当前位置: 仪器信息网 > 行业主题 > >

颗粒稀释器

仪器信息网颗粒稀释器专题为您提供2024年最新颗粒稀释器价格报价、厂家品牌的相关信息, 包括颗粒稀释器参数、型号等,不管是国产,还是进口品牌的颗粒稀释器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒稀释器相关的耗材配件、试剂标物,还有颗粒稀释器相关的最新资讯、资料,以及颗粒稀释器相关的解决方案。

颗粒稀释器相关的资讯

  • 生态环境部发布《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)》等两项国家生态环境标准征求意见稿
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》等法律法规,规范环境空气颗粒物来源解析工作,我部组织编制了《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则》等两项国家生态环境标准,现公开征求意见。征求意见稿及其编制说明可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见建议。请于2024年2月29日前将意见书面反馈我部,电子版材料请同时发送至联系人邮箱。  联系人:生态环境部大气环境司谢燕红  电话:(010)65645562  传真:(010)65645567  邮箱:daqichu@mee.gov.cn  地址:北京市东城区东长安街12号(邮编:100006)  附件:  1.征求意见单位名单  2.环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)  3.《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)》编制说明  4.环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)  5.《环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)》编制说明  生态环境部办公厅  2024年1月26日  (此件社会公开)
  • 液体颗粒计数器解决高粘度光刻胶检测方案深度剖析
    在微纳米制造领域,高粘度光刻胶作为精密图形的关键转移媒介,其纯净度直接关系到最终产品的性能与良率。针对这一挑战,我们精心设计了基于先进液体颗粒计数器的检测方案,旨在精准捕捉并量化光刻胶中的微小颗粒,确保生产过程的无瑕衔接。1、方案背景:随着半导体工艺步入纳米时代,对光刻胶的洁净度要求达到了前所未有的高度。传统检测方法在面对高粘度、低流动性的光刻胶时,往往力不从心,难以有效分离并计数微小杂质。因此,开发一种高效、准确的检测方案显得尤为迫切。2、检测仪器亮点:本方案采用的液体颗粒计数器,集成了高精度激光散射技术与智能算法,能够轻松穿透高粘度介质,精准捕捉直径小至亚微米的颗粒。其独特的流路设计与温控系统,确保了检测过程中光刻胶的稳定流动与均匀分散,有效避免了因粘度差异引起的测量误差。3、检测步骤详解:1)样品预处理:采用特制稀释剂与搅拌装置,确保光刻胶均匀稀释至适宜粘度,同时减少气泡生成。2)自动进样:通过精密泵送系统,将处理后的光刻胶样品平稳送入计数器检测室。3)实时检测:激光束在样品中穿梭,散射光信号被高灵敏度探测器捕捉,转化为颗粒大小与数量的精确数据。4)数据分析:智能软件即时处理数据,生成直观报告,包括颗粒分布图、浓度趋势等关键信息。4、数据结果解读:检测结果不仅反映了光刻胶的即时洁净状态,还为工艺优化提供了宝贵依据。通过持续监测,可及时发现并纠正潜在污染源,保障生产线的稳定运行。5、注意事项:-确保检测环境无尘、恒温,以减少外界干扰。-样品处理时需严格控制稀释比例与搅拌时间,避免引入新污染源。-定期校准仪器,保证测量结果的准确性与可靠性。
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION® 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • AAV基因治疗产品亚可见颗粒分析方法简述
    生物制药如治疗性蛋白质、疫苗、基因与细胞治疗是一个不断快速增长药物领域。生物制药原料药和药品中蛋白质聚集体和不溶性颗粒是需要充分评估和控制的杂质,因为它们有可能引发免疫原性反应,影响产品的安全性和有效性。中美药典中现行的颗粒定义是10-100 nm为蛋白寡聚体,0.1-1 μm为亚微米颗粒/纳米聚集体,1-100 μm是亚可见颗粒/微米聚集体,∽100 μm是可见颗粒。目前基因治疗产品亚可见颗粒分析方法可参考USP787、788和789对治疗性蛋白质注射液和眼科溶液中亚可见颗粒的规定。对于含量超过100mL容器中的治疗性蛋白质注射剂,总颗粒数≥10 μm的颗粒≤6000,对于≥25 μm颗粒≤600。 不同于治疗性蛋白质产品,基因治疗产品大多采用病毒作为载体包括腺病毒(AdV)、腺相关病毒(AAV)或慢病毒(LV)、溶瘤病毒等,所以细胞、病毒和脂质纳米颗粒等递送载体本身就是颗粒,可通过大小、形态、含量和浓度的分析技术来表征。这些基于病毒载体的基因治疗产品剂型主要是注射剂,相关质量标准可参考生物大分子药物不溶性颗粒技术要求。但由于病毒颗粒异质性和复杂性,以及对最终产品的有效性和安全性可能影响,如降低病毒的转导效率和诱发免疫原性反应等,所以需要多种不同技术和方法联合使用,实现更全面更准确的基因治疗产品颗粒表征。以rAAV载体的基因治疗产品为例,病毒颗粒本身是无包膜的,二十面体结构,直径约为25nm,可形成各种不同大小的变体和聚合形态。AAV大小变异体和聚集体可增加临床实验的免疫原性,较大的AAV聚集体在转导细胞效力方面可能降低,进而改变产品疗效。目前有多种技术来表征相关产品溶液中颗粒大小,从纳米级到肉眼可见级别,对于不同粒径大小的颗粒可采用不同技术进行分析表征。对于纳米级别颗粒,可采用动态或静态光散射(Dynamic or Static Light Scattering)、SEC-HPLC、电镜(EM)、原子力显微镜 (AFM)、分析型超速离心机(AUC)、纳米颗粒跟踪分析技术(NTA,Nanosight)和非对称流场流动分级(A4F)等;对于微米级别颗粒,可采用光阻法(LO)、微流成像颗粒分析技术(MFI)、库尔特颗粒计数(Coulter counter)等。可见颗粒可采用拉曼/红外显微镜、荧光显微镜或目测法等。可用于AAV颗粒分析的代表性方法参考下图。颗粒分类中亚可见颗粒是一种聚集形式,经历了相分离并变得不溶。多个国家药典规定注射剂亚可见颗粒物检测采用光阻法(LO)和显微计数法。其中光阻法只能计数颗粒大小和数目,不能看到颗粒形态。美国药典1787推荐了微流成像颗粒分析技术作为大小和形态表征重要的方法。同时推荐在保质期内应该评估产品中2-10 μm亚可见颗粒的范围和水平,10 μm以下颗粒总数分成两组≥2-5μm和≥5-10μm来统计。2021年中国食品药品检定研究院发表文章,详细比较了微流成像颗粒分析方法和光阻法对17种单克隆抗体的亚可见微粒分析结果,显示了微流成像颗粒分析技术在准确性方面具有优势,未来可能用于放行质量控制和稳定性研究。代表性亚可见颗粒分析方法介绍微流成像颗粒分析方法(MFI):技术原理是待测样本在流经样本检测池过程中,在固定的检测窗口处,采用高频成像检测器动态连续检测样本中颗粒物,获取一系列的数据照片,最终通过软件对所获取的颗粒物照片进行分类和计数分析。核心技术是通过精确地控制样本检测池中的流速,配合静态的图像捕获,使相邻两次成像检测液柱无重叠,从而避免对样本颗粒的重复计数,同时需要保证85%以上样本实现了颗粒成像检测,配合全景深立体成像,保证所有检测到的颗粒都在景深范围内,实现对颗粒大小检测准确性。该方法提供了样本中颗粒真实图像的原位条件,对捕获的数字图像进行分析,实现了颗粒的可视化、计数、大小调整和表征。还可根据颗粒图像、对比度和形状,可能指示颗粒的来源和类型如蛋白聚集、硅油、气泡和纤维等。与图像数据库联合使用,可识别一些颗粒,有助于了解污染源和产品性质。与光阻法和显微计数法相比,缩短了分析时间,具有更高重复性和分辨率。满足2-10 μm范围内亚可见颗粒分析需求。光阻法(LO)介绍:被检测的液体通过专门设计的流通室,与液体流向垂直的入射光束由于被液体中的粒子阻挡而减弱,从而使传感器输出的信号变化,这种信号变化与粒子通过光束时的截面积尺寸成正比。这种比例关系可以反映粒子的大小。每一个粒子通过光束时引起一个电压脉冲信号,脉冲信号的多少反映了粒子的数量。光阻法检测颗粒范围为1∽300 μm(USP 40)。以光阻法为原理设计的微粒检测仪主要包括取样器、传感器和计算机控制的检测和数据处理系统。不同设备测量粒径范围涵盖了2∽100μm,检测粒径浓度为0∽10000个/ml,取样体积为0.2∽100 mL。符合药典对大小容量注射液和粉针剂不溶性微粒检测需求。其主要优势是可直接观察溶液中颗粒,具有大量历史数据的药典推荐方法。操作简单可进行中高通量检测。劣势是对比度低,可能会低估制剂配方中形成的不可见蛋白质颗粒,对气泡敏感,某些脱气技术会改变样本性质,更重要的只适合表征颗粒大小和分布,不能通过形态来分析颗粒。电感应区检测方法:基于库尔特原理检测颗粒,可检测0.4∽1600μm范围内的颗粒(不同商业化库尔特颗粒计数及粒度分析仪有变化)。稀释悬浮在电解液中的样本颗粒通过小孔管时,取代相同体积的电解液,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,从而中断电场,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。 信号响应不受颗粒类型的影响(如颜色、硬度、不透明度和折射率变化)。本技术优势不受溶液光学特性的影响,可实现单孔中高通量样本检测。劣势是需要大样本体积,需要较低颗粒浓度,有时样品必须在电解质溶液中稀释获得足够电导率,可能会改变样品性质。同样也不能提供形态学参数。显微计数法:采用光学显微镜(LM)检测和分析颗粒,光在样品上透射或反射后通过一系列透镜,直接采用目镜观测,或数码相机采集信号成像。图像分析可使用软件系统,按照一定参数对颗粒群体进行分析。优势是可直接观察溶液中颗粒,可视化计数颗粒大小和数目,并鉴别颗粒形态。可与红外或拉曼计数整合来鉴定颗粒化学组成。但劣势是人工分析费时费力和通量低,难以看到低光学对比度颗粒,自动化程度低。颗粒鉴定表征可采用傅里叶红外光谱(FTIR)显微镜、显微拉曼光谱和扫描电镜-能谱分析(SEM-EDS)等技术,本文不做深入论述。基因治疗产品亚可见颗粒分析案例鉴于不溶性微粒研究在生物制品中重要性,有必要深入研究病毒为载体基因治疗产品中病毒颗粒聚集体和不溶性颗粒形成原因,并找到相应的解决方案来提高基因治疗产品的研发和质量控制水平。以下案例简要说明基因治疗产品亚可见微粒分析方案。AAV生产超滤工艺中颗粒监控AAV生产过程中超滤环节将AAV浓缩并置于最终制剂配方缓冲液中,作为生产工艺中关键步骤,需要深入研究和加深对AAV载体超滤的理解。美国Voyager Therapeutics公司研究超滤膜截留分子量和操作条件对复合再生纤维素(CRC)超滤膜的通量和传输的影响,采用AAV2和AAV9两个血清型病毒载体,以及对AAV超滤行为的定量理解,并指导工艺开发。利用微流成像颗粒分析方法(MFI)研究病毒浓缩超滤工艺开发过程中产生的亚可见颗粒,当通过CRC超滤膜时,膜截留分子量和操作条件对通量影响。下图结果展示1到10μm之间颗粒采用MFI检测时存在明显差异。两个批次A和B实验,对于特定的膜批次,当处理时间较长时,亚可见微粒浓度较高。与较低TMP 6.5 psig相比,当采用更高TMP(20 psig)进行超滤时,亚可见微粒浓度降低。这归因于较低TMP下超滤时,泵通过管道和通道次数增加导致。本研究可指导超滤工艺的条件设置。MFI系统具备自动进样系统,可一次自动检测多达90个样本,非常适合AAV生产过程中工艺优化。不同渗透率RC2A膜超滤的AAV2样本的不同大小颗粒评价,上图批号Lot A样本,下图Lot B样本AAV基因治疗产品稳定性研究制剂配方中AAV长期稳定性和密封容器封闭的完整性是冷冻产品两个关键方面。为了最大限度地减少化学和物理降解,也为了长期存储和运输,AAV原料药和产品制剂通常冷冻在≤-60 °C下,有时允许产品制剂短期存储在医院的2-8°C冰箱中。在制造、贴标签和临床使用过程中会在室温和冷藏条件下发生冻融循环。除了长期稳定性外,在外暴露期间AAV的稳定性也很重要。不同AAV血清型和制剂配方差异导致这期间的稳定性也会有所不同,所以在制剂配方早期开发过程中获得数据来确认AAV在制造、贴标签和临床使用期间将保持稳定是有意义的。为了研究温度、存储时间和冻融率对AAV8和AAV9稳定性的影响,美国REGENXBIO公司研究低浓度和高浓度AAV8和AAV9病毒在五个冻融循环中,预期存储以外时间的稳定性,考察病毒关键质量属性变化情况。下图是采用数字PCR检测病毒载体基因组浓度(GC/mL),结果显示病毒效力和浓度在方法误差范围内保持稳定。采用光阻法检测亚可见微粒(Particles/mL ≥10 μm)。左边第1列是配方F1中AAV8,第2列是配方F3中AAV8。每个小图中左边一对柱状图是低浓度结果和右边一对柱状图是高浓度结果。对照组标记为Cont.和累积预期存储时间外暴露样本标记为TOIS。实验结果显示TOIS后颗粒数非常低,≥2 μm的颗粒≤78个/mL,≥10μm的颗粒≤10个/mL,≥25μm的颗粒≤2个/mL,和≥50μm的颗粒0个/mL。在本研究设定实验条件下,结果表明AAV8和AAV9产品质量属性保持在可接受范围内,稳定性适合用于生产和临床使用。作者认为光阻法有局限,可能低估了半透明的蛋白质颗粒和病毒聚集体颗粒,后续研究需要采用微流成像技术对亚可见颗粒进行表征和稳定性研究。同样研究冻融条件对病毒载体稳定性影响,美国堪萨斯大学疫苗分析和制剂中心科学家(Vineet Gupta,2022,Journal of Virological Methods)研究了淋巴细胞性脉络丛脑膜炎病毒(LCMV)载体稳定性,使用TEM、NTA和MFI三种互补的病毒颗粒表征技术研究病毒载体在冻融应激下稳定性。4种不同制剂配方(Form 1-4)在0、3和6个冻融循环条件下亚可见颗粒变化,研究冻融对病毒载体稳定性影响。参考下图,结果证明了通过MFI可检测到样本中存在大量的亚可见微粒。揭示某些制剂(制剂F1和F3)病毒载体亚可见颗粒浓度与病毒载体滴度损失之间存在负相关,制剂配方2和4没有变化。与上述研究类似,Kumru等2015年观察到在冻融循环时,特定配方中溶瘤单纯疱疹病毒1的体外效力值和亚可见颗粒浓度之间呈现负相关。基于多项研究,不同制剂配方中观察到结果可能有所不同,所以在评估病毒感染能力和稳定性时,需要同步进行亚可见颗粒研究。综上所述,基因治疗产品在研发、生产、存储等多个工艺过程中需要持续监测样本中颗粒情况,从早期到晚期开发阶段都需要监测颗粒的动态变化过程,探索研究病毒聚集体和颗粒产生的原因。可采用多种不同分析检测技术联合使用,针对纳米级和微粒级颗粒进行全范围覆盖。特别是参考中美药典对不溶性颗粒检测规定,借鉴生物大分子蛋白质药物颗粒分析经验,不同方法优势互补,采用光阻法、显微计数法和微流成像颗粒分析方法(MFI)对亚可见微粒进行深入研究,分析基因治疗原料药和药品中颗粒形成原因,可用于优化病毒载体生产和纯化工艺、筛选合适制剂配方和存储条件,提高产品质量稳定性和安全性,保证产品疗效。索取资料请扫上方二维码参考文献:Alexandra Roesch, Sarah Zolls, et al. Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. Journal of Pharmaceutical Sciences(2021) 1−18于雷,裴德宁等. 基因治疗产品中病毒颗粒的微粒特性研究. 药物分析杂志 Chin J Pharm Anal 2020,40(1)Andrew D.Tustian, Hanne Bak. Assessment of quality attribute
  • 海水中的纳米颗粒
