的温度和湿度变化,甚至每次使用的滤纸如果不同都会对制样效果有影响。   在照片的拍摄中,要调节好电镜的状态,掌握照相的细节,这样才能拿出一张好的二维冷冻电镜照片。如,电子束照射在样品表面时,如果调节不好很可能就把样品轰坏了。所以需要调焦,找准位置,然后慢慢放大。得到好的二维照片后,接着还有一大堆的图像处理工作。   当然现在软件自动化程度更高了,仪器的操作也比以前容易了。比如制样,有专门的制样设备,通过计算机控制温度、湿度、滤纸吸收的时间长短,使制样的可重复性高了很多。不过要使用好电镜,还是有许多的经验在其中。北京大学丁明孝老师正在组织国内优秀的专家撰写一部电镜实验操作手册,虽然这本书以普通电镜为主,但其中至少会有一章来介绍冷冻电镜的基本情况,以及如何使用好冷冻电镜,希望更多的人了解这一技术。   Instrument:请问目前我国冷冻电镜的研究和应用水平怎么样?   朱平:近年来,为推动我国生物学快速发展,国家不断加大投资力度。一方面引进了不少人才,另外在仪器配置方面,我国不少单位已经或将要建设国际一流的冷冻电镜设备平台,如清华大学、生物物理所、北京大学、上海生命科学研究院等。   其实十几年前,我们就有很多优秀的电镜人才,只是国家没有这么大的投入。就是在&ldquo 小米加步枪&rdquo 的条件下,他们也做的非常好。现在我们的高端电镜配置已在世界前列,但人才依然是最重要的,目前国内在冷冻电镜研究方面确实也没有那么多的人才,希望有更多的年轻人被培养出来。   科学的竞争也很残酷,团队合作才能走得更快更远   Instrument:最后,请问对于在高水平期刊上发表文章,您有哪些心得体会,以及团队合作在科学研究当中的重要性。   朱平:一是要有好的项目,好的科学问题 二要有好的设备 三要有好的团队 最后还要坚持。首先要敢于挑战科学难题,另外也要敢于面对挑战中的困难,要耐得住性子去做,要有长时间做不出来的准备。我们这个项目,前后花了5年时间,期间遇到了很多的困难。   在30nm染色质结构解析研究中,不同的研究组分工合作,发挥各自的特长也是我们这个项目的重要特点。在我们的研究当中,染色质样品的组装非常重要,我们需要均一的样品,否则电镜状态再好,再会调节操作和计算处理,也无法获取样品真正的结构信息。   我对组装染色质样品没有太多的经验,而李国红老师长期从事30nm染色质及表观遗传调控方面的研究,但冷冻电镜三维重构也需要一个较为长期的积累和经验,面对30nm染色质这么一个复杂的超大分子复合体,其结构解析有很多技术上的困难和挑战,若要让李老师重头来学电镜也不是很容易的事。还有许瑞明老师参加了我们很多的项目讨论,给了我们很多的鼓励,这也很重要。   科学的竞争也很残酷,我们知道世界上还有其他的团队也在做同样的研究,而我们能够先做出来,一个重要的因素就是我们是几个团队一起在做。 采访编辑:秦丽娟   附录:朱平研究员个人简历   1986.9-1990.6 浙江大学 学士   1990.9-1993.6 西安交通大学 硕士   1993.9-1997.6 清华大学 博士   1997.7-1998.12清华大学 讲师   1999.3-2008.5 美国佛罗里达州立大学生物系 博士后、助理研究员、副研究员(Non tenure-track faculty系列)   2008.6-至今  中国科学院生物物理研究所课题组长、&ldquo 百人计划&rdquo 研究员
  • 中科院研究发展出结构无损的高质量冷冻电镜晶态冰样品
    近日,Structure在线发表了中国科学院生物物理研究所章新政课题组完成的研究论文(Addressing Compressive Deformation of Proteins Embedded in Crystalline Ice)。该研究发现了晶态冰包埋的冷冻电镜样品会产生收缩形变,且形变随降温速率的增加而减少,并从晶态冰形成的降温速率出发发展了新型的无收缩形变的立方晶系晶态冰样品制备方法。   该工作发现结构无损的立方晶系晶态冰样品不仅消除了电子束诱导的快速漂移现象,而且显示出明显优于普通冷冻电镜玻璃态冰样品的数据质量,进一步为冷冻电镜实现原子分辨率奠定了基础。   大量实验数据证明,低降温速率制备的冷冻电镜样品有助于恢复数据采集时样品的束诱导漂移,但降温速率过低经常导致晶态冰的形成。传统认为晶态冰在生物样品冷冻过程中会对其结构造成破坏,故在冷冻电镜样品制备过程中一直避免使用。晶态冰的形成具体对蛋白质产生了什么破坏尚不清楚。   课题组系统性地将蛋白质在不同条件下包埋在晶态冰中,并通过冷冻电镜技术解析了晶态冰中的蛋白质三维结构。研究发现,在低降温速率形成的晶态冰中,蛋白质结构会产生收缩形变(图a),且收缩量和蛋白质本身性质相关,越为刚性的蛋白质收缩量越小。另外,在一些蛋白质柔性区域,低降温速率晶态冰中的蛋白质存在密度畸变的问题(图a)。同时,二者随着晶态冰降温速率的增加显著变小,甚至无法探测(图b)。基于上述发现,研究发展了结构无损的立方晶系晶态冰样品的制备方法。通过该方法制备得到的晶态冰样品,其三维重构和玻璃态冰样品一致,不会对蛋白质结构造成可检测的破坏,且成像质量显著提高,不仅没有束诱导漂移(图c),而且显著提高蛋白样品的分辨率。同样条件下,B-因子反映了样品的信噪比(图d),人源去铁-铁蛋白晶态冰样品的B因子显著好于玻璃态冰样品。此外,在醛缩酶和谷氨酸脱氢酶上B因子也获得显著提升。   研究工作得到国家自然科学基金、国家重点研发计划、中科院战略性先导科技专项(B类)和中科院前沿科学重点研究计划的支持。冷冻电镜晶态冰样品性质。a、与玻璃态病毒样颗粒(VLP)样品(粉色)相比晶态冰样品(绿色)产生收缩形变,且严重形变时密度图出现断裂。b、提高降温速率,晶态冰样品的收缩形变减弱。c、在人源去铁-铁蛋白,醛缩酶和谷氨酸脱氢酶上,晶态冰样品恢复束诱导的快速漂移,前几帧样品分辨率明显恢复。d、B因子曲线斜率越大代表数据质量越好。与玻璃态冰样品(蓝色)相比,人源去铁-铁蛋白晶态冰样品(红色)有更好的B因子,展现出更高的数据质量。
  • 喜讯!上海昊扩正式成为欧洲冷藏冷冻设备领先品牌Liebherr中国南区代理商
    佳音再传!上海昊扩与欧洲冷藏和冷冻设备领域的佼佼者Liebherr达成重要战略合作,正式成为其在中国南区的授权代理商。此次合作标志着双方将共同携手,深耕中国南区市场,为更多用户提供高效、可靠的冷藏和冷冻设备解决方案。关于Liebherr利勃海尔集团(Liebherr Group)是一家家族经营的技术公司,拥有丰富多样的产品分类。作为世界上最大的工程机械制造商之一,集团在众多不同领域为客户提供高品质、以用户为导向的产品和服务。利勃海尔集团由遍布各大洲的150多家公司组成。2023年,利勃海尔集团拥有超过 50,000名员工,总收入超过140亿欧元。集团由汉斯利勃海尔于1949年在德国南部小镇伊勒河畔基希多夫创立。自那时起,全体员工始终致力于通过不断的技术创新,为客户提供先进的解决方案。秉持“75载砥砺前行”的口号,利勃海尔集团将于2024年庆祝其成立75周年。Liebherr-Hausgerä te GmbH是利勃海尔集团旗下的11个分部控股公司之一。利普赫尔电器拥有6,800多名员工,在位于奥克森豪森(德国)的总部以及位于利恩茨(奥地利)、马里卡(保加利亚)、居銮(马来西亚)和奥兰加巴德(印度)设有生产基地,为家用和专业领域开发和生产各种高品质冰箱和冰柜。实验室与生物医药专业制冷解决方案易受温度影响的物质需要可靠的冷藏,这给科研和生物医药领域带来了巨大挑战。上海昊扩将为您提供以下Liebherr旗下各类高品质冷藏和冷冻设备:产品优势: &bull 温度稳定:出色的温度稳定性是 Liebherr 专业设备的特色。即使在极端气候条件下,易受影响的样品也能在精确的恒定温度下加以冷藏。此外,设备可以维持温度稳定性,并在出现偏差时发出警报。&bull 标准安全功能:Liebherr 素有为高价值产品提供妥善保护的良好声誉。众多安全功能可以确保易受温度影响的物质的品质,使其与您出色的工作质量一样始终得到保证。&bull 新型警报系统:科研和医药领域不允许出现差错,储存温度同样必须高度精准。Liebherr 专业设备配备了各类警报系统,可在发现任何偏差时立即发出提醒,并帮助您以切合实际的视角评估危急情况。&bull 可持续性和经济性:Liebherr 的冷藏和冷冻设备仅使用环保制冷剂,其特点是高效率、低能耗和运营成本。出色的 TCO (总拥有成本) 还得益于较长的使用寿命和易于维护的特性,尤其是设备几乎不需要维护。&bull 标准和指令遵从性:Liebherr 冷藏和冷冻设备遵循关于储存质量、卫生状况和安全的标准、规范和指令。作为国内实验室设备的专业代理商,上海昊扩始终坚守为客户提供优质产品和服务的初心。我们深感荣幸能与欧洲冷藏和冷冻设备专家Liebherr达成战略合作,借助Liebherr的技术优势和产品实力,上海昊扩将不遗余力,为客户提供更加优质、专业的服务,助力Liebherr开拓中国市场,进一步实现品牌的快速发展。 关于上海昊扩:上海昊扩科学器材有限公司成立于2019年,总部位于上海,是一家实验室设备/耗材及分析仪器的综合服务商。公司致力于为生物、医药、物性检测、化工分析、食品、工业生产等相关领域客户提供国内外高科技专业设备以及技术咨询服务。→ 了解更多产品信息,欢迎访问官网:www.hankosci.com→ 产品咨询电话:李经理 18019039812
  • 四大常见电镜制样方法简介:TEM、SEM、冷冻、金相
    应用电子显微镜高分辨本领和高放大倍率,对物体组织形貌和结构特征进行分析和研究的近代材料物理测试方法。但样品的制作直接影响着结果的准确性,所以制作满足要求的样品就成了整个试验的重点。现将一些常见电镜制样方法简介如下。透射电镜(TEM)TEM放大倍数可达近百万,可以看到在光学显微镜下无法看清的0.1~0.2nm的细微结构。它的样品制备工作量非常大,约占全部测试工作的半数以上或90%以上,是十分关键的。图 透射电镜样品台常用样品台分为两种:顶入式样品台和侧插式样品台顶入式样品台要求样品室空间大,一次可放入多个(常见为6个)样品网,样品网盛载杯呈环状排列,使用时可以依靠机械手装置进行依次交换。优点:每观察完多个样品后,才在更换样品时破坏一次样品室的真空,比较方便、省时间。缺点:但是需要的空间过大,使样品远离下方物镜,不宜减小物镜焦距而影响电镜分辨力。侧插式样品台样品台制成杆状,样品网载放在前端,只能盛放1~2个铜网。优点:样品台体积较小且占用空间较少,可布置于物镜内上部,利于提高电镜分辨率。缺点:不可能一次投入多个样品网中,每换一个样品都要打破一次样品室内真空,稍有不方便。支撑网的选择:支撑网有多种材质如Cu、Ni、Be、尼龙等,选择时要与待分析样品的成分分开。图 筛网尺寸制备原则• 简单• 不破坏样品表面• 获得尽量大的可观测薄区主要制备方法• 支持膜法:• 复型法:• 超薄切片法:• 薄膜试样(电解双喷减薄,离子减薄,FIB等)1. 支持膜法适用范围:纳米颗粒(防止样品从铜网缝隙中漏出)支持膜种类:• 微栅膜• FIB微栅膜• 纯碳微栅膜• 多孔碳膜• Quantifoil规则多孔膜• C-flat纯碳多孔支持膜等图 筛网尺寸制备过程:• 制备支持膜:在铜网上覆盖一层有机膜后喷碳• 选择分散剂:根据样品性质选择,常用无水乙醇• 分散:使用超声波或搅拌将粉末分散成悬浮液液滴上支持膜(两种方法):(a)滴样:用镊子将覆盖支持膜的铜网夹住,并用滴管向支持膜上滴入数滴悬浮液,使其保持夹持状态直至干燥为止(推荐)(b)捞取:用镊子夹持载网浸入溶液捞取液滴(缺点:双面挂样制备关键和注意事项:• 样品粉末能否在支持膜上均匀分布• 确保实验过程中未带入污染物2.复型法基本原理:利用电子束透明膜(碳、塑料、氧化物薄膜)复制材料表面或者断口形态的间接试样制备方法。适用范围:在电镜中易起变化的样品和难以制成薄膜的试样。样品要求:非晶态、分子尺寸小、导电性、导热性良好,耐轰击,有足够的强度和刚度。复型法分类:塑料一级复型、碳一级复型、塑料-碳二级复型、萃取复型。(1)塑料一级复型样品上滴特定溶液,溶液在样表面展平,多余的用滤纸吸掉,溶剂蒸发后样品表面留下一层100nm左右的塑料薄膜。图 塑料一级复型(2)碳一级复型利用真空镀膜装置将碳膜蒸镀于试样表面,将试样置于真空镀膜装置内,将试样置于所配的分离液内经电解或者化学分离得到分离碳膜便可应用于分析。图 碳一级复型(3)萃取复型图 萃取复型(4)塑料-碳二级复型通俗地说,塑料的一级复型中又制造出碳复型即为二级复型。分辨率相当于塑料的一级复型,对试样无损害,耐电子束辐照,复型带重金属投影。图 碳二级复型3. 超薄切片法适用范围:生物组织、较软的无机材料等。1.取材 2.固定 3.漂洗 4.乙醇或丙酮系列脱水 5.渗透 6.包埋 7.聚合 8.修块 9.切片 10.捞片染色 11.电镜观察注意事项:• 迅速:最短时间内取样,投入固定液• 体积小:所取样品体积不超过1mm3• 轻:轻轻操作,使用锋利器械,避免拉、锯、压• 准确:所取部位有代表性• 低温:在0~4℃内操作4.离子剪薄法适用范围:用于非金属材料或非均匀金属制备过程:• 预处理:按预定取向切割成薄片,机械抛光减薄到几十μm,把边长/直径切割至3mm。• 装入离子轰击装置:• 抛光:获得平坦而宽大的薄区。图 离子剪薄法5.电解双喷减薄法适用范围:只能制备金属试样,首选大块金属。样品准备:• 磨抛厚度均匀,避免穿孔偏• 样品保证清洁• 多准备一些试样,试合适的条件制备步骤:• 样品接正极、电解液接负极,电解液从两侧喷向样品• 样品穿孔后,自动停机• 获得中间薄,边缘厚,呈面窝状的TEM薄膜样品电解液选择:根据样品;不损伤仪器优点:条件易控制,快速,重复性好,成功率较高。图 电解双喷减薄法原理图6. 聚焦离子束法(FIB)适用范围:适用于半导体器件的高精度切割与线路修复。原理:采用从液态金属镓中提取离子束,并通过调节束流强度对指定区域进行快速精细处理。