当前位置: 仪器信息网 > 行业主题 > >

可控气氛炉

仪器信息网可控气氛炉专题为您提供2024年最新可控气氛炉价格报价、厂家品牌的相关信息, 包括可控气氛炉参数、型号等,不管是国产,还是进口品牌的可控气氛炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可控气氛炉相关的耗材配件、试剂标物,还有可控气氛炉相关的最新资讯、资料,以及可控气氛炉相关的解决方案。

可控气氛炉相关的论坛

  • 热处理炉气监控系统如何让炉内气氛可控?

    热处理炉气监控系统如何让炉内气氛可控?

    热处理工艺中零件脱碳会缩短其使用寿命,采用可控气氛可以改善零件的变形,开裂,还可以准确控制表面渗入元素的浓度,提高渗件质量。而热处理炉气监控系统可以让炉内气氛活动清晰起来,让理论和实际保持一致。 碳势是气体渗碳、脱碳等工艺过程中需要精确控制的主要参数。炉气的碳势未得到有效控制时,往往造成钢铁组件的渗层表面含碳量或渗层碳浓度达不到工艺要求。在一定的渗碳温度下,炉气碳势主要取决于炉气的成分及在其高温下相互结合反应的结果。 热处理炉气监控系统可以实时测量炉内真实气氛、氧电势、温度,让碳势控制不再依靠理论上的化学平衡,而是直接反应炉内生成的气氛情况。[align=center][img=,690,492]https://ng1.17img.cn/bbsfiles/images/2019/01/201901031325052180_6133_2567402_3.png!w690x492.jpg[/img][/align] 如图所示,热处理炉气监控系统不仅可以实时连续的在线测量炉内气氛,还设置了报警功能,随时提示工艺员炉内情况,工艺员还可现在一键校准标定数值,操作非常的简单方便。 目前热处理炉气监控系统是渗碳工艺中值得推荐的碳势控制产品,作为工艺操作工程师们的第三双眼睛,实时守护您的“调皮”炉内气氛。

  • 玩玩气路::可控氧含量气氛退火炉快速实现简介

    玩玩气路::可控氧含量气氛退火炉快速实现简介

    众所周知,氧化物的性能尤其是电磁性能与氧含量关系极为密切,所以对氧化物中的氧含量进行精细控制非常重要,实验室现有的快速退火炉只支持单一气体退火,而要进行氧含量可控的气氛退火则很难,因此对气路技术进行了粗浅的试探。初步设计草图如下:http://ng1.17img.cn/bbsfiles/images/2012/06/201206131848_372220_1611921_3.jpg经过向七星询价,发现现成模块需要数万元,需要等待数周,并且不能进行氧含量测量,于是决定自己动手制作一个原型模块。下图是所有这次采购元部件列表:http://ng1.17img.cn/bbsfiles/images/2012/06/201206131852_372222_1611921_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/06/201206131852_372224_1611921_3.jpg所有花费约四千元。经过与我的搭档进行半天的组装,(Ar+O2)氧含量可控的气路完成了,如气路+退火炉照片:http://ng1.17img.cn/bbsfiles/images/2012/06/201206131854_372225_1611921_3.jpg其中线路有限乱,打算将气路封装进一个机箱之中:http://ng1.17img.cn/bbsfiles/images/2012/06/201206131856_372226_1611921_3.jpg需要指出,有两个地方比较关键,一是四通混气:http://ng1.17img.cn/bbsfiles/images/2012/06/201206131857_372227_1611921_3.jpg另是氧气传感器的封装模块:http://ng1.17img.cn/bbsfiles/images/2012/06/201206131858_372228_1611921_3.jpg由于所需控制的氧含量较小,氧气测量模块需要外接一个纳伏表以显示,至于具体的传感器的校准数据及测量控制这块,已经超越本帖的气路话题,不进一步延伸。不过有一点是值得肯定的:只要用户多花些心思,国产的传感器虽然价格只有数百元,但完全可以替代数千上万元的进口传感器。

  • 【求助】高温实验气氛马弗炉咨询

    实验室需要购买一台1400度的实验气氛马弗炉用于样品制备,不知哪家的好?请帮忙推荐一下,如果你用过的话。马弗炉有箱式和管式两种,对通还原气(N2、H2等)而言,哪一种更好,通不同气体,要求有无不同,请赐教。功率小于或等于4kw。温控要好[em0808]

  • 气氛炉一般多少价位?

    计划今年要买一台气氛炉,温度最高1600摄氏度。不知道各位有无推荐,大概价位是多少。谢谢。

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 【分享】直读光谱氩气气氛控制的应用

    直读光谱氩气气氛控制的应用 在光谱分析时,气氛的存在很大程度上影响光谱的放电特性,从而影响分析结果的准确度和检测限。在冶金工业对钢铁和合金的光谱分析中,惰性气体控制气氛的使用会取得较好的效果。 当样品在氩气中激发时,由于取代了空气中的氧和氮,防止了样品在激发过程中选择性氧化,使放电状态稳定,有利于提高光谱分析的精密度。同时减小了CN、CO、NO等分子的带状光谱,降低了背景,增加了谱线的强度;另外,由于氧对140-195nm波长的光谱区域有强烈的吸收,当使用氩控制气氛时,由于排除了氧的存在,使得这一波段的C、P、S和B、As、Se、Sn、N等的灵敏线可被利用,扩大了光谱分析的领域。

