质子提取

仪器信息网质子提取专题为您整合质子提取相关的最新文章,在质子提取专题,您不仅可以免费浏览质子提取的资讯, 同时您还可以浏览质子提取的相关资料、解决方案,参与社区质子提取话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

质子提取相关的资讯

  • 合肥研究院提出质子提取反应质谱新技术
    可实现对痕量有机和无机化合物的同时监测   近期,中国科学院合肥物质科学研究院医学物理中心光谱质谱研究室在线质谱检测新原理、新方法研究取得进展,发展的质子提取反应质谱(Proton Extraction Reaction Mass Spectrometry, PER-MS)新技术,实现了对痕量有机和无机化合物的同时监测。此项研究工作发表在《质谱国际杂志》(International Journal of Mass Spectrometry)上。   长期以来,以质子转移反应质谱(PTR-MS)为代表的先进在线质谱技术,在环境、生物、医疗健康、公共安全等领域发挥着重要作用,为痕量挥发性有机物(VOC)的快速定量检测提供了高灵敏技术手段。PTR-MS的工作原理是通过反应离子H3O+与被测物质VOC之间的质子转移反应,将VOC转化为(VOC)H+,从而实现VOC的离子化和后续的质谱探测。早在2008年,光谱质谱研究室科研人员研制了我国首台PTR-MS仪器,并在国际上率先将该技术用于炸药、医疗器械溶剂/杀菌剂残留以及易制毒品的快速检测,研究室储焰南研究员受邀编写了Mass Spectrometry Handbook(John Wiley & Sons, 2012)中的PTR-MS章节。但是,由于H3O+与无机化合物几乎不发生反应,因此,以H3O+为反应离子的PTR-MS技术检测不了无机化合物。   为了解决这个问题,光谱质谱研究室科研人员另辟新径,成功制备了负离子OH-,利用反应离子OH-与VOC之间的质子反方向转移反应,即质子提取反应(PER),将被测物质VOC转化为(VOC-H)-,从而实现VOC的离子化和后续的质谱探测 重要的是,OH-可以与无机化合物例如CO2发生反应,将无机物转化为离子例如CO2OH-。因此,新发展的以OH-作为反应离子的质子提取反应质谱PER-MS,不但能检测有机物,而且也可以检测无机物。   该项研究提出的PER-MS技术,不但丰富了在线质谱内容,而且也为痕量有机/无机物的同时检测,提供了一种新手段。相关技术已经申报了国家发明专利。 质子提取反应质谱(PER-MS)原理示意图
  • 国家市场监督总局“质子质谱”等4项国家重大仪器专项通过验收
    p    strong 仪器信息网讯 /strong 国家市场监督管理总局消息,近日,由国家市场监督总局组织实施的“铯原子喷泉基准钟的开发和应用”“跨尺度微纳米测量仪的开发和应用”“微膜泵驱动核酸微全分析仪”“质子转移反应质谱仪器研制及应用示范”4项国家重大科学仪器设备开发专项项目通过验收。 /p p    strong “铯原子喷泉基准钟的开发和应用”项目 /strong /p p   据悉,该项目重要成果上一代技术“新一代国家秒长基准——NIM5喷泉钟”等曾于2017年荣获国家科技进步一等奖。 /p p   “铯原子喷泉基准钟的开发和应用”项目由中国计量科学研究院李天初院士牵头承担。项目攻克了冷原子制备、冷却和探测、超稳微波产生、光纤高保真传递时间频率等关键技术,成功研制出铯原子喷泉基准钟(NIM6)、光纤频率传输仪、铷喷泉标准钟、铷喷泉钟工程化样机等仪器。其中,NIM6频率不确定度优于5.8E-16,相当于5400万年不差1秒 光纤频率传输仪,能在1-100km的光纤链路上以极高稳定度、高可靠地传输频率信号 铷喷泉标准钟经基准钟校准后频率准确度能够达到1.9E-15。项目成果为北京卫星导航中心时间频率系统标准时标的产生、保持、改进和比对提供计量支撑,为建设我国独立自主、准确可靠的时间频率体系具有重要意义。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/96153e51-555d-4992-90df-b86bf55d3b93.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 铯原子喷泉基准钟 /span /p p style=" text-indent: 2em " strong “跨尺度微纳米测量仪的开发和应用”项目 /strong /p p   “跨尺度微纳米测量仪的开发和应用”项目于2014年10月正式获得国家科技部批准立项。总经费7681万元,其中中央财政专项经费投入3731万元,最终,该项目将形成年产50台生产能力,累计销售收入5000万元。 /p p   “跨尺度微纳米测量仪的开发和应用”项目由上海市计量测试技术研究院牵头承担,项目攻克了宏微联动多轴驱动和多测头集成、原子沉积光栅纳米量值溯源、双角度倾斜式场扫描等关键技术,研制出6种不同型号的跨尺度微纳米测量仪,测量范围达到150mm× 150mm× 80mm,纳米计量光栅标准节距212.8± 0.1nm,光栅高度大于60nm,光干涉测量垂直扫描范围150μm,扫描速度30μm/s,扫描探针显微测量可以实现纳米级分辨力。项目成果为微纳米标准、精密光学仪器、半导体、环境监测等领域提供检测支持,并陆续在航空航天、微电子、环境监测等领域进行推广应用,为提升我国微纳米领域的测量能力奠定了基础。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/b193dc90-5fc5-43d5-bebd-36edaacf15f1.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "   span style=" color: rgb(0, 176, 240) "  高精度型跨尺度微纳米测量仪 /span /p p    strong “微膜泵驱动核酸微全分析仪”项目 /strong /p p   “微膜泵驱动核酸微全分析仪”项目由中国检验检疫科学研究院、北京博晖创新生物技术股份有限公司等共同承担,项目攻克核酸微全分析仪器核心技术、微流体驱动控制平台与高通量检测及荧光检测单元集成的核心关键技术,研发出了多功能核酸微全分析仪、便携式核酸微全分析仪。