当前位置: 仪器信息网 > 行业主题 > >

激光整形器

仪器信息网激光整形器专题为您提供2024年最新激光整形器价格报价、厂家品牌的相关信息, 包括激光整形器参数、型号等,不管是国产,还是进口品牌的激光整形器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光整形器相关的耗材配件、试剂标物,还有激光整形器相关的最新资讯、资料,以及激光整形器相关的解决方案。

激光整形器相关的资讯

  • 我国攻克大功率半导体激光器关键技术
    从中国科学院长春光学精密机械与物理研究所了解到,由该所研究员王立军带领的课题组攻克了大功率半导体激光器关键核心技术,成功开发出千瓦量级、高光束质量、小型化的各种半导体激光光源,并将成为工业激光加工领域的新一代换代产品。   王立军对记者说,大功率半导体激光器是激光加工、激光医疗、激光显示等领域的核心光源和支撑技术之一。由于西方发达国家掌控着大功率半导体激光器关键核心技术,长期以来,我国工业用激光加工设备不得不依赖进口。   王立军介绍说,他们的团队历经数年努力,通过激光光束整形、激光合束等关键技术,实现了高光束质量半导体激光大功率输出。   据了解,日前由王立军团队承担的这项研究——“高密度集成、高光束质量激光合束高功率半导体激光关键技术及应用”荣获了2011年度国家技术发明奖二等奖。项目组已经开始与一汽集团和北车集团接洽,尝试将这项技术应用于汽车制造等领域。
  • 陕西省高功率激光器及应用产业联盟成立
    3月26日上午,由陕西省发展和改革委员会主办,中国科学院西安光学精密机械研究所、陕西电子信息集团、西安炬光科技有限公司等单位承办的“陕西省高功率激光器及应用产业联盟成立揭牌暨项目签约仪式”在西安光机所隆重举行。陕西省副省长吴登昌、陕西省决策咨询委员会副主任崔林涛、中国科学院院士侯洵、中国科学院院士姚建铨以及陕西省、西安市政府有关部门领导,该产业联盟所有成员单位代表等共400余人出席了揭牌暨项目签约仪式。   为了贯彻落实《关中——天水经济区发展规划》,以建设西安统筹科技资源改革示范基地为契机,中国科学院西安光机所、陕西电子信息集团、西安炬光科技有限公司等三家单位发起组建陕西大功率激光器及其应用产业联盟的倡议。倡议指出,陕西在大功率激光器产业的技术和产业配套等方面具有较好的基础,为集群形成和发展提供了良好的条件,但还存在着产业分散、关联度低等问题,在一定程度上制约了全省大功率激光器产业的发展。因此,为大力促进我国大功率激光器产业快速发展,组建陕西大功率激光器及其应用产业联盟将刻不容缓。   在陕西省发改委等单位的大力支持下,目前陕西省高功率激光器及应用产业联盟已集合了全省在该领域中的近20家企业、大专院校和科研单位入盟。通过整合资源,并充分利用中国科学院西安光机所和西安炬光科技有限公司在高功率半导体激光器领域的技术、人才和产业等优势,建设陕西省激光产业集群,打造一条技术领先、产业集聚、竞争力强的全新的产业链,以加快培育战略性新兴产业,推动结构调整和发展方式的转变。   在本次签约仪式上,西安炬光科技公司与国投高科技投资有限公司签署了战略投资协议 与美国知名的激光器制造企业阿波罗公司(Apollo Instruments)签署了“光学整形与光纤耦合业务收购协议” 与西安光机所签署了“激光投影仪项目协议”,同时还与在陕的工业加工、医疗设备、科学研究等十余个激光器应用企事业单位签约了投融资项目和产品研发项目,总额近2亿元。   大会期间,陕西省发改委副主任张振红代表省发改委宣读了“关于成立陕西省高功率激光器及应用产业联盟的复函” 中国科学院西安光机所所长赵卫代表陕西省高功率激光器及应用产业联盟在大会讲话 陕西省副省长吴登昌、陕西省决策咨询委员会副主任崔林涛、中国科学院院士侯洵、中国科学院院士姚建铨为联盟的成立共同揭牌。
  • 西安炬光收购美国APOLLO“光学整形与光纤耦合”业务
    近日,由中国科学院西安光学精密机械研究所和数名归国留学人员组成的团队共同创立的西安炬光科技有限公司宣布收购美国Apollo Instruments公司半导体激光器光学整形与光纤耦合业务,Apollo Instruments公司将所有光学整形及光纤耦合技术及知识产权完全出售给西安炬光科技有限公司。   西安炬光公司是一家专业从事大功率半导体激光器研发和生产的高新技术企业。在此次收购业务之前,西安炬光公司生产的激光器产品主要以敞开式以及低亮度光纤耦合半导体激光器为主,先后推出了具有高功率、高可靠性、高稳定性等特点的9大系列百余个品种的产品,不仅在国内占据了较大市场份额,而且部分产品还出口美国、欧洲以及中东等地区。而美国Apollo Instruments公司在高亮度光纤耦合方面拥有先进的技术及专利,在高功率、高亮度等方面处于国际先进水平。随着半导体激光器功率、稳定性的提高,高亮度的光纤耦合激光器市场应用面越来越广,此次收购工作意味着西安炬光公司的产品及服务基本上覆盖了所有高功率半导体激光器市场。   通过这次实施跨国业务的收购,使西安炬光公司出色的工程化生产能力和完善的质量管理体系,在与国际先进的光纤耦合技术有机结合后,将会进一步提高公司产品的可靠性和稳定性,并扩大和丰富公司的生产范围和产品种类,从而更好地适应国内外高功率激光器市场多元化的需求,对增强西安炬光公司的国际竞争力及提升炬光科技产品的品牌形象起到了积极的促进作用。