  • 真空激光粉末床融合中的气氛环境压力控制

    真空激光粉末床融合中的气氛环境压力控制

    [color=#990000]摘要:增材制造的激光粉末床融合过程中,在环境气氛窗口5~101KPa范围内,可使得熔池更稳定和降低孔隙率。本文介绍了实现气氛压力控制的方法以及具体布局和相应配置。[/color][align=center][img=增材制造,690,325]https://ng1.17img.cn/bbsfiles/images/2021/12/202112121732534721_961_3384_3.jpg!w690x325.jpg[/img][/align][size=18px][color=#990000][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]增材制造的低压气氛激光粉末床融合工艺[/color][/size] 特点:熔池更稳定和降低孔隙率。 低压气氛要求:在工艺窗口为5kPa~101kPa内实现快速准确的气压控制。[align=center][img=增材制造,690,479]https://ng1.17img.cn/bbsfiles/images/2021/12/202112121734044490_4158_3384_3.png!w690x479.jpg[/img][/align][align=center][color=#990000]图1 真空激光粉末床融合设备[/color][/align][size=18px][color=#990000]气压控制[/color][/size] 控制方法:双向控制模式,同时调节上游进气电动针阀和下游电动球阀来调节进气流量和真空泵排气速率。 传感器:真空压力传感器,测量范围5kPa~101kPa,精度±0.2%。 控制器:双通道PID控制器,双向控制功能。[align=center][color=#990000][img=增材制造,690,229]https://ng1.17img.cn/bbsfiles/images/2021/12/202112121735072671_1242_3384_3.png!w690x229.jpg[/img][/color][/align][align=center][color=#990000]图2 真空激光粉末床融合环境压力控制框图[/color][/align]

  • 直读光谱分析中为什么使用氩气作为控制气氛?

    直读光谱激发样品时,气氛的存在在很大程度上影响了光谱的放电特性,同时也影响着分析结果的准确度和检测限。当样品在惰性气体气氛中激发时,由于惰性气体取代了空气中的氧和氮,防止了样品在激发过程中的选择氧化,使放电状态稳定,有利于提高光谱分析的精密度,同时减小了CN、CO、NO等分子的带状光谱,降低了背景,增加了谱线强度。另外,还排除了对远紫外有强烈吸收的氧气,使C、P、S、B、As、Sn、N等灵敏线可被使用,扩大了直读光谱分析的范围。在控制气氛是使用上,氩气应用的最广泛,实际上氖和氪也是一种理想的气体,但是他们的价格太昂贵;氦会增强二级离子光谱,易产生一个强的连续背景,使检测限变差;氮气的存在提供了一个一级和二级离子光谱线的平衡,易产生N2+和CN-分子光谱,使应用上均受到限制。而氩气的存在增强了中性原子的光谱线,背景也减少,可提供较高的信背比,且价格也较便宜,又易得到,因而获得广泛的应用。

  • 气氛是什么?

    分析仪的气氛有2种,静态和动态TG常用的有氩气(还有其他什么?),这个氩气在炉内是不是就是指气氛?那静态和动态是啥意思呢

  • 可控硅的特性及检测

    1. 可控硅的特性。 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 2. 单向可控硅的检测。 万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 3. 双向可控硅的检测。 用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。随后断开A2、G间短接线,万用表读数应保持10欧姆左右。互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负的触发电压,A1、A2间的阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持在10欧姆左右。符合以上规律,说明被测双向可控硅未损坏且三个引脚极性判断正确。 检测较大功率可控硅时,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。 晶闸管(可控硅)的管脚判别 晶闸管管脚的判别可用下述方法: 先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。再将万用表置于R*10K挡,用手指捏住阳极和另一脚,且不让两脚接触,黑表笔接阳极,红表笔接剩下的一脚,如表针向右摆动,说明红表笔所接为阴极,不摆动则为控制极.