针对环境监测、生物计量、检验检疫、疾病诊断与研究等领域不同应用需求,解决多靶标同步高通量、高灵敏、现场快速、准确定量检测等多项分析技术瓶颈性难题,检测灵敏度可比常规PCR敏感高出一个数量级,检测时间为常规PCR方法的1/5。通过该项目实施,建成了国内第一条微流控芯片自动化生产线,多功能核酸微全分析仪及配套HPV芯片试剂的CFDA注册取证并上市销售,销售量550台,在450多家医院开展HPV检测,试剂销售已经超过180万人份。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/63a554be-62b4-41ec-ba3b-92c891f7409f.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 多功能核酸微全分析仪 /span /p p    strong “质子转移反应质谱仪器研制及应用示范”项目 /strong /p p   “质子转移反应质谱仪器研制及应用示范”项目由北京市计量检测科学研究院、北京凯尔科技发展有限公司等共同承担,项目针对大气雾霾污染源快速追踪、载人航天密闭舱内有毒有害气体监测、公共场所化学毒剂恐怖袭击等领域对在线、实时、超痕量挥发性有机物检测设备的迫切需求,重点攻克了高精度质子转移离子源、飞行时间质谱双场加速和无网反射、四极杆质谱宽动态范围信号采集提取和快速在线数字滤波、高精度质谱评测标准气体研制等关键技术,成功研制了质子转移反应飞行时间质谱仪(PTR-TOFMS)和四极杆质子转移反应质谱仪(PTR-QMS),实现了对多组分挥发性有机物的实时、快速、高灵敏度检测,质量分辨率、检出限等关键技术指标达到国际同类仪器水平。项目研究成果已在大气雾霾监测、密闭舱内环境监测、进出口橙汁产地溯源追踪、肺癌病人快速筛查等领域进行了应用示范,具有广泛的应用前景。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/1969f65c-8ef8-4f7f-a41b-ccf65ba0d6bf.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 质子转移反应飞行时间质谱仪 /span /p
  • 上海应物所丰质子核镁22双质子发射研究获进展
    p style=" text-align: justify " & nbsp & nbsp 近日,中国科学院上海应用物理所核物理研究室与中科院近代物理研究所、中国原子能科学院等合作,在兰州重离子加速器装置放射性束流线(RIBLL)上开展的丰质子核β缓发衰变实验测量中,观测到22Mg(镁22)在14.044 MeV的同位旋相似态(IAS态)存在明确的2He(氦2)集团双质子发射现象。相关研究成果发表在《物理快报B》上。 /p p style=" text-align: justify " & nbsp & nbsp 放射性是不稳定原子核的重要特性之一。常见的衰变方式有α、β、γ衰变等,而双质子放射性是在质子滴线附近的偶Z核中可能存在的一种奇特衰变方式,即原子核通过同时发射两个质子的方式进行衰变。双质子发射涉及两个质子的关联与相互作用,发射方式比单个质子的发射过程要复杂得多,因此研究十分困难,而发射机制是该衰变方式中最重要的物理问题之一。双质子发射的机制可以分为三种:第一种为级联发射;第二种为直接三体发射;第三种为2He集团发射。前两种方式基本上是无关联的质子发射过程,后一种方式才是人们感兴趣的双质子发射。由于发射出的两个质子间的动量和角度关联包含了核子波函数的具体形态及核子间的相互作用等信息,因而对核结构的研究具有非常重要的科学意义。目前发现的双质子发射核只有少数几个,这给双质子衰变的系统研究带来了很大的困难。世界上各个国家的核物理实验室都在努力发现更多的双质子发射核,并对包括双质子衰变在内的原子核的奇异放射性进行深入系统的实验及理论研究。 /p p style=" text-align: justify " & nbsp & nbsp 上海应物所研究员方德清、博士研究生王玉廷等在兰州重离子加速器装置的放射性次级束流线(RIBLL)上开展了22Al的β缓发衰变实验测量。22Al被注入厚度约为60微米的硅微条探测器时,完全被阻止在硅微条探测器中的22Al先发生β衰变,布局到22Mg的激发态,处于激发态的22Mg将再发生质子、双质子或g等衰变。实验中,探测器阵列同时测量了衰变发射出的单个或两个质子以及g射线。实验测得的带电粒子能量信号与g射线信号的符合,确认了22Mg存在从14.044MeV激发态到20Ne的第一激发态的双质子发射过程。进一步的理论模拟与实验数据比较得出,上述双质子发射过程的机制有约29%的几率为2He集团发射。 /p p style=" text-align: justify " & nbsp & nbsp 关于22Mg的激发态双质子发射现象,上海应物所马余刚团队曾在2015年通过日本理化学研究所的RIPS束线实验测量已明确观测到在包含14.044 MeV态的较大激发能范围内(12.5~18MeV),存在约30%的2He集团发射机制(Physics Letters B 743, 306 (2015))。 & nbsp & nbsp 此次在RIBLL上开展的实验得到的结论与其结果一致,但由于RIBLL上的实验数据中有发射的两质子能量与g射线的符合,完全确定了该双质子发射是从22Mg的14.044 MeV激发态到20Ne第一激发态的衰变过程。该实验测量结果提供了22Mg的IAS存在稀有的2He集团双质子发射的实验证据,对理解丰质子核的奇异衰变性质具有重要意义。 /p p style=" text-align: justify " & nbsp & nbsp 该研究得到了国家重点研发计划、国家自然科学基金委“重离子物理”创新研究群体等项目的共同资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/a7188f8a-092a-42d3-b51b-623256420928.jpg" title=" W020180807411280688274.jpg" / /p p br/ /p