  • 海洋光学(Ocean Optics)推出领先的光谱整形技术
    海洋光学(Ocean Optics),微型光电产业的领先企业,开发了一种为光谱仪设计的专有光谱整形技术,使得光谱仪对紫外可见光源的光谱响应更加平衡和平滑。因此,用户可以在更宽的谱区更均匀地测量光谱响应,从而改进了信噪比表现。对于某一光谱区域,若是物质的强吸收带,而此段的光谱信号强度相比其它波段的信号强度低很多,这会大为降低此波段的物质检测限;而新的光谱整形技术可以消除并改善这种影响,提高整个波段的响应特性,提高信噪比。 (图片说明:海洋光学的光谱整形技术应用于微型光谱仪的光学设计,以平衡用于光谱应用的紫外可见光源的不均匀的光谱发射响应)。 传统上,对用在光谱仪上的光源的尖锐峰输出是在光源上进行处理的。例如在光源处使用机械装置或滤光片的方法,这会产生比较大的光损失,特别是想要成批仪器性能一致时,可能太昂贵或不切实际。专利的海洋光学光谱整形技术通过修改光谱仪内部的设计,使特定的光波长或光谱带被选择性地衰减。这使得优化光谱仪与光源配置变得更容易。 海洋光学OEM(原始设备制造商)的工程团队现在可以将这一新型光谱整形技术应用于一系列的OEM生产应用。此工程团队提供专业的技术支持,以帮助OEM客户更快将产品推向市场,更好地满足商业需求。该团队可以为OEM客户提供完整的系统设计,包括探测器涂层、光纤部件和光源。公司已通过ISO 9001:2008认证,可以同时支持系统集成及分离部件的制造。欲了解其他信息可访问 www.OceanOEM.com 。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。 欲了解最新豪迈中国新闻并订阅RSS,请访问豪迈中国新闻博客: http://halmapr.com/news/halmacn/ 。您也可以通过下面的链接访问公司英语新闻博客:http://halmapr.com/news/oceanoptics/ 。 如果需要更多的信息请联系: 孙玲博士,总经理 海洋光学亚洲分公司 中国上海长宁区古北路 666 弄嘉麒大厦 601 邮编:200336 电话:(86) 21 6295 6600 传真:(86) 21 6295 6708 电子邮箱: Distributorsupportasia@oceanoptics.com 网址:www.oceanopticschina.cn / www.oceanoptics.com 中文媒体联络: 刘兵斌 (Bryan Liu) 中国区市场经理 英国豪迈国际有限公司上海代表处 中国上海市长宁区仙霞路 137 号 盛高国际大厦 1801 室 邮编:200051 电话:(21) 5206 8686-111 ,传真:(21) 5206 8191 电子信箱:bryan.liu@halma.cn 网址:www.halma.cn
  • 我国成功研发出民用半导体激光器件
    “民用半导体激光器件我们已摆脱长期依赖进口的局面。现在,我们已经发明成功,工艺性能稳定,产品投入规模生产阶段。”1月10日,记者在山东浪潮华光公司采访,听着技术专家高兴地介绍着,看到那长长的流水线正“收获成熟的芯片”。如今,我们的企业真正拥有了世界顶尖的核心技术,产品价格大幅度下降,让“等面值人民币”买到“等面值美元”的产品不再是梦想。   民用激光显示技术能够完美地再现自然色彩,是继黑白显示、彩色显示、数字显示之后的第四代显示技术。目前,国际上激光显示技术已发展到产业化前期阶段,未来3至5年,将是全球激光显示技术产业化发展的关键时期。为加快推进光电技术研究,打破关键技术的“封锁”,我国把“新一代激光显示技术工程化开发”列为863计划重点项目,其中的“高可靠性、低成本半导体激光器材料与器件工程化开发”课题让山东浪潮华光光电子有限公司所承担。   浪潮华光是国内唯一一家拥有从激光器材料生长到器件制作的完整生产线的高新技术企业,自1999年建厂以来,其半导体激光二极管及大功率激光器的产销量持续稳居国内第一。为推进课题进展,浪潮华光组建精英团队,加速科研攻关。公司成立了由总经理、国务院特殊津贴专家郑铁民研究员担任组长的项目小组,调动公司所有资源,完善了科研团队建设,从半导体激光器的材料生长、管芯工艺制作、器件封装等整个制造工艺链均配备了专业人才。组建了以长江学者徐现刚教授为学术带头人的研发团队,有研究员、高级工程师和博士、硕士等80余人。强大的科研团队借助公司已有的省级半导体激光器技术实验室、山东省半导体发光材料与器件工程实验室等科研平台,开展了技术攻关。   期间,在徐现刚教授的引领下,技术总监夏伟博士组织浪潮华光的精英团队成员,集思广益,刻苦钻研,成功实现了三大关键技术突破:一是TM偏振808nm半导体激光器外延材料与芯片研制。围绕实现项目要求的特定偏振激光输出,项目组从理论设计激光器的材料结构开始,进行了系统的研究,有效采用了MOCVD技术制备这种特殊材料,加快了科研步伐。目前,该技术世界上只有为数不多的几个大公司掌握。