  • 星际空间环境地面模拟:气氛、气压或真空度的精确模拟及控制

    [quote][color=#ff0000]摘要:针对星际空间气氛环境,介绍了地面模拟试验中的气氛、气压或真空度的精确模拟及控制技术,特别介绍了美国标准化技术研究所NIST和上海依阳实业有限公司在这方面所做的研究工作。[/color][/quote][align=center][img]http://p3.pstatp.com/large/5e830001f98c5d356c2a[/img][/align][align=center][color=#ff0000]美国NASA火星探测器[/color][/align][color=#ff0000][b]1. 前言[/b][/color] 航天飞行器和探测器在星际空间中会遇到各种气氛环境,有在深空中的高真空环境,也有在火星大气层中的低压二氧化碳气氛环境。飞行器和探测器中大量使用的防隔热材料在不同气氛和不同气压条件下都会呈现不同特性,因此在隔热材料选择时要准确了解相应气氛条件的材料性能。 防隔热材料经过多年的研究已经初步具备了比较成熟的各种模拟、测试和表征技术,但随着新型高效隔热材料技术的发展,特别是多种阻断传热技术的应用以及低气压使用环境,使得新型绝热材料及元件的热导率更低。如何准确测试评价这些隔热材料在1000℃以上高温和100Pa以上气压环境条件下的有效热导率就成为了目前国内外的一个技术难点。 由于新型高温隔热材料的传热形式是固体导热、气体导热和对流换热以及热辐射等多种形式的耦合传热,传热形式十分复杂,通过理论分析计算获得的有效热导率计算结果往往与实验结果存在很大的偏差,因此对于新型隔热材料的有效热导率测试主要还是依据实验测试结果。 纵观国内外对高温隔热材料有效热导率测试所采用的测试方法基本都集中在稳态热流计法,这主要是因为它是目前可以实现1000℃以上有效热导率测试的唯一成熟有效的技术。美国兰利研究中心1999年研制了一套变气氛压力高温有效热导率测试系统,测试中采用了薄膜热流计测试流经试样的热流密度,试样的冷面温度为室温,试样热面最高温度可达1800℉(约982℃),环境气压控制范围为0.0001~760Torr,正方形试样最大尺寸为边长8in(约203mm)。整个测量装置的有效热导率测量不确定度范围为5.5%~9.9%,在常压环境下对NIST标准参考材料测试的不确定度在5.5%以内。美国兰利研究中心的这篇研究报告给出了几种典型材料随温度和气压变化的有效热导率测试结果,证明了在不同气氛压强范围内对热导率的影响程度的不同。 通过美国兰利研究中心的研究工作从试验上证明了气压对材料热导率有明显的影响,气压(真空度)的控制误差是主要测量误差源,所以在材料热导率测试中要对气压进行准确控制。由此,这就在稳态热流计法热导率测试过程引入了两个控制变量,即除了达到温度恒定条件外,还需要达到气压压强的稳定。 因为温度和气压之间存在相互影响,一般情况下是气压随着温度升降而升降,同时气压下降使得被测试样热导率降低而延长了达到热平衡所需时间,这样就造成整个稳态法热导率测试过程中参数控制的复杂性。 由此可见,在稳态法热导率测量过程中,需要对气压控制的稳定性就行试验研究,摸清气压波动对温度恒定的影响,确定气压的恒定控制精度,并在可易实现的气压控制精度条件下尽可能的缩短气压对温度稳定周期的影响。 我们所研制的热流计法隔热材料高温热导率测试系统就是一个可在变温和变气压环境进行隔热材料热导率测试的设备,可以对温度和气压压强进行控制,因此针对气压对材料热导率测试的影响进行了研究。在气压波动性对材料热导率测试影响方面国内外几乎没有研究工作报道,在我们开展此工作的后期,美国NIST的Zarr等发表了一篇会议论文,文中介绍了NIST在开展直径500mm高温保护热板法热导率测试系统研制过程中所进行的一些气压对热导率影响方面的工作。 本文将对NIST和上海依阳实业有限公司的研究工作做一介绍,尽管两者研究工作的技术指标要求有很大不同,但通过这些研究可以获得很多的借鉴。另外,气压对热导率影响的试验研究,也可以作为其它热导率影响因素(如湿度)测试研究的技术借鉴。[color=#ff0000][b]2. 美国NIST在气压对材料热导率测试影响方面的研究工作2.1. 美国NIST护热板法热导率测试系统简介[/b][/color] 美国NIST多年来一直进行着护热板法热导率测试技术的研究工作,并研制了多套不同尺寸和不同测试温度的护热板法热导率测试系统。最近的研究工作是研制变温变气压环境下试样直径500mm的护热板法高温热导率测试系统,测试系统已经研制完成,如图 2‑ 1所示,正开展一系列的设备考核和试样测试评价工作。 在图 2‑ 1所示的NIST试样直径500mm的护热板法高温热导率测试系统中,热板(1)和冷板(2)由一个圆筒状护热装置(3)包裹,这些部件都悬挂在一个悬臂支撑结构(A)上,整个热导率测量装置放置在一个气氛压强可控的真空试验腔内,真空试验腔体包括一个直立式焊接基座(C)和放置在滚轮支撑架上的一个卧式圆筒腔体(B),(D)为扩散泵,整个测试系统的试验温度范围为280K~340K,真空试验腔的气压控制范围为4Pa至100.4kPa(1个大气压)。NIST研制此设备的目的主要是用于对低热导率标准参考材料进行校准测试。[align=center][img]http://p1.pstatp.com/large/5e7b0003ebf23bc410b6[/img][/align][align=center][color=#ff0000]图 2‑ 1 美国NIST 500mm保护热板法热导率测试系统[/color][/align][b][color=#ff0000]2.2. 气压控制系统[/color][/b] 图 2‑ 2所示的热导率测量装置气压控制系统包含的主要部件有:(a)干燥空气净化发生器(供气系统);(b)真空腔;(c)三个独立可控真空泵系统(11油扩散泵、13机械泵和15隔膜泵)。每个真空泵都由独立的计算机串口控制。[align=center][color=#ff0000][img]http://p3.pstatp.com/large/5e7c00038563ce740831[/img][/color][/align][align=center][color=#ff0000]图 2‑ 2 NIST 测试试样直径500mm护热板法热导率测量装置气压控制结构示意图[/color][/align] 真空系统中采用了三个机械泵来覆盖不同的气压压强范围。在NIST的这套测量装置中,并没有使用到用于超低气压控制的第三级泵(扩散泵)。根据气压范围,真空腔内的气压测量采用了3个薄膜电容规(CDGs)。这些电容薄膜规的三个基本量程为:133kPa(1000torr)、1.33kPa(10torr)和0.0133kPa(0.1torr)。 (1)中等气压:指3.3kPa~107kPa(25torr ~ 800torr)气压范围,可通过采用一个可变速隔膜泵和一个专用控制器将真空腔内的气压控制在此气压范围内。使用隔膜泵将不会使用到气源。 (2)低气压:指0.004kPa~3.3kPa(0.03torr ~ 25torr)气压范围,可通过采用一个机械泵(叶片旋转泵)和一个专用PID控制蝶阀以下游控制形式将真空腔内的气压控制在此气压范围内。 (3)超低气压:指低于0.004kPa(0.03torr)的气压范围,可通过采用一个扩散泵/初级泵系统和一个专用PID控制插板阀以下游控制形式将真空腔内的气压控制在此气压范围内。[b][color=#ff0000]2.3. 控制稳定性[/color][/b] 整个热导率测试系统的控制稳定性是通过图形分析量热计板温度响应来进行考察。