当前位置: 仪器信息网 > 行业主题 > >

茎流传感器

仪器信息网茎流传感器专题为您提供2024年最新茎流传感器价格报价、厂家品牌的相关信息, 包括茎流传感器参数、型号等,不管是国产,还是进口品牌的茎流传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合茎流传感器相关的耗材配件、试剂标物,还有茎流传感器相关的最新资讯、资料,以及茎流传感器相关的解决方案。

茎流传感器相关的资讯

  • 浙江大学研制出植物可穿戴径流传感器
    最近,浙江大学生物系统工程与食品科学学院IBE团队刘湘江、应义斌,信息与电子工程学院汪小知和农业与生物技术学院胡仲远,为植物联合发明一款穿戴式“电子皮肤”。时至今日,通过穿戴电子设备监测心率、脉搏等,已经成为健康管理的重要一环。  这种植物可穿戴茎流传感器,通过将柔性穿戴电子技术应用到植物体表,成功在自然生长状态下,首次持续监测草本植物体内水分的动态传输和分配过程。同时,科研人员还发现植物果实生长与光合作用不同步的现象,这不仅改变人们长期以来对植物生长发育过程的基本认识,更将为作物高产育种及栽培技术研发提供新的思路。  这项研究,近日刊发在《先进科学》上。  柔性传感器实现植物生理监测  众所周知,血液是维持人体生命活动的重要物质,通过血液循环能够把人体所需要的各种营养物质,运输到各个组织和器官。  植物也有类似也“血液”的物质,被称为茎流,是植物在蒸腾作用、渗透势等内外部压力下茎秆中产生的上升液流。茎流也是植物水分、养分、信号分子运输的载体。因此,实现对茎流的长期实时监测就能够探究植物生长过程水养分分配、信号传导以及植物对环境的响应机制等奥秘。  然而,现有的茎流检测方法多为大型侵入式探测器,在测量时会对植物造成物理伤害,而且仪器体积大限制了它们在草本植物上的应用。很长一段时间内,科学界没有一种方法可以在自然生长状态下长期监测植物茎流。  为了解决这一难题,来自浙江大学的智能生物产业装备创新团队(IBE)、智能传感与微纳集成团队、蔬菜种质创新与分子设计育种团队开展了跨学科交叉研究,针对植物茎秆特殊的生理特性,利用芯片级的微纳加工工艺,制备了一种植物可穿戴式茎流传感器。  这款传感器薄如蚕翼,厚度仅0.01毫米,重0.24克,如同“纹身”一样,能贴附在植物茎秆表面进行茎流监测。  另一个工程难题是避免传感器对植物生理产生影响。研究团队通过特殊设计,使得植物正常生长发育所需的阳光、氧气、水和二氧化碳能够自由通过传感器,实现了传感器与植物的长期“和平共处”,最终实现在自然生长状态下长期观察茎流的目的。  “这项工作为今后研制植物可穿戴传感器提供新的研究范式。”汪小知介绍,未来如何针对特定植物表面结构和生理特性,设计制备可穿戴传感器,如何评估传感器对植物生长和生理的影响,都可以从他们的研究中找到技术路径。  发现西瓜生长竟在夜晚生长  工欲善其事必先利其器,有了这么好的检测“传感器”,科研团队开展了一系列丰富的研究。  浙大科研人员在西瓜茎干上几个关键位点部署了茎流传感器,长期无损的观察了水分在西瓜叶片、果实、茎秆等不同器官上的动态分配情况。通过对茎流数据的分析,研究团队首次发现了西瓜果实生长与光合作用不同步的现象。  西瓜果实绝大部份是水(95%左右),然而径流传感器测量发现:在白天只有极少部分水被运输入果实用于生长(5%),绝大部份水被叶片蒸腾作用消耗掉 但是到了夜间,几乎所有的水分都被运输到果实,绝对茎流量相对日间增加了10倍。  “白天积累的光合产物导致的渗透势差应该是夜晚径流激增的主要原因。同时,夜晚没有蒸腾作用消耗水分,促使大量径流输入到西瓜果实,从而实现了果实的重量增加与体积膨大” 胡仲远表示,这一发现也间接证明西瓜果实生长主要在夜间。  这一发现改写了对于植物果实生长的传统认识。教科书中一般认为,植物生物量积累主要靠光合作用,而夜间以消耗生物量的呼吸作用为主。  这个反常识性的发现不仅具有重要的科学价值,同时具有良好的应用前景。浙大科研团队表示,水是珍贵的农业资源,基于茎流对西瓜等耐旱作物体内水分运输和抗旱机理的解析,将为全球干旱地区的农业生产、节水灌溉、抗旱作物选育提供了新理论依据和技术支持。  该研究受到国家自然科学基金、国家重点研发计划、浙江省重点研发计划的支持。
  • 上海测振自主研发成功水下600米电涡流传感器
    近日,由上海测振自主研发的YDYT9800一体化电涡流传感器成功试用负600米深海作业。YDYT9800一体化电涡流传感器电涡流传感器能静态和动态地非接触、高线性度、高分辨力测量金属导体距探头表面的距离,它是一种非接触线性化计量工具,被广泛应用在机械、航空、汽车、电力、石油、化工、冶金等行业。其中,深海作业对电涡流传感器的壳体、探头、接头、电缆等都有非常高的品质要求。电涡流传感器在深海作业过程中,因所处环境较为恶劣,极有可能出现个类故障,造成经济损失甚至重大事故。上海测振的技术研发团队经多次试验,最终攻克超高水压密封、高腐蚀环境、复杂电磁干扰等难题,通过微型封装技术把前置器内置探头内部,完成探头与前置器融为一体化方案,可满足深海领域的使用环境要求。作为深海领域传感器的代表作,YDYT9800一体化电涡流传感器采用耐腐蚀、耐水解的壳体、探头、接头、电缆等,防水及密封性能强,可在恶劣环境下长期稳定工作,此外,还具有安装使用方便、非接触测量等优势,是一种高性能、低成本的新型电涡流位移传感器,可对厚度、速度、位移、转速、应力、表面温度、材料损伤等进行持续不间断的测量。当前传感器国产化需求加重,国内传感器正在趋向技术化、创新化、自主研发化路线发展。YDYT9800一体化电涡流传感器的成功研发,正表明了我国传感器技术在不断突破,同时也将助推我国深海工业领域的不断发展。关于上海测振:上海测振自动化仪器有限公司(简称“上海测振”)成立于2006年,专业从事研发和生产振动传感器、位移传感器、转速传感器以及工业监控保护仪器,具有自营进出口贸易权。主要经营的产品有电涡流位移传感器,振动传感器,转速传感器及其配套仪器仪表四大类,包括四十多个不同型号,其中YD9200A、CZ9300、YDYT9800、YD260、YD280为国内首次推出。产品覆盖军工、重工、科研、教育等各个领域,与中国航空工业集团、沈阳黎明航天发动机集团、大连华锐重工集团等知名企业建立了良好的合作关系。
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397.[CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe,K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig.Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]
  • 2023年迎来“上市热潮”,但这些传感器公司终止IPO
    2023年,随着我国A股进入“全面注册制”时代,不少企业开始申请IPO。据了解,前三季度,A股IPO上市企业共264家。其中,主板新上市公司44家,占比16.67%;创业板98家,占比37.12%;科创板62家,占比23.48%;北证60家,占比22.73%。此外,今年同样也有不少企业向港股、美股进军。而这其中,就有不少传感器公司成功过会,或递交了招股书。比如芯动联科、安培龙、光格科技、正扬科技、明皜传感、豪恩汽电、高华科技、图达通、速腾聚创等等。但不少传感器公司在IPO途中选择了终止上市,其中不乏已被默认为细分领域龙头的企业如兰宝传感。下面本文对2023年选择终止上市的传感器公司进行简单汇总。索迪龙自动化股份有限公司4月7日,据深交所发行上市审核信息公开网站显示,索迪龙自动化股份有限公司(简称“索迪龙”)主动申请撤回上市申请文件,进而在4月12日,索迪龙被终止了上市审核进程。据了解,索迪龙创立于2010年,是一家研发、生产及销售工业传感器的企业,主要产品包括光电传感器、接近传感器、安全传感器及状态监测系统等。据悉,2022年6月28日索迪龙的上市申请得到受理,2022年12月17日接受了第一轮审核问询,而2023年3月24日曾更新其上市招股书。业务上,其招股书披露,2020年、2021年和2022年,该公司营收为1.36亿元、2.319亿元、2.173亿元,净利润为2922.11万元、5601.25万元、5475.7万元,毛利率为48.02%、43.91%及 44.47%。索迪龙的主要客户有欧姆龙、海康威视、慈星股份、捷佳伟创、三一专汽等国内外企业,其中欧姆龙为其最大客户。不过其招股书透露,目前欧姆龙的部分产品与索迪龙存在一定的竞争关系,未来如果欧姆龙减少或停止与发行人的合作或减少受托加工业务订单,将会带来重大不利影响。上海兰宝传感科技股份有限公司4月10日,上交所官网显示,因上海兰宝传感科技股份有限公司(简称“兰宝传感”)及其保荐人撤回发行上市申请,根据《上交所股票发行上市审核规则》第六十三条的有关规定,决定终止其发行上市审核。据了解,兰宝传感科技创立于1998年,是智能制造核心部件和智能化应用设备供应商,主要产品包括工业离散传感器以及智能环保设备。2022年6月,兰宝传感首次对外披露招股书,拟募资3亿元,分别用于智能传感器项目等。据悉,兰宝传感科创板IPO在2022年6月27日获得受理,该公司在2022年9月20日、2023年1月11日分别披露了第一轮、第二轮问询回复。而本次IPO其实已是兰宝传感第三次申报,在此前,该公司早在2012年及2014年就曾进行过上市申报。业务上,其招股书披露,兰宝传感2019年、2020年、2021年营收为2.72亿元、2.66亿元、3.53亿元;净利分别为1646万元、3585万元、5810万元;净利润为1306.3万元、2912万元、4962万元,毛利率为 31.23%、36.89%、35.86%。2021年,兰宝传感工业离散传感器产品的主要客户有:Dover Corporation、卓郎(江苏)纺织机械有限公司、上海维腾电子科技有限公司、Altec Industries. Inc、江苏东方盛虹股份有限公司。值得一提的是,在本次IPO问询中,兰宝传感的产品性能和科创属性是问询重点。一方面,监管层在第一轮问询中,要求兰宝传感说明传感器应用于工业离散制造领域发挥的主要作用及其主要性能要求,公司产品是否达到相关要求;公司产品开发年代和迭代情况,招股书所选对标产品的开发应用的年代,是否为可比公司主流产品等问题。另一方面,监管层在第二轮问询中,进一步聚焦环保设备业务科创属性,要求兰宝传感说明2011年公司低温等离子、光化学等早期工业废气处理工艺技术的来源及主要参与人员;智能型热氧化技术、电加热催化技术、沸石转轮吸附浓缩技术等核心技术的技术原理,技术开发过程,如何从传感器领域进入工业废气处理领域,前述处理技术是否属于主流工业废气处理技术路线,以及技术水平的先进性。赛卓电子科技(上海)股份有限公司7月20日,上交所终止了对赛卓电子科技(上海)股份有限公司(简称“赛卓电子”)的IPO审核,理由是公司和券商撤回上市申请。据了解,赛卓电子成立于2011年,目前主要产品为磁传感器芯片,已形成速度传感器芯片、位置传感器芯片、电流传感器芯片三大产品线,广泛应用于汽车电子和工业领域。据悉,赛卓电子第一次递交招股书是在2022年12月28日,今年4月21日回复了第一轮问询。业务上,据招股书披露,该公司于2019年度、2020年度、2021年度及2022年前6个月财务信息如下:营业收入约为0.48亿元、0.82亿元、1.59亿元、1.03亿元;净利润约为971.16万元、1454.83万元、3866.26万元、2664.39万元;毛利率为54.35%、54.10%、57.27%和 55.48%。客户方面,在汽车电子领域,该公司已进入了联合汽车电子、延锋安道拓、江苏阿现特等合资汽车系统集成商,以及宁波高发、保隆科技、三花智控、胜华波、南京奥联等国内汽车系统集成商的供应体系,车规级磁传感器芯片产品已在比亚迪、上汽集团、长安汽车、长城汽车、吉利汽车、蔚来、理想等整车厂实现批量装车;而在工业领域,该公司终端客户覆盖了汇川技术、尼得科、英威腾、鸣志电器、大华股份、八方股份、雅迪、爱玛等多家企业。