通过5个月的努力,浪潮华光成功掌握了自主生长技术,满足了项目需求。二是635nm激光器外延材料与芯片研制。为了增加红光分量的亮度,激光显示项目在红光波段选择了波长最短的635nm半导体激光器。浪潮华光在650nm半导体激光器方面积累了丰富经验,形成了稳定的650nm半导体激光器产品,占据市场70%的份额。虽然635nm激光器相比650nm红光激光器只有十五纳米的波长差异,但是其带来的技术难题却成几何级数增长。目前,只有日本的几家公司掌握了635nm激光器的制作技术。浪潮华光研发团队经过上千次的试验,最终突破了635nm红光激光器材料的生长技术难点,实现了红光激光器的大功率输出和长期可靠工作。三是模组封装及集成技术。浪潮华光的封装技术人员克服时间紧任务重的困难,与863项目的用户积极配合,实现了高精度多管芯封装技术、新型热沉制作技术、微透镜整形技术等多项自主创新技术,完成了项目要求的模组封装和整形。   目前,针对所承担的“863”项目,浪潮华光已成功研制出满足激光显示工程化要求的808nm、635nm高可靠性、低成本半导体激光器件,并已经初步实现了规模化的生产。从目前的科研和生产进度上看,浪潮华光有望提前全面完成项目预定任务,并能实现批量提供民用激光显示用激光光源的目标,将会大大降低激光器的价格,并带动国内激光器应用市场的发展和更加广泛的应用,实现了“替代进口产品、提高我国半导体激光器的地位、实现激光器显示用核心元器件国产化”的梦想,让该公司产品在国际激光显示产业中独占鳌头。
  • 滨松激光加热光源助力更高效、更精确的激光焊接
    如今,用激光进行塑料焊接(Plastic Welding)以及锡焊(Soldering)已是一种十分常见的加工方法。非接触性、高自由度、高速度、高精密是此类方法的突出优点。然而,需要达到理想的焊接效果,怎样的加工条件是最好的?我们都知道,假如使用放大镜将光聚焦在一张纸上,如果纸是黑色的,就很容易被点燃,白色的则相对困难,这是由其温度升高情况不同而造成的。激光加工也是一样,拿塑料焊接来说,待加工的塑料往往颜色、厚度各异,如果不去测量加工过程中物体表面的温度,则难以准确判定是否达到了预期的加工效果。对于新的待加工物来说,找到理想的加工条件就将花费很多时间。 可以说,温度信息是缩短寻找最佳加工条件周期的一项重要参数。以前,加工操作和合格判定多是通过交由经验丰富的工人来获得保障。但这种依赖于“人”的模式,显然不能满足工业发展的需求。如果能把握温度信息的反馈,就可实现“可视化”,即便是经验尚浅的人,也能进行精确高效的加工。那么,我们要如何获取此信息呢? 将温度信息一滴不差的收起来 获得温度信息的唯一方法,是测量来激光自加工过程中的红外光强度。但这里我们需要捕捉的,是高能量激光中那缕极其微弱的红外光,前后者的强度比率大约是一亿比一。常规操作是无效的,拥有极高灵敏度的弱光探测器才能派上用场。此外,红外光产生与物体被照的位置是一致的。想要精确测量,观测点和照射点的形状、位置都须做到同步。然而,受制于工艺水平,目前市面上许多此类激光器的该两部分是分离的,使用时主要通过一些人为的调试来尽可能保障效果,易用性和精确性都不够理想。 而滨松激光加热光源LD-HEATER及SPOLD,可以将以上问题都解决。滨松激光加热光源将激光照射和红外探测都集成在了同一个激光头中。因此,不必进行光轴调整,照射和探测就可完美的同步进行。由于照射光和监控信息的光程相同,所以不管大小、近远、光的形状,观测到的都是相同的。而滨松本身十分擅长微弱光的探测,探测器的灵敏度即可以得到很好的保障。高精度的实时温度监测技能加身后,会有怎样的直接变化呢?曾有客户反馈,在以前,新待加工物从试生产到批量生产,需半年左右(包括修正模具的时间)。配备滨松LD-HEATER后,大概仅需1/3的时间就可完成。如今,已有激光加热光源设备在客户的产线中工作了10年,且保持了0故障率。如此超高的稳定性,也为带来了生产效率的提升。 LD-HEATER和SPOLD有何不同? 这里我们提到了两个不同的名字,LD-HEATER以及SPOLD。同是激光加热光源的它们有什么不同呢? LD-HEATER是多功能的,实时温度监测功能为其标准配置,适用于试生产时期的加工条件寻找,以及问题分析。秉承即使是不完全了解激光的人都可以使用的理念,滨松工程师在开发时也考虑了足够的安全性。而SPOLD更低廉、更小巧、更多产品系列,易于在大规模生产现场使用。它是尽可能简化了的光源,以期能集成到其他的设备中。 不过,两者在许多核心的基本性能上是相同的。除了上述的高稳定性外,最为突出的则是其内部均配备了光束整形系统,输出的直接为平顶光,保证了加工的高效以及高度均匀性。如今某球知名的智能腕表生产商已将此系列激光加热光源置入了其产线中,其焊接达到的高防水性则让客户十分满意。此外, OLED屏的焊接也是目前的一个典型应用,其可进行高质量的无损拆解,这也源于激光器核心性能的保障。 简单来讲,LD-HEATER与SPOLD在生产的不同阶段扮演着不同的角色。在LD-HEATER给出加工条件后,可将相对低成本以及内嵌式的SPOLD配备入大规模生产系统,以保障已确定的加工条件与预期相同。