图 2‑ 3和图 2‑ 4分别绘出了量热计板温度和真空腔气压随时间的变化曲线,其中左边Y轴为温度坐标轴,右边Y轴为气压坐标轴,X轴表示经历时间(以小时计),图 2‑ 3和图 2‑ 4所示的图中选定了相同的X时间轴(50h)以便于观察对比,量热计温度和真空腔气压的数据采集间隔时间为60s。 量热计板的温度测量采用扩展不确定度(k=2)为0.001K的长杆标准铂电阻温度计(SPRT),真空腔气压测量采用133kPa或1.33kPa量程的薄膜电容规。铂电阻温度计和薄膜电容规以及相应的数据采集系统都分别经过了NIST温度和气压计量部门的校准。 图 2‑ 3显示了从初始温度305.15K(前一个试验温度)到当前控制温度320.15K整个过程中温度随时间的变化过程和稳定性。从图 2‑ 3中可以看出,约在4小时处,在经历一个约0.9K的轻微过冲和近10小时的单调降温过程后,在经历了总共约15个小时后量热计温度达到稳定。在量热计温度稳定测量阶段,即从第24小时到第28小时期间,量热计温度的波动范围为320.1474K~320.1524K,波幅为0.005K,此期间的温度平均值为320.1497K。[align=center][img]http://p3.pstatp.com/large/5e7a00041fc5400d3f33[/img][/align][align=center][color=#ff0000]图 2‑ 3 未进行压强控制情况下,量热计板温度从305.15K控制到320.15K时的温度响应曲线[/color][/align] 在图 2‑ 3中所显示的真空腔气压是未经控制的环境大气气压,从图中可以看出气压有很小的变化。在量热计温度达到稳定测量阶段后,真空腔内的气压平均值为99.53kPa,气压波动范围为99.46kPa~99.58kPa,波幅为0.12kPa。 图 2‑ 4显示了当真空腔气压从前一试验气压突然降低到低气压后整个的量热计温度相应过程和控制稳定性,图中所示的量热计温度控制设定点未发生改变一致控制在320.15K。在开始测试的初期,真空腔气压被抽取到一个固定值0.013kPa,用时15分钟。[align=center][img]http://p1.pstatp.com/large/5e810001cbb901cbaf64[/img][/align][align=center][color=#ff0000]图 2‑ 4 在控制温度为320.15K,气压从0.035kPa控制到0.013kPa过程中温度响应曲线[/color][/align] 需要注意的是在6小时处的气压有一个扰动,但这个气压扰动对量热计温度的影响很小。另外还需要注意的是图 2‑ 4的左边Y坐标轴,与图 2‑ 3相比,图 2‑ 4中放大了温度差,由此可以更清晰的观察量热计温度的变化。 随着气压的突然降低,由于空气导热的减小,通过被测试样的热流量也随之降低,由此造成量热计温度逐渐升高并约在4小时后达到最高点320.8K,这与图 2‑ 3中的温度过冲相似。随后,量热计温度在一个约为22小时的时段内发生了围绕设定点320.15K附近的收敛式振荡,这种振荡现象有些令人惊讶。在43小时到47小时时间段内达到了热平衡,这比图 2‑ 3中所达到的热平衡时间段晚了近20小时。在稳态测量时间范围内,量热计温度的波动范围为320.1476K~320.154K,波幅为0.006K,此期间的温度平均值为320.1506K。[b][color=#ff0000]3. 上海依阳公司对材料热导率测试中实现气氛和气压精确控制[/color][/b] 依阳公司的热导率测试系统采用的是稳态热流计法,试样的热面温度最高为1000℃,试样的冷面温度最低为20℃,气压控制范围为6Pa至100.4kPa(1个大气压)。依阳公司的热流计法热导率测试系统主要应用于防隔热材料在高温和高空环境下的等效热导率测试评价。 在各种稳态法热导率测试设备中会经常用到冷却液冷却的冷板,如果冷板温度低于环境温度,且环境湿度比较大,则会在冷板上形成冷凝水,这将会严重的影响热导率的测量。因此,对于稳态法热导率测量装置来说,不论是不是需要进行气氛压力控制,试验环境中必须是干燥气体则是一个必要试验条件。[b][color=#ff0000]3.1. 气压控制系统[/color][/b] 在依阳公司的热流计法热导率测试系统的气压控制系统中,气压控制系统的整体设计思路与NIST的完全相同,但还是有以下三方面的微小区别:[quote] (1)气压控制范围为6Pa至100.4kPa(1个大气压),所以采用了INFICON公司的两个薄膜电容规气压传感器来覆盖这个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa。而不是像NIST那样采用了三个气压传感器。 (2)这两个传感器连接到一个INFICON VCC500真空控制器上控制一个数字真空阀INFICON VDE016,数字真空阀与干燥气体系统连接,根据不同的要求自动选择传感器进行气压的定点控制。而不是像NIST那样采用多路控制器进行控制。由于INFICON VCC500真空控制器在定点精确控制上有明显不足,气压控制波动较大,后改用自行研制的气压控制器。 (3)抽气系统仅仅采用了一个机械泵,真空腔体的极限真空度可以达到6Pa,并没有像NIST那样采用了隔膜泵和机械泵。[/quote][color=#ff0000][b]3.2. 气压控制3.2.1. 极限真空时的真空试验腔体的漏率[/b][/color] 真空腔空载情况下开启机械泵,约15分钟后真空腔体内的气压从大气常压降低到6Pa左右后将不再改变。达到极限气压后,此时关闭抽气管路并关闭机械泵,使得真空腔体处于自然状态,同时用数字真空计系统检测真空腔体内真空度的变化情况,由此来确定和考核真空腔体的漏率,检测结果如图 3‑ 1所示。[align=center][img]http://p1.pstatp.com/large/5e7d0002c895b6405a60[/img][/align][align=center][color=#ff0000]图 3‑ 1 停止抽气后真空腔体内的气压变化[/color][/align] 从图 3‑ 1所示的测试结果可以看出,关闭抽气管路后腔体内的气压基本按照线性规律缓慢上升,上升的速度为2.28Pa/h,经过14小时后腔体内的气压从6Pa左右上升到了38Pa左右,整个真空腔体的漏率为0.59m^3Pa/h。[b][color=#ff0000]3.2.2. 真空腔气压控制[/color][/b] 因为采用了两个薄膜电容规气压传感器来覆盖整个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa,所以针对不同的气压范围进行了相应的控制试验。但在实际压强控制过中发现,INFICON压强控制器的控制效果并不好,气压的波动性较大,因此最终我们采用了自行研制的压强控制系统来进行控制。[color=#ff0000]3.2.2.1.低气压压强控制试验[/color] (1)采用英富康真空控制系统进行低气压压强控制 所谓低气压是指真空腔内的真空度小于133Pa以下的气氛环境,133Pa也是其中一个电容薄膜真空计的最大真空度测量量程。整个低气压压强控制变化过程如图 3‑ 2所示。 试验开始阶段,首先全速抽真空,使得真空腔内的气压快速降低到15Pa左右,然后改变压强设定点为20Pa,控制参数设置为98,此时气压开始在20Pa上下大幅波动,后改变控制参数为1,气压开始逐渐收敛并恒定到20Pa左右。 为了检验加载氮气后对气压控制的影响,当真空腔内气压控制到20Pa后在控制阀的进气口处加载输出的氮气,由于加载的氮气会产生带有一定的压力,减压阀门调整最小刻度,加载后真空腔内的气压在20Pa上下波动较大,无论如何改变控制参数也很难控制稳定。 