    纳米科技在为现代生活提供各种高性能产品的同时,也对环境造成了严重的负担。之前的文章中,我们一起学习了饮用水、湖泊水、废水等水体中的纳米颗粒的单颗粒ICP-MS的测定过程,了解到纳米颗粒的无处不在。那么“大海啊,全是水”的海水中,是不是也一定存在着纳米颗粒呢但是,海水和其他水体不一样,含有更多的“盐分”,也就是基体不同。通常,在ICP-MS 分析中,分析之前需要稀释具有较高基体的样品,以免对仪器产生影响。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度(例如溶解有机质(DOM)和离子强度)对其具有极大影响。因此在处理纳米颗粒时,稀释可能触发转化,这意味着获得的结果可能无法准确反映样品中纳米颗粒的初始状态。为降低环境样品或其他高溶解固体含量样品在分析前稀释的必要性,PerkenElmer提供了适用于NexION系列ICP-MS(5000/2000/1000/350/300)的全基体进样系统(AMS)。这套系统包含一个耐高盐雾化器和一个带有氩气稀释气接口的雾室。稀释气的流速由独立的氩气通道控制,气流方向与雾化气流向垂直,以获得最佳的混合效果。可获得高达200倍的稀释比,避免了离线手工稀释的繁琐操作和随之而来的污染和误差。对于不需稀释的样品,只需将稀释气关掉,无需取下稀释气管路。借助AMS系统,对无需稀释的样品和需要稀释200倍以内的样品分别进行分析之间,无需对仪器再次进行参数优化。本文中,我们将探索模拟海水样品中金纳米颗粒的分析,并利用AMS 功能避免人为稀释,并讨论仪器配置条件对单颗粒ICP-MS进行精确和准确颗粒分析的影响。样品在超高纯(UHP)水中以1,2 和3 ppb 浓度制备离子金(Au+)标准品,并且在超高纯水中按60000 颗/mL制备60 nm 的金纳米颗粒标准品(NIST 8013)。使用标准参考物质(CASS-6,加拿大国家研究委员会)制备海水样品,并掺入60000 颗/mL的60 nm NIST 金纳米颗粒。在分析之前不进行进一步的样品稀释。实验所有分析均在NexION 2000 ICP-MS 上进行,并使用表1 中所示的进样附件和参数。全基体进样系统(AMS)的气流量设定为0.4 L/ 分钟,即10 倍稀释,可在未经任何人为稀释的情况下分析未稀释的海水,从而简化样品制备,并确保样品基体中纳米颗粒的完整性。实验结果如下图所示,在几种不同的AMS 气流量下精确确定NIST 60 nm 金颗粒的粒径,证明如果使用相应的离子校准,AMS 不会影响粒径测量的准确度。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响将金纳米颗粒分别添加到海水和去离子水样品中并进行测量。下图显示了添加到海水和去离子水中的60 nm纳米颗粒的粒径分布,两者基本没有差异。结果表明,适当的仪器参数设置和AMS降低了基体效应,从而能够在复杂的环境基体(如海水)中进行准确精准的纳米颗粒测量,而无需与离子校准标液进行基体匹配。这种能力简化了流程,增加了可用性,最重要的是,由于消除了液体稀释的需要,可在分析样品中获得纳米颗粒的准确结果。未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布结论使用配备了全基体进样系统(AMS)的PerkinElmer的NexION 2000 ICP-MS,可以无需考虑用水稀释导致的纳米颗粒状态的转化对于测量结果的影响,精确测量海水(典型的复杂基体)中纳米颗粒粒径大小和浓度,无需手工稀释样品。想要了解更多详情请扫描二维码《使用全基体进样系统和单颗粒ICP-MS快速测定海水中纳米颗粒》
  • 2020年颗粒测试与表征仪器新品盘点(23款)
    2020年伊始,新冠疫情爆发,全球经济被按下了“暂停键”。疫情期间,科学仪器企业伸出援手共同抗疫的同时,也在苦练内功、研发新品,迎接“春天”的到来。纵观2020年中国颗粒测试市场,新产品层出不穷,创历年新高,仪器信息网特此盘点了20余款颗粒测试与表征仪器新品,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)2020年,颗粒测试与表征仪器新品种类繁多,涉及纳米粒度仪及Zeta电位分析仪、图像粒度粒形分析仪、颗粒计数器、筛分仪、比表面及孔径分析仪、多组分竞争吸附仪、化学吸附仪等。纳米粒度仪及Zeta电位分析仪(1)马尔文帕纳科2020年8月,马尔文帕纳科发布Zetasizer Advance 系列新品,包括Zetasizer Ultra、Zetasizer Pro、Zetasizer Lab三种型号,且每种型号又分为Blue Label和Red Label 两个版本,均可进行颗粒粒度、Zeta电位和分子量分析。2021年1月15日,马尔文帕纳科超级品牌日将线上直播发布 Zetasizer Advance,具有多种创新设计的新品即将揭开神秘面纱,点击下方图片查看详情。(2)HORIBAViewSizer 3000ViewSizer™ 3000 实现了纳米颗粒追踪分析技术的突破性提升,包括特有的照射和检测方法,使得各种尺寸纳米颗粒的可视化、粒径和数量浓度测量成为可能。仪器创新点:1)仪器配备三种波长激光光源,激光功率可调,实现宽分布样品粒径的精确测量;2)特有的样品池设计可实现样品体系的快速混合,且清洗方便;3)荧光模块可实现样品中各组分粒径分布及颗粒数量与比例的测量;4)运用重力沉降原理扩展仪器的粒径测量上限。(3)德国飞驰 A22 NeXTAnalysette 22 NeXT于2020年6月正式上市,用户可根据需求自行选择测量范围:Analysette 22 NeXT 微米型测量范围为0.5–1500μm,能满足大多数常规样品的测量需求;Analysette 22 NeXT纳米型测量范围拓展至0.01-3800μm,测量精度极高,附加的检测器能够灵敏地分辨极小的颗粒。该新品操作和清洗非常简单,分析时间短,具备可靠的测量结果和重复性,还可以记录额外的测量数据如湿法分散过程中体系的温度及PH值。(4)东曹 LENS3东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。仪器创新点: 1)采用了创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量;2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。(5)美国PSS PSS Nicomp 380 N3000 PlusNicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,相对于上一代产品,配件选用材料进行升级,配套软件版泵升级,检测速度升级,检测精度升级。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的 Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。(6)美国MAS CHDF4000型CHDF4000高分辨率纳米粒度仪采用毛细管流体分离技术(CHDF),用于测量粒径在5nm-2μm 范围内胶体的真实粒度分布(PSD),还可以用来分析多组分的复杂粒度体系,并不需要作出任何假设。另外,该粒度仪样品用量很少,小于1ml即可。 Zeta-APSZeta-ASP为一款高浓度胶体和乳液的特性参数检测仪,可以测试粒径、Zeta电位、滴定、电导等。此仪器对于高达60%(体积)浓度的样品,无需进行稀释或样品前处理,即可直接测量,甚至对于浆糊凝胶、水泥以及其它仪器很难测量的材料都可直接进行测量。 ZetaFinder ZF400型ZetaFinder ZF400 高浓度Zeta电位分析仪采用专门的电动声波振荡技术,可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。该仪器可同时测量Zeta电位、PH、电导、温度等指标,样品在测量时甚至可以进行滴定操作,并且可以在任何pH值下分析固体、不透明或半透明样品。(7)丹东百特 BT-90+BT-90+纳米粒度仪是丹东百特在BT-90纳米粒度仪基础上,全新开发的测量纳米颗粒粒度及其分布的纳米粒度测试系统,可实现亚纳米至微米范围的准确检测。BT-90+具有极佳的功能扩展能力,除了可以检测颗粒的粒径之外,还具备检测体系的粘度、颗粒之间的相互作用力、温敏材料的温度变化趋势等能力。(8)广州贝拓DLS 90DLS90纳米粒度仪具有极速测量和标准测量两种模式,极速测量模式下,最快可以10s给出测量结果。该仪器采用光子计数级的高精度光电倍增管和集成的光子相关器,配备精确的温控系统,采样时间最短可达100ns,可测量粒径范围低至1nm图像粒度粒形分析仪(1)FlowCam FlowCam 5000CFlowCam 5000C是Fluid Imaging Technologies公司于2020年3月发布的新品,该仪器可通过40+种形态参数表达所测颗粒的尺寸和形状,获得高质量颗粒图像和基于图像直测获得的定量数据,每分钟可分析成千上万个颗粒,是一款高效率、高性价比的颗粒检测仪器。(2)梅特勒-托利多 EasyViewer 400梅特勒-托利多全新发布的EasyViewer 400是一款探头式工具,功能更加强大、分辨率更高、探头尺寸更长,为测量高浓度体系、更小颗粒、透明液滴和颗粒、中试放大提供高效解决方案。该工具无需取样、稀释或备样,测量快速,简单易用,可一键生成报告,具有高分辨率(980nm)、更窄景深、背光光源三大亮点。无论是实验室研发还是中试放大,均可实时在线捕捉高分辨率晶体、颗粒和液滴尺寸、形貌的演变过程,对于科研人员理解机理、优化过程、快速决策扮演着重要的角色,广泛应用于制药、化工等多种领域。颗粒计数器(1)美国PSS FMS AccuSizer 780 OL-NDFMS AccuSizer 780 OL-ND 在线颗粒计数器使用基于光阻法的单颗粒光学传感技术(SPOS)原理,对检测样本不仅仅可以给出粒度分布(PSD),更可以获得颗粒数量(COUNT)。该仪器全自动化工作,无需人工进样,完美解决了自动取样和自动检测两大难题。(2)德国TOPAS LAP 323LAP-323气溶胶粒径谱仪利用双波长光散射技术测试颗粒物粒径和数量分布,采用两个不同波长的激光二极管对颗粒进行测试,分辨率更高,结果数据更准确。此外,该设备还具有集成度高、智能化流量控制、设计紧凑、使用便捷等特点。筛分仪格瑞德曼 AJ200空气筛分仪AJ200适用于颗粒样品的粒度分离、团聚样品的分散,该产品具有特殊喷嘴设计,转速可调,适用于更加广泛的应用条件。创新点:1)气流喷嘴可以转动,保证样品充分流动;2)真空度可手动或自动调节气流压力,确保不同颗粒粉末准确结果 ;3)德国吸尘器,超低静音,功率大效率高。比表面及孔径检测类仪器(1)麦克仪器 ASAP 2425ASAP 2425多站式全自动比表面与孔隙分析具有六个独立分析站,不同于市面上大多数仪器,可同时分析样品,也可独立分析,可在一小时内完成六个BET比表面分析;拥有12个独立的样品脱气站,即一个样品的制备不会影响另一个样品的脱气和分析。用户可选配低比表面积型号(氪气分析)和微孔型号,其中,低比表面积型号可精确测量低表面积材料( 1 m2/g);微孔型号则包括1mmHg 传感器,增强了微孔表征性能。(2)精微高博 TB系列TB系列比表面积及孔径同步分析仪在使用过程中,多个样品共用同一杜瓦瓶、同一气源进行测试分析,可保证分析测试的准确性和重复性,真正实现多站间无差异化分析。独有的Vtech技术融合了Vspace冷自由空间控制技术、Vlevel液氮面控制技术、Vstable稳定测试技术、Vctrl防抽飞控制技术,使得TB系列产品的测试效率更高,测试结果更重复、更稳定,更能满足大孔材料的测试需求。(3)贝士德 BSD-MAB该吸附穿透曲线分析仪自带的热导检测器可测定不同实验条件的双组份的吸附穿透曲线,如不同吸附剂,不同温度,不同压力,不同床层厚度,不同气体浓度,不同穿透流量等;连接色谱或质谱可完成三组分及三组分以上的多组分竞争性吸附、选择性吸附以及置换吸附等测试;可实现吸附剂对ppm级别浓度的TVOC、SO2及NH3等污染气体的吸附测试,尤其适用于吸附剂对室内、车内等环境中微量污染气体吸附性能的评价及吸附相关参数的测定。(4)理化联科 iPore400iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理,可代替氪吸附完成超低比表面样品的测定,为医药行业尤其是进入药典的药品、电池材料以及3D打印常用金属粉末等超低比表面样品的测试,提供全新解决方案,同时还可以对膜的孔径进行测定。 iPore600iPore 600型能在测定3个微孔样品的同时,独立地对另外六个样品进行脱气,具有两套独立的真空系统,适合高校及研究单位对超微孔材料和微介孔材料的比表面及孔径进行精确分析,可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。 iChem 700iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪,连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度进行检测。
  • 贝克曼库尔特颗粒特性分析技术讲座举办
    仪器信息网讯 2012年5月23日,为了给用户提供一个了解颗粒特性分析技术最新动态和交流使用心得的平台,贝克曼库尔特在清华大学环境学院成功举办了“颗粒特性分析技术讲座”,贝克曼库尔特高层携公司相关技术专家出席了会议,为40多位颗粒特性分析工作者作了精彩的讲解;仪器信息网作为特邀媒体应邀参加。 会议现场 贝克曼库尔特分析仪器产品全球市场经理THOMAS ED HORTON先生(左)和分析系统市场专家HANDY YOWWANTO先生(右)出席会议 贝克曼库尔特中国及东南亚区域颗粒特性分析部市场营运经理马怍楠主持会议 贝克曼库尔特颗粒特性分析部技术应用经理MATTHEW RHYNER博士   贝克曼库尔特微粒表征产品系列概述   MATTHEW RHYNER博士首先介绍说:“贝克曼库尔特微粒表征产品涉及Z + MultisizerTM系列库尔特计数器、LSTM系列激光散射粒度分析系统、DelsaNanoTM纳米粒子分析仪、XLA/XLI超速分析离心机和SA3100比表面分析仪等,主要为具有粒度、电荷、浓度和孔隙度等特性相关需求行业和学术界的客户提供解决方案”。随后,MATTHEW RHYNER博士就这五类产品的技术优势应用领域做了系统的阐述。 贝克曼库尔特颗粒特性产品重大里程碑展示   四大颗粒表征方法的技术优势和典型应用   MATTHEW RHYNER博士分别详细介绍了激光衍射法、库尔特法、动态光散射法和zeta电位的测试方法、常见问题、技术优势和典型应用。   (1) 激光衍射法   MATTHEW RHYNER博士讲到:“激光衍射法是一种测量粒度的方法,是世界上最流行的粒度测量技术,可以为用户提供快速和一致的结果,并且在能想象到的几乎每个行业中都有所应用,如药品乳剂、粉末涂料、咖啡、化妆品、调味品、污水等行业领域”。 LS系列激光粒度分析仪   贝克曼库尔特LS系列激光粒度分析系统是基于此原理制造的,该仪器的激光器为先进的高功率光纤连接固体光源,寿命长 可同时采用4个波长(450nm,600 nm,780 nm及900 nm)及背散射测量 干法样品台采用最先进的“龙卷风”系统及设计,“快速气流变换“技术配置无须早期设计之空气压缩机,模拟龙卷风产生机理,产生高度剪切力以达至最佳而非破碎性分散效果。   (2) 库尔特法   MATTHEW RHYNER博士讲到:“库尔特法由库尔特先生于1948年发明,并于1953年10月20日取得专利权,是一种独特的非光学方法,用于对稀释的导电液体中存在的物质进行粒度分析,在过滤效率、干细胞、蛋白质聚集体、体外诊断体液、细胞水肿动力学、海水等领域有着广泛的应用前景。”   贝克曼库尔特生产的Multisizer 3颗粒计数仪正是基于此原理制造的。该仪器适用于分析颗粒、细胞、微生物等 可分析光学技术不能检测之浓度极低样品,如水样品。细菌等 具备精确体积测量泵,可作定量分析,而且不受颗粒形状、颜色及光学特性(折光率与吸光率)的影响,实时提供颗粒计数与粒度分布,分辨率高。 Multisizer 3库尔特颗粒计数仪   (3) 动态光散射法和zeta电位分析法   MATTHEW RHYNER博士讲到:“动态光散射是一种用于估计非常小物体直径的技术,可检测的最小粒子粒度为0.6nm-7μm,在纳米粒子和生物样品分析方面应用广泛,适合分析球形粒子,难于分析圆柱形粒子。”   “zeta电位是一种用于计算粒子在溶液中所带电荷的参数,是根据物体的电泳淌度计算而来,可以对样品进行定性比较、测定等电位点、鉴定涂层的效果或质量。” DelsaNano系列纳米粒度/Zeta电位仪   与上述表征方法相关的贝克曼库尔特的仪器是DelsaNano系列纳米粒度/Zeta电位仪是基于这两种方法制造的。它的主要特点是:该仪器采用了高灵敏度技术,可以测量高浓度样品和极低浓度样品的Zeta电位以及纳米粒度,不需前处理,浓度动态范围达四个数量级。 现场讨论   另外,讲座会还特设了颗粒分析技术问答环节,参会者积极讨论,增强了仪器用户与厂商专家的互动,取得了良好的效果。清华大学环境学院高工郭玉凤女士(上图中间位置),在讲座上积极参与讨论,对整个讲座的用户交流起到了积极的推动作用。 贝克曼库尔特高层与参会用户合影留念   附录:   http://www.instrument.com.cn/netshow/SH100336/   http://www.beckmancoulter.com.cn/