方法:铣削阶梯法,削薄法(H-bar)铣削阶梯法:• 预处理:铣削出两个反向的阶梯槽,中间留出极薄的TEM试样• 标记:刻蚀出定位标记• 定位:用离子束扫描定位标记,确定铣削区域• 铣削:自动或手动完成铣削加工图 铣削阶梯法制备的样品TEM照片削薄法(H-bar):• 使用机械切割和研磨等方法将试样做到50-100μm厚• 使用FIB沉积一层Pt保护层• 使用FIB铣削掉两侧的材料图 削薄法工作示意图扫描电镜(SEM)扫描电镜样品制备比透射电镜样品制备简单,无需包埋和切片。样品要求:样品须为固体;达到无毒、无放射性、无污染、无磁性、无水分、组分稳定。制备原则:• 表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干;• 新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态;• 要侵蚀的试样表面或断口应清洗干净并烘干;• 磁性样品预先去磁;• 试样大小要适合仪器专用样品座尺寸。常用方法:块状样品块状导电材料:无需制样,用导电胶把试样粘结在样品座上,直接观察。块状非导电(或导电性能差)材料:先使用镀膜法处理样品,以避免电荷累积,影响图像质量。图 块状样品制备示意图粉末样品直接分散法:• 双面胶粘于铜片表面,借助棉球使被测样品颗粒直接撒布于其上,并用洗耳球对样品进行轻吹以去除粘附的、没有被牢固地固定的粒子。• 将装有颗粒的玻璃片翻起,对着已准备好的试样台用小镊子或者玻璃棒轻敲,使细颗粒能够均匀地落入试样台上。超声分散法:将少量颗粒放入烧杯内,加乙醇适量,超声震荡5分钟,然后用滴管加入铜片内,使其自然干燥。镀膜法真空镀膜真空蒸发镀膜法(简称真空蒸镀)就是将蒸发容器内需要成膜的原材料在真空室内进行加热,将蒸发容器内的原子或分子气化并从表面逸出,一种形成蒸气流并将其射入固体(称为衬底或基片)的表面以冷凝成固态薄膜的工艺。离子溅射镀膜原理:离子溅射镀膜在局部真空溅射室内辉光放电生成正向气体离子;在阴极(靶)与阳极(试样)之间电压加速时,荷正电离子轰击阴极表面并原子化阴极表面材料;生成的中性原子,向四面八方飞溅,射落在样品表面,从而在样品表面生成了均匀的薄膜。特点:• 对任何待镀材料来说,溅射都是可能的,只要它能够制成靶材即可(适用于难蒸发材料和不容易获得高纯度化合物的相应薄膜材料的制备);• 溅射所获得的薄膜和基片结合较好;• 消耗贵金属少,每次仅约几毫克;• 溅射工艺具有良好的可重复性,膜厚可控,同时能在大范围基片表面得到厚度均一的膜。• 溅射方法:直流溅射、射频溅射、磁控溅射、反应溅射。1.直流溅射图 直流溅射沉积装置示意图已经很少使用了,由于沉积速率过低~0.1μm/min、基片加热、靶材导电、直流电压和气压都必须很高。优点:装置简单,容易控制,支模重复性好。缺点:工作气压高(10-2Torr),高真空泵不起作用;沉积速率低,基片升温高,只能用金属靶(绝缘靶导致正离子累积)2.射频溅射图 射频溅射工作示意图射频频率:13.56MHz特点:• 电子作振荡运动,延长了路径,不再需要高压。• 射频溅射可制备绝缘介质薄膜• 射频溅射的负偏压作用,使之类似直流溅射。3.磁控溅射原理:用磁场使电子移动方向发生变化,电子移动轨迹被束缚与拉长,工作气体中电子电离几率增加,电子能量得到高效利用。由此使得正离子轰击靶材产生的靶材溅射变得更高效,可以在更低气压下溅射,而被正交电磁场捆绑的电子则会被束缚于靶材周围,仅能在它们能量消耗殆尽后沉积下来的基片中溅射。图 磁控溅射原理示意图特点:低温,高速,有效解决了直流溅射中基片温升高和溅射速率低两大难题。缺点:• 靶材利用率低(10%-30%),靶表面不均匀溅射;• 反应性磁控溅射中的电弧问题;• 薄膜不够均匀• 溅射装置比较复杂反应溅射溅射气体添加氮气、氧气、烷类等少量反应气体,反应气体和靶材原子共同沉积于衬底上,对于某些不容易发现块材而制造靶材的物质,或者溅射时薄膜成分易偏离靶材原成分,均可用此法进行。反应气体:O2,N2,NH3,CH4,H2S等镀膜操作将制备完成的样品台放置在样品托上,放入离子溅射仪,加盖,旋紧螺丝并开启电源抽真空。当真空趋于稳定时,在5 X10-1mmHg左右,按下“启动”键,用调节针阀把电流调节到6~8mA,开始镀金,镀金1分钟后即自动停止镀金,关好电源、打开顶盖螺丝、放掉气体、取下试样即成。图 Cressington 108Auto高性能离子溅射仪冷冻电镜制样冷冻电镜是扫描电镜超低温冷冻制样传输技术(Cryo-SEM)可以实现液体,半液体和电子束敏感样品的直接观测,例如生物和高分子材料。样品经超低温冷冻,断裂和镀膜制样(喷金/喷碳)后可由冷冻传输系统置于电镜中的冷台上(温度可至-185°C)观察。适用范围:塑料,橡胶及高分子材料,组织化学,细胞化学等样品制备要求:能够保持本身的结构,又能抗脱水和电子辐射方法:(a)通过快速冷冻使含水样品中的水处于玻璃态,也就是在亲水的支持膜上将含水样品包埋在一层较样品略高的薄冰内。图 液氮冷冻(b)采用喷雾冷冻装置(spray-freezing equipment),结合基质混合冷冻技术(spray-freezing),可在极短时间内将两种溶液(如受体和配体)混合(ms量级),然后快速冷冻。图 喷雾冷冻装置金相制样金相分析是材料研究领域中非常重要的一个环节,也是材料内部组织研究的一种主要方法。利用定量金相学原理通过对二维金相试样磨面或者薄膜进行金相显微组织测量与计算,确定合金组织在三维空间中的形态,进而建立合金成分,组织与性能之间定量关系。制样过程:样品切割、镶嵌样品、机械制样、检验样品样品切割方法:金相最适合的切割方法是湿式切割轮切割法。优点:所造成的损伤与所用的时间相比是最小的切割片的选择:主要依据材料的硬度和韧性进行选择。图 砂轮片的选择• 陶瓷和烧结碳化物:金刚石切割片• 钢铁材料:氧化铝(Al2O3)切割片和CBN切割片• 有色金属:碳化硅(SiC)切割片镶嵌样品金相样品镶嵌技术(以下简称镶样)是将试样尺寸小或形状不规则造成研磨抛光痛苦时镶嵌或夹持,以便于试样抛磨,提高工作效率和实验精度的一种工艺方法。镶样一般分为冷镶和热镶。冷镶应用:对于温度和压力极为敏感材料、和微裂纹试样要进行冷镶,会使试样组织不发生改变。图 冷镶示意图冷镶材料:一般包括环氧树脂、丙烯酸树脂、聚脂树脂。• 环氧树脂:收缩率低,固化时间长;边缘保护好,用于真空浸渍,适用于多孔性材料;• 丙烯酸树脂:黄或白,固化时间较短,适合批量大、形状不规整样品镶样;对于含裂纹或者孔隙的试件渗透性更好;尤其是对印刷电路板的封装;• 聚酯树脂:黄色、透明、固化时间较长;适用于大批量无孔隙的试样制样,适用期长;真空浸渍:多孔材料(如陶瓷或热喷涂层)需真空浸渍。树脂能增强这些脆弱材料并能尽量减少制备缺陷(例如抽出,开裂或未开孔等)。只有环氧树脂由于其低粘度、低蒸汽压的性质,才能在真空浸渍中使用。荧光染料和环氧树脂可以被混合以方便地发现荧光灯中所有被充填的孔隙。图 冷镶制样 图片来源:司特尔公司热镶应用:适用于低温及压力不大的情况下不发生变形的样品。图 热镶示意图镶材料:目前,通常多用塑料做镶嵌材料。镶嵌材料包括热凝性塑料(如胶木粉),热塑性塑料(如聚氯乙烯),冷凝性塑料(环氧树脂加固化剂)和医用牙托粉与牙托水。胶木粉不透光、色泽多样、且较坚硬、样品不易倒角、但抗强酸、强碱耐腐蚀性较差。聚氯乙烯呈半透明或透明状,抗酸碱耐腐蚀性能良好,但柔软。热镶试样图片来源:司特尔公司机械制样机械制样可分两种操作:研磨和抛光1.研磨研磨的终极目标就是要得到损伤最小的平表面。这些小损伤会在后续抛光中短时间内被去除。研磨分为粗磨和细磨两个过程。• 粗磨粗磨过程就是把全部试样表面变成一个类似的面,用比较粗的固定研磨颗粒就能快速磨去材料。• 精磨 精磨会使样品有些微变形,但这些变形在抛光过程中就会消除掉。2.抛光抛光就像研磨,还得除去前道工序造成的伤害。它可以分为金刚石抛光与氧化物抛光两大工序。• 金刚石抛光唯有把金刚石当作研磨料来抛光才有可能在最快的时间内得到最佳研磨平面。其原因是金刚石非常坚硬,几乎能切割所有的物质和相态。• 氧化物抛光 对于特别软、韧性的样品,须采用氧化物抛光法。抛光在抛光布上完成。金刚石抛光时还须用到润滑剂。研磨和抛光设备检验样品打磨后的检测部位变的发亮,在观察组织的时候需要先将试样的检测部位腐蚀掉,做好之后使用酒精冲淋,使用吹风机吹扫。
  • “冻”中有静,细思极“孔” ——Moorfield薄膜生长设备助力冷冻电镜研究新进展登上Science
    科研进展moorfield薄膜生长设备的用户英国剑桥大学christopher j. russo教授研究组利用高质量的薄膜生长与加工技术制备了用于冷冻电镜样品制备的“hexaufoil”金属网,该金属网使得冷冻电镜观察生物大分子样品时样品的位置漂移小于1埃米,进一步提高了冷冻电镜的成像质量,该结果刊登在2020年10月的science杂志上。“hexaufoil”金属网制备过程中的关键环节就是采用moorfield提供的高精度电子束蒸发技术以及液氮冷却的低温样品台,使得au膜当中的粒径更小,在大缩小金属网圆孔直径的情况下仍保证了金属网孔的圆度和质量。图1:生长在si 片上的“hexaufoil”金属网阵列(图片由分子生物学mrc实验室的neil grant提供) 说到冷冻电镜,近几年在分子生物学方向可谓是大放异彩,我国生物学家利用冷冻电镜技术在结构生物学方面也做出了许多举世瞩目的重要成果。冷冻电镜技术几乎的实现了对生物大分子的高精度观察。但在实际应用中仍有很多因素限制了冷冻电镜观测精度的进一步提升。其中重要因素之一是由于电子束照射导致金属网上的玻璃态的水膜发生移动从而影响观测精度。英国剑桥大学的christopher j. russo研究组对金属网上玻璃态水膜的移动建立了物理模型,通过分析得出水膜的直径和厚度存在一个临界比值,超过临界比值,水膜在快速冷冻过程中会由于应力作用发生弯曲,并有部分应力冻结在内部。而在电子束照射时,由于电子束照射作用提高了水膜中水分子的扩散系数(~1046倍),玻璃态的水膜便成为了一个“超粘流体”,水膜的应力会进一步的释放使得水膜的曲率发生变化,从而导致了生物大分子的位移,而这个位移只发生在电子束照射时,从而影响成像质量。图2:a冷冻电镜在观测时样品的位置移动,b、c不同角度,不同孔径对位移的影响,d水膜曲率变化导致样品位移的示意图。e孔径比的临界值(孔的直径/水膜厚度) 如果缩小金属网孔的直径,使水膜的直径和厚度比值在临界以内,在冷冻时水膜内聚集的能量不足以使水膜发生弯曲,电子束照射的能量也不会引发水膜曲率的变化,仅仅会引起水分子的扩散,而扩散对成像的影响远小于曲率的变化。从而可以提高冷冻电镜的成像质量。因此制备高精度小孔径金属网格就显得尤为重要。christopher j. russo课题组利用了高精的光刻和电子束蒸发薄膜制备技术在硅片上成功的批量制备出了孔径在200 nm尺度的金属支撑网,使得冷冻电镜测量时样品的位移小于1埃米。图3:利用“hexaufoil”金属网的冷冻电镜观测结果 后作者利用制备的“hexaufoil”金属网对223-kda dps蛋白质进行了冷冻电镜的观测。结果表明,采用“hexaufoil” 金属网可以有效减小样品的移动,使得分辨率轻松突破2埃米(更多细节请参考原文)。该篇文章介绍了一种减小样品位置漂移提高冷冻电镜精度的有效途径。moorfield薄膜制备与加工设备moorfield nanotechnology是英国材料科学领域高性能仪器研发公司,成立26年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。moorfield公司近十年来与曼彻斯特大学诺奖技术团队紧密合作,推出的台式高精度薄膜制备与加工系列产品由于其体积小巧、性能、易于操作更是受到很多科研单位的赞誉。moorfield nanotechnology推出的大型系列设备具有更大的配置自由度,可以满足各种用户的特殊功能需求,并且接受设备的特殊定制化设计。 冷冻电镜背景介绍2017年诺贝尔化学奖颁给了发明冷冻电镜(cryo-em)的三位科学家,哥伦比亚大学教授joachim frank、苏格兰分子生物学家和生物物理学家richard henderson、以及瑞士洛桑大学生物物理学荣誉教授jacques dubochet以表彰他们在冷冻显微术领域的贡献。严格来说,其实这次化学奖是颁发给了三维“物理学家”以表彰他们对生物领域做出的贡献。richard henderson在20世纪90年代改进了电子显微镜,实现了原子分辨率;joachim frank在70、80年代开发了一种图像合成算法,能将电子显微镜模糊的二维图像解析合成清晰的三维图像;jacques dubochet发明了迅速将液体水冷冻成玻璃态以使生物分子保持自然形态的技术。这些发明使低温冷冻电子显微镜得到很大的优化。为什么观察蛋白质等生物大分子需要冷冻电镜呢?这是由于蛋白质等生物大分子往往只能保存在水溶液中无法满足电镜的真空要求,并且这些生物大分子是通过氢键链接的,电子的轰击会导致氢键断裂破坏分子结构,此外蛋白质等活性物质是运动的,不是一个静止状态。由于以上原因,普通电镜是不能用于观察蛋白质等生物活性物质的。科学家们经过探索发现,快速冷冻可使水在低温状态下呈玻璃态,减少冰晶的产生(水凝结成冰晶体积会膨胀从而会破坏生物分子结构),从而不影响样品本身结构,生物大分子就可以冷冻在这个玻璃态的水里,通过冷冻传输系统保证在样品始终保持在低温状态下,这样就可以对样品进行电镜观察了。然后利用计算软件通过大量的二维照片解析出生物大分子的三维结构,这便实现了对生物大分子的高精度观测。近些年来,冷冻电镜在结构生物学领域大放异彩,使得对蛋白质等生物大分子的研究取得了长足的发展。我国生物学家去年在新冠病毒研究方面取得的诸多进展中也有很多重要的工作都用到了冷冻电镜技术。 【参考文献】[1]. naydenova k , jia p , russo c j . cryo-em with sub–1 specimen movement[j]. science, 370.