不过,供应商方面该公司存在供应商集中度较高的风险。其招股书提到“报告期内,公司向前五大供应商合计采购的金额占同期采购金额的比例分别为90.28%、90.26%、91.08%及94.20%,占比相对较高。”此外值得一提的是,该公司主要在销售模式上以经销为主,经销贡献的营收占比近年来都在80%以上。拓尔微电子股份有限公司8月10日,拓尔微电子股份有限公司(简称“拓尔微”)深交所创业板IPO审核状态变更为“终止”,原因系该公司撤回发行上市申请文件。据了解,拓尔微成立于2007年,是一家模拟及数模混合芯片研发、设计与销售的集成电路设计企业,产品包括气流传感器ASIC芯片、电源管理芯片、马达驱动芯片、锂电池管理芯片、MCU芯片等在内的芯片产品与技术体系。同时,该公司结合下游市场的应用需求进行产业链延伸,将气流传感器ASIC芯片、MCU芯片进一步加工为气流传感器、MCU方案板等模组产品向客户交付。据悉,深交所于2022年6月30日依法受理了拓尔微首次公开发行股票并在创业板上市的申请文件,并依法依规进行了审核。截至拓尔微终止上市,已进行三轮问询,业务上,其招股书披露,拓尔微2020年、2021年、2022年营收为8.09亿元、15.63亿元、19.45亿元;净利为2.56亿元、4.34亿元、6.47亿元;毛利率为 53.59%、58.83%和 56.53%。客户方面,拓尔微2022年前五大客户为重庆盈达通科技有限公司、深圳东灏兴科技有限公司、深圳麦克韦尔科技有限公司、深圳市赛尔美电子科技有限公司、深圳市希格莱特科技有限公司。值得注意的是,拓尔微的气流传感器为其带来了70%左右营收。同时据了解,拓尔微主要向其客户销售的产品为气流传感器和方案板,但其中,汉清达科技、东灏兴科技、麦克韦尔科技均为电子烟厂商。而在监管层的三次问询中,均提到了行业政策相关的问题,去年开始政策对电子烟行业逐渐严监管,七成收入都来自电子烟客户的拓尔微也难免遇到行业政策影响带来的经营业绩持续性问题。此外,IPO前夕,拓尔微的客户和供应商曾低价入股,此举也招致了深交所的问询。纵目科技(上海)股份有限公司9月27日,据上海证券交易所官网显示,纵目科技(上海)股份有限公司(简称“纵目科技”)已主动撤回IPO申请,IPO进度显示为“终止”。据了解,纵目科技纵目科技成立于2013年,主要从事汽车智能驾驶系统的研发、生产及销售,已形成从算法软件到系统硬件,从智能驾驶控制单元到多种智能传感器的全产品布局,能够为整车厂商提供由智能驾驶控制单元、摄像头、超声波传感器、毫米波雷达等硬件及配套软件和算法集合而成的智能驾驶系统。据悉,2022年11月23日,纵目科创板IPO获上交所受理,而截至终止上市,该公司已经历两轮问询。业务方面,其招股书披露,2019年、2020年、2021年和2022年第一季度,纵目科技的收入为4966.01万元、8,383.04万元、2.27亿元和9003.48万元,净利润为1.60亿元、-2.09亿元、-4.16亿元和-1.55亿元,毛利率为10.75%、16.43%、13.21%和10.38%。客户方面,招股书显示,纵目科技已量产或取得定点的客户包括赛力斯汽车、长安汽车、岚图汽车、吉利汽车、一汽集团、上汽集团、北汽集团、江铃集团、江汽集团、理想汽车、威马汽车、长城汽车、比亚迪汽车、蔚来汽车、合众新能源汽车、华人运通汽车、牛创汽车等。但值得注意的是,纵目科技的研发费用率处于较高水平。报告期内,该公司的研发费用分别为1.20亿元、1.72亿元、2.69亿元和8673.74万元,研发费用率(研发费用占营业收入的比例)分别为240.65%、205.13%、118.32%和96.34%。
  • 湖北省筹建微型电量传感器计量检定中心
    12月22日,记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是湖北省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。   此项目由天门市质量技术监督局与天门电工仪器仪表研究所共同组织筹建。据天门质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,天门质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 天门市筹建省级微型电量传感器检测机构
    记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是全省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。   此项目由该市质量技术监督局与市电工仪器仪表研究所共同组织筹建。据市质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,该市质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 柯力传感领投点联传感天使轮 开拓精密测量传感器市场
    2023年7月,宁波柯力传感科技股份有限公司(“柯力传感”)与深圳点联传感科技有限公司(“点联传感”)正式签署协议,完成天使轮投资。柯力传感是此次点联传感天使轮融资的领投方。   深圳点联传感科技有限公司正式成立于2022年,是由多名清华大学博士领衔的高层次人才硬核团队,精密仪器专业出身,专注传感检测研究15年。   点联传感在精密光学系统、高速硬件电路以及综合检测算法方面有深厚的研究基础,依托底层高速高精度CMOS激光测量传感器技术框架,逐步拓展对射式、反射式以及同轴共聚焦的产品矩阵,实现对工业品形位尺寸的精密检测与定位,提高生产效率与性能。未来,点联传感将在产学研基础上,进一步构建名校传感器成果转化平台,立志解决中国工控及其他领域中高端传感器卡脖子问题。据悉,柯力投资点联传感主要是基于以下三个方面的考虑:   第一、当前国内精密测量传感器的发展仍处于起步阶段,未来是一个确定性的发展机会,是柯力布局传感器行业的重要市场方向。   第二、高精密测量传感器有一定的技术壁垒,需要依赖技术型团队才能打造升级产品,形成品牌。点联传感团队是由多名精密仪器专业出身的博士组成,专业技术能力强。   第三、通过柯力投资与赋能,可以快速提升点联传感的客户拓展能力,整体价值实现1+1>2。   当前,中国制造业正在向高精度、智能化的方向转型升级。高精度工控传感器是制造装备的基础要素,柯力传感对点联传感的投资与赋能,将助力其成为中国制造业转型升级过程中的国内外一流传感器品牌,同时,也将加速柯力从单一物理量传感器向多物理量传感器融合的步伐与进程。
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。   从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。   相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。   虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。   目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。   光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。   光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。   光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。   光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。   光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。   在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。   在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。   近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。   基本工作原理及应用领域   光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。   光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:   1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。   2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。   在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。   光纤传感器助力物联网发展市场容量将近万亿   自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。   我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。   传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。   光纤传感技术在物联网中的应用   通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。   目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 湖南科技大学携手湖南省传感器产业促进会破解传感器产业发展难题
    “当前全球产业加速数字化、智能化变革,传感技术正在成为数字化发展的重要推动力,但是从传感器国家工程研究中心公布的《中国传感器发展蓝皮书》数据显示,传感器产业突破面临重重难题,我国传感器仍有很长的路需要走。”3月9日下午,在湖南科技大学和湖南省传感器产业促进会召开的主题为“校企携手,智联未来”产学研合作交流会上,湖南科技大学副校长廖湘岳向与会者们报告传感器产业发展的现状。会议现场为进一步发挥高校科研优势,构建传感器产业产学研用联动机制来化解产业发展难题,促进产业发展,湖南科技大学主动携手湖南省传感器产业促进会举办交流合作会。唐智科技湖南发展有限公司等省内13家传感器企业、科研机构的负责人和学校专业的科研人员聚集一堂,集思广益,交流传感器产学研用各个环节的难题、经验和见解,共同致力于化解传感技术发展制约因素,推动传感器产业发展,为推进数字中国建设提供更可靠的产品和技术。廖湘岳表示,希望借湖南省传感器产业促进会搭建的桥梁,通过校企之间的深度融合合作,让课题合作、技术创新、人才就业等“产业+高校科研人才+企业”的模式真正落到实地。让专家学者手中先进技术与理论能够运用到产品生产一线,让前端产品反促专家学者研究进程,攻克前沿技术难题,进而提升传感器行业的凝聚力和技术创新力。廖湘岳表示,希望借湖南省传感器产业促进会搭建的桥梁,通过校企之间的深度融合合作,让课题合作、技术创新、人才就业等“产业+高校科研人才+企业”的模式真正落到实地。让专家学者手中先进技术与理论能够运用到产品生产一线,让前端产品反促专家学者研究进程,攻克前沿技术难题,进而提升传感器行业的凝聚力和技术创新力。会上,湖南科技大学物理与电子科学学院院长王俊年教授详细介绍了学院的教学科研情况,他期待进一步拓展深层次、宽领域、全方位的合作交流,加强产学研深入合作,促进学院相关研究“走出去”,推荐学生到相关企业就业。企业家代表们就企业在传感器及其他信息技术领域存在技术难题进行了交流,并表达了与学校进行产学研合作的迫切愿望。湖南科技大学信息与电气工程学院书记卢明、物理与电子学院党委书记易贵元、副院长许英、副院长詹杰等多位专家学者与会的各位企业代表就相关技术问题进行了讨论。惠诚控制总经理周农建、海德威董事长张正慧、中航科技总经理易孟良、天联数控董事长曾建祥、湖南航天智能传感器技术研究院院长姚锐、中大智能硬件部部长雷彬、湘依铁路总工程师李克、阿秒光学研发经理黄晋等企业负责人代表,促进会秘书长吴怀化等先后发言,围绕企业需求、产学研合作项目、科研成果转化、人才培养等进行深入探讨。与会人员还参观了湖南科技大学智能传感与新型传感材料省重点实验室。据悉,湖南科技大学物理与电子科学学院拥有智能传感器与新型传感材料湖南省重点实验室等多个国家、省部级学科科研平台,设有现代物理研究所、特种光电器件研究等研究所。学院教师瞄准学科前沿,围绕国家重大战略需求,面向社会经济建设开展科学研究,形成了教书育人与科研创新交织互融的人才培养体系。近五年来,获湖南省自然科学二等奖1项、三等奖2项、湖南省教学成果奖2项、学校教学成果奖3项;学院承担国家自然科学基金项目等国家级项目20余项、其他省部级科研、校企合作及教研教改项目100余项,在国内外权威学术刊物及国际学术会议上公开发表论文300余篇,获国家发明专利30余项。