而一旦实际生产中出现问题,也可以继续使用LD-HEATER找到问题所在。 不过,并不是所有SPOLD都配备了实时温度监测功能,客户可根据自身的需求进行选配。而此功能发挥的作用与LD-HEATER的也不尽相同,我们将此称为LPM(Laser Process Monitor,激光过程控制器)。 低成本,实现批量生产时的加工质量监控 一般来讲,激光加工的时间很短,在线探测异常并尽快做出反应非常重要。在实际生产现场,可能会发生很多难以直接察觉的未预料到的事情,比如设备或磨具状态的变化。而这些变化很可能导致待加工材料随着时间而改变,进而影响到最终的加工效果。而通过温度差异则可探知异常的发生,装配了LPM的SPOLD在加工中就可实现这样监测。 滨松目前提供3款配备LPM的SPOLD:L11785-61M,L12333-411M/-511M LPM采集由热产生的红外光后,可输出相应的模拟信息。如果加工出错,红外光的强度就会改变,LPM输出值也会不同。也就是说,其可以提供的是一个信息对比。如果是稳定的设备和材料,执行稳定正确的加工过程,输出信号也将是稳定的。一旦出现异常的信号,则可判定加工过程存在异常。 不过LPM并不是一个单独的模块,只能装配在SPOLD中才可很好的发挥作用。带有LPM的SPOLD只通过一根光纤来同步完成激光照射与红外探测,同样不用进行调整,也能确保加工区域和红外光信息获得区域是统一的。 当然,滨松也提供不带有LPM的SPOLD产品,可实现更低的成本,以及更小的体积。 不带有LPM的SPOLD系列:L11785,L13920 除了性能优异的产品外,由于产品研发是从应用端开始着手的,滨松对于不同材料之间的加工工艺非常熟悉,因此还可向客户提供帮助进行工艺选择的增值服务。 滨松最早的激光技术起源于激光核聚变的研究。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发,在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,便积极推进了各种激光技术的研发。结合自身在光子技术应用中的广阔视野和经验,以期为激光技术打开新的应用领域。
  • Coherent相干公司光泵半导体激光器(OPSL)在流式细胞应用领域占据主导地位
    近日,Coherent 相干公司紧凑型连续可见光激光器Sapphire出货量已突破 50000 台。Sapphire是全球首款可产生488 nm的商用化固态激光器,采用相干公司独有的光泵半导体激光(OPSL)技术, 取代了传统的笨重、高能耗气体激光器。 相干公司 Sapphire 光泵半导体激光器 光泵半导体激光器具有灵活可调的波长、可扩展的功率、高效的倍频转换、优异的光束质量等多种优势, 无论是在使用成本、可靠性和使用寿命等方面都极具竞争力。 数十年来,光泵半导体激光(OPSL)技术已在医学诊断、生物成像和其他生命科学应用领域的各种仪器中得到广泛应用。其典型的应用实例包括流式细胞仪、共聚焦显微镜、高通量基因测序、病毒检测等。流式细胞仪领域一直都非常活跃,它的应用涉及免疫学、药物研究,以及用作一线临床诊断工具。随着越来越多研究机构以及临床实验室对多参数流式细胞仪的使用,进一步增加可同时分析的参数数量,加快仪器开发速度并降低总体使用成本益发重要。增加可分析参数的数量能够推动免疫学和细胞生物学等领域开展更复杂的实验。在临床应用领域,这能够让一些数据更加具体,从而为越来越普及的“个性化医疗”(尤其是肿瘤医疗)提供支持。很显然,激光波长的数量是所能测量参数最大数量的制约因素之一。相干公司即插即用的小型化光泵半导体(OPSL)OBIS系列激光器可提供的波长不仅已基本覆盖整个可见光光谱,还把波长带宽拓展到了近红外及更重要的紫外波段,拓展了流式细胞仪多参数测量的能力。 对用于流式细胞仪的激光器而言,还有一个重要趋势是,多波长的激光引擎在临床仪器中的应用越来越普及。相干公司集成化的光引擎OBIS CellX,将4种波长的激光器以及其相关的电子元件、光束整形器和光学聚焦器件都封装在一个模块内,简化并加速了仪器制造商开发新仪器的过程,缩短了产品上市的时间,降低了开发成本。同时,集成化光引擎的这些优势使仪器制造商能够专注于荧光染料化学和可带来优势的其他关键领域的开发(如创新的数据分析技术及其他功能)。相干公司用于生命科学领域的激光器
  • 400um光纤耦合千瓦半导体激光器
    成果名称 400um光纤耦合千瓦半导体激光器 单位名称 北京工业大学 联系人 李强 联系邮箱 ncltlq@bjut.edu.cn 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 &radic 技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介:   400&mu m光纤耦合千瓦半导体激光头实物图  400&mu m光纤耦合千瓦半导体激光器整机实物图 本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。 本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。 