  • 冷冻电镜再立功!施一公、颜宁课题组发两篇Science“结构生物学”新成果
    p   8月10日,施一公、颜宁同时在《Science》期刊发表了各课题组的最新研究成果——两位学界大咖利用冷冻电镜技术在结构生物学领域取得了重要进展。 /p p    span style=" color: rgb(192, 0, 0) " strong 01 施一公组:人源PKD1和PKD2复合物的结构 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201808/insimg/8811f4cc-f6ac-43c1-b7f9-b05d194d09fa.jpg" title=" 01.jpg" / /p p   在“Structure of the human PKD1/PKD2 complex”文章中,施一公组专注的是一种常见遗传病——常染色体显性遗传多囊肾病(ADPKD)。这一疾病主要关联两个基因突变,即pkd1和pkd2。研究团队首次报道了多囊肾病相关蛋白PKD1和PKD2复合物整体近原子分辨率的冷冻电镜结构。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201808/insimg/03bc3789-7ede-4741-a3f1-a566699b7e0b.jpg" title=" 02.jpg" / /p p   常染色体显性遗传多囊肾病是慢性肾脏病的重要诱因之一,发病率为1/400-1/1000,全球约1200万患者深受这一疾病的影响。约50%患者会发展到终末期肾功能衰竭,需要进行异源肾脏移植或者终身血液透析治疗。我国约有150万此疾病患者,每年都有数以万计的患者苦苦等待无偿捐献的肾源或者通过无休止的透析维持生命。ADPKD不仅给患者造成严重的身体和精神上的折磨,同时给患者家庭带来沉重的经济负担。 /p p   人源pkd1基因定位于16号染色体,编码了长度为4302个氨基酸包含11次跨膜螺旋的蛋白PKD1。而由pkd2编码的PKD2蛋白是PKD1的伴侣分子,对PKD1的折叠、在细胞器间的转运、和蛋白成熟具有极其重要的作用。 /p p   施一公组利用冷冻电镜技术,获得截短的人类PKD1/PKD2复合体结构,分辨率达到3.6 Å 。他们发现,PKD1和PKD2蛋白会形成一个独特的一比三复合物 ( 1 PKD1: 3 PKD2 )。具体而言,PKD1包含一个电压门控性离子通道(VGIC),通过与PKD2相互作用形成一个非规范的TRP通道体系结构。这一过程中,PKD1中的S6螺旋会在中间断裂,形成S6a和S6b两段。除了VGIC之外,PKD1还有一个5-TM结构域和一个胞质PLAT结构域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201808/insimg/1421f032-c8ef-44cc-8f83-a1b811f1ba60.jpg" title=" 03.jpg" / /p p    span style=" color: rgb(0, 176, 240) " 图1:A.人源PKD1和PKD2蛋白的拓扑结构示意图。B.人源PKD1和PKD2蛋白复合物结构 C.人源PKD1独特的通道结构域。(图片来源:清华大学生命科学学院) /span /p p   这些结构的解析为PKD蛋白功能的研究建立了一个框架,并进一步为常染色体显性多囊肾病的病因以及治疗对策提供新的线索。 /p p    span style=" color: rgb(192, 0, 0) " strong 02颜宁组:人源Ptch1蛋白的冷冻电镜结构 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201808/insimg/9aa29ede-cff8-4cb5-a041-bb188de22007.jpg" title=" 04.jpg" / /p p   Hedgehog ( Hh )信号通路在胚胎发育中很重要,它的过度活跃与癌症有关。该通路的核心是一种被称为Patched 1 (Ptch1) 的膜受体。它间接抑制一种称为Smoothened的G蛋白偶联受体。当Ptch1结合分泌的蛋白Hh时,这种抑制得到缓解,通路打开。 /p p   颜宁课题组报道了人类Ptch1的冷冻电镜结构,Ptch1分别以3.9 Å 和3.6 Å 的分辨率与人类Sonic hedgehog ( ShhN )的N末端结构域复合 利用这些冷冻电镜结构,该课题组观察到了Ptch1的12个跨膜结构域以及两个细胞外结构域ECD1与ECD2。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201808/insimg/4e6661b4-edd5-4b4c-8fe9-e7f4db9ad7b2.jpg" title=" 05.jpg" / /p p   此外,他们还发现两种结构中都存在两种类固醇状的密度,通过进一步结构导向的突变分析表明,ShhN和Ptch1之间的相互作用依赖于类固醇。类固醇结合缺陷Ptch1突变体的结构显示明显的构象重排。 /p p   人类Ptch1及其与ShhN的复合物的结构揭示了Ptch1和ShhN之间识别的分子基础 同时Ptch1中两个类固醇结合位点的鉴定也为未来研究Hh通路建立了重要的框架。 /p p style=" text-align: center " ------------------------------------- br/ /p p    strong 参考资料: /strong /p p & nbsp & nbsp & nbsp 1)Structural basis for the recognition of Sonic Hedgehog by human Patched1 /p p   2)Structure of the human PKD1/PKD2 complex /p p   3)清华大学施一公研究组在《科学》发文报导“常染色体显性遗传多囊肾病”相关蛋白PKD1和PKD2复合物的结构 /p
  • 冷冻离心机何时实现“进口替代”
    因为技术原因,长期以来,进口冷冻离心机一直占据我们大部分市场,分布在全国各地的实验室,以及高校和相关企业中,像岛津、安捷伦等长期占领我国主流市场。蜀科仪器近几年来一直致力于冷冻离心机的技术创新和升级,小编今天来简要分析下冷冻离心机何时实现“进口替代”。 目前国产冷冻离心机已经到达进口仪器的相同功能,许多产品已被国内科研组织普遍运用。特别在中档设备上,国产设备和进口设备几乎没有差异,完全能够满足运用。花钱是买有用,而不是买功能指标,但一些单位用公款购买,不惜本钱,乃至以具有进口仪器为荣。  与此同时,与面临国外设备的剧烈竞赛比较,国产仪器内部处于低档同质化竞赛状况也是一个不争的现实。据了解,现在大多数国产冷冻离心机公司在走“低报价市场竞赛”道路,对商品本钱投入不行,技术水平较差。公司为了抢夺市场,降低收购零部件本钱,加之中国精细加工和元器件商品基础薄弱,直接影响仪器的检查能力,反映在仪器稳定性不高等方面。  国家统计局数据显示,2014年,中国仪器仪表全职业共有规划以上公司4116家,近1100家首要公司是仪器仪表协会会员单位。职业规划小,专业涣散,有95%的公司年经营收入在亿元以下,没有过10亿元的公司。绝大部分公司的商品会集在低端,还处于“满足于自个过小日子”的阶段。  有专家表示,将来几年间,中国检查组织(实验室)、工业项目、重大科技专项(集成电路)、新药研发还将收购很多进口仪器。假如这些检查数据、技术参数等信息均被国外很多把握,对中国的信息安全不利。  因而,专家建议,提升职业整体竞赛力,继续缩短中国冷冻离心机技术与国外先进技术水平的距离,争取提前实现“进口替代”。
  • 喜讯!莱伯泰科病理标本快速冷冻仪获一类医疗器械备案凭证
    GUIDE导读近日,莱伯泰科公司推出的病理标本快速冷冻仪荣获天津市药品监督管理局颁发的第一类医疗器械备案凭证,这标志着该产品在安全性和有效性方面得到了官方认可。LabFREEZE病理标本快速冷冻仪在病理诊断领域,冰冻切片技术一直备受关注。然而,传统的冰冻切片方法受到诸多因素制约,如技术人员经验、切片机温度控制、样本包埋位置的不确定性,以及样本大小和韧度等,导致冰冻切片质量≤HE切片质量,切片质量难以达到理想状态,甚至影响诊断结果的准确性。为了解决这一难题,莱伯泰科公司推出了LabFREEZE病理标本快速冷冻仪。该产品采用先进的快速制冷技术,能够有效消除冰晶生成,降低组织收缩,从而轻松应对各种难以切片的样本,如脂肪和皮肤组织等。通过LabFREEZE处理后的样本,能够呈现出更加均匀、完整的切面,且无冰晶、刀痕、组织碎裂或破损等影响,确保将样本真实状态清晰展现在显微镜下,为诊断医师提供准确可靠的诊断依据,让患者得到更真实的诊断结果。LabFREEZE病理标本快速冷冻仪产品01/ 安全性航空级别斯特灵制冷技术,快速降温,降低冰晶的产生配备HEPA过滤器,夜晚定时除霜,实验室安全密闭压缩机,液氦制冷,安全环保低噪音,使用环境更安全02/ 高效性常规使用-40°C,最低可达到-80°CMoh皮肤、脂肪及针尖大等难处理样本也可轻松解决面下包埋技术,缩短修片时间,保护样本过度损失03/ 灵活性多种型号满足医院通量要求可使用任意厂家的冰冻样本托根据需要可快速更换基座,适配特殊大小的样本高质量的冰冻切片:
  • 高速冷冻离心机的使用维护
    高速冷冻离心机使用注意事项1.未经过培训和考核者不能使用离心机。2.使用离心机应选择合适的转头和转速,绝不可超速使用。3.选择合适的温度,通常4℃,除有机溶剂外不要低于零下,以免冰冻,损坏离心管和转头。4.离心机转头使用前必须用擦孔棒将管孔擦净,并仔细检查有无裂痕和孔底白斑。若有,转头报废。5.离心管内装载的溶液量必须合适,不锈钢管无盖,只能装2/3,塑料管可装至肩部。管盖必须盖严绝不允许漏液。空管离心会变形。塑料管使用有机溶剂必须符合规定。6.离心管必须成对放置,必须严格平衡,偏差<0.1g。7.不允许无转头空转,放取转头必须用手柄,以防转头滑落。转头要轻放、卡稳,旋下手柄时要用手扶住手柄只转转头。转头盖要盖严,无盖不准离心。8.离心时不准打开机盖,不准扒扶在离心机上,如有异常声音和振动时立即停机。9.转头使用后必须及时由转头室中取出、擦干,用擦孔棒将管孔仔细擦净。如有溶液溢出必须清洗干净,擦净转头室内凝水,开门凉干转头室。 高速冷冻离心机操作注意事项1.台式高速冷冻离心机在预冷状态时,离心机盖必须关闭,离心结束后取出转头要倒置于实验台上,擦干腔内余水,离心机盖处于打开状态。2.超速离心时,液体一定要加满离心管,应超离时需抽真空,只有加满才能避免离心管变形。如离心管盖子密封性差液体就不能加满,以防外溢,影响感应器正常工作。3.转头在预冷时转头盖可摆放在离心机的平台上,或摆放在实验台上,千万不可不拧紧浮放在转头上,因为一旦误启动,转头盖就会飞出,造成事故!4.转头盖在拧紧后一定要用手指触摸转头与转盖之间有无缝隙,如有缝隙要拧开重新拧紧,直至确认无缝隙方可启动离心机。5.使用时一定要接地线。离心管内所加的物质应相对平衡,如引起两边不平衡,会对离心机成很大的损伤,至少将缩短离心机的使用寿命。6.在离心过程中,操作人员不得离开离心机室,一旦发生异常情况操作人员不能关电源(POWER),要按STOP。在预冷前要填写好离心机使用记录。
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • TELSTAR 冷冻干燥技术小型研讨会
    Telstar 冷冻干燥技术小型研讨会,将于11月6日、7日分别在北京和上海举行。TELSTAR诚邀各位在冷冻干燥领域工作的科研人员莅临参加。   研讨会主题:冻干过程和基本概念、如何为一个新的样品设计冻干配方、如何优化现有冻干配方。   研讨会主讲人:Robert Bullich 博士   Robert Bullich 博士是TELSTAR 集团冻干研发实验室的创立人和负责人,拥有14年冻干工艺研究经验。Robert Bullich 博士在实际工作了,累计了广泛的冻干研发实际经验,曾经为以下产品成功开发和和设计过冻干配方:     胃保护剂: :奥美拉唑, 潘多拉唑,埃索美拉唑     抗生素: 哌拉西林, 三唑巴坦, 万古霉素, 伏立康唑,     细胞毒素: 丝裂霉素, 吉西他滨 ,抑那通等     食品工业:投身于多种冻干制品配方开发,如 El Bulli餐厅,水果、鱼、肉 Zafron餐厅,乳酸菌、牛奶、Celler de Can Roca餐厅     器官移植:皮肤,肌腱     原料药:多种环糊精,叔丁醇作为溶剂的特利加压素的 原料药冻干     过敏制剂:多个配方     疫苗:多个配方     血液衍生品:纤维蛋白原,一些因子     试剂:多个配方   时间及地点安排: (一)地点:北京海淀区上地开拓路5号中关村生物医药园   时间:11月6日 9:00-11:00   联系人:刘树强 137 0122 6851 (二)地点:上海市金闻路30号 TELSTAR 上海公司   时间:11月7日 9:30-11:30   12:00-13:00 午餐   联系人:Linda +86 21 33756116/17 18 19 139 1843 6367
  • 冷冻电镜:2015年最受关注的新技术