  • 快讯!MOTUS波浪传感器成功整合到大型浮标平台
    背景在恶劣环境中的设施将大大增加对气象海洋学参数信息的需求。处于这些环境中的操作员们希望能减少安装的传感器平台数量以提升效率。欧洲大型传感器平台的一家主要制造商选择与我们合作,结合利用 Aanderaa MOTUS 波浪传感器与 Aanderaa 多普勒流速剖面仪,以监控海浪和洋流。通过联合激光雷达与其他传感器,我们致力于为最终用户提供完整的解决方案以实现高质量的气象海洋学监控。MOTUS 波浪传感器MOTUS 波向传感器的产品经理 Stig B. Øen 为我们介绍了更多有关 MOTUS 传感器的最新动态:针对来自 MOTUS 传感器用户和 MOTUS 浮标用户的反馈,我们始终用心倾听并积极响应,为此我们专门对传感器进行了升级:添加了一些基于竖向时间序列位移的波浪参数,并新增了 NMEA AIS 模式。MOTUS 传感器中的新增参数包括:平均波周期 T1/3;有效波高 H1/10;平均波周期 T1/10波;高 H1/1;平均波周期 T1/1;参考东向和北向水平时间序列,可配置为 2Hz 或 4Hz 采样。有关 MOTUS 波浪传感器的参数,请查阅数据表。MOTUS 适用于不同尺寸的浮标为了测量海浪特征,在理想情况下,传感器平台应完美地跟随水面运动。如果未应用补偿,则 MOTUS 传感器会根据安装位置的竖向平台位移计算波高。波向则基于水平浮标位移的方向。为了在众多不同类型的浮标中脱颖而出,MOTUS 传感器提供以下补偿功能。偏心补偿:在不同形状的大型浮标的旋转原点处安装传感器通常难度较大。通过向传感器提供其安装位置相对于旋转原点的信息并激活传感器偏心补偿功能,可以补偿误差。浮标响应/传递函数:如果浮标无法满足在所有频率下均理想地跟随水面,则可以通过激活和修改浮标传递函数来补偿限制。Anderaa 开发了一款简单工具,以帮助您了解不同尺寸形状浮标的期望阻尼因子。磁性:如果传感器受到电磁干扰,则可以将外部罗盘直接连接到 MOTUS 传感器。MOTUS 适用于海上风力/海上设施结合使用 Aanderaa 提供的海浪和洋流传感器与其他传感器(例如环境传感器和激光雷达),可为您提供完整的预研究平台和全面投产的海上风电场。MOTUS 传感器可在其内部完成对波浪参数的所有处理,通过实时/近实时输出基于频率和时间的参数,提供风浪和涌浪的全波频谱。对于海上风电场的运营来说,监控该区域的海浪将有助于确定是否将船只或技术人员派往现场、缩短停运时间,以及对健康、安全和环境保持高度关注。
  • 专注仪器设备传感器,对标业界顶级企业--访安徽见行联合创始人孙洪明
    “2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”于2024年7月11-13日在上海虹桥新华联索菲特大酒店隆重举行。大会以“大会报告+分会报告+产品展览+高校科技成果展示+学术墙报+晚宴交流”的形式召开,91个口头报告专家及15个提供墙报的学生,分别来自于半导体检测领域知名科研院校、半导体制造企业、半导体检测企业等。大会设立了包括集成电路晶圆级缺陷检测技术、半导体器件可靠性及失效分析、集成电路先进制造及封装技术、半导体检测设备及核心零部件等在内的15个分会场报告,多样的报告主题讨论极大促进了与会者之间的互动交流和融合创新。会场外也精心布置了国内多家知名企业展位,如安捷伦、珀金埃尔默、北方华创等,他们纷纷展示了各自在半导体量检测领域的新技术、新设备。会议期间,仪器信息网特别采访了安徽见行科技有限公司联合创始人孙洪明。在采访中,孙老师就见行科技在半导体量检测设备传感器方面的发展现状,见行科技系列产品技术优势、市场应用情况,最近一年取得的成绩以及未来的发展规划,后摩尔定律时代半导体量检测设备零部件面临的挑战和机遇等话题进行了深入的交流和分享。以下是现场采访视频:纳米级产品系列仪器信息网:近年来,贵公司在半导体量检测方面提供了什么样的解决方案及产品?孙老师:大家好,我是见行科技联合创始人孙洪明,也很高兴能够有机会参加仪器信息网采访,谢谢大家。见行是一个小微公司,主要提供三个系列的产品,一个系列是电涡流传感器,一个系列是电容传感器,还有一个是压电位移台,这三个系列的产品都是纳米级的。涡流、电容、压电材料是技术核心仪器信息网:其运用的主要原理与技术有哪些?孙老师:我给大家分别简单的介绍一下。电涡流传感器的原理是通过涡流的原理测位移,那么涡流大家都比较熟知的可能是家里的电磁炉,那么电磁炉是通过涡流产生热,那么我们电涡流传感器是通过探头产生的涡流在目标导体里边,涡流会对原来的电感和电阻产生影响,它跟位移有一个函数关系值,那么我们通过解调里边的电感和电阻的数值来反映距离的值。第二个电容传感器是两个极板,那么极板之间它有一个电容的容值,通过容值的这种分析来反映它的这种距离。那么第三个就是说压电材料,你给它一个电,那么它会有一个形变,这个形变是非常微小的,但是非常迅速,那么它也可以达到纳米级的这种促动,这是三个产品的基本原理。不断实现技术突破,成就见行特色优势仪器信息网:系列产品有哪些创新点?孙老师:比如说电涡流传感器,它最大一个突出点,它可以适应各种检测环境,它对检测环境不挑剔,比如说一些有油污、水污它都可以去适应,但它最大的一个弱点是它的温漂系数非常大,因为你比如说温度的改变,本身它的线圈的电阻值和电感值,它自身就会发生变化。全世界通行的方法都是说只用它的电感值的变化来反映它的距离,电阻值这个参数认为没有用。那么见行,利用电阻值的变化来反馈它的温度来进行闭环的温度补偿,也就是说我们在测量的时候,我们不用去测环境的温度,我们直接测电阻值,直接就能反馈出温度的变化。所以在温飘这个领域,见行在全球的领域是最优的。那么涉及到电容,因为我们涉及到纳米级的测量,就是说涉及到这种溯源和传递,比如说标准的定义,这个很难,那么如果我们去做的时候,包括现在我们去标定的时候,我们也用的是国外的一些仪器和设备,你在没有标准值的时候,那么如何做出自己的标准,那么见行它有自己的独特的这种工艺,比如说我们自己制作了我们自己的标准的这种探头。那么另外还有涉及到一些细节,比如说电容传感器探头接触面的这种工艺是极其复杂的,那么我们在这里边进行了极其深入的研究,那么研究的时候,我们要面对国情,一开始我们设计的也是全世界最领先的,但是国内制造不出来,我们的配套加工不出来,那么我们会降指标,后边又出现了良率的问题。比如说我们可以达到国外的这种水准,在国内这种良率,它只有百分之三四的时候,你也不可能进行产业应用和批产。经过不断的这种磨合,现在我们探头既能国内生产,良率指标又很高,然后又不弱于国外。那么再说到就是压电制动器,它是一个触动的一个装置,我们做的基本上都是闭环反馈,因为本身我们有了位移传感器,我们用的就是电容位移传感器它所反馈的,那么我们的电容传感器,在做促动器这个行业里边,见行的位移传感器应该是最好的,所以我们的反馈也是最好的,这就是见行的产品的这种特色和优势。我补充下,见行两个字,“见”就是看见,看见就是测量、传感,那么“行”就是制动、触动、推动。所以见行这两个字就代表着见行所从事业务。“看得见”又“看得准”仪器信息网:相关解决方案/产品市场应用情况如何?帮助客户解决了哪些问题?孙老师:现在见行传感器是最成熟的,那么传感器里边,尤其是电涡流传感器是最为成熟的,我们投入的时间和精力也是最多的,我们主要是帮助客户解决的是看见这个问题,看见这个问题其实就是一个测量的问题。那么比如说我们所有的量检测设备,这里边包括我们的光刻设备里边,那么首先第一个你要解决的是看见的问题,第一你看得见,第二你要看得准,这个问题是非常关键的问题,我们相当于给我们的下游的包括这次会议的一些设备商比如说量检测的设备,那么比如说键合类的设备,比如说光刻类的设备,那么首先它要解决看见的问题。见行在位移这个领域能提供全世界最先进的传感设备给我们的客户,助力他们更好的去发展。瞄准国内空白领域,注重零部件底层超越仪器信息网:您是如何进入这个行业的?能否简单说下公司发展历程?孙老师:这个可以聊一聊,因为今天会议是在上海,其实我去安徽合肥去创立公司之前,其实我就是在虹桥这一边是一个偶然的因素。那么我想去做一点事情,当时因为我们整个团队都是中国科学技术大学的,当时实验室有三个技术领域这个方向,那么我就当时用了半年的左右的时间去调研,调研我就选择了这个方向,选择这个方向的原因有几条,第一,这个的确是国内的空白,没有其他企业去做。第二它又足够的高端,因为全世界从事这个领域,能够达到纳米级的这种电容电涡流这种检测,包括制动,全世界也不会超过10家的这种企业。我们从事企业,就是说赚钱是我们的首要的目标,但除了赚钱,还得做一点有意义的事情。所以当时我就觉得这个方向这个领域应该是值得去做的,所以我们我回到合肥之后,跟我们几个合伙人,当时就决定在这个领域方向去发力去做,但是具体电容、电涡流传感器,包括压电制动系统应用到哪个领域和方向,我们当时并不是很清晰。然后后边的事情大家就知道了,美国和中国之间这种贸易制裁,一些核心的元器件,已经开始限定了之后,反而是给了见行一个机会。03年之前见行几乎没有做市场推广和宣传,客户都是通过一些媒体,通过一些有学术论文他们去查去找。那么在中国在这个领域这个方向,我们可以查连续十几年在这个方向都有科研,就是中国科学技术大学传感与制动实验室,然后找到实验室了,然后他就找到我们公司。说一下我们的营收,我们19年成立了公司,一直到22年8月份,我们基本上没有营收,因为那时候我们都闷头研发,但是在这个期间国内的一些Top级的一些企业它已经找到了我们,找到我们之后,我们当时是不卖给他东西,因为那时候东西我没有做好,因为我觉得我卖给你,我是不负责任,你可以免费去用,一直他就这么去用。原来都是客户找我们,几乎多数是通过论文和文献的方式,他找到我们的,然后他找到我们之后,他提出他的需求,我们就给他定制化的这种研发,然后一点点做。那么你看到22年8月之后,尤其是电涡流传感器,稳定了之后,我就开始进行销售。那么22年我的营收,订单额是400万左右,那么23年一年就达到2,400万,那么今年上半年已经达到了去年的营收这种水准,那么所以这也是我们前期都是客户来找我们,然后我们去帮他去把他这种功能去完善。那么在这个过程中,我觉得也是核心的元器件,或者是说产业的这种新兴者的必经的路径。那么产业链上下游要有一个紧密的一种结合。第一,做核心元器件也有做核心元器件的这种操守,你做这个事情你要做得好,你要做到极致,你要能跟全世界最顶级的企业进行PK,你要坚守这个原则,你有问题的东西不要去给客户,你给客户你会给他添麻烦。