去除掉加载的氮气后,从新进行恒定气压控制,气压设定点分别为20Pa和10Pa,从图 3‑ 2中的控制曲线可以看出,真空腔内的气压在20Pa上下0.5Pa范围内波动,波动性较小,波动性基本在±2.5%以内。 通过以上试验可以说明为了达到很好的低气压控制的稳定性,加载的氮气压力越低越好。[align=center][img]http://p3.pstatp.com/large/5e7d0002c9e04033cafe[/img][/align][align=center][color=#ff0000]图 3‑ 2 低气压(100Pa以下)控压试验曲线[/color][/align] (2)采用自制真空控制系统进行低气压压强控制 采用自制的真空控制系统进行了初步的气压压强控制试验以后,专门针对低气压(采用1Torr真空计)并接通氮气供气系统进行了进一步考核试验。由于真空腔体的最低气压只能达到0.1Torr左右,所以设计了0.1Torr、0.3Torr、0.6Torr 和0.9Torr 四个气压控制点,整个气压控制过程如图 3-3 所示。[align=center][img]http://p3.pstatp.com/large/5e830001d23bbdd38b1d[/img][/align][align=center][color=#ff0000]图 3‑ 3 压缩氮气接通后的低气压恒定控制曲线[/color][/align] 所从图 3‑ 3所示的气压控制过程可以看出,气压从低点向高点进行恒定控制时,每次向上改变设定点时,都会由于充气使得气压产生超出量程范围的突变,然后再逐渐下降恒定在设定点上。这种现象的产生是由于导入的氮气为带有一定流量和压力的氮气,这个压力容易产生过量的氮气气体导入。 当气压恒定在0.9Torr后,逐渐向下设定气压控制点,气压向下恒定控制变化曲线如图 3‑ 3所示。[color=#ff0000]3.2.2.2.高气压压强控制试验[/color] (1)采用英富康真空控制系统进行高气压压强控制 采用了全开式真空泵抽取外加控制阀控制气压方式,控制阀外接大气,气压控制设定点分别为500Pa和300Pa,整个控制过程的气压变化曲线如图 3-4 所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003f7a4c50b7695[/img][/align][align=center][color=#ff0000]图 3-4 高气压压强控制试验曲线[/color][/align] 从以上高气压控制试验可以看出,采用富士康的VCC 500 真空度的控制是台阶式的变化,而且并不一定能恒定在设定点上,实际恒定点与设定点有一定的偏差,但恒定点的气压很稳定。这种现象需要在实际使用过程中注意。 (2)采用自制真空控制系统首次进行各种气压压强控制试验 采用自制的压强控制器来控制气压变化,首先在控制器上设定5.5Torr进行了PID参数的自整定,自整定完成后分别对设定了17Torr、50Torr、500Torr和100设定点进行控制,整个控制过程中气压随时间变化曲线如图 3‑ 5所示,图 3‑ 6为局部放大后便于观察的变化曲线。 对整个控制过程数据进行分析后得到的结论是:在所有的气压控制点上,气压波动性都小于1%以下。[align=center][img]http://p1.pstatp.com/large/5e7b0003f8579daea883[/img][/align][align=center][color=#ff0000]图 3‑ 5 控制全过程中气压变化曲线[/color][/align][align=center][img]http://p3.pstatp.com/large/5e7a000429b4c4c92e0d[/img][/align][align=center][color=#ff0000]图 3‑ 6 控制过程中部分气压变化曲线(纵坐标缩小后)[/color][/align][b][color=#ff0000]3.2.3. 热流计法高温热导率测试[/color][/b] 为了研究气压波动性对热导率测试的影响,我们在热流计法热导率测试系统上进行了相应的考核试验。被测试样选用耐高温隔热材料,试样热面温度控制在1000℃,水冷板温度控制在20℃,真空腔内的气压控制在50Pa。试验过程中的各个测试参数的响应曲线如图 3‑ 7和图 3‑ 8所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003fc058a0d2773[/img][/align][align=center][color=#ff0000]图 3‑ 7 试样热面和冷面温度响应曲线[/color][/align] 在试验的前4小时,试样热面温度处于恒定控制的初期还没有稳定,而腔体内部气压也没有处于稳定状态,在4.5小时时做了一次控制参数整定后,腔体内部气压很快进入恒定阶段,气压长时间的在50±0.5Pa区间内波动,波动率为±1%。 在控制参数整定过程中,气压波动剧烈,对冷面温度和热流密度的影响严重,从曲线中可以看到有明显的尖峰,但对试样热面温度影响并不大。[align=center][img]http://p3.pstatp.com/large/5e7d0002d4759aee6365[/img][/align][align=center][color=#ff0000]图 3‑ 8 试样厚度方向热流密度和腔体气压响应曲线[/color][/align] 在测试过程进入19个小时后,气压在50Pa处保持±1%的波动,冷面温度和热流密度达到了稳定,这时试样的热面温度为1000.2℃,波动率小于±0.1%;冷面温度为88.9℃,波动率小于±0.5%;热流密度为7928.3W/m^2,波动率小于±0.8%,计算获得的试样有效热导率为0.2611W/mK。[b][color=#ff0000]4. 结论[/color][/b] 通过以上试验可以得出以下结果: (1)两个结构的气压控制研究和试验证明,气氛压强对材料的热导率性能会产生明显的影响。 (2)在变温和变真空测试过程中,优先控制的是热面温度,正确的操作顺序是先在超过100Pa以上的气氛下将热面温度控制恒定在设定温度上,然后再进行不同气压设定点下的测量。因为气压可以很快的达到平衡,如果在热面温度还未恒定前先恒定了气压,则热面温度的恒定会需要很长时间。 (3)将气压波动控制在±1%,气压的波动将对材料的热导率影响不大,而且气压控制也不需要昂贵的控制设备。[b][color=#ff0000]5. 参考文献[/color][/b] (1) Kamran Daryabeigi. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999 (2)R. R. Zarr and W. C. Thomas, Initial Measurement Results of the NIST 500mm Guarded Hot Plate Apparatus Under Automated Temperature and Pressure Control. 31st International Thermal Conductivity Conference & 19th International Thermal Expansion Symposium, Proceedings: Thermal Conductivity 31/ Thermal Expansion 19, pp. 195 - 204[img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/02/201802011921102118_2230_3384_3.gif!w640x20.jpg[/img]