  • 珀金埃尔默发布LPC 500 液体颗粒计数器新品
    简介LPC 500™ 液体颗粒计数器是一个单颗粒光学粒度分析(SPOS)系统,旨在以高分辨率对单个颗粒进行计数和粒度分析。SPOS 技术被设计用于检测通过一个非常薄的“光学传感区”的单个颗粒。用在油样检测时,无论是高粘度还是低粘度样品,通常都只需要消耗3 到4 mL10 倍稀释后的样品,即可得到可重复的结果,同时降低清洗溶剂消耗、减少溶剂浪费。LPC 500 硬件LPC 500 系统由三部分组成:光学传感器、多通道脉冲分析仪(MPA)和软件控制器。在分析过程中,液体通过光学传感器进行检测,产生脉冲电压,并由MPA 转化为粒度分布(PSD)。在LPC 500 软件中实时显示高分辨率的PSD:每个通道(8 到512)的绝对计数与直径,在光学传感器覆盖的总尺寸范围内(0.5 到400 微米)以对数间隔排列。其他衍生分布(微分和累积分布)?基于数量、面积和体积加权?根据测量的颗粒数分布计算。LPC 500 光学传感器LPC 500 光学传感器使用单颗粒光学粒度分析(SPOS)技术。这项技术被用于在单个颗粒通过一个非常薄的“光学传感区”时检测特定尺寸范围内的单个颗粒。传统上使用两种物理方法来实施SPOS 技术?消光和光散射:• 消光(LE)法:这种方法测量携带悬浮在流体中的颗粒的流体通道传输的光强度的降低,这是由单个颗粒在光束中瞬间通过引起的。• 光散射(LS)法:这种方法是对LE 法的补充。这种方法测量由穿过光学传感区的颗粒散射引起的光强度的增加。组合法?消光+ 光散射:这是一个新开发的混合设计(美国专利US5835211A),将LE 法的优势(粒径范围大,对颗粒组成相对不敏感)与LS 法的优势(高敏感度?更低直径下限)结合在一起。这是通过结合LE 和LS 电子信号响应实现的,从而在一个颗粒通过传感器的光学传感区时产生一个单一的“求和”信号脉冲。LPC 500 多通道脉冲分析仪MPA 用来检测光学传感器产生的每个脉冲,测量它的高度(不论是在消光模式下还是在求和模式下),通过传感器校准曲线确定与该值相关的颗粒直径。然后将一个额外的“计数”添加到包含这个特定颗粒尺寸的直径“通道”中。处理电子设备以高速率执行此任务,允许颗粒计数/ 粒度分析速率超过10,000 个/ 秒。可用配置LPC 500 提供了两种配置:将LPC 500 与Avio® 500 电感耦合等离子体发射光谱仪油品系统相结合,用于组合磨损金属和颗粒计数的联用配置以及仅用于颗粒计数的LPC 500 独立配置。联用配置LPC 500 液体颗粒计数器与Avio 500 电感耦合等离子体发射光谱仪油品系统相结合能够对同一次进样的稀释后样品进行磨损金属分析以及颗粒计数和粒度分析。对于无需颗粒计数的金属分析,这项技术提供平均45 秒的样品分析时间,使用OilPrep™ 油稀释装置制备样品只需稀释少于1 毫升的样品。LCP 500 系统的所有特点和数据输出都集成到了Syngistix™ ICP 软件中。方法中可以启用或禁用颗粒计数,可以选择各种报告格式和颗粒计数尺寸,增加了测试的灵活性。LPC 500 计数器独立配置LPC 500 也可以作为一个独立的颗粒计数器,它的样品需求量更少、样品制备更简单,单个样品分析时长仅95 秒。与联用配置不同的是,独立LPC 500 由一个单独的软件包控制,允许对颗粒计数参数进行更多的自定义。最后,独立LPC500 计数器的占地面积是用于在用油品分析的所有自动独立颗粒计数器中最小的。总结LPC 500 液体颗粒计数器单个样品的分析时长仅约45 秒,稀释样品制备使用的样品少于1 毫升。此外,凭借紧凑型设计,它还能与Avio 500 电感耦合等离子体发射光谱仪油品系统轻松结合,节约优化宝贵的实验室空间。创新点:LPC 500™ 与ICP-OES联用将突破性的提供一次运行中同时完成计数和元素分析的解决方案,将原本两次检测才能完成的工作一次性完成,颗粒物计数与元素分析均在ICP软件控制下自动完成,整个过程仅需45秒。每次分析使用少于1 毫升的润滑油样品。同时也是行业中最小的自动粒子计数器。这套LPC 500™ 与ICP-OES联用方案已在申请专利,是珀金埃尔默研发的独家润滑油行业解决方案,有效提升工作效率,节省运营成本。 LPC 500 液体颗粒计数器
  • ICPMS-2030:单纳米颗粒分析一探究竟!
    纳米材料,这一看似离我们很遥远的微小粒子,其实已经出现在我们生活中的方方面面。例如具有广泛杀菌功效的纳米银在医疗卫生、医疗器械、纺织、涂料、日用品等方面有着广泛应用。在给我们生活带来便利的同时,纳米科技可能也是一柄双刃剑,对人类健康和环境存在危害的可能。 目前应用较为广泛的纳米材料多为金属、金属氧化物、以及纳米碳材料。大量的使用必将引起环境中的排放量日益增长,可能会对生态和环境造成破坏。 岛津ICPMS-2030能够对样品中的纳米粒子的成分、粒径大小及颗粒浓度进行分析,助您一探究竟! 仪器配置岛津电感耦合等离子体质谱仪ICPMS-2030系列 单纳米颗粒分析原理样品中的悬浮颗粒在进入ICP离子源时是不连续的,中间会有短暂的间隔,因此每个颗粒产生的离子云也是不连续的。当检测器高速采集数据时颗粒则会产生一个个不连续的脉冲信号。颗粒数量越多,则信号数量越多;颗粒越大,对应的信号强度则越高。对所测得的颗粒信号进行计算和统计,既能得到样品中颗粒的粒径信息。图1. 单纳米颗粒分析流程 样品前处理所有的纳米颗粒标品及试样通过超纯水进行稀释,稀释定容后超声分散20 min后马上进ICP-MS于时间分辨模式下采集信号。 样品分析 使用已知浓度的40 nmAuNPs(金纳米粒子)样品引入到ICPMS-2030中测试单颗粒信号。统计单位时间内测得的信号个数,并计算引入到仪器中的粒子总数。建立颗粒数量浓度同信号个数线性关系能够实现对未知样品中颗粒数量的测定。 表1纳米粒子信号-浓度计统计结果对地表水样品进行加标测试,向地表水中加入20 nm,40 nm,80 nm AuNPs分散液以及40、80 nm AuNPs分散液混合后进行ICPMS-2030测试,绘制样品粒径分布图。 图2.地表水样中不同粒径金纳米粒子(AuNPs)ICPMS粒径测试分布 结 论 使用岛津ICPMS-2030分析测定了地表水中金纳米粒子(AuNPs),具有灵敏度高,前处理简便等特点,能够快速得到样品中纳米材料元素构成,颗粒大小以及颗粒浓度等信息,为纳米材料的分析提供了一个新的思路。 撰稿人:刘子辉
  • 《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读
    单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。近期,国家纳米科学中心牵头制定了国内首项单颗粒电感耦合等离子体质谱法(spICP-MS)国家标准《GB/T 42732-2023 纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》。本文特邀国家纳米科学中心葛广路研究员、郭玉婷高级工程师对该标准进行解读。一、背景 目前,基于纳米技术或含有工程纳米颗粒的产品已广泛使用,并开始影响有关的行业和市场。因此,消费者可能直接或间接地接触到(除天然纳米颗粒外的)工程纳米颗粒。在食品、消费品、毒理学和暴露研究中,工程纳米颗粒的检测成为纳米颗粒应用潜在效益和潜在风险评估的必要部分,迫切需要建立产品、试验样品和环境等复杂基质中痕量纳米颗粒检测方法标准。二、标准概述本标准包括范围、规范性引用文件、术语和定义、缩略语、适用性、步骤、结果、测试报告8章内容和1个资料性附录。本标准描述了使用电感耦合等离子体质谱法(ICP-MS)在时间分辨模式下测定单个纳米颗粒的质量和悬浮液中离子浓度,检测水相悬浮液中纳米颗粒,并表征颗粒数量与质量浓度、颗粒尺寸及数均尺寸分布的方法。三、适用性本方法仅限用于纯纳米颗粒的水相悬浮液、材料或消费品的水相提取液、食品或组织样品的水相消解液、水相毒理学样品或环境水样品。非水相样品处理见标准参考文献。水相环境样品经过过滤和稀释,食品和毒理学样品经过化学或酶消解和稀释。将水相悬浮液中的颗粒数量或质量浓度与原始样品中的浓度联系起来需样品相关提取、效率和基质效应等信息,并由用户进行额外验证。四、主要技术内容本文选取原理、重要参数传输效率和响应值及线性的确定、结果计算方面部分重点内容进行讲解,详细内容及仪器设置、试样制备等相关内容与注意的事项参见标准原文。1 原理单颗粒电感耦合等离子体质谱(spICP-MS)是一种能够在非常低的浓度下检测单个纳米颗粒的方法,此方法适用于水相悬浮液中无机纳米颗粒的尺寸及数均尺寸分布、颗粒数量浓度与质量浓度,悬浮液中离子浓度的测定。将常规的ICP-MS系统设置为以高时间分辨率模式采集数据。水相样品连续进入ICP-MS中,雾化后,一部分纳米颗粒进入等离子体并被原子化和电离。每个原子化的颗粒相对应的离子团为一个信号脉冲。使用合适的驻留时间和适当稀释的纳米颗粒悬浮液,质谱仪可实现单个纳米颗粒检测,称为“单颗粒”ICP-MS。对纳米颗粒悬浮液进行稀释,以避免违反“单颗粒规则”(即在一个驻留时间内有一个以上的颗粒到达检测器)。由于离子团中的离子密度很高,其产生的脉冲信号远高于背景(或基线)信号。脉冲强度、脉冲面积与纳米颗粒中被测元素的质量,也即纳米颗粒直径的立方成正比(假定纳米颗粒的几何形状是球形)。单位时间检测到的脉冲数与待测水相悬浮液中纳米颗粒的数量成正比。2 确定传输效率引入的样品只有一部分到达等离子体,结果的计算需要知道传输效率。使用已知的纳米颗粒标准样品测定传输效率。如果没有可用的纳米颗粒标准样品,可以使用任何其他良好表征过的纳米颗粒悬浮液,重新计算稀释倍数和浓度。纳米颗粒尺寸已知,颗粒浓度未知时,结合分析一系列与纳米颗粒相同元素的离子标准溶液,确定传输效率。3 确定响应值及线性随着纳米颗粒的直径增大,信号响应值将按三次方增加,所以需要对纳米颗粒每种组成每种尺寸范围的响应进行验证。校准最好使用纳米颗粒标准样品,无法获得这样的标准样品时,在相同的样品分析条件下,使用被测元素的离子标准溶液进行此步骤中的校准。分析离子溶液的标准工作液,用线性回归法确定校准曲线的相关系数,校准函数的斜率,即为ICP-MS响应值。4 结果计算4.1 检出限的计算由空白对照样品中的颗粒数量确定颗粒数量浓度检出限,结合平均颗粒质量,计算质量浓度检出限。由刚好能从背景中区分出来的脉冲信号强度决定颗粒尺寸检出限。4.2 颗粒浓度和尺寸、离子浓度的计算由时间扫描中检测到的脉冲数、传输效率、样品流速计算水相样品中的颗粒数量浓度;样品中颗粒信号强度、离子标准溶液的ICP- MS响应值、传输效率、驻留时间、样品流速、纳米颗粒材料的摩尔质量和被测物的摩尔质量计算单个颗粒的质量,假设颗粒为球形,计算得到颗粒的直径。由离子产生的连续基线信号估算样品中的离子浓度。通常,可以用商用软件或将测试数据导入定制的电子表格程序进行处理,以计算纳米颗粒的数量、质量浓度、尺寸(等效球直径)和相应数均尺寸分布,并同时确定样品中存在的离子质量浓度。本标准的资料性附录A给出了定制的电子表格程序处理数据的示例。五、结语本标准等同采用ISO/TS19590:2017 Nanotechnologies—Size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry,于2023年8月6日发布,将于2024年3月1日实施,是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。在起草阶段,标准起草工作组选用金纳米颗粒,在国家纳米科学中心、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、安捷伦科技(中国)有限公司、杭州谱育科技发展有限公司,利用不同仪器进行了测试,使用仪器所带软件对颗粒尺寸和颗粒数量浓度进行了处理计算。在征求意见阶段,向四川大学、中国地质大学、武汉大学、清华大学深圳国际研究生院、东北大学、华东师范大学、中山大学、厦门大学、中国科学院过程工程研究所、中国科学院南京土壤研究所、中国科学院生态环境研究中心、上海市食品药品检验研究院、生态环境部南京环境科学研究所、中国科学院高能物理研究所、山东英盛生物技术有限公司等高校、科研院所和企业发送了标准征求意见材料,征求意见专家多为分析化学、纳米科学等领域专家,给本标准提出了具有代表性的意见,在此感谢他们对本项标准制定工作的支持。本文作者: 葛广路 研究员;郭玉婷 高级工程师 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 Email:gegl@nanoctr.cn guoyt@nanoctr.cn
  • 单颗粒ICP-MS应用 | 通用池技术消除铁纳米颗粒质谱干扰
    随着纳米颗粒在工业上的广泛应用,采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米颗粒成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。除了金和银纳米颗粒以外,零价铁纳米颗粒具有独特的化学特性和相对大的比表面积,更广泛应用于环境修复项目中,用于取出有机溶剂中氯、转化废料中有害化合物、降解杀虫剂和固定金属等。但不同于金和银纳米颗粒未受到基体干扰或常规质谱干扰问题,等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米颗粒,而这种反应模式SP-ICP-MS还未被广泛使用。本文将证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米颗粒。实验所有分析采用NexION 350D型 ICP-MS (珀金埃尔默公司,谢尔顿,CT),操作条件见表1。用去离子水稀释金和铁纳米颗粒标准,分别在质量数197和56处测定。实验结果实验首先在标准模式下运行。接下来,为评价加入反应气对SP-ICP-MS分析的影响,相同溶液在反应模式下运行。图1显示了标准和反应模式SP-ICP-MS测定100nm金颗粒谱图。两个图相似结果表明,反应模式并未改善纳米颗粒测定能力,因为金可能与氨气不发生反应。图1.反应(a)和碰撞(b)模式下SP-ICP-MS测定100nm金粒子两种模式下实际金颗粒检测数量比较列于表2。该数据表明,两种模式下颗粒具有同样数量,表明使用反应模式对测量颗粒并不偏差。存在的高背景掩盖了铁纳米颗粒中56Fe+,标准模式下铁测量不能完成。反应模式下测定60nm氧化铁纳米颗粒溶液,结果列于图2。与图1a中反应模式下金谱图相比,二者相似。尽管碰撞模式同样具有去除干扰能力,但在不严重损失仪器灵敏度前提下,不能完全消除ArO+对56Fe+干扰,意味着纳米颗粒检测限将大大降低。碰撞模式下使用其它低丰度铁同位素是有可能的,但低丰度意味着纳米颗粒将不能被检测到。因此,高信噪比的氨气反应模式测定m/z56是铁纳米颗粒最佳选择。图2.SP-ICP-MS反应模式下测定60nm的铁氧化物颗粒谱图结论本工作证实了珀金埃尔默NexION系列ICP-MS反应模式具有测定铁纳米颗粒能力。因为,铁受到来源于等离子体的干扰,必须采用反应模式测定铁纳米颗粒,具有远超碰撞模式的优势。该工作可以扩展为其它受干扰的金属纳米颗粒,如钛、铬、锌或硅。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 鼎利环保“在线定容稀释器”获国家专利
    12月16日,接国家知识产权局通知,杭州鼎利环保公司自主研制开发的新产品“在线定容稀释器”正式被授予实用新型专利证书(专利号:ZL 2008 2 0170339.6)。这是该公司继“超标留样采样器”开发后获得的第4项专利。   在线定容稀释器的实用新型与现有技术的稀释器相比,其有益效果主要表现在:能够与分析仪器联动,保持分析仪器测量时启动在线定容稀释器工作 采用准确的在线定容稀释,有效地解决了COD测量中氯离子浓度过高或样品色度太深带来的干扰,以及高浓度水样的检测问题,扩大了分析仪器的测量量程 通过采用逆水流取样,有效过滤杂质而不影响水样中的COD值,不易堵塞 并采用微型气泵加自来水清洗反冲洗技术,保证预处理系统长期使用,减少设备维护量 同时,采用PLC控制,运行可靠,操作简单直观,方便用户操作使用。该产品为防治水污染提供了有利条件,为企业发展带来了新的后劲。为我国的水环保事业进步上一个台阶。该产品实用新型专利证书(证书号:第1319538号)。
  • 千人大会精彩预告:超微及纳米颗粒分析表征技术百花齐放