第二作为产业链,上游的企业对下游企业那也要有一个支撑。那么包括就是说你的资金价格或者是应用场景,真正是你的核心合作伙伴,你要给他去开放,你要去磨练,你要有给他这种成长空间。所以今天走到我们这种比较紧密的这种结合方式,用我的客户说,我们见行的电涡流传感器真正达到了世界领先的这种水准,因为这也是超出他们意料之外的。那么原来他们用国外的产品的时候,比如说我们说做光刻那一块,他的供应商,国外采用的供应商,同时也是荷兰A公司的供应商,那么A公司明确规定最顶级的那种产品,它的供应链是不可能给大陆地区的这些供应商的。如果所有的这种元器件都是这样,那么我们国内这种半导体的产业,你就是不可能存在超越,那么超越的根和源在哪?那么我们必须从最底层,比如说我一个电涡流传感器,那么可能在整个光刻机里边,10万个零部件里边,我只占一两个,那么这一两个重不重要?重要,如果所有10万个零部件,都能从最底层去超越国外,那么我们再加上材料再加上工艺,我们就有超越的这种可能。但是如果你不给产业这么小的这种根枝末梢,你不给他去成长的这种空间的时候,那么他没法成长起来,你就对付用的时候,永远我们是不会超越到国外的这种文化产业水准的。对标业界顶级企业,横向拓宽发展渠道仪器信息网:贵公司未来有哪些发展规划?孙老师:那么首先的第一点就是说面向于半导体的这种产业,见行现在只能是证明,我们现在所从事的这块业务,是被我们的产业被我们的合作伙伴认可了,只能是初步的证明了见行现在能够立足了。那么包括像这次会议,那么我们来也向产业做更多的这种学习,做更多的了解。那么看看见行能不能在整个半导体的这种产业链,无论是光刻设备、量检测设备、键合设备、封装设备里边是否能够从事更多的工作。那么第二,那么见行也想把见行这种前面经过市场实际的验证的这种模式,继续去横向的去推广,从事更多的种类或者是品类这种工作。那么另外本身就是说因为见行做的东西就是非常小,那么就是说见行也会在其他的领域,比如说我们会面向航天航空,比如说或者是像军工或者是一般的大众类的这种产业去发展。那么首先见行特征有几点,包括见行今天能做到这个水平的原因,就是说跟我们的出发或者是使命是相关的。第一,一定是对标国际最顶级的品牌的最顶级的这种产品,这点是不容置疑的。那么前面说到的其实是侥幸进入半导体这个行业,但是半导体对核心元器件的需求量非常小。那么第二个我对标的一定是有大市场的,因为在广在的泛在的其他的工业领域,我们还是有很多的核心的这种元器件,是被国外卡脖子的,因为制约工业的核心的三个要素就是传感、材料和工艺。那么见行尤其是传感领域,在更多的产业领域做出自己的贡献。研发投入不设限是见行高速发展的底气仪器信息网:随着芯片的制程需求越来越精密,您认为这对半导体量检测设备的零部件带来了哪些机遇和挑战? 孙老师:现在这两天我参加会议的时候,大家更多讨论的就是摩尔定律,那么因为我刚刚上午参加一个会议,苏州一家企业他说他给出了一张数表,那么从22纳米制程之后,光刻这个领域,摩尔定律渐渐就开始失效,但是往更深度的时候,路线在短时间内是不可变的。那么这个时候就要求尤其是见行,从事精密这个领域的,就需要我们做更多的工作,那么去做更深入的这种研发。这种研发不只是一个全世界顶标级的这种企业,它不只是一种技术层面的研发,包括一些理论层面的这种支撑。如果你理论层面支撑不够的时候,你只跨越了技术的门槛的时候,你是到达不了国际顶尖的这种企业的。那么所以在这个方向的时候,新的产业和领域,更精密的时候,需要大家做更多的投入做更多的工作,尤其是研发的投入。这一点我补充一下,见行科技之所以能做到今天,包括当下见行做所有的研发,是不做限制的。我们的研发部门,他要什么仪器,可以买什么仪器,要什么设备,可以买什么,没有预算管制,无限制投入,因为我们的PK的是最顶级的企业。
  • 国内首台8英寸PZT压电薄膜设备落户上海智能传感器产业园
    1月19日,国内首台8英寸PZT压电薄膜设备落户上海智能传感器产业园超越摩尔研发中试线,打造基于压电材料的MEMS先进工艺平台。平台将由国家智能传感器创新中心(简称“创新中心”)和上海微技术工业研究院共同建设,持续推进智能传感关键共性技术创新开发能力。PZT薄膜压电MEMS技术是智能传感器领域的重要发展方向,是充满技术多样性和产业机会的蓝海领域。创新中心的量产型PZT压电薄膜沉积设备可以实现8英寸晶圆上单晶体PZT薄膜的高质量生长,成膜温度低(500℃),可以满足CMOS传感控制电路与MEMS兼容集成制造需求,是与Bosch、Silex等国际主流传感器生产厂商保持同步的先进装备。新型压电MEMS光学、声学、惯性、微流控等产品,在自动驾驶、消费电子、光通信、医疗康养、工业控制等AIoT领域具有广泛而重要的应用前景。本次入驻的PZT压电薄膜沉积设备来自ULVAC,以及来自Oxford Instrument的PZT 薄膜刻蚀设备。创新中心持续稳步推进包括设计、仿真、材料、加工、测试等环节的高端MEMS工艺平台能力建设,快速形成一系列相关特色技术模块和工艺能力,将与产业链上下游共同打造基于压电薄膜材料的MEMS新器件开发、新原理探索、新应用验证的技术平台,为国内外相关技术和产品开发提供平台支撑服务,也将为无铅压电材料的薄膜化以及在MEMS方向的应用探索和技术开发提供平台支持。国家智能传感器创新中心致力于先进传感器技术创新,以关键共性技术的研发和中试为目标,联合传感器上下游及产业链龙头企业开展共性技术研发,形成“产学 研 用”协同创新机制,打造世界级智能传感器创新中心。依托中国传感器与物联网产业联盟已有近1000家产业链各领域的代表企业,发挥产学研资源优势,加速我国物联网核心技术的发展,推动智能传感、大数据、人工智能的生态体系建设。
  • 全球传感器高峰论坛暨物联网应用峰会:千人共谋产业发展
    2014年9月24-25日,&ldquo 首届全球传感器高峰论坛暨物联网应用峰会&rdquo 在江苏无锡圆满落幕,并创造近2000人参会的空前规模。本次论坛由中国物联网研究发展中心、中国科学院微电子研究所主办,来自全球10多个国家和地区的企业高管、学术精英、投资专家及政府部门领导等热情参与,其中不乏世界知名上市公司和研究机构,如博世、意法半导体、大联大、英飞凌、恩智浦、加州大学伯克利分校和东京大学等。 图1 全球传感器高峰论坛暨物联网应用峰会主会场   传感器作为信息产业的重要神经触角,是新技术革命和信息社会的重要技术基础,广泛应用于各行各业,尤其是智能移动终端、汽车电子和具有万亿级市场规模的物联网。&ldquo 物联天下,传感先行&rdquo ,以MEMS技术为基础的智能传感器发展水平已成为衡量一个国家是否具有国际竞争优势的重要标志。   本次高峰论坛是迄今为止中国传感器领域规模最大、影响最广、规格最高的全球性盛会,汇集了世界各国专家的&ldquo 真知灼见&rdquo ,展望了全球传感器及物联网发展趋势,呈现了中国MEMS和传感器产业现状,部署了中国物联网标准和知识产权战略,进而有助于我国规划传感器未来十年的发展路线图,加速传感器产业成熟。   无锡市副市长史立军表示,无锡作为国家物联网产业创新示范区,历来重视传感器产业的发展,通过530计划引进海归在锡创立了40余家传感器企业。其中,赵阳博士领衔的美新半导体成为了国内首家纳斯达克上市传感器公司,并跻身是全球传感器公司排名前三十强。 图2 无锡市人民政府副市长史立军致辞 图3 中国物联网研究发展中心主任叶甜春致辞   本次高峰论坛精彩纷呈,不仅深入交流传感器技术,还涉及多个物联网应用领域,包括:(1)全球传感器高峰论坛 (2)MEMS制造和封测研讨会暨华进论坛 (3)智能硬件研讨会 (4)&ldquo 大联大&rdquo 智慧养老和移动医疗研讨会 (5)车联网和智能交通研讨会 (6)非易失性存储器研讨会 (7)大数据和金融互联网研讨会 (8)物联网标准和知识产权研讨会 (9)融资洽谈会 (10)2014智能家居创新创业大赛。   此外,为促进传感器技术推广,论坛还设立&ldquo 感知展览&rdquo 环节,众多传感器及物联网领导厂商带来产品与参会者&ldquo 零距离&rdquo 接触。中国物联网研究发展中心常务副主任陈大鹏表示,物联网技术比以往更接近实用化,已逐步由实验室走向市场。   本次活动亮点:(1)产学研结合:应用牵引,技术支撑 (2)产业链交流:从硬件到软件,从感知到应用 (3)投融资对接:加速初创企业发展 (4)一站式展示:传感器新技术,物联网新应用 (5)蓝皮书发布:《2014中国物联网产业发展年度蓝皮书》 (6)可穿戴亮相:中国首款智能眼镜方案发布 (7)&ldquo 2014年智能家居创新创业大赛&rdquo 无锡站圆满结束 (8)大腕云集:产业界领军人物,学术界顶级教授 (9)好评如潮:参会者高度认可,参展者受益匪浅。 图4 《2014中国物联网产业发展年度蓝皮书》签名仪式 图5 中国首款智能眼镜方案发布仪式   关于中国物联网研究发展中心   中国物联网研究发展中心依托中国科学院的综合学科优势和地方产业优势,已成为中国物联网产业培育中心、集成创新中心、行业应用示范中心、中国物联网产业发展的核心技术引擎。传感器作为物联网信息获取的主要来源,是实现感知的首要环节。中国物联网研究发展中心致力于打造世界一流的传感器公共服务平台:以智能制造为主导的生产方法,实现网络化的传感器生产服务,打造全球一体化智能工厂,以解决中国传感器的弱势环节。   关于中国科学院微电子研究所   中国科学院微电子研究所自诞生起就是中国半导体事业的开创者和开拓者。经过五十多年的发展,中国科学院微电子研究所已经成为一所学科布局齐全、研究领域广泛的国立研究机构。设有2个从事前沿基础研究的重点实验室,11个从事应用技术研究的研究室,3个重大行业技术支撑的研究中心,涵盖了微电子学研究的各个主要领域。此外,中国科学院微电子研究所还是中国科学院EDA中心依托单位、中国物联网研究发展中心和中国科学院物联网研究发展中心依托单位。
  • 基于Pμ SL 3D打印的导电点阵结构用于多模态传感器
    介观尺度(10μm-1mm)的3D点阵结构为新应用领域提供了最佳的几何结构,例如轻质力学超材料、生物打印组织支架等。其周期性、多孔的内部结构为调谐3D点阵结构对力、热、电以及磁场的多功能响应提供了机会。借助这种结构优势,多材料3D点阵结构可用于实现器件的多功能性。由于传统微加工技术在复杂三维结构制造方面的局限性,而3D打印技术在制备复杂三维结构方面可较好的克服这一局限性。目前,研究人员基于挤压成型、立体光刻(SLA)等3D打印技术制备了金属点阵或者复合材料点阵实现结构的功能化。但是这些方法打印分辨率比较低,挤压成型制备的点阵需要高温烧结处理,工艺比较繁琐。面投影微立体光刻(PμSL) 3D打印技术具有超高的精度,可以实现介观尺度3D聚合物点阵结构的制备。纳米薄膜可以利用表面驱动的静电对化学吸附和物理吸附的敏感性而被用于化学和生物传感领域。因此,基于PμSL技术,通过纳米薄膜与3D聚合物点阵结构的集成化可以实现介观尺度传感器件的制备。近日,美国达特茅斯学院William J. Scheideler课题组基于面投影微立体光刻(PμSL) 3D打印技术结合原子层沉积技术(ALD)制备了多功能3D电子传感器。该团队基于摩方精密(BMF)超高精度光固化3D打印机 microArch S240打印了3D点阵结构,结构表面光滑,有利于电子薄膜的均匀沉积(图1)。采用原子层沉积技术先在聚合物点阵表面低温沉积一层Al2O3晶种层,然后再均匀沉积一层导体(SnO2,ZnO : Al)和半导体(ZnO)的金属氧化物薄膜材料,从而实现3D打印聚合物到多功能3D电子器件的转变(图2)。其中,Al2O3晶种层可以促进导电薄膜在聚合物点阵表面的生长。图1. 基于PμSL 技术制备的3D导电点阵结构 图2. 金属氧化物在3D打印点阵结构上的生长图3. 金属氧化物包覆的3D打印八面体点阵的电学性能图4. 3D导电点阵结构的传感性能 3D导电点阵结构电学性能的测试表明金属氧化物薄膜厚度、3D网络结构以及生长温度等均可影响结构的导电性能;同2D结构相比,3D导电点阵结构具有更大的比表面积,为电流传导提供更多的平行通道,因此,该结构的导电性能明显增强。研究结果发现,八面体导电点阵具有高比表面积、高理论预测电导率和热导率,因此研究者将其用于多模态传感器进行传感性能的研究并进行验证。结果表明3D几何结构不仅提高了传感器的灵敏度,而且增强了传感器对化学、热以及机械刺激的响应。该研究成果表明3D导电点阵结构在植入式生物传感器、3D集成微机电系统等介观尺度器件方面具有巨大的应用潜力,以“Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides”为题发表在Cell Reports Physical Science上。原文链接:https://doi.org/10.1016/j.xcrp.2022.100786官网:https://www.bmftec.cn/links/10