  • 【分享】SWK-B型可控硅数显温度控制器

    SWK-B型可控硅数显温度控制器 该控制器可与箱形高温电阻炉(马弗炉),双管定硫炉、灰熔点测定炉或其它电热设备配合,实现对炉内温度自动控制,以适应不同的试验对升温速度及控制温度的不同要求。 ◆SWK-B型控制器采用数字显示指示温度,炉温显示清晰准确。 ◆使用双向可控硅输出控制,切换无触电,具有寿命长、无噪声等优点。 ◆具有PID调节功能,能有效克服炉温过冲的现象,使得温度控制更准确。 ◆输出电压0~220V连续可调,可适应不同的升温速度要求。 ◆电源:AC 220V±10% ,50HZ ◆全导通输出电压可调 ◆最大允许负载5KW 使用说明书(节选)一、概述SWK-B型数显温度控制器用于配合箱形高温电阻炉、定硫炉及其它电加热设备,实现对炉内温度的自动控制,以适应不同的试验项目对升温速度和温度的不同要求。其主要特点有:1. 温度设定与测量采用数字显示,直观准确 2. 采用双向可控硅控制输出,切换无触点,具有使用寿命长,无噪音等优点。3. 具有PID调节功能,能有效克服炉温过冲现象,使温度控制更准确。4. 输出电压无级调节,可适应不同的升温速度要求。二、主要参数1. 输入电压:220V±10%,50HZ2. 输出电压:0~220V连续可调3. 最大允许负载:5KW4. 精度等级:0.5级5. 配用电偶:镍铬-镍硅,K值,0~1000℃6. 工作环境:0~40℃,相对湿度≯85%三、使用方法1. 使用前应首先检查控制器的内部接线是否脱落,如有松动应按原理图接好,可控硅管壳与散热器应接触良好,保证元件工作是散热正常。2. 控制器不应放置在具有剧烈震动的场合,控制器内部应保持清洁。3. 按电控器上所标输入(220V),输出位置,将电源与负载接好。4. 控制原理图见下图5. 打开电源开关键,工作指示灯亮,表示电源已接通。6. 顺时针转动电压调节选钮,使电压表指示到合适强度(220v),拨动”数显调节仪”右下方开关到设定(OFF)后, 顺时针转动开关上面的调节选钮,使温度显示到需要设定值;设定后,开关拨到测量(ON),绿灯亮开始工作,温度达到设定值后红灯亮,停止工作。四、常见故障及产生原因:......

  • 【分享】功能纳米结构可控生长的新途径

    功能纳米结构可控生长的新途径:非模板选择性自组装 纳米结构的很多应用是通过有机功能分子的吸附来实现的。可控地、有选择性地在纳米结构的不同表面吸附上具有不同功能的分子,对设计及组装功能纳米结构具有重要的意义。通常,人们采用模板方法来实现纳米结构(包括功能分子纳米结构)的可控制备。如何采用非模板方法实现功能纳米结构的可控自组装和选择性吸附极具挑战性,是纳米电子器件和纳米催化的重要基础问题。高鸿钧研究组对纳米结构的可控生长、物性及其在超高密度信息存储方面的应用进行了系统研究。最近,该研究组杜世萱等人研究了金属单晶表面上功能有机分子的吸附、生长和相互作用等。他们从实验和理论上研究了两种有机分子在Ag单晶不同表面上的吸附行为,发现在Ag(775)基底上PTCDA分子会完全吸附在(111)台阶面上,而DMe-DCNQI分子则完全吸附在(221)台阶面上。该研究还阐明了PTCDA分子与基底原子之间的相互作用机制,提出了PTCDA与基底之间的相互作用是通过分子末端官能团的氧原子实现,中心的π共轭区域与基底相排斥,理论模拟得到的氧原子的NIXSW相干长度以及碳原子的K X-ray吸收谱与实验结果符合得很好。这一结论否定了F.S. Tautz等人提出的PTCDA与基底间的相互作用是通过其中心的π共轭区域与基底成键的机制(Nature 425, 602(2003) 和Phys. Rev. Lett. 94, 036106(2005))。这项研究开创了一种新的外延生长A/B有序纳米结构的新途径-非模板选择性自组装,对三维有序组装和各类纳米功能器件的构造具有重要的参考价值和指导意义。该项工作与德国Muenster大学的H. Fuchs组和美国橡树岭国家实验室的S. Pantelides教授组进行了合作。相关研究结果发表在2006年10月13日出版的Phys. Rev. Lett. 97, 156105 (2006)上[color=green](see the attached article below)[/color]。该工作得到了国家自然科学基金委、国家科技部和中国科学院的资助。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31890]Selective Nontemplated Adsorption of Organic Molecules on Nanofacets and the Role of Bonding Patterns [/url]

  • 【分享】如何借助万用表检测可控硅

    可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。  1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。  2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。  对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。  若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。   对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。相关连接:http://www.3017.cn/category/?bid=6http://www.3017.com.cn/product/search.asphttp://www.sd1718.com/yiqi/search.asphttp://www.sd1718.com/jswz/index.asp