    随着纳米科技的迅猛发展,超微及纳米颗粒在材料科学、生物医学、环境科学等领域展现出巨大的应用潜力。然而,要充分发挥超微及纳米颗粒的潜能,离不开对其精准、高效的分析表征技术的支持。这些技术能够帮助科研人员深入理解纳米颗粒的结构、形貌、成分及性能,为纳米材料的设计、合成及优化提供坚实的科学依据。为促进超微及纳米颗粒领域的研究与应用交流,推动纳米科技的创新与发展,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“超微及纳米颗粒分析表征”专场。点击图片直达报名页面 会议特邀上海理工大学蔡小舒教授,国家纳米科学中心高级工程师郭玉婷、刘忍肖,以及HORIBA、丹东百特、安捷伦资深工程师,分享颗粒粒度、形貌、浓度、成分、Zeta电位等多元化表征技术及相关国家标准。上海理工大学教授 蔡小舒《纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法》(点击报名)蔡小舒教授研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部等纵向项目,欧共体项目、通用电气全球研发中心、日立估算研究中心、美国电力研究院和德国、捷克、波兰等大学的国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。纳米颗粒的粒度和形貌是表征纳米颗粒的最重要参数,也是纳米颗粒应用的最主要参数。对于不同的应用,对纳米颗粒的粒度和形貌有不同的要求。而对于微纳气泡,其粒度和数量浓度以及随时间变化等参数是最重要参数。在纳米颗粒的制备中,一些纳米颗粒的浓度非常高,对其进行稀释可能会影响体系的平衡,破坏了纳米颗粒的结构。为满足对纳米颗粒粒度和形貌表征,微纳气气泡的粒度和数量浓度测量的需要,以及直接测量高浓度纳米颗粒的要求,蔡小舒团队发展了图像动态光散射纳米颗粒粒度快速测量方法,偏振图像动态光散射纳米颗粒形貌及形貌分布测量方法,后向动态光散射高浓度纳米颗粒粒度测量方法和多波长消光法微纳米气泡粒度和数量浓度测量方法等。根据这些方法研制的仪器都采用笔记本电脑供电,可以方便携带到任何需要测量的场合进行测量。本报告将介绍这些测量新方法的原理,以及应用实例。HORIBA(中国)应用工程师 李倩《颗粒表征关键技术新进展》(点击报名)李倩现任HORIBA粒度产品应用工程师。主要负责粒度仪的方法开发以及技术支持,熟练掌握仪器特性及使用维护,为不同应用领域的粒径测试用户开发和优化粒径测试方法、提供解决方案,在半导体、能源、材料、环境、生命科学等多个领域积累了丰富的经验。颗粒表征对产品的研究开发和质量控制发挥着越来越重要的作用,如何根据需求和应用场景选择最合适的测量工具显得尤为重要。为了更好地帮助客户用颗粒表征结果指导自己的研究或生产,本次报告为大家介绍 HORIBA 颗粒表征技术以及相关产品的最新进展。丹东百特仪器有限公司产品总监 宁辉《动态光散射测试功能的延伸》(点击报名)宁辉博士为全国纳米技术标准化技术委员会委员,现任丹东百特仪器有限公司产品总监,具有十几年产品研发和产品应用的研究经历,是一位具有丰富实践经验的颗粒表征技术专家。对于纳米材料的相关应用具有较为深刻的理解。动态光散射技术是一种基于检测颗粒的布朗运动来获取样品的粒径信息的颗粒表征手段。基于传统的动态光散射技术,结合更多的光学和分离手段,可以拓展动态光散射的应用领域和检测能力。在这个报告中,宁辉将介绍动态光散射流动模式,进行高分辨率的粒径测试;窄带滤光片的应用及其对于荧光样品的测试,及其VV和VH模式对于各向异性样品的测试。国家纳米科学中心高级工程师 郭玉婷《单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究》(点击报名)郭玉婷为中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组 (SAC/SWG27)委员,国际标准化组织纳米技术委员会(ISO/TC229)WG2和WG3工作组专家,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定六项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。随着纳米材料和纳米技术产品的广泛使用,纳米颗粒的检测成为纳米技术应用和潜在风险评估的重要环节。单颗粒电感耦合等离子体质谱法使用高时间分辨模式检测、分析速度快、所需样品少、颗粒浓度检出限低,可同时测量稀溶液中纳米颗粒的成分、粒径、粒径分布、数量浓度及溶解离子浓度等。郭玉婷所在实验室牵头制定了单颗粒ICP-MS检测水相中无机纳米颗粒的国家标准,开展了纳米产品和生物组织等复杂基质中纳米颗粒的检测研究。本报告将介绍国家标准内容,交流相关研究进展,以推广该方法在更多领域的应用。安捷伦科技(中国)有限公司工程师 董硕飞《应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测》(点击报名)董硕飞为安捷伦资深原子光谱应用开发工程师,于2012年获得英国帝国理工学院地球化学博士学位,之后分别在美国和法国做博士后研究员。主要研究金属元素的生物地球化学循环,以及其作为环境污染物的分布和传输机制。在2017年加入安捷伦全球市场开发团队后,主要从事ICP-MS新应用方法开发工作,以合作研究的形式开展颗粒物在复杂基体中的分离、检测方法研究,以及应用元素指纹图谱法和同位素示踪法进行源解析等方面的研究,并在相关领域发表论文30多篇。应用单颗粒(sp)ICP-MS技术对纳米颗粒物进行定量分析的方法在近些年趋于成熟,特别是在环境研究领域被更多的研究人员接受。本报告概述(sp)ICP-MS技术对降尘、海水、底泥和土壤中的纳米颗粒物进行分析的研究方案,同时拓展该方法对单细胞中的元素进行定量分析,以及对微塑料颗粒进行分析的应用案例。国家纳米科学中心教授级高级工程师 刘忍肖《量子点材料及产品特性测试方法开发与标准化》(点击报名)刘忍肖主要从事典型纳米材料(量子点、石墨烯、碳纳米管等)特性参数测试方法开发,针对产业应用的国际标准、国家标准的研制,迄今作为负责人/技术骨干共研制国际标准7项、国家标准18项、国家标准物质6项、主导2项VAMAS国际比对、发表学术论文18篇、参编专著3部。作为项目/课题负责人承担十三五、十四五科技部国家重点研发计划、国家自然科学基金青年基金项目标准研制项目等。担任国家标准委审评中心标准审核专家、国际标准化组织纳米专业领域ISO/TC 229、IEC/TC113技术专家,担任全国纳米标委会(SAC/TC279)委员观察员、全国颗粒分委会(SAC/TC168/SC1)委员观察员、全国纳米光电显示技术标准工作组(SAC/TC279/WG10)委员兼秘书长等。量子点作为一类最典型的代表性纳米材料,具有独特的量子尺寸效应并展现出优异的光学特性,现已广泛应用在生物医学、信息显示等产业领域,尤其促生了纳米光电新型显示技术产业的革新升级。本报告针对量子点材料关键特性参数测试分析方法开发、纳米光电显示技术产业应用所关注的量子点部品应用性能评测技术开发、体系性技术标准研制等进行介绍。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 文末有彩蛋 | 单颗粒ICP-MS应用:纳米颗粒的溶解动力学
    20世纪90年代以来,人们对纳米材料正面效应的研究取得了丰硕成果,并形成了大量的实用产品,比如衣物中加入Ag纳米颗粒,可以抑菌;防晒产品中加入TiO2纳米颗粒,可以屏蔽紫外线。这些产品对我们提供便利的同时,也对环境造成了潜在的危害。2004年7月29日美国的《科学此刻》及2004年8月4日《自然》分别介绍了该研究小组的报告,对纳米污染发出预警。报告指出,“游离的纳米颗粒和纳米管可能会穿透细胞,产生毒性”;对于环境来说,“纳米科技可能是柄双刃剑”。通过获得纳米颗粒的环境行为和颗粒大小、溶解率、颗粒团聚以及与样品基体的相互作用的准确数据,可以帮助了解和评价这些新材料可能对环境健康造成危险的情况。常规ICP-MS只能将样品消解后,测试溶解态的离子浓度信息,并不能直接测定这些纳米颗粒的粒径、粒径分布和团聚等更具体的数据。单颗粒ICP-MS技术通过超快速的数据读取时间,可分析每个纳米颗粒产生的电子云,检测ppb级(μg/L)浓度纳米颗粒。本报告研究了银纳米颗粒在不同水体中的溶解动力学。样品银纳米颗粒:直径100纳米,购自NanoXact,NanoComposix,USA。采用聚乙烯吡咯烷酮(PVP)材料封装。水样:离子水(DI,18.3 M-欧姆.厘米),自来水(科罗拉多学院矿业校园,高尔顿.科罗拉多)和自然水(采集点距离河流岸边1米,采集后直接通过0.45微米的滤膜过滤)。样品处理ENP悬浮液通过用水稀释浓度20毫克/升的储备溶液制成,最终浓度50纳克/升。为了匹配观察到的峰强度SP-ICP-MS,采用2%HNO3(光谱级)溶解银标准(高纯度标准 QC-7-M),用于校准和稀释,最终浓度范围为0.1-1微克/升。实验结果首先分析了溶解在去离子水中的银纳米颗粒的单颗粒ICP-MS数据。初始浓度为50ng/L。绿色柱状图表示刚加入纳米颗粒时的测试结果,脉冲信号强度主要分布在400~700范围内,另有少部分在50左右及以下。红色柱状图表示24小时候纳米颗粒的测试结果,脉冲信号主要集中在100~300范围内,50以下还有较强的信号。脉冲信号强度正比于颗粒的粒径,24小时后脉冲强度下降,说明了银纳米颗粒的粒径减小,溶解的银离子信号在脉冲50以下。Syngistix软件可自动将脉冲强度换算成颗粒直径,上图显示了不同水样中,银纳米颗粒随着时间变化的粒径变化。在含氯离子自来水体系下溶解速度比其他两种溶剂都要快,这是由于氯可以作为氧化剂加快粒子溶解在这个系统。而自然水系里粒子的变化很小,这可能由于自然系统固有的复杂性,需要更多研究找到导致粒子稳定性的因素。上图总结了在去离子水,自来水和自然水中,银纳米颗粒的粒径变化趋势。利用瞬时质量的平均粒径,可以计算出粒子的溶解损失。模型化计算粒子的几何表面积(假设球形质量的粒子), 损失质量/表面积(摩尔/ cm2)和时间可以计算得到溶解速率常数。在24小时内,遵循一阶动力学规律。总结溶解电势不同可能是区分粒子溶解过程和离子溶解过程的一个关键因素。这项研究在表明通过SP-ICP-MS定量计算Ag粒子的溶解率是可行的。使用SP-ICP-MS技术,通过原始粒子直径来计算溶解率比通过溶液中Ag离子增加来计算其溶解率更加直接。想要了解更多详情,请扫描二维码下载完整的应用报告。想了解更多关于单细胞单颗粒ICP-MS 应用么?珀金埃尔默将于2020年6月9日 14:00举办“单细胞ICP-MS网络研讨会”, 为您提供一个突破时间地域限制的学习交流的平台。本次研讨会邀请到中国科学院高能物理研究所副研究员王萌博士, PerkinElmer无机产品技术经理,高级工程师高光晔做精彩分享。识别下方二维码或点击阅读原文即可预约直播席位。
  • 单颗粒ICP-MS应用:水中银纳米颗粒的归宿
    过去二十年中,随着工程纳米材料产量和使用量迅速增加, 它们向环境中释放带来了潜在危害。因此,研究他们对环境影响至关重要。对环境中工程纳米材料进行合适的生态危害评价和管理,需要对工程纳米材料准确定量暴露和影响,由于环境介质中纳米粒子浓度非常低,大多数分析技术并非适合。一直以来,颗粒尺寸采用光散射(DLS)和透射电子显微镜(TEM)测量颗粒尺寸,这些常规技术对测定复杂水体中存在低浓度的胶体形态非常有限。单颗粒ICP-MS可快速有效并提供更多信息的技术。它能够测定颗粒尺寸分布、颗粒数量浓度、溶解金属比例等,检测ppb级(ng/L)浓度纳米颗粒。而且,它能够区分不同元素粒子。Ag,是一种是最常见被用于消费品并释放至环境中的低浓度纳米材料。本工作目的是调查SP-ICP-MS测定和定性环境水体中金属纳米粒子。图1. 地表水中银纳米粒子可能的归宿:(A) 溶解过程导致自由离子释放和更小颗粒;(B) 团聚成更大颗粒,根据团聚尺寸而沉淀离开水体;(C,D) 释放Ag+和纳米银吸附于水中其它固相;(E)形成可溶性复杂产物;(F)同水中其它成分反应导致共沉淀;(G)继续稳定的纳米银。样品地表水采自于加拿大蒙特利尔Rivière des Prairies河,0.2μm滤纸过滤后添加银纳米粒子。水样中纳米银悬浮物加入浓度2.5至33.1μg/L,并缓慢摇匀。在SP-ICP-MS分析前,样品稀释低于0.2μg/L Ag。悬浮银纳米粒子购于Ted Pella公司:柠檬酸包裹(40和80nm直径)和裸露(80nm直径)纳米银悬浮物(产品编号. 84050-40, 84050-80和15710-20SC)。实验实验数据采集使用珀金埃尔默NexION系列ICP-MS和纳米应用Syngistix模块软件,并使用下表的参数。实验结果上图为Syngistix数据采集交互界面,显示了地表水中银纳米离子(裸露纳米银,标称直径60nm,金属总浓度200.8ng/L)信号强度与采集时间关系图。每个纳米颗粒会形成一个脉冲信号,软件将信号的积分强度自动转换成颗粒的粒径信息。整体样品中不同粒径的颗粒信息就会如上图中显示出来,横坐标代表粒径,纵坐标代表相应半径颗粒的含量。以上三图分别为纯水和地表水中,柠檬酸包裹的80nm银颗粒,裸露的80nm银颗粒,和柠檬酸包裹的40nm银颗粒的平均粒径和颗粒状态比例,随时间的变化。所有情况下,纳米粒子的平均颗粒尺寸保持相对稳定。是否包裹,对纳米粒子溶解情况几乎无严重影响,5天均下降了20%左右。相同时间,柠檬酸包裹纳米银中可溶性银比率更高一些。裸露的80nm纳米银,地表水中平均颗粒直径和颗粒百分比高于去离子水。柠檬酸包裹纳米银,二者无明显差别。这可能是由于单独纳米粒子比柠檬酸包裹纳米粒子更易团聚。但总体来说,并未观察到严重地团聚现象。结论采用Syngisitx纳米应用模块研究地表水中银纳米颗粒的行为,无需使用任何手工数据处理过程。该技术允许有效选择性测定颗粒尺寸,团聚和一定时间内溶解低浓度范围。SP-ICP-MS可提供环境水体中低浓度的金属纳米颗粒归宿信息的唯一合适的技术。尽管这项研究只代表在特定情况下河水中纳米银颗粒测定技术的有效性,毫无疑问,也可应用于各种复杂基体中其它类型金属和金属氧化物纳米粒子。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 两项关于环境空气 颗粒物来源解析的国家生态环境标准征求意见稿发布
    为规范环境空气颗粒物来源解析工作,生态环境部组织编制了《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则》等两项国家生态环境标准,现公开征求意见,征求意见于2024年2月29日截止。一、环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)本标准为首次发布。本标准属于环境空气颗粒物来源解析系列标准之一,规定了固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样的方法,规定了环境空气颗粒物来源解析工作中使用稀释通道采样设备采集固定污染源废气PM2.5和PM10的方法,包括采样原理及技术要求、设备与材料、点位布设、采样程序质量保证和质量控制等内容。本标准起草单位:中国环境监测总站、西安市环境监测站、上海市环境监测中心、南开大学。编制组主要成员:王超 张霖琳 宋文斌 裴冰 杨乃旺 袁懋 冯银厂等。本标准适用于在环境空气颗粒物来源解析中,为构建固定污染源排放颗粒物源谱而进行的固定污染源PM2.5和PM10采样活动。本标准不适用于工况不稳定的固定污染源采样。二、环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)本标准为首次发布。本标准规定了环境空气颗粒物来源解析中扬尘颗粒物(PM2.5和PM10)的再悬浮采样技术要求,规定了环境空气颗粒物来源解析工作中使用再悬浮采样设备采集扬尘颗粒物(PM2.5和PM10)样品的方法,包括再悬浮采样原理、采样设备、扬尘样品采集和制备、采样步骤、质量保证和质量控制等方面的技术要求。本标准属于环境空气颗粒物来源解析系列标准之一。本标准起草单位:中国环境监测总站、西安市环境监测站、陕西省环境监测中心站。编制组主要成员:张霖琳、王超、宋文斌、杨乃旺、杨震、刘焕武、张鹏、曹磊、袁懋、郭峰、冯银厂本标准适用于开展环境空气颗粒物来源解析工作中对土壤扬尘、施工扬尘、道路扬尘城市扬尘、堆场扬尘等扬尘颗粒物样品(PM2.5和PM10)的再悬浮采样。其他矿物尘(如粉煤灰、尾矿尘、除尘器下载灰等)等亦可参照执行。附:1.征求意见单位名单.pdf2.环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿).pdf3.《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)》编制说明.pdf4.环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿).pdf5.《环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)》编制说明.pdf
  • 什么?营养品中有银纳米颗粒!