质子提取相关的方案

质子提取相关的论坛

  • 栀子黄的检测

    我做方便面,按国标方法提取进液相色谱,未检测到栀子苷,国标中到底是用石油醚提取,然后石油醚蒸干后得到的残渣加甲醇提取还是石油醚提取后的样品再用甲醇提取?我也试着用甲醇直接提取方便面,也未检测到栀子苷,为什么?请各位指教!

  • 栀子中药材中栀子苷含量测定的能力验证问题

    栀子中药材中栀子苷含量测定的能力验证问题

    准备参加中检院举办的能力验证(栀子中栀子苷含量测定)。但,我仔细看《中国药典》标准后,样品前处理的超声提取,没有标识具体的超声仪器功率,我用不同的功率做了对比,150w,250w,350w,发现不同功率的含量相差很大,350w比150w的多出8%,这个能力验证不可控的功率,你们如何去操作呢?这个很难选择啊,一个不留神,就会结果值离群,咋办呢?[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303211615516680_5272_1621232_3.jpg[/img]

  • 天然色素——栀子蓝色素

    用于硬糖、果胶、琼脂、布丁、马希马洛糖、饼干、松蛋糕、蛋糕预制粉、稀奶油、冰淇淋、乳制品、蔬菜、青豆等罐头、饮料、果汁等的着色,为蓝色着色剂。在食品加工中直接着色不多,主要用于与天然的黄色素如栀子黄色素、红花黄色素等配伍,调配出不同色泽的绿色素,与提取的叶绿素相比,用栀子蓝色素调配的绿色素色调可以控制、耐酸性好,可用于偏酸性的食品、饮料中。另外栀子蓝色素还可与各种天然的红色素配伍,调配出不同色调的紫色。因此栀子蓝色素在食品加工中有较广阔的应用范围。栀子蓝色素因加工工艺的不同,可获得不同色调的蓝色素,颜色从天蓝色到海蓝色,还有耐酸性和不耐酸的品种,适合于不同的应用环境。天然的蓝色素自然界中是很少有的,栀子蓝色素是其中的一种,与合成色素食用亮蓝、靛蓝相比,其来源天然、人体相容性好,安全性高。是一种值得大力推广的天然色素。栀子蓝色素在食品、饮料、化妆品中的添加成本并不高,使用量为0.005%-0.01%之间,折算为单位成本约为0.025-0.05元/kg,当然与合成色素相比还是要高一些,合成色素在食品加工中的单位成本几乎为零,正是因为价格便宜,合成色素在食品上有滥用、超量使用的现象,这对人们的健康是不利的。