本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。 该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。 应用前景: 输出激光光强分布图 半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。 目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。 本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。 知识产权及项目获奖情况: 本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。 专利情况: (1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A (2)激光二极管电极连接装置,专利号:CN100527532C
  • 上海光机所在空气激光的远程探测应用研究中取得新进展
    相干拉曼散射是一种重要的非线性光谱技术,已被广泛用于物质检测、燃烧诊断、生物显微等领域。传统的相干拉曼光谱技术,通常需要多束激光实现分子振转相干性的激发与探测,并对多光束间的时空控制提出了很高的要求。因此,发展单光束相干拉曼散射技术是极具吸引力的研究方向,加州大学伯克利分校、德州农工大学、以色列魏茨曼科学研究所等科研机构都开展了相关研究。然而,以往方法通常需要使用空间光调制器对飞秒激光进行时间、频谱、偏振整形,不能用于大能量飞秒激光,而且拉曼激发光和探测光波长相近,导致拉曼信号的信噪比较低,难以进行痕量分子的灵敏检测。针对上述问题,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室研究团队基于空气激光的独特时频性质和远程产生能力,提出了一种新型单光束相干拉曼散射技术,实现了空气中温室气体SF6的定量测量,检测灵敏度达到千分之四的水平 [Opt. Lett. 47, 481 (2022)]。随后,该团队将基于空气激光的相干拉曼散射技术与种子放大技术、偏振滤波技术相结合,实现了浓度低至万分之三的温室气体检测,并展示了该技术在多组分同时测量、12CO2与13CO2精准分辨方面的独特优势,开拓了空气激光在远程探测领域的初步应用 [Ultrafast Science 2022, 9761458 (2022), 入选期刊封面论文和2021-2022年度10篇高影响力论文]。最近,该研究团队进一步发展了电子共振增强的单光束相干拉曼散射技术,利用一束飞秒激光同时构建了拉曼共振和电子共振双共振条件,通过电子共振将拉曼信号提高了1-2个数量级。单光束电子共振增强相干拉曼散射不仅要求利用一束激光同时完成分子的相干振动的激发与探测过程,而且还要求激发光或探测光与待测物质的电子态跃迁共振,因此一直以来未见报道。该团队利用空气激光巧妙地解决了这一难题,发展的新技术不仅发挥了空气激光频谱窄、与泵浦光束天然重合的优势,而且空气激光频率与CO2+跃迁的完美匹配为拉曼散射创造了电子共振条件,为大幅提升拉曼散射效率提供了简单有效的方法。相关成果发表在近期的Laser Photonics Reviews上。基于空气激光的相干拉曼光谱技术体现了空气激光在时间、空间、频率三大维度上的独特优势,并结合了飞秒激光多组分激发和空气激光高光谱分辨的双重优势,具备多组分同时检测和同位素分子甄别的独特能力,为复杂大气分子灵敏探测提供了全新技术方案。此外,该技术以天然产生的空气激光为探测光,将传统多光束相干拉曼散射简化为单光束,光路简单,无需多光束多色场时空精密控制,适用于高温高压湍流环境和复杂大气环境的远程探测,是一种简单实用的共性光谱技术。相关工作得到了国家自然科学基金重点项目、面上项目、中科院基础研究领域青年团队计划、上海市优秀学术带头人等项目的支持。图1 单光束电子共振增强相干拉曼散射的基本原理图2 不同浓度CO2气体中测得的拉曼光谱,阴影区为电子共振增强的相干拉曼信号
  • 国产突破!中电科二所碳化硅激光剥离设备研制取得重大进展
    据太原日报报道,近日中国电子科技集团第二研究所(以下简称“中电科二所”)近日传来好消息,科研团队在SiC激光剥离设备研制方面,取得了突破性进展。报道指出,目前,中电科二所科研团队已掌握激光剥离技术原理与工艺基础,并利用自主搭建的实验测试平台,结合特殊光学设计、光束整形、多因素耦合剥离等核心技术,实现了小尺寸SiC(碳化硅)单晶片的激光剥离。据介绍,SiC半导体材料具有高热导率、高击穿场强、高饱和电子漂移速率、化学性能稳定等优点,对电动汽车、高压输变电、轨道交通、通讯基站、卫星通讯、国防军工等领域的发展有重要意义。但是,因SiC材料硬度与金刚石相近,现有的加工工艺切割速度慢、晶体与切割线损耗大,成本较高,导致材料价格高昂,限制了SiC半导体器件的广泛应用。激光垂直改质剥离设备被誉为“第三代半导体中的光刻机”,科利用光学非线性效应,使激光穿透晶体,在晶体内部发生一系列物理化学反应,最终实现晶片的剥离。这种激光剥离几乎能避免常规的多线切割技术导致的材料损耗,从而在等量原料的情况下提升SiC衬底产量。此外,激光剥离技术还可应用于器件晶圆的减薄过程,实现被剥离晶片的二次利用。中电科二所聚焦第三代半导体关键核心技术和重大应用方向,以解决SiC衬底加工效率这一产业突出难题为目标,将SiC激光剥离设备列为重点研发装备,借此实现激光剥离设备国产化,力争使其具备第三代半导体核心装备研发、产业化和整线装备解决方案的能力。目前,这一研发项目已通过专家论证,正式立项启动,下一步将依托国家第三代半导体技术创新中心,汇聚科研优势力量,聚焦激光剥离技术的实用化与工程化,积极推进工艺与设备的协同创新,研发快速生产化、全自动化、低能耗化的激光剥离设备。