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 小身材大作为:光纤传感器应用前景及场景剖析
    p   光纤传感器是近年来势头正猛的“科技新贵”,因为它有极高的灵敏度和精度、抗电磁干扰、高绝缘强度、耐腐蚀、能与数字通信系统兼容等优点,已被广泛应用于电网系统、道路监控、轨道交通、食品安全等领域。 /p p   紧贴时代发展趋势,由中国光学工程学会光纤传感技术专家工作委员会、中国光纤传感技术及产业创新联盟组织的2019第八届中国(北京)国际光纤传感技术及应用大会暨展洽会将于2019年8月5日-7日在北京国家会议中心组织召开。 /p p strong   科技新贵之光纤传感器 /strong /p p   光纤传感技术是一种新型传感技术。通过光的反射、折射和吸收效应,光学多普勒效应、声光、电光、磁光和弹光效应等,可使光波的振幅、相位、偏振态和波长等参量直接或间接地发生变化,因而可将光纤作为敏感元件来探测各种物理量。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 404px height: 263px " src=" https://img1.17img.cn/17img/images/201907/uepic/b0818f87-2205-4c37-9840-bd1f8c595af5.jpg" title=" 113.jpg" alt=" 113.jpg" width=" 404" height=" 263" / /p p   中国已成为全球光纤传感器消费最大国,在国产化进程有一定的突破。据了解,以南京大学、深圳中科传感为代表的大学及研究院等机构,基本掌握了全套的光纤传感器方案。而在光纤传感系统的核心部件上,厦门彼格的窄带光源、世维通的铌酸锂波导等为代表相关的器件,都不甘落后争相实现自主研发。 /p p   纵观整个行业市场,目前中国光纤传感器的自主研发仍是“短板”,总体市场化水平仍落后外国。据统计,中国传感器新品研制率落后美日等国近10年,产业化水平落后10-15年。未来,中国光纤传感市场产业化格局有待提升,物联网技术的加持,将推动中国光纤传感市场走向新一轮发展高峰。 /p p    strong 光纤传感器应用场景分析 /strong /p p   物联网俨然已经成为光纤传感器国产化的重要推手。物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网提供更可靠的数据信息,再经过系统的处理,得到人们需要的结果。可见,光纤技术在物联网中有很广阔的应用前景。 /p p   正是敏锐捕捉到光纤传感器技术在上述领域日益紧密的行业风向,第八届中国(北京)国际光纤传感技术及应用大会暨展洽会致力于全面拓展光纤传感器科技应用领域终端,聚焦智能电网、矿山安全、轨道交通、海洋与环境、地质与水利等各个应用行业,展现国内巨头企业相应的创新综合解决方案。 /p p   光纤传感器在智能电网领域起到重大作用。利用光纤传感技术对输电线路进行安全监控,通过对输电线路上发生的触碰光缆、接头盒、光芯等扰动的实时监测,采集和分析信息,判定扰动发生的位置、类型、强度,以帮助线路维护人员及时发现输电线路的破坏行为,有效解决对线路损毁的预警监测,为电力系统提供告警、智能分析和辅助决策支持。 /p p   光纤传感器也同样发力道路安全领域。伴随着工业与交通运输的发展,桥梁的跨度增加以及结构的复杂趋势,使得其安全隐患受到更多的关注。把光纤传感系统埋入水泥结构形成能够感知应力和断裂损伤的能力。同时,利用张力传感器感受隧道容易发生塌方的局部的变形情况,这些信息可以与互联网相结合,实现对这些基础设施的长期稳定的实时监测,减少事故的发生。 /p p   光纤传感器在轨道交通领域的作用也不容小觑。以中国自主研发的高铁列车代表作——和谐号380AL为例,一辆列车里的传感器数量多达1000多个,平均每40个零部件里就有一个是传感器。它们承担着状态监视、故障报警、车载设备控制等功能。中国工程院院士、中车株洲所总经理丁荣军曾一语道破光纤传感器的重大作用,它对于收集列车的运行状态信息、高速综合检测列车、钢轨探伤、轨道状态远程监测、室内外环境综合传感等方面都起到了不可或缺的作用。 /p p   strong  行业翘楚荟萃 看点十足 /strong /p p   第八届中国(北京)国际光纤传感技术及应用大会暨展洽会目前已进入倒计时,诚邀您八月相聚北京国家会议中心,感受这个绽放出耀眼科技光芒的盛会! /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 514px height: 295px " src=" https://img1.17img.cn/17img/images/201907/uepic/f9808917-ffd1-4382-89fa-a8893f2e65a4.jpg" title=" 115.png" alt=" 115.png" width=" 514" height=" 295" / /p p   strong  看点一:大咖领衔名企云集 定义光智造未来 /strong /p p   会议将邀请清华大学教授廖延彪、北京航空航天大学张惟叙教授、加拿大皇家科学院院士鲍晓毅及国内光纤传感领域的优秀研究团队等亲临现场助阵。会议内容涉及光纤传感系统在轨道交通、海洋与环境领域应用、矿山安全、智能电网、地质与水利工程中的应用等。 /p p   strong  看点二:匠心巨制 同期展会争奇斗艳 /strong /p p   会议现场将同期举办第十一届光电子· 中国博览会,会议还将呈现激光智能制造、全球高校· 研究所· 重点实验室创新技术、红外微光技术及应用、智能信息、光学制造、精密光学与光电检测六大主题展,吸引了从光学元器件到终端用户应用的众多行业龙头企业及科研机构参展。 /p p    strong 看点三:精准孵化采购新商机尊享高端定制贵宾服务 /strong /p p   第十一届光电子· 中国博览会将为光电行业的高管及专业买家提供新产品、新资讯、新方向、新商机贵宾导向服务,提升买家参观体验感,使买家豪享高端定制上中下游产品的一站式采购服务。 /p p   本届光博会展商参展/参观登记/参会注册均已全面上线,欢迎登陆展会官网或官方微信预约登记。 /p p   展会报名地址:http://www.cipeasia.com/ /p p br/ /p
  • 环境气氛爆炸预警传感器
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 132" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " strong 环境气氛爆炸预警传感器 /strong /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " 中国科学院大连化学物理研究所 /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 联系人 /p /td td width=" 168" p style=" line-height: 1.75em " 关亚风 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " guanyafeng@dicp.ac.cn /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 & nbsp □通过小试 & nbsp √通过中试 & nbsp □可以量产 /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " √技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp 爆炸预警传感器适用于环境中任何可燃性气体、气溶胶或混合气体的爆炸限预警。当其浓度接近爆炸限但是还未到时,传感器提前发出报警。所研制的预警式爆炸传感器的探测原理是基于微化工强化反应原理,不论环境中可燃性气体的组成是什么,浓度为多少,只要在传感器内的微反应室内确实可以引起燃烧,但此时可燃物浓度还未达到环境条件下的实际爆炸限之前,传感器即发出警报。膨胀的气体在派出传感器的过程中,自由基全部淬灭。不会引发环境气体燃爆。 br/ & nbsp & nbsp & nbsp strong 主要技术指标: /strong br/ & nbsp & nbsp & nbsp 预警范围:低于正常燃爆下限30%~0%,或高于燃爆下限1%~30%,可设定。 br/ & nbsp & nbsp & nbsp 预警气体:氢气/空气、乙炔/空气、甲烷/空气、液化气/空气、天然气/空气、煤层气以及气溶胶等混合气体、超细金属粉末、超细煤粉、有机溶剂气凝胶等。 br/ & nbsp & nbsp & nbsp strong 技术特点: /strong br/ & nbsp & nbsp & nbsp 该传感器主要由燃烧反应微池、微孔气体通道、点火装置、爆炸检测和报警系统组成。传感器对环境中可燃性气体或气溶胶或混合气体,在爆炸下限浓度达到设定值时即可报警。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 在煤矿安全、石油化工、天然气、煤加工、制氢、化工厂、油库以及可燃气体泄漏现场救护等领域有着广泛应用。市场容量为8000-10000台/年。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 授权国防专利1件。 /p /td /tr /tbody /table p br/ /p p br/ /p
  • 聚焦传感器产业发展热点难点 共话产业未来 2020北京怀柔传感器产业发展研讨会成功举办