质子提取相关的资料

质子提取相关的仪器

  • 针对挥发性有机物(VOCs)污染溯源耗时长、多组分物质实时精准分析难度大的问题,谱育科技采用双阳极空心阴极放电源及垂直引入反射式飞行时间质谱技术,研制了TRACE 7000高灵敏度、高可靠性、软电离的质子转移反应飞行时间质谱仪。TRACE 7000具有分析速度快、灵敏度高、定性能力强、测量组分种类多等突出特点,适用于走航监测和园区VOCs在线监测。产品概述性能优势检测物质种类多采用水做试剂分子,具备广谱的电离能力,可满足环境空气中绝大多数VOCs物质的监测。检出限低亚ppb级检出限,低于多数VOCs国家标准排放限值。准确的定性、定量能力软电离技术,测量空气中的痕量VOCs时,不受空气中常规组分的干扰,且不需要对样品进行预处理。目标产物以加氢的准分子离子峰为主,谱图简洁、易于识别,目标物定性、定量准确。专业化抗震设计整机通过震动测试,保证仪器的稳定性和可靠性,适用于复杂路况的走航监测。智能化操作设计采用全自动智能控制软件,中文界面,仪器状态一目了然,具备自诊断、自保护、压力和温度自补偿、一键式自动运行功能,开启无人值守时代。应用领域 固定站点连续监测TRACE 7000可实时监测空气、水、固定污染源中VOCs的变化情况,以其为核心建立全覆盖的分布式监测预警系统。可实现园区重点管控因子的源头防控及敏感区域的污染预警。走航监测走航监测实时分析环境空气中VOCs的时空变化,锁定污染来源,为执法部门的决策提供准确的数据支撑。
    留言咨询
  • DRQ全自动QuEChERS处理平台高效稳定 自动完成QuEChERS全流程独立的均质子添加模块可根据样品性状的不同,加入不同数量的均质子,保证样品提取效果采用高精度移液模块保证液体处理的精确度,同时具备精准的液面探测功能,有效防止固体样品的吸入独立的加标模块可自动进行质控样品的加标处理高速涡旋混匀模块可保证样品混匀和净化效果氮吹定容模块采用视觉技术,准确判定样品浓缩状态,实现定容至指定刻度线功能色谱瓶制冷模块使用半导体制冷方式,控制色谱瓶温度,减少处理完成后样品的溶剂挥发过滤模块可自动完成样品的0.22μm/0.45μm标准滤膜的过滤,监测样品过滤状态,自动判断滤膜破损、堵塞等问题采用水平离心机可同时放置50mL和15mL两种规格的离心管,转速、时间可调具有水浴冷却功能可有效防止提取盐发热造成的目标物损失钟摆式的振荡设计具有更大的振幅,更高的振荡频率,确保样品的提取以及净化效果独立盐管设计:有效防止提取盐板结等问题,同批次样品可加入不同提取盐,满足不同基质样品的提取要求特别说明,此页面中所有展示的图片和信息仅供参考。
    留言咨询
  • 随着人们对人体健康关注的加深,检测样品的种类越来越多,样品处理过程也愈加复杂,以下图“GB 23200.121-2021 植 物源性食品中331种农药及其代谢物残留量的测定 QuEChERS法”的前处理过程为例,前处理过程繁琐复杂,样品回收率 和重现性易受手动实验的影响,接触试剂毒性大,渗透性强,威胁着实验人员的身体健康。 DRQ全自动QuEChERS处理平台高效稳定 自动完成QuEChERS全流程基于自动控制原理,整合样品加液、加均质子、提取、净化、分取等前处理步骤于一体,实现高效且全自动化的完成样品 的大批量处理工作,解放实验人员的双手,保护人员安全。 钟摆式的振荡设计具有更大的振幅,更高的振荡频率,确保提取及净化效果高速涡旋混匀模块确保样品混匀和净化效果水浴冷却功能有效防止提取盐发热造成的目标物损失独立加标模块可自动进行质控样品的加标处理水平离心机可同时放置50mL和15mL两种规格的离心管,转速、时间可调独立的均质子添加模块可根据样品性状不同,加入不同数量,确保样品提取效果高精度移液模块采用高精度移液模块,确保精度同时具备精准的液面探测功能,有效防止固体样品的吸入加液针和枪头移液两种模式可选独立盐管设计可有效防止提取盐板结等问题同批次样品可加入不同提取盐,满足不同基质样品提取要求 应用领域植物源性食品、药材、烟草、茶 叶等农药残留检测及其它采用 QuECHERS前处理方法的检测 应用举例《中华人民共和国药典》2020年版四部 通则2341 农药残留量测定法(第五法)GB23200.113-2018食品安全国家标准 植物源性食品中208种农药及其代谢物残留量测定 气质联用法GB23200.121-2021食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法特别说明,此页面中所有展示的图片和信息仅供参考。
    留言咨询