  • “增材制造与激光制造”重点专项2022年度项目申报指南
    近日,科学技术部发布“增材制造与激光制造”重点专项2022年度项目申报指南。本重点专项总体目标是:到 2025 年,使我国增材制造与激光制造成为主流制造技术之一,总体达到世界一流,基本实现全球领先,在战略新兴产业、新基建、大国重器中发挥不可替代的重大作用。同时,基本实现增材制造与激光制造全产业链主体自主可控,形成系列长板技术和一批颠覆性技术,并汇集为行业整体优势,为一批领军企业奠基强大的国际技术竞争力,高端装备/ 产品大批进入国际市场,实现大规模产业化应用,在制造业转型升级中发挥核心作用。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕“基础理论和前沿技术、核心功能部件、关键技术与装备、典型应用示范”全链条部署任务。拟启动 28 项指南任务, 拟安排国拨经费 3.58 亿元。其中,围绕难熔金属材料增材制造、 超快激光制造中光子—电子—晶格相互作用观测与调控等技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费 400 万元,每个项目 200 万元。围绕个性化医疗器械制造、医疗植入物表面微功能结构制造等技术方向,拟部署 5 个科技型中小企业技术创新应用示范项目,拟安排国拨经费 1000 万元,每个项目 200 万元。 共性关键技术类项目,配套经费与国拨经费比例不低于 1.5:1。应用示范类项目鼓励产学研用紧密结合,充分发挥地方和市场作用, 配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊 说明外,每个方向拟支持项目数为 1—2 项,实施周期不超过 5 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题不超过 4 个,项目参与单位总数不超过 6 家;共性关键技术类和应用示范类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名项目负责人,项目中每个课题设 1 名课题负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。 科技型中小企业项目要求由科研能力强的科技型中小企业 牵头申报。项目下不设课题,项目参加单位(含牵头单位)原则 上不超过 2 家,原则上不再组织预算评估,在验收时将对技术指 标完成和成果应用情况进行同步考核。科技型中小企业标准参照 科技部、财政部、国家税务总局印发的《科技型中小企业评价办法》(国科发政〔2017〕115 号)。1. 基础理论和前沿技术 1.1 跨尺度自润滑复合结构增材制造(基础研究类)研究内容:针对我国航空航天和高端装备对高度集成、精准按需润滑以及润滑异形件的设计与制造需求,开展复合润滑功能组件整体化增材制造研究,研究增材制造专用自润滑功能材料设计制备、跨尺度润滑功能结构、尺寸突变异形构件一体化精密制造关键技术,研发面向增材制造的自润滑复合材料体系,探索精准按需润滑结构增材制造新原理、新工艺,研究面向增材制造的可控自润滑表界面材料精准设计与构筑新方法,建立跨尺度增材 制造平台,发展润滑功能准确定制化系统设计与一体化制造技术。1.2 飞秒激光—电化学复合微纳增材制造(基础研究类) 研究内容:针对三维复杂金属微纳结构的飞秒激光辅助定域电化学增材制造,探索微结构无掩膜激光—电化学双耦作用定向诱导粒子原位增材制造机理,研究飞秒激光诱导下定域电化学沉积组织—结构—功能一体化微纳制造新方法,研究激光—电化学复合能场亚微米复杂构型和微米功能结构阵列制造、纳米体元与微米构型精准调控等技术。1.3 材料组分三维精确可控的粉末床熔融金属增材制造(基 础研究类) 研究内容:研发面向粉末床熔融增材制造的在线多组分材料精确添加技术,研究材料组分三维可控的非均质粉末床熔融增材制造工艺特性、材料原位冶金行为、材料梯度/界面行为和组织性能演化规律,明晰非均质材料构件成形过程中的应力—形变演化规律,建立非均质材料梯度/界面行为、组织与性能协同调控方法,研发材料成分过渡区间精确调控和后续热处理等关键技术,实现材料组分三维精确可控构件的创新设计、制造及评价。