    纳米银作为常见的抑菌成分在很多生活用品中都能找到,比如无臭衣服,防霉浴帘,食品容器及食品砧板。有些商家甚至将纳米银颗粒添加到膳食补充剂中,宣称可以提高免疫力,广为宣传。但是,没有任何一种含胶体纳米银的保健品被认为是安全有效的。事实上不仅仅是保健效果,连所谓的独家技术和高科技成果都是忽悠人的。美国FDA禁止了纳米银保健品,也有研究发现纳米银会对肺部、神经及皮肤产生毒性。甚至能渗入大脑、进入胎盘、干扰精细胞。而且银纳米颗粒排放到环境中,可能会对植物和水生生物造成影响。单颗粒ICP-MS (SP-ICP-MS)技术,可用于非常低的颗粒浓度,大小,大小分布和溶解浓度的测定,使得SP-ICP-MS成为评估纳米颗粒在不同环境介质中命运的常规技术。本实验使用NexION ICP-MS测定了三种市售含有银纳米颗粒的三种营养补充剂,实际看看这些保健品中的银纳米颗粒数量和尺寸。样品三个市售营养补充剂样品置于超声波浴中超过5分钟,以确保颗粒被均匀地分布在溶液中并减少结块。样品依次用实验室一级去离子水稀释并定容到50mL聚乙烯样品管中。对样品和参比溶液进行稀释,使得所述颗粒的浓度为约20万个粒子/mL。实验使用Ted Pella公司柠檬酸盐缓冲液中的20nm,50nm和80 nm的银纳米颗粒悬浮液来计算尺寸和传输效率。通过建立0.5-5 μg/L的标准曲线来进行测定溶解银离子浓度。所有SP-ICP-MS测定均是在NexION 350D ICP-MS (PerkinElmer, Shelton, CT )标准模式(无气体)和Syngistix纳米应用模式下操作的。所有仪器的工作条件见下表。实验结果下面两图展示了1号样品和2号样品中银纳米颗粒的尺寸分布图。两者都使用了对数正态拟合方式进行计算,见图中的实线部分。样品1的数据显示颗粒的一个明显的分布约为15nm,而样品2的数据显示颗粒的分布为约33nm。Syngistix纳米应用模块给出了样品的颗粒浓度和溶解浓度。Ted Pella™ 50 nm AgNP标准溶液用于样品审核控制。48nm作为最常见的尺寸与给定值50nm非常吻合,并且所测量的颗粒浓度与制造商给出的2.5 E+10颗粒/mL浓度值非常吻合。结论使用珀金埃尔默NexION 350 ICP-MS和Syngistix纳米应用模块,对市售的3中营养补充剂中的纳米银颗粒进行了测定。单粒子的ICP-MS能实现分析物的溶解离子和颗粒形式之间的分离和定量。在一次分析中,颗粒成分,浓度,尺寸和尺寸分布,均可直接进行测定。扫描下方二维码,即可下载采用ICP-MS对营养补充剂中银纳米粒子单粒子的特性研究相关应用报告。
  • 赛默飞发布升级版稀释法污染源烟气连续自动监测系统
    ——解码雾霾污染物 寻一片纯净的穹顶2015年3月13日,上海—— 随着政府和公众对于空气质量的日益重视和关注,越来越多的地方政府都逐步加大大气污染管理的资金投入;同时,也规范化排放标准,提出了“近零排放”的概念。为了更加贴合中国的法规,充分支持环保监测工作,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)的稀释法污染源烟气连续自动监测系统 (以下简称:CEMS系统 )可以精确地监测低浓度下的烟气成份,SO2浓度可以监测到10mg/m3,NOx 浓度可以监测到5mg/m3以下,颗粒物浓度可以监测到5mg/m3。赛默飞中国总裁江志成表示:“‘帮助我们的客户使世界更健康、更清洁、更安全’,这是赛默飞亘古不变的使命,也是我们对中国市场的承诺。在新年伊始,我们发布这样一款优化升级的解决方案,就是希望进一步彰显我们对本地用户的高度重视,以及捍卫公众安全的坚定决心。”。 赛默飞身为科学分析行业的领军者,在监测领域深耕细作多年,不仅积累了丰富的环境监测实践经验,更形成了多套针对空气污染物的领先解决方案,其中包括前沿的测量方法、样品采样、技术支持和监测分析仪器。 “火眼金睛”,揪出大气污染物赛默飞升级版CEMS系统采用典型的湿法测量,这种测量方法是美国国家环保局(EPA)优选的带湿计算方法,不仅避免了除湿过程中产生的SO2和NOx损失,而且彻底消除了直接采样法经常发生的由于水份没有从样品中彻底消除而带来的腐蚀影响。这卓越的性能表现归功于赛默飞精心选择的防腐蚀性采样探头,由于 采用耐热耐蚀的Inconel Hastelloy C276或不锈钢304pyrex玻璃等材料,可以避免探头在烟气中被腐蚀。除此以外,简单的采样管线、精确的系统校准也是赛默飞稀释法CEMS解决方案 的突出亮点,可以最大程度简化采样流程、降低购买和运行维护成本。赛默飞稀释法CEMS解决方案更配备了先进的气体分析技术:赛默飞i系列气体分析仪43i型二氧化硫(SO2)分析仪 采用脉冲荧光技术 灵敏度高,稳定性好 可提供长期稳定的零点和跨点 故障诊断功能可显示仪器的各项即时工作状态参数 可与因特网连接进行遥控操作 48i型一氧化碳(CO)分析仪 采用红外相关技术 可获得更高的灵敏度、针对性和长期稳定性 具有自动压力及温度修正 故障诊断功能可显示仪器的各项即时工作状态参数 可与因特网连接进行遥控操作 42i型氮氧化物(NO-NO2-NOx)分析仪 采用化学发光技术 工作可靠、有效 可分析几个ppb到100ppm的氮氧化物 故障诊断功能可显示仪器的各项即时工作状态参数 可与因特网连接进行遥控操作 410i型二氧化碳(CO2)分析仪 采用气体过滤红外相关技术 通过准确的校准曲线将仪器在整个量程范围内(0-2000ppm)输出线形化 仪器具有高度的可靠性和稳定性 故障诊断功能可显示仪器的各项即时工作状态参数 远距离性能诊断 17i型氨(NH3)分析仪 采用化学发光法 在保持最低检出限1ppb的同时保持仪器的可靠性和稳定性 具有独立NO,NO2,NH3和NOx模拟输出 故障诊断功能可显示仪器的各项工作状态参数 远距离性能诊断此外,CEMS系统还运用在烟气中汞连续监测系统(Hg CEMS)及颗粒物排放连续监测系统(PM CEMS)中,帮助环境监测机构和有关单位实时掌握不同污染源引起的空气质量变化,及时制定并采取防御措施,进而为公共创造一个纯净、安全、健康的呼吸环境。 赛默飞烟气中汞连续监测系统(Hg CEMS)即Mercury FreedomTM固定污染源烟气汞连续监测系统,能够连续实时监测锅炉和废弃物焚化炉烟气排放中的元素汞(Hg0)、离子汞(Hg1+,Hg2+)和总 汞。Thermo Fisher Scientific作为美国环保署对烯煤电厂Hg CEMS现场评估行动的主要参加者,Mercury FreedomTM固定污染源烟气汞连续监测系统完全达到或超过所有性能指标测试。 赛默飞颗粒物排放连续监测系统(PM CEMS)综合了光散射法和质量微天平方法的优点,可以准确测量烟气中颗粒物浓度。系统不受颗粒物大小、化学组成变化的影响,系 统通过重量参比法进行线性修正。系统设计满足美国EPA性能规范PS-11、质量保证程序Procedure 2的要求,并通过了审核程序Method 5或17的验证。 全面突破,护航公众呼吸安全抗霾行动已经不再局限于国家环境监测机构提供的官方数据,更成为一个全民行动。作为生命科学领域的世界领导者,赛默飞拥有多款监测仪器,囊括针对相关机构的专业化大型设备,和适用于民用市场的便携仪器。赛默飞pDR-1500便捷式颗粒物监测仪(详情:www.thermo.com.cn/Product4380.html),具有准确度高、体积小、重量轻、易于操作和户外操作时间长的特点,是赛默飞针对中国市场需求的创新尝试。它能够满足室内外、工业和民用对空气质量监测的需求,助力打造健康、清洁、安全的生活环境。Thermo ScientificTM TSQ 8000TM Evo 三重四极杆 GC-MS/MS(详情:www.thermo.com.cn/product6310.html) 着重应用于环境等热门领域,针对PM2.5、多环芳烃、多氯联苯、多溴联苯、多溴联苯醚、邻苯二甲酸酯和农残等常见污染物建立直接有效的分析方法。TSQ 8000? Evo方法包提供前处理和进样方法、数据文件和处理方法、相关应用文章和标准等信息,帮助客户快速了解相关背景信息,直接调用进样方法和数据处理方法完成 化合物的定性定量分析。整个过程几乎无需实验人员手动输入任何操作信息。 赛默飞URG9000系列在线监测装置(详情:www.thermo.com.cn/Product6473.html), 将离子色谱技术成功应用于大气颗粒物及气体中水溶性阴阳离子的在线连续监测,是目前为止实时在线分析气溶胶及气体中离子组分最精确、最完备的仪器。URG 系列监测仪相比传统滤膜采集大气颗粒物,具有单个监测周期、采样周期短等特点,配合离子色谱“只加水”技术,免维护,自动化程度高,省时省力。 URG9000系列能反映大气颗粒物中水溶性组分的高频变化规律,是环境监测部门和大气环境保护研究部门进行大气在线监测和分析的强有力工具。 欲了解更多相关产品与技术,请查看赛默飞环境监测整体解决方案页面:http://www.thermo.com.cn/particle------------------------------------------------- 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约 50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂 问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公 司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中 国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与 培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国 技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 两类仪器设备写入中国颗粒学会新标准
    p style=" text-align: justify text-indent: 2em " 近日,中国颗粒学会正式批准发布两大颗粒技术团体标准:《颗粒技术 分散体系稳定性评价 静态多重光散射法》(编号:T/CSP 6-2019)和《颗粒技术 气固反应测试 微型流化床法》(编号:T/CSP 5-2019)。两项标准已从2019年12月1日起正式施行,分别涉及静态多重光散射仪和微型流化床两类仪器及设备。 /p p style=" text-align: justify text-indent: 2em " 据了解,本次施行的两项团标草案是在2017年中国颗粒学会团体标准工作委员会成立大会上起草制定的,是中国颗粒学会落实国务院《深化标准化工作改革方案》和《国家标准化体系建设发展规划(2016—2020年)》中团标建设要求的重要举措之一。 /p p style=" text-align: left " & nbsp & nbsp & nbsp & nbsp img style=" width: 250px height: 335px " src=" https://img1.17img.cn/17img/images/201912/uepic/cf0bd430-2f7e-4c63-a0b2-88db94f690fc.jpg" title=" 两类仪器设备写入中国颗粒学会新标准.p.jpg" width=" 250" height=" 335" border=" 0" vspace=" 0" alt=" 两类仪器设备写入中国颗粒学会新标准.p.jpg" / img src=" https://img1.17img.cn/17img/images/201912/uepic/5b5c44a1-7727-4ab5-92aa-9846cda4d189.jpg" title=" 两类仪器设备写入中国颗粒学会新标准.q.jpg" width=" 250" height=" 329" border=" 0" vspace=" 0" alt=" 两类仪器设备写入中国颗粒学会新标准.q.jpg" style=" width: 250px height: 329px " / /p p style=" text-align: justify text-indent: 2em " 分散体系是指一种或一种以上的颗粒物质分散到一种流体物质中,所形成的混合体系。现如今,分散体系在石化、食品、制药、陶瓷、涂料、颜料、电池、疫苗等几乎所有工业领域都有广泛应用。在实际存储条件下,用最短时间,快速判定分散体系长期稳定性状况十分重要。而静态多重光散射(SMLS)技术可以在不稀释样品的情况下,定性和定量分析分散体系的不稳定现象,实现样品实际存储条件下的直接测量。 /p p style=" text-align: justify text-indent: 2em " 《颗粒技术 分散体系稳定性评价 静态多重光散射法》团体标准规定了使用静态多重光散射原理评价分散体系稳定性的方法,适用于颗粒粒径 50 nm~1 mm、体积分数在 0.01 %~60 %的分散体系,其他浓度可参照。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/74051a65-4346-44e2-ba48-0f45470ea108.jpg" title=" 两类仪器设备写入中国颗粒学会新标准.c.jpg" alt=" 两类仪器设备写入中国颗粒学会新标准.c.jpg" / /p p style=" text-align: justify text-indent: 2em " 《颗粒技术 分散体系稳定性评价 静态多重光散射法》团体标准的起草单位有17家:北京朗迪森科技有限公司、深圳市德方纳米科技股份有限公司、北大先行科技产业有限公司、中国计量科学研究院、北京市理化分析测试中心、中国科学院过程工程研究所、中机生产力促进中心、华南师范大学、珠海真理光学仪器有限公司、北京海岸鸿蒙标准物质技术有限责任公司、浙江多普勒环保科技有限公司、中国计量大学、国家纳米科学中心、杭州娃哈哈集团有限公司、上海创元化妆品有限公司、浙江新安化工集团股份有限公司、北京粉体技术协会。 /p p style=" text-align: justify text-indent: 2em " 微型流化床主要用于进行颗粒反应物或催化剂的气固反应。《颗粒技术 气固反应测试 微型流化床法》规定了利用微型流化床反应器进行的涉及颗粒反应物或催化剂的气固反应中气相生成物特性的测试方法,包括原理、测试装置组成,试剂或材料,测试方法和测试报告,标准适用于有气相物参与或生成的气固反应。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/ab6a40df-a619-4a9f-ad22-1b2f3ae0e9ff.jpg" title=" 两类仪器设备写入中国颗粒学会新标准.d.jpg" alt=" 两类仪器设备写入中国颗粒学会新标准.d.jpg" / /p p style=" text-align: center text-indent: 0em " strong 微型流化床原理示意图 /strong /p p style=" text-align: justify text-indent: 2em " 《颗粒技术 气固反应测试 微型流化床法》的起草单位也有17家:中国科学院过程工程研究所、沈阳化工大学、深圳市德方纳米科技股份有限公司、中国测试技术研究院、西南化工研究设计院有限公司、中国测试技术研究院化学研究所、华中科技大学、哈尔滨工业大学、中国科学院山西煤炭化学研究所、张家港玖顺能源科技有限公司、上海蒂伦真空技术有限公司、北京科技大学、中国航空制造技术研究院、山东大学、中国石油大学(北京)、重庆大学、北京中科洁创能源技术有限公司。 /p
  • 粒粒皆信息:什么是单颗粒物/单细胞ICP-MS质谱分析法?