    p   12月15日下午,2020北京怀柔传感器产业发展研讨会成功举办。中国仪器仪表学会名誉副理事长吴幼华,区人大常委会副主任邴秀海,区长助理、特聘专家陶斌武,北京市科协国际联络部曾福林,区科协党组书记、常务副主席任会东,区科委主任郭小卫等领导出席了本次会议。中国科学院空天信息创新研究院、中国科学院自动化研究所、智能传感功能材料国家重点实验室、清华大学、北京航空航天大学等院所高校的学术专家,中国仪器仪表学会等行业学会的行业专家,北京市电子科技情报研究所、机械工业仪器仪表综合技术经济研究所等产业研究机构的资深产业研究专家,以及有研工程技术研究院有限公司、北京信立方科技发展股份有限公司、北京智芯微电子科技有限公司、北京必创科技股份有限公司、北京京仪智能科技股份有限公司等十余家企业高管共计40余人参加了活动。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/48a84ef6-83a3-4c70-9f14-3e728cf723e0.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 邴秀海副主任在开幕致辞中介绍了怀柔区整体情况及重点产业发展情况。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1430dcb7-6248-45fd-84c7-b641dca0c0e2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong 学者云集,聚焦产业前沿 /strong /p p   在主题报告环节中,智能传感功能材料国家重点实验传感所所长明安杰发表了《环境监测气敏传感器研发及应用探索》主旨报告,他从行业结合、方向凝练以及重点突破三个方面介绍了传感所的运行思路,提到了红外热释电的发展和氮氧传感器的开发进度,分享了环境监测气敏传感器的新见解 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/12682762-963a-4b28-ba7e-a9d12e709f88.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   中国科学院空天信息创新研究院传感技术国家重点实验室陈健研究员在《基于微纳制造技术的传感器与微系统》的报告简要介绍了国内外MEMS与传感器的发展以及应用需求,重点分享了十四五和2035战略规划的建议 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/86a49105-c06f-4988-b039-3ab747063e94.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p   清华大学精密仪器系仪器科学与技术研究所阮勇副研究员在《体硅MEMS标准工艺及其典型器件》报告中对体硅MEMS的技术发明点进行了详细分析,分享了技术的应用及效果 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/f477697e-a19e-4b02-b230-e60960776664.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p   美国电气和电子工程师协会代表(IEEE)、澳大利亚麦考瑞大学苏巴斯· 穆霍帕迪亚教授通过视频发表了《可穿戴医疗设备的发展趋势》主旨报告,他指出随着传感器技术的升级换代,尤其是柔性材料的发展,为可穿戴医疗设备的发展提供了新的动力。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/b9e3db44-e7d4-4161-ae16-412939af8aba.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p    strong 精英荟萃,共话产业未来 /strong /p p   在随后的圆桌讨论环节,围绕当前国内外传感器技术及产业发展情况,怀柔区应发展的重点技术方向、领域及建设产业集群的建议以及高校院所成果转化的需求和企业对产业政策的需求等议题,来自传感器产业相关的学者专家、企业家、用户等共同展开探讨与交流,共话产业互促融合。其中,北京航空航天大学仪器科学与光电工程学院的徐立军院长讲到高端传感器的发展需要设计、加工、应用等各方面的通力协作,他提出高校层面要做好人才、技术、产品等方面的供需对接 中科院自动化所的梁自泽研究员提到可以从校企联合攻关、加大资金投入等方面,做好加工工艺的提升,从而解决高端传感器良品率低的难题 北京市电子科技情报研究所的邢新欣博士指出在高端传感器领域国内外仍存在明显差距,怀柔传感器产业可以依托应用端市场优势,提高站位,打造全国乃至世界传感器产业创新高地 北京信立方科技发展股份有限公司唐海霞总经理讲到了信立方“1+X”职业教育人才培训计划的创新做法,为企业解决人才问题提供了宝贵经验。北京京仪智能科技股份有限公司副总经理卢继伟先生对如何打造怀柔传感器高端生态圈给出了打造应用需求发布平台、吸引人才落地,高频次组织人才技术交流活动等三个方面的建议 出席本次圆桌讨论的专家和企业家对产业发展过程中遇到的难题都结合自身经验提出了宝贵的建议。怀柔区区长助理、特聘专家陶斌武博士总结到,怀柔区高度重视今天各专家学者和企业家的意见和建议,怀柔区政府会以怀柔科学城建设为契机,加紧研究税收、人才等相关政策,加快教育、交通等配套设施建设,吸引国内外传感器产业相关资源集聚 此外,陶博士着重提到了成立北京怀柔仪器和传感器有限公司的初衷,北京怀柔仪器和传感器有限公司未来将在产业发展和聚集、核心技术攻关、科技孵化、成果转化、产业并购、政策服务、金融服务和技术服务等方面助力产业要素在怀聚集,促进传感器产业高质量发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/d49f3e7d-1674-4a7f-b34e-ac9514ee5691.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p   本次研讨会大咖云集,嘉宾发言内容丰富、议题讨论气氛融洽,探讨深入。今后,怀柔区将努力打造更多的高水平交流平台,全力促进怀柔传感器产业各环节的通力合作,将北京怀柔打造成高端传感器产业创新高地。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/47e19ad2-3314-41b4-912c-b50b337d77ad.jpg" title=" 8.png" alt=" 8.png" / /p p br/ /p
  • 上海仪电实现超大力值传感器国产化!突破材料、工艺及传感器结构等瓶颈
    在工业自动化生产过程中,力传感器发挥着重要作用,它可以帮助设备实现高精度、高效率的自动化控制。力标准机是力值量传的标准设备,能够确保各行业力值计量器具的准确性。开展超大力值的力传感器研究,构建超大力值试验能力,有助于提升我国大力值传感器领域的技术水平,不断提高行业整体基础技术和共性技术能力。上海仪电旗下上海工业自动化仪表研究院有限公司面向工业领域超大力值测量及应用需求,于2019年承担起上海市工业强基专项“超大力值传感器和100MN力标准测力机研制及应用”项目。验算建模,力标准机主体设备一次吊装成功!100MN力标准机装置的总重量约500吨,其中最重的结构件约80吨,四根方立柱的长度近12米,约30吨/根,需从20米高的安装孔中垂直吊装进入场地,并直接安装就位。不仅安装难度极高,而且由于结构件重量重、长度长,吊装存在较大安全风险。项目研发团队通过反复验算、建模,并结合实地测量,最终确定了安装施工方案和安全防护方案。2021年1月25日,随着四辆巨型运输车抵达自仪院松江分院,项目迎来了最为重要的建设环节——力标准机主体设备吊装。在项目研发团队、安装技术人员、安全管理人员的全力配合保障下,主体设备仅用2天就一次吊装就位,确保了安装过程的安全可控。驻守现场,保障国际首台套设备研制进度!2021年初,在100MN标准测力机建设调试阶段,项目调试进程遇到了挑战。为保障设备研制进度,自仪院项目研发团队、安装技术人员迎难而上,连续两个月驻守现场展开了持续调试。在一次调试中,在回程卸压到3000吨时,突发液压无法正常卸载,问题非常棘手。调试人员尝试通过松动管路密封卡套螺帽,实现液压缸的卸荷。刚松开3圈时油液四射,调试人员在保障安全的前提下,浑然不顾全身淋满了液压油,当即先控制住了液压油管。最终查明原因是由于狭小的阀芯被堵塞进而导致回油不畅,问题得到了及时解决。最终,项目团队克服重重困难,顺利完成100MN标准测力机一次性满负荷加载试压试验,为项目后续落地应用争取了宝贵时间。突破瓶颈,关键核心技术获多项国外发明专利!自仪院充分发挥转制科研院所的经验优势,项目研发团队着力攻克关键核心技术难题,陆续突破了材料研制难关、传统热处理工艺、传感器结构优化等多个瓶颈。其中,“精度检测方法技术”获得美国、欧盟、日本和韩国多项国际发明专利。2020年6月,新研制的金属材料试制的测力传感器性能测试结果不理想。项目团队开始通宵达旦分析讨论,终于找出问题在于采取的热处理制度不能满足传感器的要求。分析结果指明了努力方向,经过艰苦攻关,最终制成的测力传感器性能得到了大幅改善,这意味着在传感器材料和热处理工艺方面向前迈出了一大步。自2019年开始,项目历时4年时间,成功研制70MN超大力值传感器,以及国际首台套100MN力标准测力机装置,综合技术达到国内领先、国际先进水平。从2023年起,项目研制的超大力值传感器、张力传感器“及测量系统装置已经在国内钢厂几十条热轧或冷轧生产线现场进行了国产化替代应用,并走向海外市场。通过持续完善改进,产品已达到与国外同类产品的同等技术水平。
  • 北京首只高端仪器装备和传感器产业投资基金成立
    为服务北京国际科技创新中心建设,提升首都高精尖产业链供应链韧性和安全水平,由北京工业发展投资管理有限公司发起设立的北京市首只高端仪器装备和传感器产业投资基金——北京北工怀微传感科技股权投资基金(有限合伙)近日成立,总规模10亿元。该基金由北京国资公司母基金北京京国盛投资基金(有限合伙)联合智能传感器产业龙头上市企业北京赛微电子股份有限公司、怀柔区传感科技产业生态建设国有投资公司北京怀胜基金管理有限公司及中关村发展集团旗下北京知识产权运营管理有限公司共同发起设立,北工投资子公司国融工发公司担任管理人。北工投资相关负责人介绍,该基金将主要投资于智能传感器、高端科学仪器及其上下游领域,包括图像传感器、压力传感器、雷达传感器、高端科学仪器等北京市高精尖产业重点领域,并依托北京知识产权运营管理有限公司承担的高价值知识产权培育运营国家专项,致力于完善产业生态链、提升价值链,共同推动北京市高端仪器装备和传感器产业发展。“智能传感器是数字经济发展的数据感知核心产品,是新一代信息技术发展应用的重要支撑,是促进我国产业发展的关键环节之一。”北工投资相关负责人表示,该基金将链接市区两级资金、产业龙头、知识产权等多方资源,以服务怀柔科学城建设为契机,共同推动北京市高端科学仪器和智能传感器产业创新发展,为发展巩固首都高精尖产业、强化国家战略科技力量、服务构建新发展格局贡献力量。北工投资是专注于首都高精尖产业发展的北京市属国有私募股权投资基金管理平台,投资领域涵盖高端装备与智能制造、汽车与新能源汽车、新一代信息技术、航空航天及军工、生物医药等,主要承担北京高精尖产业发展基金、北京京国盛投资基金(有限合伙)两大母基金及其他创投类基金管理,母子基金总规模逾300亿元。今年2月1日,北工投资管理的北京市政府引导基金——北京高精尖产业发展投资基金(有限合伙)落地。基金由北京市政府投资引导基金(有限合伙)、北京顺义投资基金有限责任公司、北京京国盛投资基金(有限合伙)、北京工业发展投资管理有限公司共同发起设立,规模20亿元。该基金将根据《北京市“十四五”时期高精尖产业发展规划》《北京市关于促进高精尖产业投资推进制造业高端智能绿色发展的若干措施》等相关要求,重点投资新一代信息技术、医药健康、集成电路、智能网联汽车、智能制造与装备、绿色能源与节能环保等优势产业,前瞻性布局“长安链”、光电子、前沿新材料、量子信息等领域未来前沿产业。通过“母子基金+直接投资”方式,围绕构建北京“2441”高精尖产业体系,打造“创新产业集群基金+重点产业基金+重大项目直接投资+项目型基金直接投资”四位一体的投资模式,重点保障国家及北京市重大战略落实落地,助力打造特色鲜明、具有国际竞争力的产业集群。
  • 国内首台油井光纤高温高压传感器研制成功