质子提取相关的耗材

  • QuEChERS陶瓷均质子
    陶瓷均质子主要用于QuEChERS样品制备方法,传统的提取方法要求剧烈振摇样品1分钟,此时可能会发生均一性和回收率不佳的情况。在样品提取过程中,加入均质子,有利于样品萃取过程的均匀性,提高检测化合物的回收率。陶瓷均质子具有以下特点:采用惰性材料,无杂质溶出缩短样品提取时间防止萃取盐结块保障萃取过程重现性加强检测结果回收率提高实验室工作效率
  • 科德诺思 KNORTH QuEChERS 陶瓷均质子 50ml TC389651
    KNORTH® QuEhERS 陶瓷均质子北京科德诺思技术有限公司提供的陶瓷均质子采用特级陶瓷材料制备,成菱形状,大小均一,可多次反复使用,不易破裂。传统的提取方法要求剧烈振摇样品1分钟,此时可能会发生均一性和回收率不佳的情况。在样品提取过程中,加入均质子,有利于样品萃取过程的均匀性,提高检测化合物的回收率。 陶瓷均质子具有以下特点:l 采用惰性材料,无杂质溶出l 缩短样品提取时间l 防止萃取盐结块l 保障萃取过程重现性l 加强检测结果回收率l 提高实验室工作效率 陶瓷均质子订购信息:货号产品名称产品描述包装规格TC389651陶瓷均质子适用于50ml离心管,2 cm(长)×1cm(外径)100/包TC389652陶瓷均质子适用于15ml离心管100/包TC389653陶瓷均质子适用于2ml离心管200/包 大量现货
  • 科德诺思 KNORTH QuEChERS 陶瓷均质子 15ml TC389652
    KNORTH® QuEhERS 陶瓷均质子北京科德诺思技术有限公司提供的陶瓷均质子采用特级陶瓷材料制备,成菱形状,大小均一,可多次反复使用,不易破裂。传统的提取方法要求剧烈振摇样品1分钟,此时可能会发生均一性和回收率不佳的情况。在样品提取过程中,加入均质子,有利于样品萃取过程的均匀性,提高检测化合物的回收率。陶瓷均质子具有以下特点:l 采用惰性材料,无杂质溶出l 缩短样品提取时间l 防止萃取盐结块l 保障萃取过程重现性l 加强检测结果回收率l 提高实验室工作效率 陶瓷均质子订购信息:货号产品名称产品描述包装规格TC389651陶瓷均质子适用于50ml离心管,2 cm(长)×1cm(外径)100/包TC389652陶瓷均质子适用于15ml离心管100/包TC389653陶瓷均质子适用于2ml离心管200/包 大量现货 北京科德诺思(KNORTH)技术有限公司(简称:科德诺思)2020 年在北京成立。公司自主创新研发、生产、销售及技术服务为一体创新型综合服务企业,目前公司拥有三项专利技术。公司研发团队拥有丰富色谱分离技术,实验经验丰富。 公司主要提供:标准物质、标准品、对照品、实验室常规耗材、快检耗材及前处理设备、检测服务、质量控制相关技术服务。 服务对象: 科研机构、农业、市场监管、高校、第三方检测、企业及质谱公司提供优质完善的前处理解决方案。 科德诺思(KNORTH)将不断持续提升产品性能,检测能力、标准物质制备能力及服务能力,为广大分析测试工作者提供前处理整体解决方案。我们期待与更多伙伴合作,实现共赢!

质子提取相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制