    细胞里面的生命活动井然有序,每一个部分都有其特定的结构,承担不同的功能。生物大分子则是一切生命活动的最终执行者,它们主要是核酸和蛋白。核酸携带了生命体的遗传信息,而蛋白是生命活动的主要执行者。自现代分子生物学诞生以来的半个世纪里,解析和分析生物大分子的结构、进而阐释其功能机制一直都是现代生命科学的核心问题之一。  事实上,一切自然科学都涉及物质结构及结构间的相互作用为核心的研究方向,天文学研究宇宙、星体等的结构及其相互作用,粒子物理研究物质世界的基本粒子的结构和相互作用,甚至包括应用性很强的材料科学都是以研究新型材料的结构和性质等为核心。结构生物学研究的直接目的是弄清楚生命大分子结构,从而更好地理解生命,理解这个自然界中“逆热力学第二定律”而诞生的奇迹 最终目标是公众通常关心的实用价值。  像数学物理公式不会直接造出飞机、导弹、计算机一样,蛋白质结构这样的基础研究不会直接转化为人们生产生活的必须物品。比较具体的应用,如药物设计、疫苗开发、医疗诊断和蛋白质分子性能改造(如科学实验或工业生产中酶活性稳定性优化)等是蛋白质结构研究比较容易被大众所理解的一个方向,但却只是其研究价值的一个侧面而已。  蛋白质结构如同生命科学里的数学公式和物理定律,甚至在以后会充当生命科学里面的“化学元素周期表”,除了帮助发现或设计新药等,它更重要的价值是作为最基础最上游的研究之一,通过影响一切与其密切相关的下游科学和技术,从而改变我们的世界。  结构生物学最早诞生于上个世纪中叶,它是一门通过研究生物大分子的结构与运动来阐明生命现象的学科,在其发展史上有两个里程碑式的事件,一个是 DNA双螺旋结构的发现,另一个肌红蛋白(Myglobin)晶体结构的解析,这两个事件都是上个世纪最重要的革命性科学进展,均在剑桥MRC分子生物学实验室完成,并且都于1962年获得了诺贝尔奖(一个生理学或医学奖,一个化学奖)。同时它们都是最早使用X射线的方法来解析生物大分子结构,而这个方法在过去半个世纪里,一直占据结构生物学的统治地位。  在当今结构生物学研究中普遍使用的冷冻电镜,是上个世纪七八十年代开始出现、近两年飞速发展的革命性技术,它可以快速、简易、高效、高分辨率解析高度复杂的超大生物分子结构(主要是蛋白质和核酸),在很大程度上取代并且大大超越了传统的X射线晶体学方法。  革命性的冷冻电镜技术  冷冻电镜并不是这两年才建立的。在蛋白质X射线晶体学诞生大约10多年以后的1968年, 作为里程碑式的电镜三维重构方法,同样在剑桥MRC 分子生物学实验室诞生,Aron Klug教授因此获得了1982年的诺贝尔化学奖。另一些突破性的技术在上世纪70年代和80年代中叶诞生,主要是冷冻成像和蛋白快速冷冻技术。这里面的代表科学家有Ken Taylor, Robert Glaeser和Jacques Dubochet等。  快速冷冻可以使蛋白质和所在的水溶液环境迅速从溶液态转变为玻璃态,玻璃态能使蛋白质结构保持其天然结构状态,如果以缓慢温和的方式冷冻,这个过程会形成晶体冰,生物分子的结构将被晶格力彻底损坏。低剂量冷冻成像能够保存样品的高分辨率结构信息,确保了从电镜图形中解析蛋白质结构的可能性。与此同时Joachim Frank等则在电镜图像处理算法方面奠定和发展了这项技术的理论基础。由此冷冻电镜的雏形基本建立,总的思路为:  1)样品冷冻(保持蛋白溶液态结构)   2)冷冻成像(获取二维投影图像)   3)三维重构(从二维图像通过计算得到三维密度图)。  该方法为生物大分子结构研究提供了一个和X射线晶体学完全不一样的、全新的思路。但是由于技术方法的瓶颈,在此后30多年的时间里只能做一些相对低分辨率的结构解析工作,在分辨率上一直不能和X射线晶体学比较,甚至一度被嘲笑为”blob-ology“(英文讽刺语,“一坨轮廓的技术”)。冷冻电镜三维重构得到的电子云密度图和原子模型(局部)。张凯供图  但对于冷冻电镜来说,技术难点远非单纯冷冻。冷冻成像和图像处理算法一直都是瓶颈。从冷冻电镜技术诞生以来的近30年时间里,其一直都有进展,只是相对比较缓慢。  最重要的革命性事件大约发生在两三年前:一个是直接电子探测器的发明,另一个是高分辨率图像处理算法的改进。MRC分子生物学实验室的两位科学家Richard Henderson和Sjors Scheres在这次革命中起了关键作用(作者注:现代科技革命往往是诸多研究机构若干团队共同参与,此处仅列举关键代表,并且仅从技术角度讨论,不涉及生物学应用)。  Richard Henderson是探测器方面的先驱,而Sjors Scheres则因他设计的Relion程序而名声大噪,他们由此当选为《自然》杂志2014年“十大科学进展年度人物”。两位科学家一个从硬件,一个从软件将冷冻电镜技术推向了巅峰,将冷冻电镜技术的分辨率推向了新高度。(作者注: Henderson教授的贡献远非探测器一个方面,包括冷冻电镜理论基础、算法、软件,重要生物大分子应用,如曾首次解析视紫红质跨膜螺旋等等方面 早在20多年前,他就通过一系列理论分析,预言了冷冻电镜研究的尺度、分辨率极限、技术瓶颈等等,并且断言:冷冻电镜将超越其它一切技术方法,成为蛋白质结构研究的主导工具,如今这些预言全部应验。)  和此前使用的CCD相比,新发展的直接电子探测器不仅在电镜图形质量上有了质的飞跃,同时在速度上大幅提高,还可以以电影的形式快速记录电镜图像。这些特性同时也伴随着电镜图像处理方面的重大变革,电镜技术此前在分辨率上的一个主要瓶颈是电子束击打生物样品造成的图像漂移和辐射损伤。有了快速电影记录,我们就可以追踪图像漂移轨迹而对图像做运动矫正和辐射损伤矫正,大大提高数据质量。  尽管如此,电镜图像处理一直都是一项极具挑战性的任务,主要的问题是冷冻电镜的图像噪音极高、信号极低,而我们的目标是从中提取近原子分辨率的结构信息,这就像在一个机器轰鸣的工厂里监测一只蚂蚁爬行的声音。冷冻电镜科学家就是要完成这项艰巨的任务,并且真的做到了。有了硬件和软件方面的双重提高,冷冻电镜的分辨率目前已得到了极大的提高,可以和晶体学相媲美 并且在其它方面已经大大超越了晶体学。  主要体现在下面几个方面:  第一,不需要结晶,研究对象范围大大扩展,研究速度大大提高。对于小分子,比方说无机盐矿物质等自发就能长出晶体,小而且稳定的蛋白质目前来说结晶并不困难,但是这类意义重大的蛋白几乎都已经解析完了,在科学上没有任何重大意义 当今时代,小蛋白已经完全不能满足科学家们强烈的探索欲望,结构生物学研究的对象越来越大,体系越来越复杂,结晶几乎成为不可能的事情,即使能结晶,也不一定衍射,有衍射也不一定能得到原子分辨率结构。  很多年前,许多蛋白质晶体科学家为了完成一项艰巨的任务,一个课题少则5到10年,多则20年,核糖体从上世纪80年代初首次长出晶体到 2000年左右最终拿到原子分辨率结构整整经历了20年 线粒体呼吸链复合物I从上世纪90年代初研究,第一次报道完整晶体结构大约是20年以后。  而冷冻电镜方法跳过超大分子复合物结晶难的这层技术屏障,以直接解析复合物的溶液状态的结构为目标。  现在利用这项技术,在MRC-LMB一周时间就可以解析一个新的核糖体结构 英国皇家学会主席、MRC-LMB结构中心主任 Venki Ramakrishnan 教授,因为核糖体的晶体结构研究而获得2009年诺贝尔化学奖。他的实验室在2014年发表了最后一篇晶体结构文章,此后的文章全部以冷冻电镜为主。哥伦比亚大学有一个非常执着的博士后,研究兰尼碱受体(Ryanodine Receptor)晶体结构长达十年之久,最后放弃了晶体,转向了冷冻电镜技术,同时与清华大学教授颜宁和LMB的Scheres研究组合作,几个月就解决了这个难题,并且达到近原子分辨率。  第二,样品需求量小,样品制备快,可重复性高。重要生物样品都是非常珍贵的,总体来说是以微克或者最多以毫克来计量,即使得到这点样品,也要花费生物学家几周、几个月甚至更长的时间(大多数时候都需要摸索各种条件使样品处于相对稳定的状态,以便做进一步结构研究)。  蛋白质晶体一般要求高浓度大体积,没有量变就没有质变。而同样量的蛋白可以稀释以后制备若干冷冻电镜样品,每个样品有成百上千的区域,每个区域有几百个小孔,每一个小孔甚至可以收集多张照片。解析一般蛋白的原子结构需要几万个颗粒,而对于高对称性的样品几千个颗粒就足够。  第三,可以研究天然的、动态的结构。X射线晶体学研究生物大分子结构的一个主要弱点是无法拿到天然的动态的结构,这是因为研究人员无论如何也无法绕开结晶这个过程。冷冻电镜就是要做这件事情:直接解析天然的、溶液态的、动态的(dynamic),甚至原位(in situ)的结构,从而理解生命分子如何在空间和时间两个尺度上以活的动态的方式发挥功能。  晶体学只能尝试不同的条件获得生物大分子某个或者某些固定的状态,而且容易出现晶体堆积引起的不真实相互作用方式。形象地说,冷冻电镜可以制作完整的高清电影,晶体学只能从电影里截屏。  第四,技术革命还将开启巨大的潜在医疗价值。冷冻电镜技术方法在时间和精度方面的大幅度提高有时会导致不可预测的重大科学和应用价值。比如,活体病毒结构分析如果可以在分钟级别完成,这将有可能转化为潜在的医疗检测手段:从病人体内抽取血样或感染组织细胞,几分钟以后,非常清晰明了地展现病人在细胞内部结构层面的异常状况,甚至给出局部的原子结构图,从而给出精准的治疗方案。这个想法现在可能听起来有点像笑话,或许再过若干年人们就不这样认为了。  当然冷冻电镜的革命性不仅仅体现在上述四方面,在此就不一一列举。有关冷冻电镜更加详细的介绍,可参见笔者等2010年的中文综述(《生物物理学报》,2010年7月,第26卷,第7期: 533-559)。文章中对未来几年的发展趋势所做的展望,如直接电子探测器的普及、非对称性蛋白复合物近原子分辨率结构解析、冷冻电镜相关计算性能的大规模提升等等,目前绝大多数都在过去的两三年内得以实现并飞速发展。  华人学者在冷冻电镜领域的贡献  在冷冻电镜的这场技术革命中,华人科学家功不可没,在某些方面甚至独领风骚,做出了诸多重大成果。  加州大学旧金山分校(UCSF)的华人科学家程亦凡教授在2013年底,首次利用冷冻电镜技术解析近原子分辨率膜蛋白结构,这项成果在业界引起了巨大轰动。原因在于当所有电镜结构生物学家还在讨论膜蛋白到底能不能利用冷冻电镜技术看到二级结构,也是通常我们认为的中等分辨率水平的时候,程亦凡教授研究组直接解析了TRPV1 这个膜蛋白3.3埃近原子分辨率的结构(Nature,504:107–112)。  笔者曾在该文章发表的半年前在一次国际会议上和冷冻电镜领域顶级学者深入讨论过如何获得清晰的膜蛋白α -螺旋结构,对方给出了悲观的结论:“恐怕不太可能,至少最近两年不可能”。  事实上,此前蛋白质晶体学家已经有所耳闻“冷冻电镜可能在未来几年会超越并且取代晶体学”,但是谁也没想到会是以这样快速和震撼的方式登场,这在某种程度上引发了不少蛋白质晶体学家的“职业恐慌感”。这项成果的两个共同第一作者廖茂福、曹尔虎也都是非常杰出的青年华人科学家。  加州大学洛杉矶分校的周正洪教授早在2008年到2010年左右,在这场电镜技术革命来临之前,在各项技术条件尚未成熟的情况下解析了一系列近原子分辨率病毒结构。当时采用的是传统胶片来成像,任务非常艰巨,连他还在上学的儿子也都帮忙一起洗胶片。张兴博士在这一系列稍早的重要成果中充当了先锋。早在2008年,第一个近原子分辨率的冷冻结构,也即3.8埃轮状病毒就是张兴博士作为第一作者完成的(PNAS, 105(6): 1867-1872)。从1968年Aaron Klug创立电镜三维重构理论,到2008年人们首次看到通过冷冻电镜获得近原子分辨率结构,整整用了40年。  在国内,清华大学的隋森芳院士是我国冷冻电镜领域的先驱,不仅德高望重,还培养了一大批优秀的青年科学家,包括清华大学的王宏伟教授以及 MRC-LMB的白晓晨和畅磊福博士等等。王宏伟早年在隋老师实验室做研究生的时候,在我国研究设备和条件全面落后于国外的情况下依旧做出了许多非常出色的工作。  MRC-LMB的多位青年华人研究人员对冷冻电镜发展都做出了重要贡献。白晓晨博士在MRC-LMB首次使用直接电子探测设备Falcon I 和Sjors Scheres博士的新程序Relion,获得了第一个不对称样品核糖体的近原子分辨率冷冻电镜结构,打响了冷冻电镜革命的第一枪,随后解析了一系列核糖体和蛋白复合物结构。畅磊福博士在LMB首次获得非核糖体不对称蛋白样品APC复合物的近原子分辨率结构,阐明了蛋白质泛素化的重要机理。笔者主要在LMB的Andrew Carter博士实验室从事动力蛋白结构和功能研究,并成功解析动力蛋白激活因子Dynactin结构,提出了目前为止动力蛋白最详尽可靠的运动和激活机制(Science, 347(6229):1441-1446. 封面文章),同时独立发展冷冻电镜技术方法。  1953年4月25日,MRC沃森和克里克在《自然》杂志发表DNA双螺旋结构,61年后的同一天,我国科学家、中科院生物物理研究所的朱平和李国红研究员在《科学》杂志以长文形式发表了30nm染色质冷冻电镜结构(DNA双螺旋之双螺旋)(Science , 344(6182): 376-380)。这项工作是冷冻电镜在核心生命科学问题中的成功应用,冷冻电镜部分的工作主要是笔者在生物物理所的同学宋峰博士完成的。  生物物理所的程凌鹏博士(当前单位为清华大学)获得国内本土第一个原子分辨率的冷冻电镜结构,构建了蚕多角体病毒(CPV)的完整三维原子模型(PNAS,108(4):1373-1378)。笔者也参与了部分工作, 被其高质量、干净的电子密度图震撼。