    日前,山东省科学院激光研究所在国内首次自主研发的固定式高精度光纤压力传感器获得成功。这台光纤高温高压传感器可在油井下温度220℃和压力100MPa下长期作业,解决了常规电子传感器和光纤压力传感器受油井下高温高压干扰而无法正常工作的难题。光纤高温高压传感器的研发成功,不仅打破了国外对此技术的长期垄断,更将对我国油气井的科学开采发挥出重要作用。   据山东省科学院激光研究所副所长王昌博士介绍,这台光纤高温高压传感器通过对油井状态在线实时监测,可以及时探测到井内诸如漏水等状态变化的详细信息。根据这些信息,对油井采油工艺进行优化和调整,可提高油气采收率5%—10%。   山东省科学院激光研究所从2005年开始从事光纤油气井温度压力在线监测的研究。2006年,该所研究的《光纤高温高压井筒测试技术》被列为国家863项目和山东省技术攻关项目。通过对胜利油田、中海油、辽河油田的示范应用表明,光纤高温高压传感器不仅探测准确,其敏感元件的耐高温高压和耐腐蚀的保护技术等均优于国外技术,价格仅是国外进口设备的1/3。油田专家认为,这项新技术的推广应用,将为我国油井实现智能化监控打下良好基础。   王昌介绍说,据不完全统计,全国现有生产油井约15万口,按照每口井提高采油率5%,推广普及1%计算,年可提高油气产量超过9万吨。这项先进技术除高温高压油井监测应用外,在电力、化工、矿山等许多领域都有着非常广阔的应用前景,可产生巨大的经济效益和社会效益。
  • 【2023世界传感器大会】MEMS智能传感器——先进技术分论坛成功召开
    2023年11月5日,2023世界传感器大会“MEMS智能传感器——先进技术分场活动”在郑州国际会展中心成功召开。来自智能传感器等领域专家学者、企业代表、新闻媒体近2000余人线上线下参加会议。会议由郑州市人民政府、河南省科学技术协会、沈阳仪表科学研究院有限公司、传感器国家工程研究中心、中国仪器仪表学会仪表元件分会、中国仪器仪表学会仪表工艺分会承办,郑州(国家)高新技术产业开发区管理委员会、郑州市科学技术协会、郑州众智科技股份有限公司协办。河南省科学技术协会副主席王继芬、郑州市人民政府副秘书长王举等领导出席会议并致辞。由沈阳仪表院院长助理、行业中心主任张阳主持。沈阳仪表院院长助理、行业中心主任张阳领导致辞中国工程院蒋庄德院士致开幕词。蒋院士回顾了MEMS智能传感器技术的发展历程,并鼓励中国传感器人在传感器产业细分领域不断攻坚克难、突破瓶颈,以国家战略需求为导向,加快实现高水平科技自立自强。中国工程院蒋庄德院士致开幕词中国科学院上海微系统与信息技术研究所李铁研究员作《微型全集成红外CO2气体传感器及其应用》主题报告,分享了红外二氧化碳气体传感器发展现状以及最新应用领域。传感器国家工程研究中心副总工程师、沈阳仪表院研发中心主任张春光作《大型模锻压机状态监测传感器关键技术研究》主题报告,介绍了压力传感器、位移传感器、振动传感器、粘度传感器在大型装备中应用的关键技术。西安交通大学赵立波教授聚焦压力传感器技术做《微纳特种压力传感器技术》专题报告。杭州师范大学传感技术中心钱正洪主任作《磁传感测量与数据融合处理技术》专题报告,从磁传感芯片的设计、信号测量与数据融合等方面作了详细的介绍。国防科技大学吴学忠教授作了《AI赋能MEMS传感器智能化发展新趋势》专题报告,从MEMS传感器智能化发展需求、技术途径、发展现状及趋势四个方面梳理了MEMS智能传感器技术发展方向。杭州晶华微电子股份有限公司副总经理赵双龙作了《智能传感器中国芯的方案》专题报告,分享了传感器信号调理芯片国产化方案。中科院上海微系统与信息技术研究所研究员李铁传感器国家工程研究中心副总工程师沈阳仪表院研发中心主任张春光西安交通大学教授赵立波杭州师范大学传感技术中心主任钱正洪国防科技大学教授吴学忠杭州晶华微电子股份有限公司副总经理赵双龙本次会议围绕MEMS智能传感器的前沿技术、产业趋势和热点问题等进行了深入研讨,来自不同领域的行业专家分享了传感器技术、产业和应用领域的最新研究成果,探讨了今后的发展方向。
  • 北京怀柔着力发展高端仪器装备和传感器产业
    记者5月25日从北京市怀柔区获悉,北京怀柔将着力发展高端仪器装备和传感器产业,打造高端科学仪器装备产业集聚区和科技成果转化示范区。  在近日举行的怀柔区高端仪器装备和传感器产业推介会暨重点企业新品发布会上,怀柔区重点企业北京卓立汉光仪器有限公司、中科艾科米(北京)科技有限公司、北京中科长剑环境治理技术有限公司等6家公司现场发布新品。  中科艾科米(北京)科技有限公司发布闭循环无液氦扫描探针显微镜系统等10余款新产品。该公司创始人郇庆介绍说:“闭循环无液氦扫描探针显微镜系统可完美替代湿式的杜瓦系统,具有减震效果好、温度稳定性高、任意角度安装、扩展性强等优势,可以长时间维持稳定的低温环境,保证连续实验。氦气循环系统也解决了氦气来源的问题,仅需要极少量的氦气即可实现液氦制冷的效果。其关键性能指标超越了国外同类型产品。”  高能脉冲紫外线消毒机器人是北京中科长剑环境治理技术有限公司发布的新一代消毒机器人产品。该机器人采用可升降紫外消毒灯,可满足人机共存下空气循环消毒,无人情况下环境物表消毒。“高能脉冲紫外线消毒系统专利技术,解决了传统紫外线消毒设备能耗高、强度低、消毒耗时长效率低且产生臭氧的缺点,具有高能、高效、快速、无臭氧、无污染的消毒特点,同时兼有去除挥发性有机化合物和除味儿功能,应用场景广泛,填补了国内空白,达到国际先进水平。”公司总经理朱金才表示。  北京市怀柔区经信局局长杨惠芬透露,目前,《北京怀柔国家高端科学仪器装备产业示范区建设方案》编制完成,并已启动申报建设工作。怀柔区以怀柔科学城建设为重要契机,把科学城建设过程作为科技创新成果转化的过程,通过实施龙头企业领航工程、“专精特新”企业锻造工程、“苗圃”企业培育工程,形成企业梯次化发展格局。
  • 抢占智能传感器产业制高点 郑州高新智能传感器产业基地项目开工
    9月1日,郑州高新智能传感器产业基地项目开工仪式在郑州传感谷举行。该项目开工是郑州市、郑州高新区锚定电子信息“一号产业”,抢占智能传感器产业制高点,推动智能传感器产业高质量发展的具体行动。据介绍,郑州高新智能传感器产业基地总投资约15亿元,占地面积约61.83亩,总建筑面积约5.7万平方米,项目的建设有助于加快构建智能传感器产业生态,增强产业综合实力和企业竞争力,是高水平建设中国(郑州)智能传感谷,打造千亿级智能传感器产业的必要支撑,能够加快企业创新集聚,有利于我省抢占传感器产业制高点。该项目将重点打造智能传感器材料、智能传感器系统、智能传感器终端等产业集群,建设郑州高新智能传感器产业基地,配套建设智能传感器孵化器、产品展示等综合服务平台,着力集聚智能传感器上中下游企业,形成高端产品制造为产业基础、新型研发机构为支撑、软件算法和示范应用为推动的生态体系。该项目开工建设标志着产业链发展更加延展、稳固、健全,标志着我省的智能传感器产业发展占领关键环、迈向中高端,也标志着中国(郑州)智能传感谷的建设辐射更广泛、品牌更凸显。截至目前,郑州市智能传感器核心及关联产业规模约300亿元,占全省90%,占全国约10%,关联及应用企业约4000家。主要分布在气体、仪器仪表、电力电网、环境监测等领域,在国内细分行业具备一定优势,培育了以汉威科技、炜盛电子为龙头的气体传感器,以新天科技、光力科技、天迈科技为龙头的仪器仪表传感器,以日立信、三晖电气为龙头的电力电网传感器,以驰诚电气、安然测控为龙头的环境监测传感器。2022年10月,郑州高新区在由工业和信息化部直属的中国电子信息产业发展研究院颁布的中国传感器十大园区排名中位列第四。
  • 【2023世界传感器大会】中欧传感器产业合作交流会在郑州顺利召开
    11月6日,2023世界传感器大会——中欧传感器产业合作交流会在郑州顺利召开。此论坛由河南省人民政府、中国科学技术协会主办,中国仪器仪表学会、郑州市人民政府、德中友好协会联合会承办,来自高校、科研院所、企业等代表150余人参会。论坛由清华大学苏州汽车研究院(相城)协同控制所副所长刘玉敏主持。中国仪器仪表学会副秘书长张莉、郑州市人民政府副秘书长王凤霞为论坛致开幕辞。中国仪器仪表学会副秘书长张莉致辞郑州市人民政府副秘书长王凤霞致辞清华大学苏州汽车研究院(相城)协同控制所副所长刘玉敏主持论坛欧洲科学院院士亨利H拉达姆森以线上报告的形式介绍了红外器件的发展现状和中国在该领域的新机遇,他展示的采用了短波红外(SWIR)技术的照片,相比传统光学照片和热成像照片有更多成像细节和成本上的优势。“这项突破性技术可以广泛应用在汽车制造、肿瘤检测等领域。”亨利院士兴奋地表示,相关的设备和芯片都已在中国生产,这项技术拥有着光明的未来。葡萄牙使馆商务处中国区投资主管玛丽安娜威尔逊介绍了葡萄牙半导体产业发展现状和合作机遇,分享了葡萄牙在半导体、传感器、信息技术、AMKOR技术等领域的发展,在传感器相关领域的人才培养,以及葡萄牙的营商环境等。“大多数人工智能的动作以及应用场景都是通过传感器来进行表达和传达的。”剑桥大学制造研究院工业顾问刘铠文博士介绍了AI人工智能领域前沿应用—通过AI多模态测评技术革新教育评价体系。他举例,“剑桥大学老师每年要花600个小时去给学生做评价,我们研发的打分评价系统,可以直接帮老师减少80%的繁重工作量。”着重分享了AI多模态测评技术在教育评价体系中的优势与应用。IMAP大中华区管理合伙人王俊雄介绍了欧洲传感器行业的并购市场情况。“欧洲市场现在由于技术创新,汽车、医疗、航空航天、消费电子等领域都处在爆发式的增长期。”王俊雄认为,国内很多厂商的资质和能力、产品、质量,已经完全够得上抢占海外市场先机。中国以色列商务发展经理刘思嘉介绍了以色列创新传感器产业、商业环境与中国合作机遇。Newsight(中国)董事长李利凯做《投资传感器产业—打造中国世界级行业领袖》主题报告,分享了投资传感器产业的心得经验。海德堡印刷电子有限公司及创新实验室总经理迈克尔克罗格尔介绍了柔性传感器带来无限机遇,分析了不同场景的柔性传感器使用方案。海德堡创新实验室业务发展主管佛罗里安乌尔里希通过汽车安全带提醒技术的实际案例,分享了柔性印刷传感器在汽车领域的应用。本次论坛围绕中欧传感器产业,通过不同的角度进行了精彩的分享,来自俄罗斯联邦驻华商务代表处、德国驻华大使馆经济处、上海阿根廷总商会的专家、企业家们也参与其中,共同研讨中欧智能传感器产业的新发展、新理念。论坛的成功举办促进了中欧文化和科技的交流,让参会代表对传感器产业有了更多新的认识与理解。
  • 北京推出六方面政策支持高端仪器装备和传感器产业发展