  • 气氛对热分析实验结果的影响

    热分析实验常需变换气氛﹐借以辨析热分析曲线热效应的物理-化学归属。如在空气中测定的热分析曲线呈现放热峰﹐而在惰性气氛中测定﹐依不同的反应可分为几种情形﹕如象结晶或固化反应﹐则放热峰大小不变﹔如为吸热效应﹐则是分解燃烧反应﹔如无峰或呈现非常小的放热峰﹐则为金属氧化之类的反应。借此可观察有机聚合物等热裂解与热氧化裂解之间的差异。对于形成气体产物的反应﹐如不将气体产物及时排出﹐或通过其它方式提高气氛中气体产物的分压﹐会使反应向高温移动。气氛气的导热性良好﹐有利于向体系提供更充分的热量﹐提高分解反应速率。氩﹑氮和氦这3种惰性气体导热系数与温度的关系是依次递增的。就气氛因子的影响和注意事项﹐可作如下概括﹕1)是静态﹐还是动态(流通)气氛﹐静态时产物来不及充分逸散﹐分压升高﹐反应移向高温﹐动态则产物不能逐渐聚集﹐受产物分压影响明显减弱。2)气氛的种类﹐空气(最一般的氧化气氛)﹐He﹑N2﹑Ar(惰性气氛)﹐H2﹑CO(还原性气氛)﹐O2(强氧化性气氛)﹐CO2(试样自生﹐或与试样反应产生的)﹐Cl2,F2等(腐蚀性气体)﹐水蒸气﹑混合气氛﹐减压﹑真空﹑高压。3)气氛的流量对试样的分解温度﹑测温精度﹐以及热分析曲线的基线和峰面积等均有影响。4)应考虑气氛与热电偶﹑试样容器或气体路经的其它构件所用材料之间是否有某种反应。5)注意防止爆炸和中毒。6)如确认气体产物对测定结果有显著影响﹐则应将气体产物排出(特别是水蒸气)。7)由于气氛气传导的不同﹐将会改变炉内的温度分布和试样到检测器的热传递。

  • 可控硅价格?

    我是岛津光谱仪用户,仪器里的可控硅坏了,需更换,哪位高手能告诉我其大致价格吗?其型号为:SH16J137.G。

  • 超导材料LK-99烧结过程中真空和气氛环境准确控制的解决方案

    超导材料LK-99烧结过程中真空和气氛环境准确控制的解决方案

    [size=16px][color=#990000][b]摘要:根据近期LK-99超导材料研究报道,我们分析此材料制备采用了真空烧结工艺。由于目前大部分复现研究所用的真空烧结技术和设备都非常简陋,使得LK-99的复现性很差。为此我们提出了真空度准确控制解决方案,其目的第一是实现烧结初期真空度线性控制避免粉体材料出现扬尘以及烧结过程中的真空度稳定,第二是多通道进气的控制以实现烧结结束前的快速冷却和提供不同的烧结气氛,第三是为后续致密化和大尺寸制备提供支撑。[/b][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]1. 背景介绍[/b][/color][/size][size=16px] 随着近期韩国科学家提出LK-99超导材料可在常压室温下出现超导现象,国内外对此作出了积极的响应,广泛开展了制备LK-99材料和超导现象复现的工作,但绝大多数都以失败告终。通过对各种报道的分析,我们发现LK-99材料的制备过程中存在以下两方面的工艺特点:[/size][size=16px] (1)根据韩国科学家的报道,他们在超导材料制备中采用了固态合成工艺(synthesized using the solid-state method),且工艺条件为10-3Pa的高真空和接近一千度的高温环境,制备出的LK-99材料为晶体结构。由此可见,高真空和高温是制备过程的必要条件,此制备工艺与真空烧结工艺非常相似,那么很多在常压高温炉里制备出的材料自然无法复现LK-99超导现象。[/size][size=16px] (2)在韩国科学家的最新报道中给出了更详细的LK-99材料制备细节,要求在材料制备的最后阶段需打破高温炉石英管放入氧气,摇动样品使氧气能与硫更充分结合,减少或者清除硫杂质,同时提高氧元素占比,更有利于材料晶体的稳定性。尽管打破石英管(也有报道提到是石英管偶然出现裂纹)显着烧结设备十分简陋甚至不专业,但这更加突显出整个烧结过程是一个标准的真空烧结工艺,最后阶段加入氧气除了清除杂质作用外,更是一个真空烧结工艺中必须的快速冷却工序。[/size][size=16px] 根据上述所报道的制备工艺,可以大致分析出LK-99超导材料制备是真空烧结工艺,整个烧结工艺中除了温度之外,关键是对真空度和气氛的控制,这在后续致密化和大尺寸LK-99超导材料制备中尤为重要。为此,有客户针对LK-99超导材料的复现制备,明确提出了真空烧结炉升级改造的技术指标,具体内容如下:[/size][size=16px] (1)真空度控制范围:5×10-4Pa~0.1MPa。[/size][size=16px] (2)进气通道:4路。[/size][size=16px] (3)控制方式:5×10-4Pa~1kPa范围定点控制,1kPa~0.1MPa程序控制。[/size][size=16px] (4)控制精度:采用电容真空计时为±1%,采用皮拉尼计时为±20%。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 针对上述客户提出的LK-99超导材料真空烧结炉技术指标,本文提出的解决方案基于动态平衡法实现全量程的真空度准确控制,整个真空度控制系统结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=LK-99超导材料真空烧结炉真空度控制系统结构示意图,650,265]https://ng1.17img.cn/bbsfiles/images/2023/08/202308091718134629_330_3221506_3.jpg!w690x282.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 用于LK-99超导材料的真空烧结炉真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 图1所示的真空度控制系统主要由四部分组成:进气混气装置、真空泵排气装置、真空度测量装置、低真空进气调节装置和高真空进气调节装置,详细说明如下:[/size][size=16px] (1)在进气混气装置中,布置了四路进气通道,每路气体由气体质量流量控制器(图1中并未绘出)进行控制并形成设计配比,具有一定配比的混合气体进入混气罐后成为工作气体,使烧结炉内在此气氛环境下对材料进行烧结。[/size][size=16px] (2)在真空泵排气装置中,配置了干泵和分子泵,为管式真空烧结炉提供不同的真空源。[/size][size=16px] (3)在真空度测量装置中,配备电容规和皮拉尼计以满足不同真空度范围的测量,在低真空区间采用电容规,在高真空区间采用皮拉尼计。如果对真空度控制精度要求不高,可仅采用一只皮拉尼计来覆盖整个真空度范围的测量。 [/size][size=16px] (4)在低真空进气调节装置中,包含了手动减压阀、电动针阀、低真空度控制器和电动球阀。手动减压阀是将进气控制在一个较低的压力水平上避免进气流量波动的影响。低真空控制器根据电容真空计(或皮拉尼计)采集信号,分别调节电动针阀和电动球阀的开度来实现真空度的定点控制和程序控制。在低真空(如1kPa~101kPa)范围内必须进行真空度的程序控制,必须使烧结炉内的气压线性缓慢减小,以避免LK-99超导材料在烧结初期由于气压突变产生粉末扬尘现象,在气压低于1kPa后,可以采用定点控制方式。[/size][size=16px] (5)在高真空进气调节装置中,包含了压力调节器、微流量阀、电动针阀和高真空度控制器。在进行高真空度控制时,电动球阀和排气装置需要全部开启,仅靠调节进气端的微小流量变化来实现高真空度控制。在微小流量的调节过程中,高真空控制器根据真空计采集信号和设定值之差,驱动压力调节器和电动针阀进行压力和流量变化,最终与排气流量达到平衡而达到恒定。[/size][size=16px] 在烧结炉真空度控制中,还存在相应的温度控制以及材料放气等因素,这些都会影响真空度的控制精度和稳定性。因此在本文的解决方案中,相关部件的配置需要具有以下特性:[/size][size=16px] (1)在真空度测量过程中,皮拉尼计输出的电信号与真空度呈指数关系,因此为了准确进行高真空度的测量和控制,高真空度控制器必须具有输入信号分段线性化处理功能。[/size][size=16px] (2)真空度控制系统中的所有阀门和调节器,都必须具有较快的响应速度,所配的电动针阀、电动球阀以及压力调节器,都具有一秒以内的开闭调节速度。较快的响应速度,一方面是为了实现真空度的准确控制,避免温度波动等其他因素对控制稳定性的影响,另一方面主要是可以实现烧结炉的快速充气,以对LK-99超导材料进行快速冷却。[/size][size=16px] (3)真空度控制器需具有PID自整定功能和通讯接口,并配置有计算机软件,通过计算机可直接对控制器参数进行设置和驱动控制器执行真空度控制过程,可使真空控制系统很快与现有的真空烧结炉对接并开始烧结试验,无需进行复杂的控制程序编写,更是消除了控制器按键上繁复的手动操作。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过本解决方案的真空度控制系统,可在全量程范围内实现真空度的准确控制,整个解决方案表现出以下特点:[/size][size=16px] (1)真空度的准确控制,保证了烧结过程中环境条件的稳定性和重复性,避免了真空环境变化对材料烧结的影响。[/size][size=16px] (2)烧结超期的真空度程序控制,避免了粉体材料在气压突变时带来的扬尘现象,有效保证了烧结材料整体质量等相关性能的稳定性。[/size][size=16px] (3)多通道进气气体的配比控制和混合功能,结合相应的真空度控制,为超导材料烧结工艺的进一步探索提供了便利条件。[/size][size=16px] 总之,通过本解决方案,可使LK-99超导材料的制备工艺水平得到保证和提高,并为后续致密化和大尺寸LK-99超导材料的指标提供了工艺保障。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 寻找一种测定气氛的仪器