近期程凌鹏与刘红荣博士合作,在国际上首次发表了CPV完整基因组和RNA聚合酶“原位三维结构” (Science, 2015, 349(6254):1347-50), 引起了很大轰动,这项成果是我国本土冷冻电镜技术和生物学应用的双重突破,被多名同行科学家称赞为”里程牌式发现“。  我国著名科学家施一公最近发表了一系列重大蛋白复合物的冷冻电镜结构,包括γ -secretase、spliceosome等,被誉为过去几十年我国科学家对基础生物学领域的最大贡献。  另外,在欧美和中国本土还有一大批华人学者在冷冻电镜或密切相关领域(cryoET等)做出诸多突破性成果,例如匹兹堡大学的张佩君教授(艾滋病毒结构研究),德克萨斯大学的刘俊教授(细菌运动,噬菌体结构等研究)等,由于时间和篇幅问题,无法一一介绍。  冷冻电镜的未来展望  冷冻电镜技术目前仍然在快速发展中,未来冷冻电镜能做什么取决于这项技术能发展到什么程度。现代科学技术革命的一个最大特点是发展速度极其迅速,谁也不知道明天会发生什么,当然也不能十分准确的预知一个领域的发展方向。即便如此,笔者还是对这个领域有一些预测或期待(仅技术角度,不涉及具体生物学研究)。  1)超大规模、超快速度数据采集和处理。和晶体学相比,冷冻电镜的效率在某些方面已经异常惊人。比如笔者近期与牛津大学王祥喜博士合作,在几个小时以内就可以拿到完整甲肝病毒原子结构,而此前王祥喜博士花费近一年时间结晶才最终拿到原子结构。但是科学技术发展是永无止境的̷̷  但目前来说,结构生物学的巨大转型必须建立在速度和效率的双重前提下。这需要硬件、软件以及其它交叉学科等多方面的共同发展。  除了生物学研究应用,笔者一直致力于冷冻电镜技术的发展,最近在提高电镜数据处理结果可靠性和分辨率前提下,上千倍地提高了其中几个环节,过去几百到上千CPU小时的事情,现在几分钟到几十分钟就完成了。但是这只是部分环节,在其它方面依旧非常耗时,整个技术的各个环节如何全面高效高速地完成还需要更多的优秀人才参与。对硬件的发展方面笔者并不是很熟悉,预计在未来会出现超高速度的电子显微镜,大幅度提高电镜原始数据的数量和质量。  2)大尺度、高分辨率、高动态的生物大分子结构解析。理论上,冷冻电镜可像高清数码摄像机拍电影一样对生物大分子成像和重现其动态结构,研究深层机理。就目前而言,这一方面在技术上远未成熟。大尺度、高分辨率、高动态这几点拆解开来,每一个都不算太难,但是同时满足这几项需求几乎成为不可能的事情。但是这是未来结构生物学的方向,我们不仅仅要看简单的几张静态照片,我们还想看高清电影。  关于这一点,笔者需要强调一下结构生物学和动力学模拟的区别。结构生物学的动态结构目的是以实验手段完整复原自然状态的动态结构,理解其中机理,是从实验数据出发“重现大自然原貌”的过程,是完完全全可靠的实验结果。而动力学模拟是从已有的理论或经验性的物理学规律出发预测一个生物大分子的动态特性,存在巨大的不确定性,其结果可靠性较差。期待在未来的某个时刻,两者会像上个世纪的理论物理和实验物理一样完美地结合,相互促进。  大尺度复杂生物系统的高分辨率、动态机理研究涉及诸多学科,不是冷冻电镜一项技术就可以完成的,需要多学科科学家共同参与完成。  3)高分辨单分子及原位结构研究。目前的结构生物学,无论晶体学、冷冻电镜还是核磁共振主要还是在研究“群体”结构。冷冻电镜相对晶体学在这一方面已经有了大幅度提高,可以通过分类的方法研究群体结构中的每一类结构。但实际上每个分子在时间和空间上除了共性,也必然有特性,如果一种方法强大到可以测得单个分子的高分辨率结构,这必然导致巨大革命,使得人们发现许许多多在群体结构研究层次上无法发现也无法理解的大量规律。  注意这里强调的是单分子“高分辨率”结构,而不仅仅是单分子结构。单分子结构我们目前可以使用比如冷冻断层成像(cryoET)的手段获得,但是分辨率非常低,在如此低分辨率情况下,别说个体差异,很多群体结构差异都值得严重质疑。或许冷冻电镜技术若干年以后会实现这个目标,或许永远都不可能,或许这个目标被另外一个全新的技术彻底取代,冷冻电镜从此退出历史舞台。  冷冻电镜:一个高度交叉的学科  冷冻电镜领域一直是多学科高度交叉和相互促进才诞生的一个奇迹。数学、物理、化学、材料、计算机、软件、机械及自动化、精密仪器仪表等等缺一不可,当然最终的核心是生命科学(作者注:此处仅从结构生物学角度分析,并非泛指一般意义上生命科学是一切学科的核心)。生命科学提出问题,其它所有学科相互结合产生更好的解决方案。通过这些解决方案,发现更多神秘的生命现象,从而提出新的问题,诞生新的技术。  举个例子,冷冻电镜图像信噪比极低,没有科学家的雄心勃勃,没有大批信号分析、图像处理甚至数学家的参与是不可能完成这样艰巨的任务。同时冷冻电镜领域的一些发现或需求,也为其它领域的科学家提供灵感来源和新的研究思路。MRC-LMB作为现代分子生物学的发源地和近两年来飞速发展的冷冻电镜技术核心研究机构,其一大特点就是多学科“零距离交叉”。从半个世纪前的DNA双螺旋模型、肌红蛋白晶体结构等到近两年冷冻电镜技术革命,一直将这一理念体现得淋漓尽致。技术的发展和重大科学问题的解决几乎都是同时进行的,当然科学问题或应用价值始终是核心和最终驱动力,脱离科学和应用需求的技术发展是没有意义的。  另外一个比较具体的例子是笔者此前思考过的一个问题。在电镜领域出现直接电子探测设备之后,MRC-LMB的两台高端电镜,每天产生5到10T 的数据量,近期正在调试第三台,也许不久的将来,超大数据、超快速度电镜就会投入生产,这些将会导致全世界各个研究机构普遍出现一个严重的技术问题,就是如何高效、无损、快速地进行数据压缩存储和数据处理,当然这里的无损是相对特定生物样品和特定目标分辨率而言。这或许会引起一些信号处理和图像压缩方面的研究人员的兴趣。  随着冷冻电镜对生物大分子复合物高分辨率结构研究趋于成熟,更加复杂的动态机理研究是必然趋势,这是冷冻电镜技术发展的一个潜在可能性。但是复杂生物体系的深入研究需要解决一系列数学理论、物理、计算难题,有的可能甚至超出了这些学科目前的研究范畴。近些年比较现实可行的是通过冷冻电镜手段,对特定蛋白复合物非随机情况下的高分辨连续动态构象进行分析。笔者认为,专业数学家的参与会大大加速冷冻电镜技术在这些方面的发展。  生命体高度复杂,充满很多未知的和未被阐述清楚的规律,这里面有成千上万的生物大分子复合物,每一个复合物又与其它若干分子或复合物相互作用、相互影响,深入再深入地理解生命本质一直都会是冷冻电镜的重要方向。冷冻电镜是强大的基础研究手段,它通过解析高度复杂的生物大分子结构,帮助人们更好地理解生命规律,从而影响生命科学相关的一切下游学科和技术,当然也包括更好的发现和设计药物、医疗诊断等具体应用。我们期待在不久的将来,冷冻电镜技术会对科学研究和社会发展等方方面面都产生巨大影响。
  • 2021高端电镜年中盘点:球差/冷冻上半年放缓 下半年采购意向已超5亿
    2018年以来,仪器信息网持续跟踪了以球差校正、冷冻透射电镜为代表高端电镜在中国市场的采购配置动向。工欲善其事必先利其器,在我国大力推进科学技术创新背景下,见证了中国市场对高端电镜的强大需求,也见证了在高端电镜助力下,一系列世界前沿科技成果已写在祖国大地上。新冠疫情影响下,2020年国内高端电镜采购规模相较前两年有所下滑,2021年上半年继续放缓,但考虑到每年的采购高峰均出现在下半年,2021年整体情况还主要依赖于下半年的市场表现。半年为周期,近三年余我国高端电镜统计中标数量&金额变化图(文中所有图表数据自仪器信息网中标数据统计)疫情之下,国内高端电镜采购数量和金额继续受到波及。从本网统计公开的招标形式高端电镜中标数据来看,2018、2019年,国内高端电镜采购总金额连续突破10亿元;疫情影响下,2020年高端电镜总采购金额下挫三成;2021年上半年,高端电镜采购规模相较2020年上半年略有下降。2021年上半年,统计中高端电镜的冷冻电镜和球差校正电镜分别中标3台/套、2台/套,总中标金额约1.5亿元。(文中统计“高端电镜”泛指单价1500万元级别或以上冷冻电镜、球差电镜)同时,高端电镜的采购高峰均出现在下半年,据本网不完全统计,刚结束的7月份内,已有三家单位采购了日本电子球差校正电镜!另外,目前已经公开高端电镜采购意向、且预计采购时间在下半年或尚未完成采购的项目金额约5亿元,其中球差校正电镜采购意向7套,冷冻电镜采购意向7套。从已公示的采购意向趋势看,2021年下半年高端电镜市场或将迎来不俗表现。冷冻电镜篇:AI精准预测迎里程碑 赛默飞中标3套冷冻电镜AI精准预测蛋白结构里程碑2021年7月,人工智能预测蛋白质3D结构技术一声惊雷,DeepMind和华盛顿大学团队的最新成果同日抢发Nature和Science!去年年底,谷歌 AI 团队 DeepMind 的第二代 AlphaFold 算法在生物界引起了极大的轰动,它能准确地预测蛋白质的结构,以至于许多人宣布这个长达数十年的问题“已被解决”。 具体而言,AlphaFold2 在国际蛋白质结构预测竞赛(CASP)上精确地基于氨基酸序列预测蛋白质的3D结构。其准确性可以与使用冷冻电镜(CryoEM)、核磁共振或 X 射线晶体学等实验技术解析的3D结构相媲美。7月15日,西雅图华盛顿大学医学院蛋白质设计研究所的研究团队在最新一期《Science》上,公布了其人工智能系统RoseTTAFold的研究结果,它在预测蛋白质3D结构方面的表现,与AlphaFold2的水平几乎相当,而且速度更快、所需计算机处理能力更低,更令人惊喜的是,RoseTTAFold 直接免费开源!同日(7月15日), DeepMind 的 CEO 哈萨比斯等人在 《Nature》上也发表论文,公布了 AlphaFold2 的源代码,并且详细描述了它的设计框架和训练方法。有趣的是,为了和 Science 同一天抢发论文,Nature 特意在论文标题前开头备注:“这是一份未经编辑的手稿,但是已允许出版。Nature Research 乐意为作者和读者提供这份手稿的早期版本。” 7月22日,其最新成果以论文的形式发表在Nature期刊上,论文标题为“Highly accurate protein structure prediction for the human proteome”。该论文提供了构成人类蛋白质组的蛋白质的最完整图片,并发布了来自另外20种对生物研究很重要的有机体的蛋白质结构图片。同时(7月22日),DeepMind宣布与欧洲分子生物学实验室(EMBL)合作,为人类蛋白质组的预测蛋白质结构模型建立迄今为止最完整、最精确的数据库。这将涵盖人类基因组所表达的全部约20000种蛋白质,并且这些数据将免费向科学界公开提供。《Science》发表的新闻评论指出,随着RoseTTAFold和AlphaFold2源代码的公布,研究人员可以在两者的基础上继续前进,有望对人工智能系统做出进一步改进,攻克目前人工智能系统尚且无法确定构象的蛋白,以及使用这些软件设计全新的蛋白。随着解析蛋白结构的工具的快速发展,相信结合了强大计算力和算法的新一代人工智能技术也将对时下主流的冷冻电镜技术产生长远影响。冷冻电镜采购详情2021年6月,山东大学冷冻电镜中心建设项目单一来源成交,采购总金额约1.02亿元,主要采购内容包括300kV冷冻透射电子显微镜2套(Krios G4)、100kV冷冻电镜1套(Tundra)、冷冻双束电镜1套(Aquilos 2),赛默飞再次成为赢家。据悉,水木未来(北京)科技有限公司上半年配置了其第二套300kV冷冻电镜Titan Krios(G4),成为拥有2套300kV冷冻电镜的商业平台。(此项目没有公开中标信息,文中数据未统计在列)详情见下表,表中也列举了部分公布了采购意向且未完成的项目(预算约2.5亿元),以及上半年部分冷冻电镜配套设施或服务采购中标数据,以飨读者。球差电镜篇:日本电子7月份中标3套!2021年1-6月,污染控制与资源化研究国家重点实验室和化学与精细化工广东省实验室(汕头实验室)分别采购1套球差校正电镜,中标品牌看,日立科学仪器中标1套(型号HF5000),另一套品牌未知。目前,采购高峰期的下半年已揭开序幕,据统计,仅7月份内,已经有三家单位采购了3套球差校正电镜,值得关注的是,3套球差电镜均由日本电子中标,日本电子高端电镜展现不俗表现,中标型号分别为JEM ARM200F一套,JEM-ARM300F2两套。同时,在截止目前公示的下半年采购意向中,包含了多项球差校正电镜明确采购意向,相关采购预算接近2亿元,预计采购时间主要集中在8-9月。了解全球主流球差/冷冻电镜相关产品信息请点击:透射电子 显 微镜 (透 射 电镜、 TEM) 专场
  • 【精彩案例】—— 冷冻食品异物检测