1.4 柔性光电器件的激光光场调控微纳制造(基础研究类) 研究内容:面向柔性光电器件中的关键微纳结构,研究激光时域/空域/频域光场调控方法,探索激光调控光场与柔性光子器件材料相互作用的新现象与新效应,研究激光远场与微腔等近场光学效应结合的宏微纳跨尺度无掩膜加工新技术,研制远场—近场复合光场的无掩膜高效激光微纳制造装备。1.5 异质仿生结构设计及一体化增材制造(基础研究类) 研究内容:探索仿生结构中材料/结构的多重耦合行为与机制,研究与高效减振、智能变形、损伤自修复等功能需求匹配的仿生结构模块化设计方法,揭示基于异质材料增材制造的仿生功能模块化调控规律,发展功能模块化构件的多维度、多尺度和异质材料的仿生设计技术;研究异质材料体系下模块化仿生构件的一体化增材制造关键技术,研发面向增材制造的宏微构型—异质材料仿生结构设计、仿真与工艺规划平台,发展多场复杂应用环 境下增材制造宏微构型—异质材料仿生构件的性能评价技术。1.6 功能化活性心肌组织增材制造(基础研究类) 研究内容:针对心肌组织损伤治疗,开展活性心肌组织高精度增材制造及其功能再生方法研究。研究功能化活性心肌组织复 杂微结构系统的仿生设计方法;研究具有电传导能力的活性心肌组织增材制造新原理与新工艺;研究增材制造活性心肌组织的体外三维定向排布生长与高频同步跳动方法,以及体外活性心肌组织电信号特征与其生物功能的作用关系;研究大型动物大面积心肌病变缺损修复的考核评价方法。1.7 面向前沿探索制造新原理(青年科学家项目) 研究内容:针对新能源、新材料等新兴产业领域重大需求, 重点开展难熔金属材料增材制造、超快激光制造中光子—电子— 晶格相互作用观测与调控、喷墨共形打印、复合制造等前沿制造新原理新方法研究。2. 核心功能部件 2.1 激光粉末床熔融增材制造在线监控与质量评价技术(共性关键技术类) 研究内容:研究合金成分、跨尺度微观组织/缺陷、应力/形变状态与激光粉末床熔融增材制造过程特征信息的相互关系;研究增材制造熔池动态行为、非均质宏/微观组织特征的多物理场在线监测方法和在线质量评价技术体系,研发铺粉状态快速准确识别与分类、熔池特征分析及质量预判、逐层熔凝区域组织/缺陷识别和轮廓变形分析、质量预警及多参量复合调控等关键技术;发展基于在线监测数据的多信息融合及高效率深度学习模型,明晰 工艺参数—特征信息—制造质量关联关系,研发基于过程特征的高效在线质量评价和多参量交互质量控制方法。2.2 大型复杂构件制造过程在线检测与智能调控技术(共性关键技术类) 研究内容:面向重大装备的高性能焊接与增材制造,研究大型复杂结构制造过程中的在线三维形貌及变形的跨尺度光学测量技术、制件与制造加工头的多自由度位姿测量技术;研究制造过程中熔池特征尺寸和温度场表征、制造缺陷非接触式在线检测技术;研发从微观位错演化到宏观结构件变形失效的跨尺度增材制造热力模拟预测技术和方法;揭示制造工艺与位错—晶界多级微 结构、结构变形和制造缺陷的关联关系;研究面向大型结构的表面形貌、结构变形、构件温度和制造缺陷等成形质量自适应闭环 控制系统与装备。2.3 增材制造构件长寿命服役行为表征与调控关键技术(共性关键技术类) 研究内容:研究增材制造构件在高温环境与复杂应力条件下的长寿命服役性能表征方法,典型增材制造构件/材料长寿命试验标准与疲劳数据库;研究增材制造构件微结构/缺陷与长寿命服役行为的关联机制,制造工艺—微结构/缺陷—服役性能的映射关系;研究提高服役寿命的增材制造缺陷/微结构在线调控技术,发展高服役性能构件增材制造工艺的优化方法;研究增材制造构件长寿命疲劳的评估技术。2.4 制造用高性能高功率飞秒激光器(共性关键技术类) 研究内容:探索飞秒激光产生、放大、线性和非线性调控过程的动力学机制,以及高功率大能量飞秒激光放大时由于增益导致的脉冲宽度劣化机制;攻克高单脉冲能量飞秒激光热管理、模式控制、高效率长寿命飞秒频率转换等关键技术,研究倍频产生高功率紫外飞秒激光参量的稳定控制及优化技术,开展高功率大能量飞秒激光器模块化设计和系统集成技术研究。2.5 制造用高性能高功率皮秒激光器(共性关键技术类) 研究内容:开展皮秒激光增益分布优化、模式控制机制和有效热管理等技术研究,攻克均匀泵浦、长寿命皮秒锁模及非线性抑制等关键技术,研究倍频转化效率提升、紫外皮秒激光光束质量控制及延寿等技术,研制高稳定性高功率红外、紫外皮秒激光器产品。3. 关键技术与装备 3.1 非均质材料飞秒激光制造技术与装备(共性关键技术类) 研究内容:面向复杂构件涉及的复合、多层膜、多孔等非均质材料的高性能加工共性需求,建立飞秒激光加工过程中光子能量吸收、电子状态变化、等离子体喷发、成形成性等多尺度连续观测系 统;从电子层面研究飞秒激光时/空/频域协同整形的非均质材料加 工新方法,突破损伤控制、选择性加工等关键工艺技术,研发飞秒激光跨尺度柔性加工装备和三维复杂构件微细加工装备。3.2 陶瓷多材料连续成形光固化增材制造技术与装备(共性关键技术类) 研究内容:研究高固含量/低粘度陶瓷打印浆料流变机理与稳定性优化方法,攻克陶瓷光固化增材制造精度光散射调控技术。 研发陶瓷多材料连续成形光固化增材制造技术与装备,开展高效加工策略与成形效能评估研究,开发材料—工艺—装备全链条性能评价方法。