    现在欲寻找一种能够在管式炉,或者其他炉中(用于固相烧结用)测定气氛的仪器,希望哪位高人能指点一下,有的买的话本人愿意购买

  • 【原创】气体浮子流量控制系统产品介绍

    气体浮子流量控制系统一、操作便捷性:1、方便的气路快速连接口,简化了流量控制系统与其他设备的链接。2、配置有三种接口(宝塔式接口、双卡套式接口、KF式接口),方便组合多种连接方式。3、采用玻璃转子流量控制器,能只管地设定气体流量,方便使用。二、使用安全性:1、采用单向阀技术,使气体流量在可控压力范围内控制,保证安全。2、采用混气罐装置,使气体可以在充分混合后导入工作室内,确保不会泄漏。三、周边拓展性:1、该气体流量控制系统可搭配某些真空/气氛管式电炉及真空/气氛箱式电炉使用。2、该气体流量控制系统可与某些的真空控制系统组合使用。

  • 【求助】想配可控温的池架和相关附件

    最近需要做荧光动力学方面的东西,需要配置可控温的样品架和相关附件,不知道哪些公司可以做这些东西?大家帮帮忙出些建议吧。(单位的荧光光谱仪是瓦里安的Cary)

  • FPD柱子流量不可控

    FPD检测器,1701柱子,一开机器,分流出口前一直漏气,调节柱子流量一直升高,不可控制,柱子流量升到18,关机后进样口维护后,柱子也重新连接后,问题还是没解决,求助大家,还有什么原因导致的,机器是盘诺的A60

  • 变压器原边采用可控硅调压行的通吗?

    变压器原边采用可控硅调压行的通吗?  我想做一个简易的烘干器,用一段电炉丝作发热元件,按电阻丝的额定电流计算出额定电压应为5V左右,本来想在二次侧用可控硅调压,触发元件为moc3041,后来一查资料,moc3041的过零检测电压高达3V-20V,这个方案只好作罢。我现在想把调压装置做在变压器原边,还用过零触发方式,但我一直没找到相关的资料,不知道可不可以,很想向懂行的朋友请教一下。

  • GB 21455-2013 转速可控型房间空气调节器能效限定值及能效等级

    标准号:GB 21455-2013现 行 http://www.spsp.gov.cn/images/newbtn01.gif中文名称: 转速可控型房间空气调节器能效限定值及能效等级英文名称:Minimum allowable values of the energy efficiency and energy efficiency grades for variable speed room air conditioners中标分类:F01ICS分类:27.010标准分类编号:CN页数:7发布日期:2013-06-09实施日期:2013-10-01作废日期: - -被替代标准:代替标准:GB 21455-2008引用标准:GB/T 7725;GB/T 17758采用标准:起草单位:中国标准化研究院归口单位:全国能源基础与管理标准化技术委员会标引依据:国家标准公告2013年第9号补充修订:备注:范围:本标准规定了转速可控型房间空气调节器的能效限定值、节能评价值、能效等级、试验方法及检验规则。本标准适用于采用空气冷却冷凝器、全封闭转速可控型电动压缩机,额定制冷量在14 000 W及以下,气候类型为T1的转速可控型房间空气调节器。本标准不适用于移动式空调器、多联式空调机组、风管式空调器。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制