    在使用电感耦合等离子质谱法(ICP-MS)进行分析之前,对含有颗粒状残留物的液体样品进行适当的酸消解仍是标准前处理步骤。采用此类或类似样品前处理后,所记录的ICP-MS数据也跟整体粒子数量以及种类连在一起,对需要分析要求更加精细的应用不完全满足需求。2003年,Degueldre首次证明了ICP-MS质谱法可以定量检测单个颗粒物,并引入了单颗粒物(single particle-sp)ICP-MS质谱分析的概念[1]。spICP-MS质谱分析法可以测量单个颗粒内含所有元素的质量以及总颗粒物数浓度,并且提供比其他分析技术好得多的检测极限(单颗粒物ICP-MS质谱仪是如何工作的?单颗粒物ICP-MS质谱分析具有以下两个主要要求: 样品中的颗粒物数浓度非常低,以降低将多个颗粒物同时引入ICP-MS质谱仪的可能性 质谱质量分析仪以不到2毫秒的驻留/积累时间不间断运行,以观察持续的单颗粒物事件在实践中,我们可以将任何液体样品导入ICP质谱系统,当中一些液体样品在颗粒物传输和电离方面比其他相对更加高效。取决于采用ICP质谱仪的硬件配置,颗粒物悬浮液通常被稀释到10万-100万个颗粒物/毫升的浓度。当液体样品中的颗粒物数量足够少时,单位时间将只有一个颗粒物进入ICP系统。进入等离子系统,颗粒物将被气化、雾化和电离,形成元素离子。所生成的离子将通过多级差分压强接口从前端ICP系统导向下游质量分析仪,该减压接口用于调节ICP大气压进样口与低压(如10-6毫巴)质量分析仪之间的压力差。逐步减压过程中,系统内置离子光学元件将离子最大效率地传输到质量分析仪。质量分析仪利用电场和/或磁场在离子撞击检测器之前根据其质荷比(m/Q)对元素离子(同位素,或氧化物等)进行有效分离。所生成的质谱图显示在每个质荷比下记录的离子数量。质荷比可用于定性元素(或干扰物)类别,而信号强度则用来定量元素浓度。经ICP源后单颗粒物离子事件产生非常快速的瞬态信号(信号尖状突起),总持续时间一般只有几分之一毫秒。因此,质量分析仪的响应速度需要适配或者更快,从而完整的记录多种离子信号。如前所述,扫描型质量分析仪通常仅针对一种或两种元素,而TOF质量分析仪则能够瞬时记录单颗粒对应的整张质谱(所有质荷比),同时也包含了元素同位素和可能的氧化杂质信息。对于所记录的任何元素(基于质荷比),在瞬态单颗粒物事件持续时间内观察到的总离子信号与单颗粒物中该元素的质量成正比。ICP-MS质谱仪检测到的单颗粒物事件(瞬态信号尖峰)频率则与引入液体样品中的颗粒物数浓度成正比。值得注意的是,不包含信号尖峰的连续平滑信号区域(类似于信号时序图中的背景信号)则代表溶解在液体样品中的相应浓度信息。 为确保所记录的质谱数据包含,且只包含来自单个颗粒物的信号,质量分析仪必须以较快的数据采集效率运行[5]。随着数据采集所需时间的增加,包含两个或多个连续颗粒物信号的事件数量将会相应增加,这会导致后续结果的分析和解读产生偏差。此外,通过在高瞬时分辨率下采集数据,还可以提高信噪比(SNR):与粒子共同单位时间内噪声(对应无颗粒物事件)越少,谱图信噪比将越高,空间检测限则越好。使用spICP-MS质谱仪可实现的空间检测限与特定的元素和其同位素相关,通常在10纳米至数百纳米范围内。无论是将所记录的信号强度转换为元素质量,还是将颗粒物事件频率转换为粒子数浓度,均需要对仪器进行适当的校准。通常,基于参考颗粒物进行校准是最直接的方式,但由于缺乏这些标准颗粒物,这种方式并不直接适用。因此,Pace等 [6]提出了一种替代校准程序,即使用元素标准溶液,同时利用标准程序确定颗粒物传输效率和检测效率。许多分析实验室都在使用这种方法,但其他不同的校准概念在相关文献中也有报道 [7]。超纯水是与ICP-MS质谱仪最兼容的单颗粒物分析溶剂,提供最佳的检测限,但其并不适用于所有系统。此外,在适当样品稀释或颗粒物提取成后,也可以在更复杂的样品基质中进行单颗粒物分析[8],[9]。单颗粒物多元素ICP-MS质谱仪使用由四极杆或扇形场质量分析仪为主的ICP-MS系统进行单颗粒物分析仅限于信息相对简单的样品(比如单元素金属或个别氧化物粒子),因为这类质量分析仪只能在瞬时单颗粒物事件持续时长内记录一种或两种元素信号。相比之下,飞行时间质量分析仪(比如TOFWERK icpTOF系统)则可以记录每个单颗粒物内所有元素及其同位素信号。因此,除了报告元素质量和数量浓度外,基于飞行时间(TOF)的质谱仪还可以精准表征粒子的多元素组分,排除可能的杂质干扰。这种独特的功能对于快速增长的复合纳米粒子分析应用潜力巨大。此外,初始的简单粒子在暴露于复杂环境后经常会发生组分变化,这也使它们的特性和相互作用途径发生变化。单颗粒物多元素ICP-MS系统可以提供有效的方法用于研究这些过程。随着纳米颗粒物在日常产品应用范围和生产规模的持续增加,人们越来越担心其对环境和生命系统(包括人类)可能造成的潜在负面影响。与类似的天然源颗粒物相比,释放到环境中的工程纳米材料的浓度仍然非常低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要。可以想象,要在复杂的环境背景中准确识别出低浓度颗粒物非常具有挑战性。最近,相关研究人员提出使用多元素spICP-MS质谱分析法对单颗粒物进行指纹识别,提供了解决该问题的一种可能解决方法。举例来说,业界已成功运用该方法在含有天然铈粒子的复杂背景下追踪土壤中的二氧化铈(CeO2)工程纳米颗粒物[2]。延伸阅读1. Degueldre, C. and P.Y. Favarger, Colloid analysis by single particle inductivelycoupled plasma-mass spectroscopy: a feasibility study. Colloids Surf., A, 2003. 217(1-3): p. 137-142.2. Praetorius, A., et al., Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci.: Nano, 2017. 4(2): p. 307-314.3. Scanlan, L.D., et al., Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano, 2013. 7(12): p. 10681-10694.4. Suzuki, Y., et al., Real-time monitoring and determination of Pb in a singleairborne nanoparticle. Journal of Analytical Atomic Spectrometry, 2010. 25(7): p. 947-949.5. Hineman, A. and C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. Journal of Analytical Atomic Spectrometry, 2014. 29(7): p. 1252-1257.6. Pace, H.E., et al., Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011. 83(24): p. 9361-9369.7. Gschwind, S., et al., Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. Journal of Analytical Atomic Spectrometry, 2011. 26(6): p. 1166-1174.8. Peters, R.B., et al., Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry, 2014. 406(16): p. 3875-3885.9. Mitrano, D.M., et al., Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry, 2012. 31(1): p. 115-121.
  • 艾若泰克(Aero-Tech)与您相约第十二届中国颗粒大会
    为促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长,由中国科学技术协会指导,中国颗粒学会主办,中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学、北京海岸鸿蒙标准物质技术有限责任公司等共同协办的第十二届中国颗粒大会(The 12th China Congress on Particle Technology(CCPT12))将于2023年4月21-24日在海南省海口市举办。第十二届中国颗粒大会会议主题为“创新助力双碳,绿色赋能发展”。北京艾若泰克科技有限公司是位于北京丰台的初创型科技公司。公司主营全球气溶胶科技产品,目前主要代理品牌有TOPAS GmbH、Grimm、IONER、Catalytic…。公司员工具有气溶胶行业10年以上经验,可提供专业的气溶胶应用解决方案。扎实的专业功底是我们立足的根本,对理想的追求是我们发展的动力。现有相关产品如下:气溶胶发生器(ATM雾化系列、SAG粉尘发生系列、SLG单分散发生器、纳米银发生器等);气溶胶稀释器(DIL系列固定稀释比、DDS&VDS动态稀释比、用户定制流量和稀释比等);气溶胶静电中和器和孔径测试仪;气溶胶测量(LAP激光粒子计数器、LAP气溶胶粒径谱仪和气溶胶光度计等);空气过滤测试系统(滤料、GPF & DPF、高效过滤器、进气滤清器、空调滤清器、HAVC、油气分离器和真空吸尘器等);气溶胶附件(防静电管、DEHS、测试筛、PAO、风机、硅胶、活性炭、Topfog、TOPOR等)公司客户广泛分布于企业、高校、科研单位、军工单位、三方检测单位等……艾若泰克将携相关气溶胶产品,在A7展位与您不见不散!!!
  • ISO颗粒表征专家许人良解读《Zeta电位测定操作指南》国家标准
    Zeta 电位通常用于研究液体介质中颗粒分散体系的等电点(IEP)和表面吸附,并作为比较不同样品静电分散稳定性的指标。Zeta电位不是可直接测量的量,而是使用适当理论确定的量。此外,Zeta电位不是悬浮颗粒的固有属性,而是取决于颗粒和介质属性,以及它们在界面上的相互作用。介质的化学成分和离子浓度的任何变化都会影响这种界面平衡,从而影响Zeta电位。因此,样品制备和测量过程都会影响测定结果。为了避免zeta电位测量操作问题使测量结果出现误差,需要一个统一的zeta电位测量操作指导原则。近期,GB/Z 42353-2023《Zeta电位测定操作指南》发布实施,提供了使用光学电泳迁移法或电声法测定Zeta电位的样品制备和测量过程的操作指南。本文特邀该标准主要起草人、ISO颗粒表征专家许人良博士对标准进行解读。一、背景近年来,Zeta电位这个参数越来越多地出现在各行各业。Zeta电位的测定不仅被用于科学探索,产品研发的理论设计、各个阶段的试验、最终产品的参数设定,在生产中也越来越多地被用于过程控制,以及中间产品或最终产物的质量控制,关于Zeta电位的在线测定也有所报道。而在化学工业出版社2023年出版《Zeta电位实用指南》专著之前,国内外尚缺乏有关Zeta电位的专业书籍,在相关领域的专业图书中涉及的Zeta电位专业知识也不尽详细。高等教育中除了胶体化学专业课程,一般本科物理化学教学中涉及Zeta电位的很少,致使很多使用者不能完全理解这一参数的物理意义,难以正确地进行样品制备与测量、阐释测量结果,从而将测量结果应用到所要解决的理论或实践问题中去。与其他颗粒表征的参数不同,Zeta电位不是通过直接测量得到的,而是通过测量某个物理量,然后使用某一理论模型得到的;Zeta电位不仅是颗粒表面的特性,而与颗粒的浓度以及所处的介质性质也密切有关。由于这两个特性,在Zeta电位的测定以及数据阐释中,普遍存在错误的操作、计算与结论。基于上述原因,及时制定发布《Zeta电位测定操作指南》国家标准,为广大科技工作者提供正确的Zeta电位测定操作指导,是极其重要与必要的。本标准等同采用由ISO TC24/SC4制定的ISO/TR 19997:2018《Guidelines for good practice in zeta-potential measurement》,填补了国内现有标准的空白,为胶体颗粒Zeta电位测定标准化奠定了良好的基础;对正确使用Zeta电位测定技术与数据解释,具有重要的参考价值。本标准制定了用于测定Zeta电位的样品制备和测定过程的一般指导原则,有望统一国内的测试方案,在科研、医药、化工等领域有着重要意义。二、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。主要参与单位有山东理工大学、上海市计量测试技术研究院、中机生产力促进中心有限公司、河南中科智能制造产业研发中心有限公司。2021年4月,标准起草工作组组建,讨论了具体的工作过程,拟定了相应的工作计划和各单位承担的工作内容。此标准的编制工作依据《标准化工作导则第1 部分:标准化文件的结构和起草》,《标准化工作导则 第2 部分:以ISO/IEC标准化文件为基础的标准化文件起草规则》,以及《国际单位制(SI)和国际单位制多功能与某些其它单位的使用推荐规程》等国家标准。本标准共进行了一项验证实验,对聚苯乙烯的浓溶液采用均衡稀释法进行稀释,在一系列浓度条件下测量样品的Zeta电位,说明均衡稀释法使得样品的特性除了颗粒浓度外,其余的都保持原样,颗粒的Zeta电位在稀释过程中没有改变。经过广泛征求修改意见与评审会专家意见,并经过相关实验验证,本标准最终于2023年3月发布, 并于10月1日起实施。三、主要内容本标准首先概括性地介绍了Zeta电位的定义与特性,主要用途,以及主要测量技术。强调了从不稳定悬浮液到稳定悬浮液转变的临界Zeta电位值,只在有限的应用中才得到证实,需要小心使用。并建议以监测和关联第二被测量(例如粒度分布,浊度,黏度等)以验证由Zeta电位测量得到的结论。本标准分两章详细地描述了样品制备与测定的不确定度与误差来源。样品制备:Zeta电位测定起始于取样。只有当测试样品能够代表某一材料批次,且取样量足够时,在该样品中测到的实验值才适用于该批次。在大多数的应用中,样品必须保持稳定状态,例如没有沉淀、团聚等现象,否则所测量的实验值只能代表某一时间段的状态。除了悬浮液样品制备中的一般做法以外,由于颗粒的Zeta电位取决于颗粒以及分散介质,如果不采取特殊措施,简单的稀释可能会改变介质的化学成分,从而影响颗粒Zeta电位。样品制备需要遵循的程序是能从原始体系变为可用于测量的稀释样品后,Zeta电位不变。这就要求在稀释时,不仅原始体系和稀释后体系之间的颗粒及其表面保持相同,而且介质保持相同的电化学性质,有相同的pH值和各种离子浓度,也即除了颗粒浓度,悬浮液的其他特性都不变。使用去离子水进行简单稀释是一种常见的误导性且通常不正确的制备Zeta电位测量样品的方法。样品稀释可以遵循所谓的平衡稀释方法,即使用与原始体系中相同的液体作为稀释剂。如果处理得当,平衡稀释会导致样品中唯一修改的参数是颗粒浓度。理论上只有基于平衡稀释的样品制备过程才能产生与初始体系有相同Zeta电位的稀释样品。得到用于平衡稀释的液体有三种方法。第一种方法包括使用重力沉降或离心法提取上清液。然后用此清液或“母液”将初始样品稀释至所选测量技术的最佳程度。该方法适用于相对于介质有足够密度差的颗粒。