    Iglo提供方便、高质量的冷冻食品,包括鱼类、海产品、蔬菜和鸡肉,是欧洲的一个冷冻食品公司。 Iglo面临的挑战Iglo为欧洲西部、中部和东部的不同区域提供品牌冷冻食品。面向如此多不同类型的市场,其目标不仅只是满足健康、方便的需求,而且要符合欧洲食品安全局和全球食品安全倡议 (GFSI) 等国际食品安全标准和组织的规定。 然而Iglo采用的是传统的金属检测机,在非金属污染物方面的检测能力有限。 测试&调研 Iglo决定对X射线检测系统进行评估,以便提高其污染物检测能力。 评估的一个关键参数是设备经受恶劣环境和极端温度的能力。在检测过程中,鱼类和蔬菜温度保持在-18°C,并非所有的检测系统都能在这样低的温度下运行。此外,冷冻产品水分含量高,会影响金属检测机等传统检测技术的灵敏度,从而降低检测的准确性。 Iglo对八家供应商的异物检测设备进行测试,并选择了Eagle的X射线检测系统。 解决方案&业务价值 Eagle Pack 430满足并且超出了他们的预期,能够在寒冷、高湿度的环境中运行,且检测性能不受温度和水分含量的影响。 该系统采用了双能材料甄别(MDX)技术,检测出了测试包装中的玻璃碎片和各种非金属污染物。 MDX按照化学成分(原子数)甄别材料,能够检测并剔除难以检测到的无机污染物,例如玻璃、石头等。此外,Eagle提供现场支持和定制系统,可轻松地集成至现有产线。 目前,Iglo的德国工厂安装了四套 Eagle Pack 430系统以检测不同产品。使用Eagle X射线检测系统后,Iglo不仅可以检测多种污染物,更好地控制生产,而且提高了供应链的可追溯性和品牌总体竞争力。 “可根据不同产品轻松、快速地转换检测参数,提高了效率,使我们满足食品安全标准。” “Eagle的现场服务给我们留下了非常深刻的印象,帮助我们调试设备,能够完全满足我们的需求。”Reken工厂项目经理Arno Strotmann 更高的可追溯性欧洲食品安全局 (EFSA)规定:生产商必须能够对食品的生产、加工和配送阶段进行追踪,以免不安全的食品到达消费者手中。 Eagle TraceServer™ 软件可同时连接32台Eagle x射线设备,保存检测过程中产生的所有数据和图像,将其存储在中央数据库中,并可从数据库导出所需数据,轻松实现产品的可追溯性,为Iglo提供了尽职调查的能力。 想要了解更多Eagle鹰光™ 的产品,请进入网站https://www.instrument.com.cn/netshow/SH101016/Search.htm?sType=0&Keywords=Eagle,留下您的信息,我们的专业工程师将竭诚为您服务。
  • 浙江大学投资6000万打造一流冷冻电镜中心 施一公送贺礼
    p   5月9日,浙江大学紫金港校区圆正启真报告厅洋溢着喜庆的气氛,清华大学副校长施一公院士、浙江大学副校长罗建红教授、浙江大学医学部主任段树民院士、中国科学院生物物理所所长徐涛教授、加州大学洛杉矶分校电镜中心主任周正洪教授及来自国内外知名高校等顶级冷冻电镜专家共同启动了浙江大学冷冻电镜中心的成立庆典仪式,为浙江大学120周年校庆送上又一份贺礼。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/ccf1d79b-a914-4581-a5d4-a6d10c4c3b6c.jpg" title=" 1494385664596854.jpg" / /p p style=" text-align: center " 浙江大学冷冻电镜中心成立暨2017冷冻电镜西湖论坛现场 /p p   生物结构决定了其功能,冷冻电镜正是解析生物结构的利器。冷冻电镜技术的发明,为解析蛋白质生物大分子结构提供了高效率的手段,目前在全世界范围内形成了蛋白质结构生物学研究的热潮,出现了许多开创性的研究成果,施一公院士就是个成功的典范。冷冻电镜技术还显示出断层扫描和三维重建、光镜和电镜关联等强大功能和潜力。 /p p   记者了解到,2013年11月由段树民院士、张泽院士和洪健教授向学校提出了建设高端冷冻电镜平台的建议书。经过专家认真论证、慎重调研,充分听取校内专家、领导和国内兄弟单位的建议,学校形成共识,浙大应抢占先机,要建就建世界一流的平台,并于2015年1月正式启动建设项目。国内的寥寥数个冷冻电镜平台都是国家出资的,浙江大学则是由学校自筹资金6000万建立冷冻电镜中心,这在国内首开先例。足见浙江大学对冷冻电镜技术的重视。 /p p   据悉,浙江大学冷冻电镜中心是目前国际上设备配置最齐全、技术覆盖面最广泛的冷冻电镜中心之一,可解析从蛋白复合体到细胞组织的高分辨三维结构。冷冻电镜目前在单颗粒解析蛋白结构方面已经相对成熟,但在细胞生物学等在体的超微结构研究方面的应用还有待开发,是今后冷冻电镜发展的重要趋势,具有非常广阔的前景。齐全的配套装置和技术覆盖面广泛的设备,为浙大开发冷冻电镜在细胞生物学研究领域的应用提供了保障,也将成为浙大冷冻电镜发展的优势和特色。 /p p   段树民介绍,浙大冷冻电镜中心主任张兴教授,来自全世界冷冻电镜发展走在最前沿的实验室、加州大学洛杉矶分校的纳米系统学院电子成像中心。张兴教授在2010年首次使用单颗粒冷冻电镜解析出生物大分子复合体的原子结构,确定了冷冻电镜作为第三种可以重构生物大分子原子结构的技术。 /p p   作为冷冻电镜结构研究的国际领军人物,清华大学副校长施一公院士表示,“浙江大学6000万元的投入是非常值得的,冷冻电镜的发展像是一场猛烈的革命,浙大建立冷冻电镜中心是及时的,就目前冷冻电镜的发展速度来看甚至还有所欠缺,近年来冷冻电镜迅速发展,超出所有人预期,且冷冻电镜对整个生物学的影响不仅仅包括结构生物学,还包括细胞生物学、医学、遗传学、发育学等大部分领域。就目前发展前景来看,冷冻电镜技术是可与测序技术、质谱技术相提并论的第三大技术!” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c6a328e1-efb3-4d46-accf-af21868f60c5.jpg" title=" 1494385664736008.jpg" / /p p style=" text-align: center " 清华大学副校长施一公院士致辞 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/9ceed1d9-99b8-45fd-8753-dbd20f99d33d.jpg" title=" 1494385664722686.jpg" / /p p style=" text-align: center " 浙江大学医学部主任段树民院士致辞 /p p   浙江大学冷冻电镜中心成立仪式结束后,中心举办了2017冷冻电镜西湖论坛,由清华大学副校长施一公院士、中国科学院生物物理所所长徐涛教授、美国加州大学洛杉矶分校周正洪教授、耶鲁大学刘骏教授等来自国内外的知名专家学者作了专题学术报告。 /p p br/ /p
  • 冷冻电镜的分辨率革命
    p   精确认识细胞当中的大分子结构对于理解它们的功能至关重要。Amunts等人利用冷冻电镜获得线粒体核糖体大亚基3.2埃的分辨率结构,还有最近利用冷冻电镜获取的其他一些高分辨率结构,这些成就预示着分子生物学研究的新时代,获取近原子分辨率的大分子结构将不再是X射线晶体学和核磁共振的特权。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2014912171159.jpg" style=" width: 600px height: 350px " / /p p   图:利用冷冻电镜获得的近原子分辨率结构:(A)酵母线粒体核糖体大亚基,分辨率3.2 埃。(B) TRPV1离子通道,分辨率3.4 埃。(C)F sub 420 /sub -还原[NiFe]氢化酶,分辨率3.36埃。注:该图并不是按比例绘制的。 /p p   核糖体是古老的,大规模的蛋白RNA复合物,它将线性遗传密码翻译成三维蛋白质。线粒体——半自主细胞器,为细胞提供能量,拥有它们自己的核糖体,这一点和细菌非常类似。许多抗生素,如红霉素,通过阻止细菌的核糖体翻译机器来抑制细菌的生长。当设计新的抗生素,不能让他们同时阻断线粒体核糖体很重要。因此,认识这两种核糖体的详细结构是很有价值的。其他核糖体的结构已经通过X射线晶体学确定。Amunts等利用冷冻电镜确定了线粒体核糖体的高分辨率结构,这在不到一年前,很少有人会想到可能实现。 /p p   不用晶体而能够做到这一点无异于是一场革命。主要是因为采用了新的探测器——具有前所未有的速度和灵敏度的直接电子探测器。直接电子探测器能够直接检测电子,而不是需要先将它们转换成光子,然后再转化为光电子探测进行,目前广泛使用的CCD(电荷耦合器件)相机就是这样,但它们的分辨率不是很好。照相胶片从工作原理上来说,高分辨率成像效果应该更好,但它很难和越来越重要的快速读出电子速度及高数据吞吐量相兼容。 /p p   大约10年前,Henderson和Faruqi意识到,应该有可能设计出一种结合了CCD相机和胶片优点的直接探测电子的传感器。他们和两个竞争团队研发的探测器,采用了和大多数手机中的摄像头芯片基本相同的有源像素传感器技术。然而,手机的芯片不能用于电子显微镜,因为强烈的电子束会瞬间破坏它们。因此,首先探测器必须能够抗辐射。第二,探测器所需的像素要大很多,以防止富含能量的电子一次激发多个像素。第三,摄像头采用的芯片必须非常薄,完成每次读出电子160万像素,否则电子散射将会使图像模糊并降低分辨率。目前传感器的厚度大约是一张纸厚度的一半。 /p p   冷冻电镜只需要少量的样品,因此那些无法分离得到大量样品,利用X射线晶体学方法进行分析的物质,现在可以利用冷冻电镜得到高分辨率结构。这同样适用于不容易结晶的非均相样品或柔性复合物,因为不同颗粒或构象的物质的冷冻电镜图像在图像处理阶段很容易分离开。 /p p   新的检测器提供了另一种决定性的优势:当电子束撞击薄的、不支持冷冻的样品时,它们的快速读出能够补偿小的不可避免地移动。在新的相机问世前,由于电子束诱导移动引起的模糊是一个看似不可逾越的问题。现在,通过快速连续拍摄,可以得到一个区域的数十张图像,并且电子束诱导移动被检测到并反转在电脑上。这种去除模糊的影响戏剧性的和天文学哈勃望远镜相类似,尽管在这两种情况下引起模糊的原因是不同的。 /p p   新的相机也促使了低温电子断层扫描成像的重大突破,低温电子断层扫描能够得到全细胞、细胞片、或细胞区室的三维图像,如线粒体。利用断层成像识别分子特征,采用标准CCD相机甚至已达到亚纳米细节,新的探测器问世也必然给断层成像研究带来巨大的变化。 /p p   在新相机问世的同时,强大的极大似然图像处理程序也被开发出来。这些程序定义可靠客观的标准,来对几万或几十万个的单粒子图像进行平均处理,为的是要实现高分辨率。先进的检测器和软件相结合,获取的冷冻电镜结构,在相同的标称分辨率下,其清晰度和map definition比采用X射线晶体学解析的结构要好,因为在冷冻电镜图像中包含着高质量的相位信息。 /p p   冷冻电镜的分辨率革命是否意味着X射线蛋白质晶体学时代即将结束?当然不是。在可预见的将来,分子量小于100kD的小蛋白,分辨率达到2 Å 或更好将依然是X射线晶体学的领域。但是对于大的,易碎的,或者柔性结构蛋白(如膜蛋白复合物),它们很难形成晶体,但却在生物医学中起着关键的作用,新技术将对此带来重大突破。在未来,对分子量大、已知的蛋白复合物,如核糖体,进行结晶将可能不再是必要的。相反,它们的结构可以从容并迅速的通过冷冻电镜来确定。这真是激动人心的时刻。(编译:秦丽娟) /p p & nbsp & nbsp 原文检索: a href=" http://www.sciencemag.org/content/343/6178/1443.short" http://www.sciencemag.org/content/343/6178/1443.short /a /p
  • 视角:双非高校亿元购买冷冻电镜,“向颜宁看齐”有错吗?
    近日,山东农业大学宣布将斥资近1亿元购买最新款的冷冻电镜,此举引起了广泛关注。01事件回放2023年11月20日,山东省政府采购网公开了一则中标信息:山东农业大学以9970万元的金额采购冷冻电镜系统,建发(北京)有限公司中标。信息如下:此消息一出,立刻引起了网友的热烈讨论。02关于冷冻电镜冷冻电镜在学术界,几乎成了每位高端学者的“标配”,有了它,学术研究之路似乎更加平坦。冷冻电镜在生物学、化学、材料科学等领域具有广泛的应用。它可以帮助科学家直接观察到蛋白质复合物、细胞器、病毒等生物大分子的空间结构,进一步了解生命现象的本质。同时,冷冻电镜还可以应用于新型材料的发现和设计,为材料科学的发展提供理论基础。冷冻电镜被誉为当前分子生物学研究的“利器”。众所周知,施一公在德裔美籍科学家发明冷冻电镜后,请清华大学花费巨资购买了大量昂贵的冷冻电镜,并利用这些设备解析了很多蛋白质结构,每解析一个蛋白质结构就能发表一篇顶刊论文,最终发表了很多顶刊论文。同样,施一公的学生——刚刚当选院士的颜宁也是依托学校电镜中心的各类电镜设备,在细胞生物学和神经生物学领域取得了一系列原创性研究成果。可以说,冷冻电镜为她的科研生涯提供了有力支撑。冷冻电镜的引入,无疑是山东农大科研实力的大幅度提升,未来该校会在细胞生物学、遗传学等前沿领域有更多原创性成果问世。这不仅会提升校名声,也会进一步推动我国生命科学事业的发展。02网友态度由于这台电镜的购买刚好在颜宁当选院士前后,所以山东农大此次购买冷冻电镜,被外界解读为向颜宁“看齐”的举措。一些网友认为:购买冷冻电镜是山东农大力求提升科研实力的手段,是与国际先进水平接轨的举措,非常有必要。还有一些人则认为:一家双非高校不脚踏实地的发展,为什么要花重金购买高端仪器设备追求遥不可及的目标?更何况电镜的使用和维护还需要更多的人力和成本,学校是否都有所考量。在全国范围内,这股冷冻电镜的购买潮是否过热,确实值得学术界深思。小谱君是这样看的:首先,是否要购买仪器设备,还是要看科研需求。在合理的范围内提升科研支持能力不容质疑,但盲目跟风追诺实不可取。如果每所高校都跟风采购“科研神器”,不就和国家一直大力推动的大型科研仪器共享机制不就渐行渐远了?其次,用一家高校是否是双非来判断是否应该采购冷冻电镜甚至高端仪器设备,是完全不理性的。不是优等生就不能有好文具?一摸成绩不好就没有资格报考清北了吗?在理智的基础上,梦想还是要有的,科研领域容不得咸鱼。一家双非高校采购冷冻电镜,到底惹了谁?