    3月31日,北京市《关于支持发展高端仪器装备和传感器产业的若干政策措施实施细则》(以下简称《细则》)在怀柔区正式发布。据了解,《细则》针对高端仪器装备和传感器领域企业和研发机构,从鼓励应用基础研究、加快成果转化应用等六方面进行政策支持,将促进高端仪器装备和传感器产业创新要素集聚,推动产业生态体系建成。当前,怀柔科学城全面进入建设与运行并重新阶段,“十三五”时期29个装置平台陆续进入科研状态并产出创新成果,“十四五”科学设施加快落地,中科院18个院所、雁栖湖应用数学研究院、纳米能源所、德勤大学以及清华、北大等高校的科研团队相继进驻。怀柔区正以怀柔科学城建设为重要契机,着力发展高端仪器装备和传感器产业,致力于将怀柔科学城的建设过程转化为仪器装备的创新研发过程。为加快创新要素集聚、构建产业生态体系、推动建设高端仪器装备和传感器基地,2021年10月18日北京市政府印发了《关于支持发展高端仪器装备和传感器产业的若干政策措施》(京政发〔2021〕31号)。“此次发布的《细则》是具体细化措施,是为了配套产业发展资金,提高产业吸引力和区域招商力度,全链条支持产业集聚发展,加速构建具有国际影响力和竞争力的高端仪器和传感器产业集群。”北京市经信局副局长顾瑾栩表示。据了解,针对高端仪器装备和传感器领域企业和研发机构,北京将从鼓励应用基础研究、加快成果转化应用、支持企业集聚发展、支持企业利用多层次资本市场做大做强、吸引创新人才集聚、鼓励对外合作交流等六个方面进行政策支持。在鼓励应用基础研究方面,支持企业进行关键共性技术研发,开展揭榜攻关、样机研发、研究成果转化和产业化项目,以及建设创新平台和国家重点实验室。在加快成果转化应用方面,支持承接项目设备集成、综合解决方案的企业在怀柔布局,鼓励创业服务机构为高端仪器装备和传感器领域初创企业提供孵化服务。《细则》同时支持企业集聚发展,鼓励高端仪器装备和传感器领域企业利用贷款积极在京投资产业,给予贴息支持;支持企业利用多层次资本市场做大做强,支持金融机构为高端仪器装备和传感器产业小微企业提供银行信贷和担保支持等金融服务。在吸引创新人才集聚方面,支持各类创新主体对紧缺型人才及高层次国际人才引进,支持为高端仪器装备和传感器产业紧缺型人才办理落户。同时,鼓励对外合作交流,支持建立高端仪器装备和传感器领域的学术交流和产业交流平台,支持企业和专业服务机构开展专业服务、设立专业机构。北京市经信局副局长顾瑾栩表示,将会同市有关部门和怀柔区持续引导高端仪器装备和传感器领域的技术、人才、资本、服务等创新要素聚集,从加快推进园区建设、提供科学的配套空间、聚焦核心技术突破、打造应用场景示范区等四方面,着力打造高端仪器装备和传感器产业聚集区。在加速布局创新要素、推动产业集聚方面,注重顶层设计,面向全球合作,在怀柔重点建设MEMS传感器、光电传感器和生物传感器等研发平台,集聚一批研发设计、封装测试企业。接下来,将全面整合资源,充分发挥科研集聚优势,遴选可产业化科研项目,催生更多“专精特新”“小巨人”企业。同时,聚焦核心技术突破,打造应用场景示范区。坚持场景驱动,紧扣市场需要,立足北京、面向全球,集聚世界一流研发团队、先进技术和创新型企业。聚焦韧性城市,制定高端仪器装备和传感器应用场景清单,推动新技术、新产品场景应用。谋划产业发展全球战略,创新发展模式,通过“揭榜挂帅”“赛马制”等方式,激发市场主体活力,形成“头部企业引领、关键共性技术平台支撑、科技创新团队驱动、全要素专业服务”的源动力市场体系。在此基础上,深化产业服务体系,培育科技服务生态。围绕国家战略性新兴产业布局,争取国家级、市级产业政策支持,形成部、市、区协调联动机制。发挥政府基金引导作用,配套产业发展基金,吸引专业资本参与,增强金融的“造血”功能。加强与高端智库合作,全面梳理政策资源和产业资源,定制科技政策、产业政策、人才政策。设立科技服务企业,培养技术经理人,打通科研成果产业化的最后一公里,构建国际化科技服务生态体系。
  • 北京市支持高端仪器装备和传感器产业发展新举措
    今天下午(3月31日),北京市《关于支持发展高端仪器装备和传感器产业的若干政策措施实施细则》发布暨长城海纳硬科技加速器开园仪式和入驻项目签约活动在怀柔科学城集中举行。长城海纳硬科技加速器依托怀柔科学城大科学装置集群优势,打通资本、资源、产业服务、政策等全方位服务网,将成为中国创新、服务世界,建设北京(怀柔)高端仪器装备和传感器产业集聚区的重要承载地。《关于支持发展高端仪器装备和传感器产业的若干政策措施实施细则》由市经信局、市发改委、市科委中关村管委会、市财政局、怀柔区政府等5个部门联合发文,针对高端仪器装备和传感器领域企业和研发机构,从鼓励应用基础研究、加快成果转化应用、支持企业集聚发展、支持企业利用多层次资本市场做大做强、吸引创新人才集聚、鼓励对外合作交流等六个方面进行政策支持,将促进高端仪器装备和传感器产业创新要素集聚,推动产业生态体系建成。“此次发布的《细则》是具体细化措施,目的是为了配套产业发展资金,提高产业吸引力和区域招商力度,全链条支持产业集聚发展,加速构建具有国际影响力和竞争力的高端仪器和传感器产业集群。”北京市经济和信息化局副局长顾瑾栩表示。长城海纳硬科技加速器位于怀柔科学城核心区,作为怀柔综合性国家科学中心硬科技产业园示范项目,同时也是城市更新区试点项目,是高标准建设的硬科技产业孵化器。该园区总占地面积约2.64公顷,主要聚焦高端仪器装备和传感器产业,外延新能源、新材料等领域,打造集产业技术研发、科技企业孵化、高端人才引进、重大成果转化于一体的产业技术转化基地,为怀柔科学城五态体系建设提供支撑。未来这里要围绕“培育产业集群打造世界级高端仪器装备和传感器先导区、强化国家战略科技力量打造世界级高端仪器装备和传感器创新策源地、聚焦关键核心技术突破打造世界级高端仪器装备和传感器应用场景示范区和深化产业服务体系打造世界级科技服务生态”四个方面推进高端仪器装备和传感器产业发展。怀柔区委书记郭延红表示,“抓住怀柔科学城建设重大机遇,怀柔区大力推进科研成果转化和产业化,加快构建科学生态和高精尖产业业态,是打造国家战略科技力量的重要内容,也是推动区域高质量发展的关键抓手。我们将结合各类企业和创新主体需求,进一步推进政策创新、拓展服务内容、加强产业和创业扶持。”据了解,园区目前引入了北京海舶无人船科技有限公司、华谱科仪(北京)科有限公司、北京拓宝增材科技有限公司、北京绿土远景科技有限公司和北京埃彼咨能源科技有限公司等13家创新主体,预计达产后年生产总值可达16.5亿。当前,怀柔科学城全面进入建设与运行并重新阶段,综合性国家科学中心29个在建科学设施平台全面提速,“十四五”科学装置设施平台加快布局落地。怀柔区正以怀柔科学城建设为重要契机,着力发展高端仪器装备和传感器产业,致力于把科学城建设过程作为科技创新成果转化过程。
  • 【2023世界传感器大会】智能传感器关键材料及元器件-产业基础分场活动圆满举行
    11日5日,2023世界传感器大会在郑州国际会展中心隆重举行。本次大会由河南省人民政府与中国科学技术协会主办,河南省人民政府副秘书长魏晓伟主持开幕式。尤政、蒋庄德、周立伟等11位中外院士受邀参加。河南省副省长刘尚进、郑州市副市长马志峰、中德友好协会联合会副主席菲力克斯库尔兹出席致辞。中国科学院院士褚君浩、英国皇家工程院院士肯尼斯格拉特、开鸿数字产业发展有限公司首席执行官王成录、赛迪顾问股份有限公司副总裁李珂作大会主旨报告。相关省市领导,国际组织代表,高校、科研机构专家学者以及国内外协会、学会、知名企业代表等嘉宾共同出席开幕式。大会现场中国仪器仪表学会仪表功能材料分会、重庆材料研究院有限公司、河南省科学院、河南理工大学等单位联合承办了大会的“智能传感器关键材料及元器件”产业基础分场论坛。中国科学院院士刘云圻,俄罗斯工程院院士、欧洲科学院外籍院士李长明,河南省工业和信息化厅二级巡视员卢钦华,郑州市人民政府办公厅副主任李广利,中国仪器仪表行业协会副理事长、重庆材料研究院有限公司副总经理(主持工作)吴保安,重庆材料研究院有限公司副总经理刘奇等出席会议。论坛由河南理工大学微电子封装与精密成形研究院院长曹军主持。曹军院长主持论坛,吴保安副总经理致辞卢钦华巡视员、李广利副主任为论坛致辞,吴保安副总经理向出席的院士、专家及代表表示诚挚欢迎。刘云圻院士、李长明院士、仪综所所长欧阳劲松、中广核高级技术专家黄美良、智能传感功能材料国家重点实验室教授级高工赵鸿滨、厦门大学电子科学与技术学院副教授廖新勤分别作了题为《二维材料的可控制备及其高性能传感器》、《智能传感的创新与产业化》、《新时代传感器高质量发展的思考与建议》、《面向数字化转型的核电智能传感器的技术》、《智能传感功能材料发展现状与趋势》《功能复合材料与柔性智能触摸传感器》的学术报告,围绕智能传感器领域的技术前沿、产业趋势和热点问题进行高端对话,共享成果,共话未来。刘云圻院士作报告李长明院士作报告欧阳劲松所长作报告黄美良高工、赵鸿滨高工、廖新勤副教授作报告本次论坛的主题是“材料创新助力技术发展”,论坛采取线上线下结合的方式,来自传感器关键材料及元件、智能传感器等领域专家学者、企业代表、科技工作者代表、新闻媒体线下逾150余人参加。论坛现场
  • 化学传感器在环境领域中的应用-第十六届全国化学传感器学术会议分会报告
    2023年9月23-24日,由中国仪器仪表学会分析仪器分会化学传感器专业学组(专业委员会)主办的第十六届全国化学传感器学术会议(SCCS2023)于山东省济南市举办,两天时间里,湖州师范学院教授王桦(冯路平代讲)、华中科技大学副研究员闫凯、江苏大学副教授殷秀莲、南京大学教授毛亮、中国科学院长春应用化学研究所副研究员余登斌、中国科学院烟台海岸带研究所研究员张志阳在分会场带来了关于化学传感器在环境领域中应用的精彩报告湖州师范学院教授 王桦(冯路平代讲)报告题目:《纳米医学与环境智能传感监测技术及其产业化应用》冯路平介绍道,医学与环境标志物传感的基体材料包括:微纳通道结构的介孔导电材料可用于吸储液体中的标志物,可折叠柔性聚合物用于包埋标志物敏感的导电探针并印制功能电极,改性石墨烯Jet ink打印导线用于连接探头以及微型电化学处理器及信号输出装置,最后通过电聚合、分子自组装、功能涂覆、溶胶-凝胶法等技术将功能材料修饰于微电极上制成高通量芯片探头。通过该技术可研发出智能标志物传感探针,用于对人体健康及水中环境污染物实现在线监测华中科技大学副研究员 闫凯报告题目:《新型光电化学传感体系的构建及其分析应用》闫凯基于环境分析和生物分析的技术发展要求,以光电极性能优化、传感装置小型化、多目标物检测的光电化学传感搭建为目标,在基于近红外光电活性增强的半导体材料构建高性能光电化学传感体系、构建非铂阴极单室PFC用于自供能光电化学检测、基于图案化刻蚀导电基底构建比率型多目标物传感平台研究三个方面进行讨论,实现用电催化、光催化和酶催化来降解污染物。江苏大学副教授 殷秀莲报告题目:《基于图像模式识别的三维荧光光谱库技术及其在水体污染物检测中的应用》殷秀莲教授对自己的研究介绍道,利用三维荧光技术进行多维数据获取,取得每种污染物28个浓度样本,共28×4张EEM图谱图像,其中5×4张作为测试样本,定性识别准确率为100%。该方法为荧光光谱数据库建立和EEM数据分析开辟了一条新的途径,所提出的特征获取、特征提取及谱检索技术,对其他的光谱数据库建立有借鉴意义。此外,为AI大模型在荧光光谱分析中的应用提供数据准备基础,在水环境监测等领域提供帮助。南京大学教授 毛亮报告题目:《海水中氚的食物链传递风险》毛亮教授从核设施和核污染等热点问题出发,结合氚在食物链中的传递规律和内在机制,研究了氚在海洋中的生物效应。他介绍道,采用放射性同位素标记示踪技术进行研究,发现杜氏蓝藻会通过光合作用使氚水快速转化为有机氚,并经过食物链暴露使丰年虾体内有机氚含量上升,最后通过食物链逐级传递。毛亮教授的研究对当下核废水污染问题极具意义,他总结道,核污染中的氚危害不能仅看海水中浓度,更要关注其化学效应。中国科学院长春应用化学研究所副研究员 余登斌报告题目:《水体综合毒性比色检测新方法开发》基于水体检测任务的需要和国家环境政策导向,发展各种水体毒性检测新方法对检测多场景水体必不可少。余登斌介绍道,根据电化学检测原理,分别研发出了利用基因工程改造的绿脓杆菌分泌的大量绿脓菌素构建了免外加媒介体的水体毒性比色检测方法;利用电致变色普鲁士蓝阴极和生物阳极构建了水体毒性可视化检测传感器;基于E. coli-BQ快速颜色反应实现了水体毒性比色/电化学双信号检测和智能手机辅助RGB模型检测;基于容解性不大的铁盐稳定释放下Fe3+生物合成普鲁士蓝指示剂成功构建了水体毒性比色/电化学检测及酶标仪辅助的高效检测方法。同时,他还提到,新技术相较于传统方法具有操作简便、检测全面、快速灵敏等特点,并支持在线监测。中国科学院烟台海岸带研究所研究员 张志阳报告题目:《面向海岸带环境分析监测的光学纳米传感方法研究》海岸带环境分析监测是了解海洋生态系统健康的重要手段,但海岸带污染物情况复杂,环境分析难度大,基于此,张志阳团队发展光学纳米分析原理与技术,为海岸带生态安全与健康提供支撑。他以样品检测案例介绍道,针对污染物,利用纳米材料的光学特性,开发高灵敏纳米比色传感器/阵列和表面增强拉曼传感器,可实现对目标物的检测、鉴定及讲解分析。最后,张志阳提出展望,未来将强化交叉学科,进一步探究传感原理在环境检测上的应用。随着环境保护意识的不断提高和环境监测技术的不断发展,电化学传感器在环境监测领域的应用前景越来越广阔。未来,电化学传感器将朝着更灵敏、更稳定、更耐用的方向发展,实现环境数据的实时采集和远程监控,同时将探索更多的应用领域,为保护人类的生存环境做出更大的贡献。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制