对于用第三相(乳化剂)稳定的通常不混溶的油相和水相的乳液,离心方法不适用。通常将其稀释到匹配的离子背景中,使在初始的浓的和稀释后的悬浮液有相同的离子背景。该稀释剂可通过了解分散剂相中的离子组成(离子、离子表面活性剂)获得。第三种可能更适合纳米和生物胶体的方法是使用透析。透析膜需要对离子和分子具有渗透性,但对胶体颗粒不具有渗透性。如果样品需要稀释,建议在不同浓度下进行一系列测量,这样可以观察到颗粒-颗粒相互作用的影响或其他稀释效应。通常,由颗粒-颗粒相互作用引起的受阻运动会减少表观运动,从而使测量的Zeta电位绝对值偏小,而不同程度的稀释可能会观察到不同的Zeta电位,直至稀释到颗粒间的相互作用不再影响到测量值。无论是初始样品还是经过制备(稀释)的样品,必须对其稳定性进行一系列按时间顺序进行的测量。如果遇到测量值随时间而变,则除了报告测量值之外,还需报告变化率。通常在实验报告中需要详细说明样品是如何处理的,以及稀释剂是如何制备的。可以对样品进行多次稀释和测量,以证明所采用的方法是稳定和可重复的。测定的不确定度与误差来源:为了保证测量的准确性,强烈建议仪器制造商或其指定人员定期对仪器进行性能验证。当使用电泳光散射法测量时,必须保证在测量区有足够的颗粒,而不会由于沉降而使颗粒都沉到底部。当电泳速度很小时,使用可测量极小电泳迁移率的相位分析光散射法。操作人员不正确的参数输入也是可能的误差来源。Zeta电位测量对清洁度和少量污染物(如多价离子或浸出材料)的存在特别敏感,这些污染物可能不会显著影响电导率或pH值,但却会影响Zeta电位的测量。可能的污染源有:1)用于稀释或样品制备的介质(通常为水)的质量;2)前一个样品在样品池内的残留,特别是当前后两个样品的离子浓度相差很大时,简单的冲洗可能是不够的;3)用于实验的任何玻璃器皿或其他容器内壁所残留的离子;4)介质在测量温度下显著挥发或蒸发而导致介质的变化;5)气泡(在灌装过程中或者过滤过程中形成,或者从溶解空气中产生,或者由于电化学反应而产生,例如在电极表面发生电解)的存在会扭曲电场,并导致错误的电导率测量,或受障碍的电泳运动;6)水中二氧化碳的溶解对悬浮液pH与电导率的影响。其他会影响测量结果的因素主要来自于所加的电场:1)由于所加电场后产生焦耳热。焦耳热可以同时引起温度升高和温度梯度,两者都会影响zeta电位测量过程中的电泳和电渗;2)当电流通过样品时所导致的样品变化,特别是对蛋白质和蛋白质类生物分子(如DNA),或颗粒表面包覆有生物分子或其他易受影响涂层的样品;3)电场作用导致电极表面的氧化还原反应,从而影响某些生物样品。减轻该问题可以考虑几种解决方法,包括减少电场的施加时间,用微弱的电场,使用短脉冲电压,使用较低活性的电极材料(如将金换成钯),或同时监测粒径大小,当观察到显著的变化趋势时,停止测量,等等。Zeta电位是由电泳迁移率计算得来的。用于计算的合理理论和公式极大程度上取决于悬浮液的环境,商业仪器使用的理论计算ζ电位一般假定颗粒为光滑的刚性圆球,对非理想颗粒,应谨慎使用。四、进一步阅读本标准仅对如何正确测定Zeta电位提出了一些指导,如果想要系统地了解Zeta电位的定义、物理含义、计算方式、测定方法,以及一些典型的应用,可以参考由化学工业出版社出版、许人良所著的《Zeta电位实用指南》。该书涵盖了有关Zeta电位与电动现象的最新发展,提供了诸多最终能用于解释实验结果的公式,并附有对于这些公式的理论基础以及数学推导与公式演变过程的较详细的参考资料。
  • 赛默飞推出全新颗粒物排放连续监测系统
    上海,2014年3月3日— 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布推出新的颗粒物排放连续监测系统 (PM CEMS),使工业污染排放的颗粒物连续监测成为可能,为节能减排和PM2.5来源分析提供了又一有利工具。 Thermo ScientificTM颗粒物排放连续监测系统综合了光散射法和质量微天平方法的优点,测量结果是可溯源至NIST标准的真正质量浓度,可以满足日益严格的精度要求,是一套在动态湿烟气条件下真正的质量浓度测量系统。 赛默飞世尔科技中国总裁兼全球环境和过程监测业务总裁迈世福先生表示:“近期,中国频频遭受雾霾天气,PM2.5再次成为全国乃至全世界关注的焦点。专家指出,在PM2.5的贡献中,工业排放占据了重大比例。赛默飞此次推出的颗粒物排放连续监测系统可以连续测量可过滤颗粒物,提供精确的测量结果,为节能减排和PM2.5分析提供有力武器。未来,赛默飞将继续为中国和全球市场提供有助于改善环境的技术和产品,帮助解决在经济发展过程中带来的环境问题。”Thermo ScientificTM颗粒物排放连续监测系统不受颗粒物大小、化学组成变化的影响,通过重量参比法进行线性修正。受电厂燃料、工艺过程、控制参数的影响,烟气颗粒物的变化性和动态特性变化非常强,该系统可以辨别质量浓度变化和其他特性变化。锥形微量振荡天平是质量传感器,对连续测量的光散射设备进行内部参比校正。系统采用稀释抽取法,允许更低的传输温度,可以减少维护量,提高系统使用寿命和运行时间。它由稀释抽取探头、Model 3880i探头控制器和气动电气管束组成。烟道流速可以通过模拟量、数字化通讯方式输入进入系统,仪表气清洁系统和机箱空调都是可选项。该系统的设计满足美国EPA性能规范PS 11和质量保证程序Procedure 2的要求,并通过了审核程序Method 5或17的验证。欲了解更多详情关于颗粒物排放连续监测系统(PM CEMS),请浏览:?http://www.thermo.com.cn/Product7030.html 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3,800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2,000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 油价一夜暴负,但谁来监控油品颗粒的污染?
    2020年注定是不平凡的一年,正当所有人的目光都还聚焦在新冠肺炎全年肆虐,可能对各自的生活和工作会造成多大影响时。4月20日晚,芝加哥商品交易所5月交货的轻质原油期货(WTI5月合约)出现闪崩行情,当天报以每桶-37.63美元结算,历史上首次跌入“负值”1,相当于买油不要钱还倒贴给你钱。这么好的事情对于我们这个原油消费大国而言,是不是一个很好的购买时机呢?因为根据海关总署的数据,2019年我国进口原油创纪录达到5.06亿吨,较2018年高出9.5%,原油对外依存度已突破70% 2 。对于国内的炼油厂而言,若此时大量低价进口原油,生产出汽柴油、航空煤油、润滑油、液压油等产品来销售,必将获取颇丰的利润。而对于下游的润滑油、液压油生产企业,也将在此次行情中减少购买成本。但不管是生产还是使用这些燃油和润滑油产品,产品的质量检测是无法回避的一环。其中一个是油液颗粒污染的检测,因为哪里有液体,哪里就有液体的颗粒污染。而解决此问题可能需要完成一系列关键步骤,例如仔细监控机器的磨损迹象、评估过滤器的过滤性能,确保所购液压油可供使用。根据国内外统计资料,液压传动系统的故障大约有80%是由于液压系统的污染引起的,在各种污染物中,固体颗粒污染物引起的液压系统故障占总故障的60-70% 3。颗粒污染虽然是不可避免的,但是其破坏性影响是可被消除的。通过借助自动化便携式/或在线液体颗粒计数器,可以在采油和炼油现场,快速地检测油液颗粒的污染程度,避免因为过度污染造成的严重后果。这些便携或在线的设备可以适用于海上油气钻井平台,也可以用于陆上油田和炼油厂。通过使用液体颗粒计数器,可以帮助生产和使用以上这些石油产品的企业:- 保证产品的质量- 降低维护的成本- 提高机器可靠性- 提高使用人员的操作安全性- 减少润滑剂和过滤器的消耗- 报告标准(ISO4406、SAE 4059、NAS 1638等)贝克曼库尔特的HIAC液体颗粒计数器长期以来一直处于业内领先地位。它们不仅符合了 ISO 11171-2016的准确性和可靠性准则,还致力于满足石油行业苛刻的易用性和维护标准的要求。HIAC 8011+ 实验室液体颗粒计数器- 分析液压油、溶剂和水溶液的样品- 监控移动和工业液压系统中的颗粒污染平- 测量设备的滚降清洁度- 测试零件清洗系统的清洁度HIAC PODS+ 便携式液体颗粒计数器- 适用于基于现场的流体动力应用和更多、 适应燃油、乙二醇、有机物和水性流体- 样品流体来自 1 - 425cSt,无需稀释- 数据分析时间在 60 秒以内- 流量路径在几秒钟内清洁,消除了样品结转HIAC ROC(远程在线计数器)- 连续在线 + 免维护操作- 设计适合任何应用 (2-424 cSt)- 高度可视化的视频显示(ISO、JAS 或 SAE 报告代码)- 高温和压力能力,适用于恶劣环境*上述产品仅供工业与科研使用,不用于临床诊断。参考资料1. “负油价”幕后 2. 深度解读 | “买油送钱” 你能捞到好处吗?3. 固体颗粒污染物对液压传动系统的危害请点击“阅读原文”获取“颗粒污染计数器”详细资料~
  • "2013最受关注仪器”实验室设备、颗粒分析、热分析入围名单
    仪器信息网讯 &ldquo 2013最受关注仪器&rdquo -实验室设备、颗粒分析、热分析类入围名单揭晓。   年度最受关注仪器奖,用于表彰本年度受用户关注最高,最畅销的仪器。为用户选购该类别仪器是提供有用的参考。   评选依托仪器信息网庞大的访问数据和用户基础,以仪器在用户中受关注程度的高低作为主要评选标准。将仪器信息网展示的10万余台仪器,按照色谱、光谱、质谱、X射线、电化学、环境监测、实验室常用设备、颗粒分析、热分析、试验机、生命科学、光学12个类别进行分类,通过各台仪器在仪器信息网当年独立访问人数及用户留言数进行综合计算,评选出&ldquo 最受关注仪器&rdquo 入围名单,国、内外各3台仪器,共计72台仪器。   最终获得各类别下&ldquo 最受关注仪器&rdquo 称号的国、内外各1台产品。将在&ldquo 中国科学仪器发展年会&rdquo 上进行揭晓,并举行隆重的颁奖仪式。   2013年仪器领域事件频频,PM2.5,塑化剂,镉大米,食品重金属事件频频曝光,百姓也对食品安全,环境保护方面越来越重视,大家从身边的事情也对分析仪器有了逐渐的了解,甚至一些便携的检测仪器已逐渐开始走向你我的家中。科学分析仪器也慢慢的揭开其神秘的面纱。   通过今年入围的仪器,可以看出国内产品越来越受到用户的亲睐,最受用户关注仪器从评奖以来,国外产品的关注度一直是远远超过同类的国内产品。但近几年的关注数据表明,随着国内生产工艺水平不断改进,厂商对产品的宣传力度不断加大加上国家对科学分析仪器的重视程度越来越高。国内产品的受关注程度已经越来越逼近国外仪器。虽还存在差距,但相信在不久的将来,国产仪器将会走出自己的一篇蓝天,扩展更广阔的市场领域。   敬请期待2014年4月18日举办的&ldquo 2014中国科学仪器发展年会&rdquo ,届时将揭晓国、内外共12个大类的最受用户关注仪器。   &ldquo 2013最受关注仪器&rdquo -实验室设备、颗粒分析、热分析类入围名单(按公司名称拼音首字母排序) 实验室设备类: 国内仪器 ULUP优普超纯水机 成都超纯科技有限公司 YXQ-LS-50SII 高压灭菌器 上海博迅实业有限公司 MASTER-70超高通量微波消解仪 上海新仪微波化学科技有限公司 进口仪器 CPA卓越型电子天平 德国赛多利斯集团 MARS 6 高通量密闭微波消解系统 美国培安公司 Milli-Q Integral实验室纯水一体化系统 默克化工技术(上海)有限公司 颗粒分析类: 国内仪器 Bettersize2000智能激光粒度仪 丹东市百特仪器有限公司 JS94H型 微电泳仪 上海中晨数字技术设备有限公司 TopSizer激光粒度分析仪 珠海欧美克仪器有限公司 进口仪器SurPASS 固体表面Zeta电位测量仪 奥地利安东帕(中国)有限公司 DT-300高浓度Zeta电位分析仪 美国康塔仪器公司 Mastersizer 2000 激光粒度仪 英国马尔文仪器有限公司 热分析类: 国内仪器 HTG-3 热重分析仪 北京恒久科学仪器厂 MP470 全自动熔点仪 海能仪器 DSC-100 差示扫描量热仪 南京大展机电技术研究所 进口仪器 DSC200F3 差示量热扫描仪德国耐驰热分析 Q2000型 差示扫描量热仪 美国TA仪器 Pyris 1 TGA热重分析仪 珀金埃尔默仪器(上海)有限公司
  • 美国麦克新型颗粒粒形分析仪面世
    美国麦克公司推出颗粒分析新产品:Particle Insight颗粒粒形分析仪   Particle Insight 是一台先进的颗粒粒形分析仪,不仅分析颗粒的粒径,还可以分析选择不同形状的分布区,捕获图像后即刻进行分析,这对分析原材料是非常重要的。此外,Particle Insight能够最终提供多达28种不同的颗粒形状参数,为用户提供了灵活的形状参数来量化颗粒,对最终产品可产生非常关键的影响。   Particle Insight 的另一个重要特点是对无论是水相的还是有机溶液相的所有样品都能进行实时分析,瞬间给出分析结果,快速、即时反馈实验进程。   Particle Insight 广泛适用于工业、生物、地质领域,测量颗粒范围为0.8-300μm。其独特设计的循环抽样模块和光学元件可在很短的时间内统计有效的测量数据,这一特点在以质量控制为目的的许多制造工艺领域是必不可少的。   美国麦克公司现有的三款颗粒分析仪器,分别采用不同的颗粒分析原理,对颗粒粒度及数量进行分析,极大的满足了不及类型用户的需求   Saturn DigiSizer 5200 全自动激光粒度分析仪,采用全米氏(Mie)散射定律,并配有专利技术的样品处理单元(liquid sample handling unit,LSHU)对所分析的样品进行制备。其粒径分析范围为0.02微米至2000微米。由于此仪器配备多达130万个检测元素的专利高精度航天级 CCD检测器,因此Saturn DigiSizer 5200 是目前世界上最先进的全自动激光粒度分析仪。仪器的操作软件为先进的“Windows”软件,可以提供多种多样的数据和图形报告。Saturn DigiSizer 5200适合于各种材料的颗粒大小及分布的分析研究。   SediGraph Ⅲ 5120 全自动Χ-光透射沉降粒度分析仪,是一台集高精度、良好的重复性和快速分析于一身的全自动粒度分析仪。该仪器采用沉降式原理,粒径分析范围为300微米至0.1微米,仪器的操作软件为先进的“Windows”软件。SediGraph Ⅲ 5120可以提供多至十一种分析报告,适合于各种无机材料颗粒大小的分析研究,尤其是非金属矿物,如:高岭土、重钙、轻钙、粘土、泥浆等材料的分析,是高岭土,重钙,轻钙粒径的标准分析仪器。   Elzone II 5390全自动颗粒尺寸与颗粒计数分析仪,是一台快速、准确、具有良好重现性的颗粒大小及颗粒计数分析仪。该仪器采用电敏感区原理作为颗粒分析方法。 可用于分析各种有机和无机颗粒,典型的应用领域包括生物细胞、研磨剂、乳剂、调色剂和墨水、颜料。 与其他检测方法不同的是,运用电敏感区原理可分析不同光学性质,密度,颜色和形状的样品混合物时,Elzone II 5390可实现对样品颗粒的尺寸、数量和浓度的快速准确测量,其测试范围为1200微米至0.4微米。仪器软件采用先进的“Windows”视窗软件,符合中国用户的电脑操作习惯。   Particle Insight 颗粒粒形分析仪的推出,丰富了美国麦克公司颗粒分析仪器,为用户提供更加全面的颗粒分析服务。目前,北京DEMO实验中心有各种颗粒分析仪器,诚挚欢迎广大用户参观测样。详细情况可拨打样品分析DEMO实验中心电话:010-51906026 、010-68489403 如果您需要更详细的资料,请向美国麦克公司中国区办事处索取。 美国麦克仪器公司 地址:北京市海淀区紫竹院路31号华澳中心嘉慧苑1025室[100089] 电话:010-68489371,68489372 传真:010-68489371 E-Mail:miczhuhz@yahoo.com.cn,micling@yahoo.com.cn -------------------------------------------------------------------------------- 美国麦克仪器公司上海办事处 地址:上海市静安区新闸路831号丽都新贵15-M[200041] 电话:021-62179208,021-62179180 传真:021-62179180 E-Mail:zhuhongzhen@mic-instrument.com.cn sales@mic-instrument.com.cn -------------------------------------------------------------------------------- 美国麦克仪器公司广州办事处 地址:广州市天河区中山大道华景路华晖街四号沁馥佳苑B3-1301[510630] 电话:020-85560307,020-85560317 传真:020-85560317 E-Mail:fanrun@mic-instrument.com.cn