  • 祝建:关于原位冷冻电镜技术的一点想法
    仪器信息网讯 2015年5月29日-6月2日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。   上海同济大学生命科学学院祝建教授作了题为&ldquo 关于原位冷冻电镜技术的一点想法&rdquo 的报告。 祝建教授   祝建介绍说:&ldquo 冷冻电镜技术可以分为单颗粒冷冻电镜技术和原位冷冻电镜技术。其中单颗粒冷冻电镜技术目前国际上做了许多工作,近来也比较火。近年来,我国为了开展这方面工作,购置了许多相关的高端仪器设备。该技术需要将细胞内的活性蛋白分子提纯后在体外分析,但是在体外做的不错的结构最终还需要到体内去验证,如在体内蛋白质是否也是按照相应的结构来执行功能。所以这方面的工作还需要进一步深入。&rdquo   祝建表示,原位冷冻电镜的最终目的是研究大分子的结构、功能和机制统一的问题,从而解释生命现象。原位冷冻电镜技术包括冷冻固定、超薄切片,再加上电镜分析、数据采集、三维重构等。冷冻固定可以分为快速冷冻和高压冷冻。高压冷冻技术就是为了使组织的冷冻成为可能而问世,可以冷冻200&mu m厚的样品。而快速冷冻技术只能冷冻30&mu m厚的单细胞层。从冷冻速度来看,快速冷冻的速度稍快一些。   祝建说:&ldquo 目前,国内购买了多台高压冷冻仪。其实并不是所有的样品都适合高压冷冻,大组织块、一定厚度的样品用高压冷冻最好,其他的单细胞样品用快速冷冻一样能达到很好的效果,而且快速冷冻技术更简便。&rdquo   &ldquo 冷冻固定之后,如果在冷冻电镜下分析需要与冷冻超薄切片技术相结合。如果在常温电镜下分析,则还需要冷冻置换、包埋、切片等步骤,现在买高压冷冻仪的单位基本都是要和冷冻置换结合起来。冷冻置换是冷冻固定之后非常必要的低温脱水技术,脱水过程中脱水剂中所含有的固定成分还将在合适的低温温度下对样品进行二次固定。如果要减少样品收缩,则需要快速冷冻固定,慢慢脱水。&rdquo 祝建说道。   另外,祝建还谈道:&ldquo 原位分析的另外一种途径是标记,通过标记实现定位、定性、定量分析。因为我们无法看到一些结构细节和大分子,所以用抗体来标记连接我们能看到的荧光分子或金颗粒来实现间接原位分析。&rdquo   最后,祝建总结说,在实际应用中,要根据样品的特点,从快速冷冻、高压冷冻、冷冻置换、超薄切片、冷冻超薄切片、离子束切片等制样技术中选择合适的组合方法来制样。还有我们要考虑将原位冷冻电镜与单颗粒冷冻电镜结合起来获取有效的分析结果。 撰稿:秦丽娟
  • 冷冻扫描电镜应用技术研讨会圆满结束
    2019年6月18日下午,北京公司携手日立高新在天美北京总部举办了“冷冻扫描电镜应用技术研讨会”。参加会议的有南京农业大学、东北农业大学、沈阳农业大学、大连工业大学、中科院植物所等40多名电镜专家和学者。   日立高新技术公司总经理田中先生对到场参加的专家学者表示感谢,天美公司副总裁赵薇女士介绍了天美公司发展情况并作会议致辞,quorum公司总经理robert henning先生也作了公司介绍。日立高新技术公司总经理田中先生(右) 天美公司副总裁赵薇女士 quorum公司总经理robert henning先生  天美公司市场部副总监高敞先生介绍了日立冷场扫描电镜的特点及应用。quorum公司技术总监robert morrison先生介绍了冷冻制样系统的技术优势,操作过程及应用特点。南京农大贺子义老师介绍了冷冻制样系统的使用经验,以及跟传统干燥方法的区别。日立高新产品经理张希文先生介绍了日立120kv透射电镜的特点及应用。robert morrison先生最后还在实验室现场演示了冷冻制样操作过程。很多用户对冷冻扫描电镜能实现的效果大加赞赏,现场热烈讨论。 天美公司市场部副总监高敞先生 quorum公司技术总监robert morrison先生 日立高新产品经理张希文先生  冷冻制样技术解决了含水样品的扫描电镜无形变高倍观察的需求,冷冻制样技术跟冷场扫描电镜配合使用,不仅可以发挥冷冻电镜低电压条件下分辨率高的优势,而且可以利用冷场电镜小束流观察样品从而避免电子束的损伤。冷冻扫描技术已经广泛应用在生命科学、化学化工、材料科学、食品科学、地质地矿等领域。本次技术交流会给日立电镜用户提供了冷冻制样手段的交流平台,很多老师希望能够今后能加强沟通合作。我们在此感谢各位专家的积极参与和热情支持,今后我们将再接再厉,继续为广大用户提供最好的服务!   robert morrison先生在实验室现场演示冷冻制样操作过程及叶片断面现场拍摄结果 原创文章 作者:高敞 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 蛋白质冷冻电镜投影图像有了三维重构新算法
    从冷冻电镜的多个二维投影图像进行三维重构,获得蛋白质的三维结构。 兰州大学供图蛋白质结构解析是分子生物学的核心课题,对于人们认识蛋白质的功能,理解疾病的发病机理,进行药物设计和疾病治疗等都具有非常重要的意义。近年来,冷冻电镜技术在测定生物大分子结构方面取得了突破性的进展,虽然目前DeepMind 公司开发的AlphaFold已经可以从蛋白质序列预测蛋白质的三维结构,但其准确性还有待提升,其结果也只能作为预测结果使用。近日,兰州大学信息科学与工程学院教授路永钢课题组与兰州大学生命科学院副教授朱莉以及美国欧道明大学计算机科学系教授何静合作,提出了一种基于球面嵌入的蛋白质三维重构算法,有助于从冷冻电镜图像中重构出更加准确的蛋白质三维结构。相关成果以《基于两次球面嵌入的冷冻电镜投影图像三维重构》为题在线发表于《通讯生物学》。单颗粒分析是冷冻电镜测定蛋白质结构的主流技术。在利用冷冻电镜获得大量同一种蛋白质分子的二维投影图像后,该技术利用三维重构算法可以计算出蛋白质的三维结构。其中,蛋白质三维重构的核心问题是估计每个投影图像的投影方向,其本质是一个非凸优化问题。现有的算法大多是基于模板匹配,或者是基于期望最大化的参数估计算法,容易受到初始参数选取的影响,容易陷入局部极小,可能会重构出错误的蛋白质结构。为了提升三维重构结果的可靠性,路永钢课题组在该研究工作中充分利用了全体投影图像在投影方向以及等价线方面的全体一致性约束,通过两次球面嵌入获得了在三维空间中满足全体投影图像一致性约束的投影方向估计,进而计算出了蛋白质的三维结构。这种方法的特点是不需要初始模板,尽量从数据内部挖掘约束条件,对初始化依赖较小,因而提高了重构结果的可靠性和准确性。另外,路永钢课题组还提出了新的投影方向表示方法,利用两个互相垂直的向量(投影图像的法向量和自身坐标的X轴)来表示投影方向,并且讨论了这种表示和通常使用的欧拉角表示的等价性。在该论文的实验工作中,课题组分别使用了模拟数据集和两组真实数据集对算法进行了评价。通过与目前常见的几种算法(Synchronization、LUD、EMAN 2.1和RELION-2)进行对比,验证了所提算法的有效性。模拟数据由大肠杆菌70S核糖体对应的蛋白质结构通过计算机模拟投影生成。真实数据使用了从EMPIAR数据库下载的恶性疟原虫80S核糖体数据集(EMPIAR-10028)的冷冻电镜图像,以及Hedgehog受体补丁与纳米抗体TI23复合物(EMPIAR-10328)的冷冻电镜图像。实验结果证明了该论文提出的球面嵌入算法可以更准确地估计投影方向,并且在噪声比较高的情况下(例如SNR=0.1或0.2等),该算法能大大降低投影角估计的误差。三维重构的结果也证明了利用该算法在不同噪声水平及不同数量的投影图像上进行重构时都具有一定的优越性,得到的重构结果具有更高的分辨率,也更加接近于真实结构。
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
  • “冷冻电镜理论与技术在结构生物学中应用”研讨会举行
    p   11月25日,由上海市科学技术协会主办的“冷冻电镜理论与技术在结构生物学中应用”研讨会在蛋白质中心顺利举行。本次会议由上海市生物物理学会和蛋白质中心共同协办,会议邀请了国内冷冻电镜知名专家学者、电镜工作者和学生近60余人参会。 /p p   同济大学祝建教授主持会议,他代表大会主办方热烈欢迎各位专家以及与会人员的到来,希望大会能够在理论与技术上给国内科研工作者提供帮助。 /p p   蛋白质中心丛尧研究员回顾了蛋白质中心电镜系统创立的过程。她谈到,作为国家蛋白质科学研究(上海)设施的核心技术力量,电镜系统旨在满足国内外科研用户在蛋白大分子复合物方面的结构解析需求。随后,她还介绍了课题组最新研究成果,在最新的蛋白结构解析工作中分辨率成功突破了3埃,达到世界先进水平。随后,围绕“冷冻电镜单颗粒重构技术以及电子断层三维重构技术在结构生物学中的应用”这一主题,中山大学张勤奋教授、第二军医大学杨勇骥教授、浙江大学洪健教授、浙江大学博士研究生王春艳和蛋白质中心博士研究生曹龙兴依次登台作了精彩的学术报告。” /p p   后基因组时代,蛋白组学研究是生命科学研究焦点,蛋白质的空间结构往往决定其功能,因此揭示蛋白质的空间结构是一项非常有意义的工作。近些年,冷冻电镜技术的快速发展,为蛋白结构解析提供了一个强有力的手段,大大推动了结构生物学的发展。本次会议的成功举办有效促进了冷冻电镜技术在中国的推广,将进一步发挥蛋白质中心冷冻电镜设施的示范窗口作用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/4ea9bc7b-37d8-4b5a-8d53-b21d6419f9d0.jpg" title=" 图.jpg" / /p
  • 冷冻真空干燥技术的主要应用
    (1)生物制品的冷冻真空干燥我们做过生物制品冷冻真空干燥的品种有皮肤、角膜、海参、螺旋藻等;从文献中看到其他人做过的冻干产品有心瓣膜、活菌、活毒、骨骼、各种疫苗、血液制品等。生物制品的冻干要求保持产品的活性,活菌、活毒等微生物真空干燥后的存活率要求80%以上,以便于应用。因此,对冻干机工艺要求严格,预冻温度、速度、时间的控制很不容易,保护剂配方、剂量、加入时间和加入方法非常关键,不同的人可能采用不同的配方,达到的效果可能相同。一般各种保护剂的配方都是互相保密的。(2)药材和药品的冷冻真空干燥我们做过的品种有人参、山药、纳豆激酶、北冬虫夏草、林硅油、鹿茸等;从文献中看到其他人做过的品种有各种粉针制剂、中草药制剂、抗生素、布洛芬、脂质体和其他纳米颗粒等。药材和药品需要长期保存,真机需要速溶,放置氧化,避免污染杂菌,保持药效的长久稳定。这些要求都需要通过冷冻真空干燥技术来实现。药材和药品的冷冻真空干燥工艺要求也很严格,寻找合适的冻干保护剂、添加剂、赋形剂都很困难,生化干燥阶段的温度控制、加热速率控制都很关键,严格防止塌陷。(3)食品的冷冻真空干燥我们做的食品有菠菜、苹果、香蕉、库尔勒香梨等;从文献上查到其他人做过的品种有咖啡、茶叶、大蒜、鱼肉、调料等。食品种类繁多,形状、性质相差较大,冻干工艺需要在实验中确定。冻干食品时间较长、耗能较多、价格较高,应该合理选择冻干参数,优化冻干过程,降低冻干昂成本,根据市场需要,选择性价比较高的食品做冷冻真空干燥。(4)冷冻真空干燥在其它领域的应用冷冻真空干燥除了在生物制品、药品、食品和纳米材料制备方面的应用之外,还可以干燥超市的木质文物、古画等,冻干发出来的这些产品能恢复物品的原样;还可以干燥动植物标本,使标本长期保存,栩栩如生;医疗事业做实验用的、具有毒害物质的动物尸体采用冻干干燥法的处理,可以实现环保等。
  • Nature Methods:冷冻电镜解析高分辨率RNA结构
    作为强大的结构解析工具,冷冻电镜在解析蛋白质结构中具有超强能力。RNA作为另外一种生物大分子,在生命活动中发挥着与蛋白质同等关键的作用,解析它们的三维结构也是科学家们持久探索的问题。但RNA由于分子量小,柔性大等因素,无论是依靠冷冻电镜还是其他结构解析手段,这一目的在往日很难实现。近日,哈佛大学廖茂富博士和尹鹏博士合作,利用ROCK技术改造RNA,赋能冷冻电镜技术,解析了多种RNA的高分辨结构,进一步扩展了冷冻电镜技术的应用场景,也为揭示RNA参与的生命活动,以及围绕RNA的药物开发,打开了全新局面。作为遗传分子DNA的姊妹,RNA支持着我们生活的世界。进化生物学家曾提出假设,认为在DNA和它所编码的蛋白质出现之前,RNA就已经存在并具有自我复制功能。而现代科学发现,只有不到3%的人类基因组被转录成信使RNA(mRNA)分子,并在后续被翻译成蛋白质。相比之下,82%的基因组被转录成具有其他未知功能的RNA分子。为了了解单个RNA分子的功能,在原子和分子键的层面上对其三维结构进行解析是极其必要的。通过对DNA和蛋白质分子进行结晶处理,研究人员已经可以通过X射线晶体学方法或核磁共振方法进行常规的结构研究。然而,由于RNA的分子构成和结构柔性特点,它们往往难以结晶,因此这些需要结晶的方法并不适用于解析RNA分子的结构。 近日,哈佛大学韦斯生物启发工程研究所(Wyss)的尹鹏博士和哈佛大学医学院(HMS)的廖茂富博士合作完成了一项研究,报告了一种对RNA分子进行结构研究的新技术"ROCK"。该技术可以将多个相同的RNA分子组装成一个高度组织化的结构,大大降低单个RNA分子的灵活性,并使其分子量成倍增加。应用于具有不同大小和功能的知名模型RNA作为基准,该团队表明ROCK技术能够将冷冻电镜 (cryo-EM) 方法应用在包含RNA亚基的生物大分子的结构解析上。他们的研究结果发表在《自然-方法》上。 与廖茂富博士一起领导这项研究的尹鹏博士说:「ROCK技术正在打破目前针对RNA进行结构研究的限制,使RNA分子的近原子级分辨率结构得以揭示,这一过程往往难以甚至无法用传统的方法实现。我们期望这一进展能为基础研究和药物开发的许多领域注入活力,包括正在蓬勃发展的RNA疗法。」获得对RNA的控制权 尹鹏博士的研究团队开发了多种方法,包括DNA砖块和DNA折纸术,这些方法使DNA和RNA分子能够根据不同的规则和需求进行自我组装,从而形成超大分子。他们假设,这种策略也能够将自然存在的RNA分子组装成高度有序的环形复合物,通过将特定分子连接在一起的方式,对柔性进行限制。许多RNA以复杂但可预测的方式折叠,在小片段之间进行碱基配对交互。其结果往往会将稳定的 "核心 "和 "茎环 "向圆环外侧凸出。 在ROCK技术(通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)中,目的RNA被设计成通过吻式发夹序列(红色)自组装成一个封闭的同源环,这些序列定位在在功能非必要的外周螺旋上(蓝色)。在确定了可编辑的非必要外周螺旋后,连接吻式发夹模体和目的RNA核心的螺旋的长度被计算优化。带有目的RNA的多个单独亚基的RNA构建体被转录、组装,通过凝胶电泳纯化,并通过冷冻电镜进行结构解析。 「在我们的方法中,我们构建了吻式发夹,可以将同一RNA两个拷贝的不同外围茎环连接起来,使之形成一个整体稳定的环,其中包含了目的RNA的多个拷贝。我们推测,这些高阶环可以通过冷冻电镜进行高分辨率结构解析,该技术已首次成功应用于RNA分子的结构解析。」 —刘迪,第一作者 描绘稳定的RNA 在冷冻电镜方法中,许多生物大分子的单一颗粒在低温下被瞬间冻结,以阻止它们的运动。随后,在电子显微镜和计算算法的帮助下,对颗粒各个方向的二维表面投影进行比较,以重建其三维结构,实现生物大分子的可视化。彭和刘与廖和他的前研究生弗朗索瓦塞洛(François Thélot)博士合作进行了该工作,后者是该研究的另一位第一作者。廖和他的团队在冷冻电镜领域、以及对特定蛋白质形成的单颗粒的实验和计算分析中做出了重要贡献。 廖茂富说:「与传统方法相比,冷冻电镜在解析包括蛋白质、DNA和RNA在内的生物分子的高分辨率结构细节方面有很大的优势,但是大多数RNA的小分子量和高柔性使其结构难以解析。我们组装RNA多聚体的新方法同时解决了这两个问题,通过增加RNA的分子量,并降低其柔性,我们的方法为基于冷冻电镜方法解析RNA结构这一领域打开了大门。」由于整合了RNA纳米技术和冷冻电镜方法,该团队将这一复合技术命名为"ROCK" (RNA oligomerization-enabled cryo-EM via installing kissing loops, 通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)。 为了证实ROCK技术的可行性,该团队将研究聚焦于四膜虫(一种单细胞生物)的大内含子RNA和固氮弧菌(一种固氮细菌)的小内含子RNA,以及FMN核糖开关。内含子RNA是散布在新转录RNA序列中的非编码RNA序列,必须被 "剪接"出来才能形成成熟RNA。FMN核糖开关存在于一些细菌RNA中,这些细菌会参与由维生素B2衍生的黄素代谢物的生物合成。在与RNA结合后,黄素单核苷酸(FMN)将切换其三维构象,并抑制其母RNA的合成。 在对四膜虫 I 组内含子的结构解析过程中,研究人员收集了约十万张ROCK技术处理的单颗粒冷冻电镜图像,通过一系列计算分析步骤重建了其结构,整体分辨率达到了2.98Å,结构核心的分辨率达到了2.85Å。最终的模型提供了四膜虫 I 组内含子的详细视图,包括之前未知的外围结构域(以土黄色和紫色显示),它们构成了围绕核心的条带。 研究小组称,他们将四膜虫 I 组内含子组装成一个环状结构,使样品更加均匀,并能够利用组装结构的对称性来进行计算。虽然数据采集两的规模并不大,但ROCK技术的优势使研究小组能够以前所未有的分辨率解析该结构。RNA的核心结构以2.85Å的分辨率解析,揭示了核苷酸碱基和糖骨架结构的详细特征。研究小组还称如果没有ROCK技术加持,在当前的资源条件下,他们不可能做到这一点。 冷冻电镜还能够捕捉不同构象的分子。研究小组通过将ROCK方法应用于固氮弧菌内含子RNA和FMN核糖开关结构解析中,确定了固氮弧菌内含子在其自我剪切过程中的不同构象,揭示了FMN核糖开关配体结合部位的相对刚性的构象。 这项研究生动演示了RNA纳米技术如何推动着其他学科的发展。将天然状态的RNA分子结构进行可视化,对理解不同细胞类型、组织和生物体的生物及病理过程产生巨大的影响,甚至能够实现新的药物开发方法。 相关文献摘要高分辨率的结构研究对于理解各种RNA的折叠和功能至关重要。在此,我们提出了一种纳米结构工程策略,利用单颗粒冷冻电镜(cryo-EM)对纯RNA结构进行高效的结构测定。即ROCK技术(通过安装吻式发夹实现RNA寡聚化的冷冻电镜技术): 将吻式发夹序列安装到RNA的非必要功能茎上,使其自组装成具有多倍分子量和降低结构柔性的同源封闭环。ROCK技术能够以2.98 Å的整体分辨率(核心部分为2.85 Å)对四膜虫 I 组内含子进行冷冻电镜三维重构,以建立完整的RNA模型,包括以前未知的外围域。ROCK技术被进一步地应用于两个较小的RNA: 固氮弧菌 I 组内含子和FMN核糖开关,揭示了前者的构象变化和后者的结合配体。ROCK技术有望大大促进冷冻电镜在RNA结构研究中的应用。评论来源:Science Dailyhttps://www.news-medical.net/news/20220503/New-method-enables-the-structural-analysis-of-RNA-molecules.aspx文献来源:Nature Methodshttps://www.nature.com/articles/s41592-022-01455-w#citeas水木未来视界丨iss. 18
  • 第二个冷冻电镜导电毛结构,居然还是细胞色素?
    撰文丨王冯斌博士"Truth never triumphs - its opponents just die out." - Max Planck.普朗克大佬的意思大概是 "Old theories never die only their proponents do"。某些科研领域确实存在一些很尴尬的现象,一个方向停滞不前,是因为多年前领域里的大佬一把油门把别人带到坑里去了,然后大佬又因为不为人知的原因,死活不承认。今天要讲的,就是一个这样的故事(编者注:2022年7月7日,弗吉尼亚大学王冯斌博士以第一作者身份在Nature Microbiology上发表了文章Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing)。德里克老铁是一个有名的微生物学家。35年前在华盛顿DC的河流沉积物里发现了一种厌氧菌,这个菌就厉害了,能产生一种好几微米长的“导电毛”,在很长的距离传导电子,进行能量代谢。德里克研究这种导电毛一搞就是30来年。后来他们发现,一但敲掉一个叫pilA-N的“第四型菌毛”的基因,导电毛就没了。pilA-N呢,结构上只是一个很疏水的长helix,是第四型菌毛中间的疏水核心。尽管pilA-N在很多结构生物学家眼中可不可溶都是个问题,德里克老铁却认定了导电毛一定是pilA-N,坚信自己可以守得云开见月明。随着冷冻电镜技术革命,现在大家也不用天天只靠遗传实验做这些判断了。想知道导电毛是啥?放在冷冻电镜下看看喽。2019年,我们直接用冷冻电镜观察了导电毛,至于它的组成与第四型菌毛蛋白之间的关系,只能说是毫不相关。导电毛其实是multi-heme cytochrome形成了一种之前从没被发现过的菌毛,而multi-heme的细胞色素,大家早就知道它们可以传导电子了(详见BioArt报道:Cell | 王冯斌博士等解析地细菌导电纳米线的冷冻电镜结构)。德里克老铁没有欣然接受这一现实,而是继续选择逐梦第四型菌毛。他声嘶力竭的质问,为啥突变了pilA-N,导电毛就没了?啊?尼秋老铁是德里克之前的博士后,现在已经是名校教授,非常的“父慈子孝”。在2021年发表了一个相对令人信服的模型,说第四型菌毛在该菌里包括两个蛋白pilA-N和pilA-C,第四型菌毛平常是不分泌到细胞外的,基本上相当于一个泵,有事没事动一动,把细胞色素形成的导电毛给怼出去。(ref: https://doi.org/10.1038/s41586-021-03857-w)德里克老铁彻底的愤怒了,说“冷冻电镜看不到我说的3nm的pilA-N“导电毛”不代表它就不存在!我用AFM就能看见!你们冷冻电镜都是artifact!”你看,这不是巧了嘛。我们最近又做了一些别的冷冻电镜的观察。我们把初代“导电毛”的关键氨基酸给突变了,本来想研究研究突变的初代导电毛。您猜怎么着,如果用一个一般的promoter表达突变,我们压根看不到突变的初代导电毛,反而看到了一种新的导电毛,OmcE。猜猜他是啥,还是细胞色素。谁能想到细胞这么“聪明”,连初代导电毛的替代品都悄默默的存好了。如果用一个过表达的promoter,不仅可以看到OmcE,还能看到初代菌毛的一些bundles,还有少量把他们泵出来的第四型菌毛(pilA-N和pilA-C,他们分开的话pilA-N很可能不可溶)。可能是表达的太猛烈了,泵工作的太猛,把自己都怼出来了。图 OmcS导电毛的替代品, OmcE那么,就真的没有3nm的毛了嘛?德里克老铁眼神儿就那么不好吗?其实还真有一个2.5nm左右的毛,偶尔会出现。加了Dnase I就会消失,是的,它就是——B-form DNA。图:所有毛的画像别着急,还会有新的细胞色素导电毛被发现的。我期待德里克老铁改变自己看法的那一天。
  • 清华团队开发基于电喷雾电离技术的冷冻电镜样品制备方法
    生物大分子的三维结构可以直观地揭示其生物学功能、细胞内进程以及探索其在疾病中发挥作用的方式。冷冻电镜(cryo-electron microscopy,cryo-EM)单颗粒分析技术通过对生物大分子的直接成像进行高分辨率结构测定,已成为结构生物学的重要研究手段。冷冻电镜单颗粒分析技术需要对生物大分子溶液的冷冻样品采集大量电子显微数据,以进行三维结构解析,因此高质量的冷冻样品制备在其中起着至关重要的作用。良好的制样方法需要能够简便地、可控地制备出接近理想状态的生物大分子冷冻样品。诺贝尔化学奖获得者雅克杜博切特(Jacques Dubochet)等人于1984年发明了冷冻样品制备的滤纸夹置法(Pipet-blot-plunge),至今仍然是冷冻电镜样品制备的主要手段。在这种传统的制样方法中,研究人员难以精确控制样品冰层厚度和大分子颗粒分布,导致冷冻样品的均一性和可重复性较差。越来越多的证据表明,在样品被冷冻之前的瞬间,生物大分子会吸附在超薄的液体层的气液界面(Air-water interface, AWI)上,导致生物大分子的颗粒结构损伤、变性或产生优势取向,减低了高分辨率冷冻电镜结构分析的效率和成功性。如何获取可重复的高质量的生物大分子冷冻样品仍然是冷冻电镜技术应用中的一个难题。图1. ESI-cryoPrep方法设计和仪器装置示意图4月25日,清华大学生命科学学院王宏伟课题组和精密仪器系欧阳证、周晓煜课题组在《自然方法学》(Nature Methods)在线发表了题为“电喷雾辅助的冷冻电镜样品制备方法用以减轻界面吸附效应”(Electrospray-assisted cryo-EM sample preparation to mitigate interfacial effects)的研究论文。研究采用非变性质谱(Native mass spectrometry, native MS)中广泛使用的电喷雾电离(Electrospray ionization, ESI)技术,设计并搭建了一种新型冷冻样品制备装置ESI-cryoPrep(图1),成功实现了无需滤纸夹吸的冷冻样品制备,并获得了多种生物大分子近原子分辨率的三维结构。研究表明,ESI-cryoPrep可以有效地将生物大分子颗粒完整嵌入无定形态薄层冰中,避免其吸附在空气-水、固体-水界面上,并对该装置制备生物大分子冷冻样品过程中的界面模型进行了机理阐释。ESI-cryoPrep以“软”电离技术ESI为基础,通过向蛋白溶液施加高电压形成大量带电的蛋白液滴,可以有效地减少蛋白的变性与碎裂。在电场的驱动下,带电液滴飞向电镜载网的过程中伴随着去溶剂化的进行;液滴表面的电荷密度激增至瑞利极限导致库仑裂变形成带电的次级液滴;这一过程循环往复直至液滴最终沉积在电镜载网上;收集到带电液滴的电镜载网被插入液氮冷却的液态乙烷中即可实现对液滴的快速冷冻。该过程完全省却了滤纸的夹吸,避免了滤纸材料对液体和生物大分子的影响。因为液滴表面的小分子离子形成了双电层效应,生物大分子与液体的界面被隔绝开,从而避免了生物大分子吸附到气液或固液界面上,更好地保持了生物大分子的天然结构。该研究首次对ESI液滴中的生物大分子的天然结构(Native structures)进行了直接测定,指导获得ESI的“软着陆”电离参数进行冷冻制样与非变性质谱分析。该工作是冷冻电镜与质谱技术的交叉融合,共同致力于解答生物大分子结构解析与分析的科学问题。研究团队在搭建的设备上,经过多次摸索确定了制备高质量冷冻样品的相关参数。这些参数既能满足保存高比例完整结构生物大分子颗粒的需求,又能促进带电液滴在附着电镜载网表面的扩展和浸润。研究团队运用优化的ESI-cryoPrep装置制备了五种生物大分子的高质量冷冻样品,获得了与目标生物大分子尺寸相对应的理想冰层厚度,并实现了全部测试样品70Sribosome、20Sproteasome、apo-ferritin、ACE2和streptavidin的高分辨率三维结构解析,分辨率分别为2.7[gf]c5[/gf]、2.0[gf]c5[/gf]、2.1[gf]c5[/gf]、3.3[gf]c5[/gf]和1.9[gf]c5[/gf]。研究团队对冷冻电镜数据进行了深入的挖掘与分析,发现与预期假设一致的结果。ESI-cryoPrep可以有效地将生物大分子颗粒完整嵌入无定形态冰的薄层中间,抑制目标生物大分子在空气-水或石墨烯-水界面的吸附(图2),从而避免蛋白质颗粒的结构损伤或者优势取向问题。研究工作提出了电荷残留模型,阐明了电喷雾电离产生的液滴表面的电荷不均匀分布保护蛋白质颗粒免于界面吸附的作用和机制。这种学科交叉的研究成果不仅将为冷冻电镜样品制备提供应用价值,还将对冷冻电镜技术和非变性质谱领域的交叉和发展产生积极影响,为更多创新应用开辟新的可能性。自主研发的高质量冷冻电镜样品制备装置,一方面可以缩短结构解析的漫长探索过程,更高效地获得高分辨三维结构,分析其作用机理;另一方面也提升了原创研发具有自主知识产权和高精尖技术的能力,减少对国外相关仪器和设备的依赖。图2.ESI-cryoPrep方法制备的冷冻样品中蛋白质颗粒在断层成像中的代表性空间分布清华大学生命科学学院2017级博士生杨梓和精密仪器系2018级博士生范菁津(已毕业)为该论文共同第一作者,清华大学生命科学学院教授王宏伟,精密仪器系教授欧阳证和副教授周晓煜为论文共同通讯作者。清华大学生命科学学院王家副研究员和范潇博士等为课题的启动和推进作出重要贡献。研究得到国家自然科学基金、腾讯基金会等的资助,并得到清华大学冷冻电镜中心和计算中心的技术支持。
  • 玻璃纤维机织物拉伸断裂强力和断裂伸长的测定
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合1kN气动拉伸夹具,根据《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》,进行了玻璃纤维机织物拉伸试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应玻璃纤维机织物拉伸断裂强力和断裂伸长的试验。 关键词:鲲鹏BOYI 2025电子万能材料试验机 玻璃纤维 拉伸试验玻璃纤维布(Glass Fiber) 是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,绝缘层压板以及印刷电路等各个领域。玻璃纤维布的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,就决定了玻璃纤维布的物理性质。本应用介绍了使用电子万能材料试验机进行玻璃纤维机织物拉伸断裂强力和断裂伸长试验。鲲鹏电子万能材料试验机配备的气动拉伸夹具,有以下几个特点:首先,夹面采用专用高分子夹面,平整度好,可以避免夹伤试样,避免拉伸过程中出现夹持部位断裂的情况;其次,气动控制可以提供适当且恒定的夹持力,避免拉伸过程中出现滑移的情况;另外,夹具设有对中标识,可以辅助夹持试样,保证夹持后试样的垂直度,避免拉伸过程中出现左右两边受力不均匀的情况。 除夹具外,试验机主机的高精度以及超过1000HZ的采集频率,可以完整的拉伸过程中的所有特征数据,准确识别试样拉伸断裂点,确保给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。本篇报告参照《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》进行试验,标准要求如下: 1.样品要求:Ⅱ型试样、试样宽度25mm、有效长度100mm 2.夹持距离:100mm±1mm 3.拉伸速度:50mm/min±3mm/min 1. 实验部分 1.1仪器与夹具 BOYI 2025-001 电子万能试验机 1kN气动拉伸夹具 90°剥离夹具 Smartest软件 1.2分析条件 试验温度:室温23℃左右 载荷传感器:1kN(0.5级) 加载试验速率:50mm/min 图1 BOYI 2025-001 电子万能试验机 1.3样品及处理本次试验,选取6组国内主流的不同种类的玻璃纤维布,统一切割成GB Ⅱ型试样,宽度约为25mm的长条试样,每组样品分经向和纬向。 2.试验介绍使用BOYI 2025-001电子万能试验机进行试验,设定夹具间距为100mm,将样品分别夹持在上下夹具中,以50mm/min的速率进行试验。测量拉伸过程中的力值以及位移数据,拉伸试样至断裂,记录最终断裂强力及断裂伸长(GB要求精确至1mm),取拉伸过程中第一组纱断裂时的最大强力作为拉伸断裂强力,根据数据计算得出结果,并生成拉伸曲线。图2 测试系统图(主机、夹具) 3.结果与结论 3.1第一组玻璃纤维布试验结果 3.2第二组玻璃纤维布试验结果 3.3第三组玻璃纤维布试验结果 3.4第四组玻璃纤维布试验结果 3.5第五组玻璃纤维布试验结果 3.6第六组玻璃纤维布试验结果 从上上述数据以及断裂后试样状态可以看出,整个测试过程中,拉伸试样夹持良好,断裂部位均在试样中部,满足GB要求(断裂点距离夹口10mm以上),两个方向各5个试样结果平均值非常接近,曲线重合度再现性良好,无较低异常测试值,满足GB要求。从本次试验结果可以体现出鲲鹏BOYI 2025-001 电子万能试验机的高精度及高稳定性。4.结论 综上所述,鲲鹏BOYI 2025-001 电子万能试验机、1kN气动拉伸夹具,可以完全满足GB/T 7689.5-2013 增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得玻璃纤维布各项力学数据,且稳定可靠,这对于玻璃纤维布以及绝缘电路板材、印刷电路板的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制