  • 美国博纯参加2016中国颗粒学会学术年会暨海峡两岸颗粒技术研讨会
    - Nafion® 膜式管湿度控制技术助力气溶胶科研全球医疗、科研和环境监测应用气体预处理解决方案优质供应商美国博纯(Perma Pure),于2016年8月12日至14日出席由中国颗粒学会在成都举办的第九届学术年会暨海峡两岸颗粒技术研讨会。本次大会旨在交流国内外颗粒学研究与技术,探讨和分享科研最新进展和应用,展示业内先进产品。在为期三天的研讨会期间,美国博纯中国区销售经理张力钧先生就大气气溶胶分析中湿度控制为主要内容展开演讲,为与会嘉宾带来了最先进前沿的大气监测预处理技术。2016中国颗粒学会学术年会开幕式大气监测实际情况中,湿度的影响会对颗粒物监测造成不同程度的偏差。当相对湿度大于60%以上时,小颗粒溶胶例如PM2.5颗粒会吸湿而增大,所以没有控制相对湿度的分析仪测出的数值就会虚高。因为所测的颗粒物重量不完全是PM2.5的,还包括了吸附在上面的那层水。而在使用传统气溶胶干燥方法中,处理后的样气会有颗粒物损失高及数据测不准的问题。目前,已有许多科研机构对如何严格控制大气样品气湿度进而获得精确监测数据一问题引起重视。 针对上述问题,拥有三十多年样气水分管理经验的美国博纯已研发出MD700-大管径Nafion干燥管,其低颗粒物损失率、无需加热及低维护成本等特点可以完美解决气溶胶湿度控制的问题。在会议期间的气溶胶专场中,张力钧先生为现场的专家、学者及行业同仁分享了主题为“大气气溶胶分析---样气干燥过程中有效降低粒子损失的方法”的演讲,演讲内容涉及了大气采样样气预处理过程及用户所存在困惑,以多角度、详实的科研院校测试案例分析吸引了在座嘉宾的强烈关注。在研讨会后,张力钧先生与专家、学者及企业代表进行了深入的沟通和交流。美国博纯OEM销售经理张力钧先生做大会报告 美国博纯在气体湿度控制应用中积累了大量的实践经验,产品涉及医疗、科研、环境监测及燃料电池领域。博纯拥有中美专业的研发团队,始终以“保护生命(Protect Life)”的理念,不断为全球用户提供最前沿的技术和经验,并为博纯用户及时解决样气湿度问题,帮助提升其分析设备的稳定性和准确性! 关于博纯:美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供创新的高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、品质和可靠性产品,是医疗、科研和环境监测用户的信赖之选。博纯通过ISO 9001:2015,13485:2016认证,并获得FDA注册。
  • 【明日开播】第二届“颗粒研究应用与检测分析”网络大会日程公布
    颗粒学研究包罗万象,涉及食品、医药、化工、材料、冶金等各行各业。2020年,席卷全球的新型冠状病毒平均直径约为100纳米,属于纳米颗粒,新冠病毒的气溶胶传播也属于颗粒研究的范畴。疫情进一步推动颗粒学的研究与应用向着更小、更复杂、更尖端的纵深快速发展,同时,颗粒研发与质控所必须的相关检测分析技术也在不断迭代升级。基于此,中国颗粒学会联合仪器信息网,将于2021年4月7日-4月9日组织召开第二届“颗粒研究应用与检测分析”主题网络会议。分设能源颗粒和电池材料、药物制剂与粒子设计、气溶胶与新冠病毒、超微及纳米颗粒、颗粒测试与表征五个分会场,邀请业内著名颗粒学学者、检测分析专家及企业代表,针对颗粒学研究应用及检测分析的前沿热点和疑难问题进行探讨,为颗粒学的研发应用端与检测分析端搭建交流平台。热忱欢迎国内外颗粒领域的专家、学者、技术人员、企业界代表及研究生踊跃参会、交流。点击图片报名会议日程4月7日上午分会场:能源颗粒和电池材料主持人:王雪锋08:50-9:00中国颗粒学会领导致辞王体壮(中国颗粒学会秘书长)09:00-9:30颗粒控制对提高固态电池聚合物性能的作用连芳(北京科技大学) 09:30-10:00颗粒检测在新能源领域面临的挑战和相关解决方案李雪冰(丹东百特仪器有限公司)10:00-10:30生物质基硬碳材料的可控制备及其储锂性能研究谢莉婧(中国科学院山西煤炭化学研究所)10:30-11:00电极材料粒度控制要点及激光粒度仪的应用官泽贵(珠海欧美克仪器有限公司)11:00-11:30颗粒物性表征方法在能源及电池行业的应用严秀英(大昌华嘉科学仪器部)11:30-12:00冷冻电镜观察电池材料颗粒与界面王雪峰(中科院物理研究所)4月7日下午分会场:药物制剂与粒子设计主持人:唐星 / 常津14:00-14:30纳米生物技术在若干重大疾病诊疗方面的应用常津(天津大学)14:30-15:00无定形药物制备与稳定性研究蔡挺(中国药科大学)15:00-15:30纳微粒子生物医药新剂型的设计和应用岳华(中科院过程工程研究所)15:30-16:00不同粒子结构微粒给药系统载药机制与开发应用研究唐星(中国药科大学)4月8日上午分会场:气溶胶与新冠病毒主持人:于明州 / 申芳霞09:00-9:30新冠病毒类型气溶胶动力学及其分析方法于明州(中国计量大学)09:30-10:00一种新的气溶胶吸湿性测量方法唐明金(中国科学院广州地球化学研究所)10:00-10:30呼吸源生物气溶胶申芳霞(北京航空航天大学)10:30-12:00如何成为高被引学者李顺诚(香港理工大学)4月8日下午分会场:超微及纳米颗粒主持人:毋伟 / 白红存14:00-14:30复杂环境纳米界面吸附与检测陈岚(国家纳米科学中心)14:30-15:00纳米颗粒测试技术最新进展及应用张瑞玲(马尔文帕纳科)15:00-15:30化学链过程高效载氧体的设计及性能优化白红存(宁夏大学)15:30-16:00二维纳米材料的液相剥离法制备毋伟(北京化工大学)4月9日上午分会场:颗粒测试与表征主持人:沈建琪09:00-9:3050微米至毫米级大颗粒在线测试技术及其应用沈建琪(上海理工大学)09:30-10:00气相二氧化硅表面硅羟基含量检测方法及标准化研究刘伟丽(北京市理化分析测试中心)10:00-10:30单颗粒和单细胞ICP-MS技术在环境和生物分析中的应用华瑞( 珀金埃尔默)10:30-11:00图像与光散射融合的颗粒测量技术蔡小舒(上海理工大学)11:00-11:30颗粒标准化助力粉体产业高质量发展李兆军(中国科学院过程工程研究所)演讲嘉宾(按报告时间排序)报名方式:扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/particuology2021/)报名参会加入会议交流群,随时掌握会议动态
  • 【好书推荐】《颗粒表征的光学技术及应用》
    颗粒业内有句行话:万物皆颗粒。鸟瞰各行各业,还真难找得到一个不与颗粒打交道的领域。甚至表面上看起来与颗粒毫无关系的行业,人们其实也一直在与颗粒材料打交道。例如,编程码工使用的键盘是用塑料颗粒材料制成的,显示器的荧光粉本身就是颗粒;再如,音乐作曲者使用的纸张、笔墨也都与颗粒有关。几乎所有材料,从原料到成品,总有一个阶段处于颗粒态。由于颗粒材料的多样性与多分散性,人们甚至将颗粒称为物质的第五态, 颗粒材料的物理特性表征也具有与其他化学分析、物理测量不同的独特性。颗粒与材料品质紧密相关。例如,巧克力的颗粒度需要与味蕾之间的距离吻合,可口可乐中风味液滴的密度必须与水一致,牙膏中碳酸钙的硬度与颗粒度要适当,定时释放肥料颗粒的大小与溶解度有一定的规格等。如何表征颗粒?技术概貌:颗粒表征技术成百上千,仅粒径测量就曾有400多种。现在仍在普遍使用的表征颗粒粒度、数量、表面特性、内部孔径的技术就有十几种。这些技术有着相当广泛的日常应用,例如新材料的研发过程、生产过程的质量控制、或商业贸易上下家的衡量指标等。仅在中国,每年新安装的各类颗粒表征仪器据估计当在数千台甚至上万台。不足:颗粒表征作为对各行各业如此重要的领域,现有的高等教育却很少涉及,甚至专门教授与这些技术有关基础知识的研究生课程也不太多见,集中论述这些技术的中文书籍更是少之又少。现状:这一实践与教育的脱节,造成了很多在工作中涉及颗粒表征的工作者不完备的专业知识体系与错误的应用实践,例如在用动态光散射测量纳米颗粒粒径或用电泳光散射测量颗粒表面电位时,用纯净水进行样品稀释,或者在激光粒度法测量颗粒粒度时,用高压气体分散药物晶体。颗粒材料领域专著出版扫码即可优惠购买为了填补上述空白,为广大颗粒表征技术使用者提供普及版读物,作者精心挑选了当今应用最广的六种颗粒表征技术,从历史起源、物理原理、数学基础、仪器构造、操作要点、数据处理阐释等方面对这些技术做了全面的介绍。这六种方法分别是光学计数法、激光粒度法、光学图像分析法、颗粒跟踪分析法、动态光散射法、电泳光散射法,它们都与光与和颗粒之间的作用有关。对光与和颗粒作用的系统研究始于1936年化学诺贝尔奖获得者彼得• 德拜(数学家大卫• 希尔伯特的学生阿诺尔德• 索末菲的第一位博士生)1908年的博士论文。作为这些技术的铺垫知识与辅助资料,颗粒表征中的样品准备、基本数据统计知识、光散射在颗粒表征中的基本原理、几乎所有其他常用的颗粒表征技术,以及这些技术的标准化现状,也特别另立章节介绍。这是一本别无二版的、系统介绍当代颗粒表征技术的专著。本书可供欲了解与掌握当代颗粒表征技术的教师、本科生、研究生、科学家、技术专家、仪器操作人员阅读与学习参考,为他们提供坚实的颗粒表征理论基础与丰富的实践参考。读者不但可以从中学习这些技术的物理基础以及仪器工作原理,而且通过了解每种技术的实际操作与实用细节,可以在应用过程中避免常犯的错误,不断改进仪器操作的正确性、测量数据的准确性、重复测量的精确性。本书作为进入颗粒表征技术领域的引荐读物,除了汇集了作者经年累积的丰富知识与资料外,还引用了上千篇中外文献。这些跨越两个多世纪(1809—2021)的文献,除了与该技术的最初发明有关的以及里程碑式的重要论文,还有大量与这些技术的最新动态与发展有关的报道,为有志于进一步探索发展颗粒表征技术、成为承前启后新一代的颗粒人提供一些可借鉴的方向与途径。 作者简介本书作者 许人良作者专业背景:在过去半个世纪里,作者许人良在德拜的关门弟子朱鹏年与当代荧光胶体化学大师魏尼克的教诲指导下,除了进行高分子物理与胶体化学的研究,还从搭建全角度动静态光散射仪器为起点,涉足纳秒级相关器、米氏理论的收敛分析、拉普拉斯转换的技术探讨、光导纤维频移器等颗粒表征的多个领域,发明了从电泳光散射测量中剥离布朗运动以得到真实表面电荷分布曲线的方法以及颗粒表征方面的数个专利,填补了颗粒在水中的德拜长度与水化层厚度之间关系的实验验证空白,其中的一些论文几十年来一直在不断地被引用。进入美国首台动态光散射仪器生产公司后,作者曾先后在全球三家主要颗粒表征仪器公司内担任技术、商务、管理的各类主要职务,对多种仪器的设计、试验、投产、应用有第一手感性认识与全方位了解;作者并在过去近30年中,参与制定了多项颗粒表征技术的国际标准、美国国家标准以及中国国家标准,时刻关注着这一领域的最新发展。目录预览第1章 颗粒体系与颗粒表征 / 0011.1 颗粒与颗粒体系 / 0011.2 样品制备 / 0061.3 颗粒测量数据及其统计分析 / 018参考文献 / 032第2章 光散射的理论背景 / 0352.1 光散射现象与技术 / 0352.2 光散射理论要点 / 0392.3 其他光学技术 / 059参考文献 / 069第3章 光学计数法 / 0813.1 引言 / 0813.2 仪器构造 / 0833.3 测量结果与数据分析 / 098参考文献 / 108第4章 激光粒度法 / 1134.1 引言 / 1134.2 仪器 / 1214.3 数据采集与分析 / 1414.4 测量精确度与准确性 / 153参考文献 / 161第5章 光学图像分析法 / 1695.1 引言 / 1695.2 图像获取 / 1715.3 图像分析 / 1815.4 颗粒形状表征 / 1875.5 仪器设置、校准与验证 / 193参考文献 / 196第6章 颗粒跟踪分析法 / 1996.1 引言 / 1996.2 仪器与测量参数 / 2006.3 样品与数据 / 2086.4 颗粒跟踪分析法的其他考虑因素 / 217参考文献 / 219第7章 动态光散射法 / 2217.1 引言 / 2217.2 仪器组成 / 2237.3 数据分析 / 2417.4 测量浓悬浮液 / 263参考文献 / 269第8章 电泳光散射法 / 2818.1 引言 / 2818.2 zeta电位与电泳迁移率 / 2828.3 电泳光散射仪器 / 2898.4 数据分析 / 3068.5 相位分析光散射 / 315参考文献 / 317第9章 颗粒表征的标准化 / 3239.1 文本标准 / 3249.2 标准物质、参考物质与标准样品 / 3329.3 标准化组织 / 345参考文献 / 349第10章 其他颗粒表征技术概述 / 35110.1 电阻法:计数与粒度 / 35110.2 沉降法:粒度 / 35810.3 筛分法:分级与粒度 / 36110.4 色谱方法:分离与粒度 / 36310.5 超声分析 / 36610.6 气体物理吸附:粉体表面积与孔径 / 37010.7 压汞法:孔径分析 / 37410.8 空气渗透法:平均粒度 / 37510.9 毛细管流动孔径分析法:通孔孔径 / 37510.10 气体置换比重测定法:密度 / 37710.11 核磁共振技术 / 37810.12 流动电位测量:zeta电位 / 37910.13 共振质量测量:计数与粒度 / 38010.14 亚微米气溶胶测定:计数与粒度 / 38110.15 颗粒表征技术小结 / 381参考文献 / 382附录1 符号 / 392附录2 Mie理论的球散射函数 / 395附录3 常用液体的物理常数 / 397附录4 常用分散剂 / 402附录5 用于分散一些粉体材料的液体与分散剂 / 404
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制