3.3 大能量高重频脉冲激光智能清洗技术与装备(共性关键技术类)研究内容:研究纳秒脉冲能量输出能力提升的新方法,开展大能量高重频脉冲激光光束控制、模式调控、高功率关断和多级放大等技术研究;揭示大能量纳秒脉冲激光高效高质清洗机制, 攻克基于机器视觉的精确定位、智能选区、残留物快速识别、复杂曲面路径智能规划、双光束联动无缝无重叠拼接等关键技术, 研制具备复杂曲面结构高效循环作业的激光智能化清洗成套工艺与装备。3.4 薄壁弱刚性构件激光电解复合高效铣削加工技术与装备 (共性关键技术类)研究内容:针对薄壁弱刚性整体复杂构件制造瓶颈,研究气液环境下激光束流作用过程、超高电流密度电化学加工材料去除机制及成形规律;研究激光—电解复合铣削制造新方法,攻克复 合能量场形性调控、束流流域设计等关键技术;研制大型构件激 光—电解复合铣削加工装备。3.5 结构功能部件飞秒激光精密制造技术与装备(共性关键技术类)研究内容:针对航空航天等领域结构功能一体化部件精密制造的需求,揭示飞秒激光光束运动参量调控的微结构控形控性制造机制,研究制造结构的几何特征、质量对部件功能和服役性能的映射关系;发展“压敏、密封、润滑”等功能部件飞秒激光制造方法,攻克激光脉冲三维整形、内腔光束运动姿态参量控制等关键技术,研制飞秒激光制造成套工艺与装备。3.6 海洋装备水下原位高效增材修复技术与装备(共性关键技术类)研究内容:针对海洋装备在服役过程中的修复需求,研究适用于水下原位增材修复的专用材料;研发复杂水下环境空间重构、 姿态感知和损伤区域快速三维测量技术与装备;研发水下空间约束环境下的增材修复过程规划、组织性能调控、修复部位服役性 能预测等技术;研究应急响应条件下的水下结构可修复性评价和修复方案智能决策方法;研发水下现场环境修复工艺和装备。3.7 大型点阵结构无支撑高效增材制造技术与装备(共性关键技术类) 研究内容:研究面向增材制造的多功能大型点阵结构设计技术;研究点阵结构的无支撑高效增材制造、高性能连接、多层点阵夹芯结构制造、结构变形控制等关键技术;研究大型点阵夹芯结构的无损检测技术;研发规模化低成本高效增材制造装备。3.8 大幅面纤维增强热塑性复合材料增材制造技术与装备 (共性关键技术类) 研究内容:研究面向大型纤维增强热塑性复合材料构件的多丝束挤出增材制造成形机理及翘曲变形行为,发展大型纤维增强热塑性复合材料构件设计方法,攻克大型纤维增强热塑性复合材料增材制造的路径优化、多材料性能匹配、多工艺参数匹配、界面结合优化、成形精度控制等关键技术;研究增材制造复合材料构件非降级回收再制造技术和构件的性能评价方法;研制大型纤维增强热塑性复合材料构件增材制造装备。3.9 超强韧中熵合金构件增材/强化/减材复合制造(共性关键技术类)研究内容:研究适用于增材制造的超低温超高强韧中熵合金高通量设计与性能验证方法;研究中熵合金在复合制造过程中形性调控机制与方法,以及表面损伤动态演变机制及抑制理论,研发激光增材/强化/减材复合制造工艺与装备,研究复合制造中熵合金在室温、液氧和液氮超低温环境下的强韧化机制,以及疲劳断裂等性能评价方法;研究面向服役环境的复合制造中熵合金构件重复使用评估体系。3.10 大型高性能结构件增等减材复合绿色智能制造(共性关键技术类) 研究内容:研究增材/等材/减材复合制造形性协同控制机理 和增材/等材/减材一体化复合制造技术;研究复合制造工艺—组 织—缺陷—性能的一体化映射关系,研发大型结构件综合力学性 能、疲劳性能提升关键技术;发展全过程智能化在线质量监控系统,研发大型复合绿色智能化制造装备。4. 典型应用示范 4.1 无人机十米级机身承力结构整体化增材制造示范应用 (应用示范类) 研究内容:针对高性能大型无人机研制需求,研究基于增材制造的大尺寸机身关键构件一体化设计方法;突破大尺寸精密复杂构件增材制造跨尺度形性主动调控及后处理关键技术;研究增材制造大尺寸机身整体构件无损检测评价关键技术;建立基于增材制造的大尺寸机身整体构件“材料—设计—工艺—检测—评价” 全流程技术体系。4.2 多材料功能梯度结构增材制造在无人潜航器领域应用示 范(应用示范类) 研究内容:针对万米深海无人潜航器应用需求,研究面向增材制造的无人潜航器多材料轻型耐压壳体的仿生优化设计方法, 包括无人潜航器壳体仿生结构、多材料梯度耐压结构、壳体外表面防生物附着结构等设计方法;研究高分子、陶瓷、金属等多材 料增材制造工艺及形性控制方法;研发无人潜航器多材料一体化智能增材制造装备,包括金属及高分子材料增减材一体化装备, 陶瓷材料高效增材制造装备;研究高分子、陶瓷、金属等多材料一体化增材制造构件的检测技术和评价方法。4.3 大型关重结构件激光高效高稳定增材制造工程应用示范 (应用示范类) 研究内容:研究面向规模化生产的大型关重结构件高效高精度激光增材制造材料、工艺稳定性控制方法与技术体系;研究质量性能一致性控制、检测和评价方法;研究激光增材制造典型材料关键力学性能许用值和数据库;研发面向规模化生产的高效高精度成套装备。4.4 内部精细流道增材制造在空间推进领域应用示范(应用示范类)研究内容:开展基于增材制造的空间推进系统集成化、轻量化和模块化设计研究,研发基于增材制造空间推进系统的流—固 —力—热多物理场耦合一体化设计方法及增材制造技术;研究小尺寸复杂内流道成形、内表面加工及质量控制、薄壁耐压结构成形质量控制及后续加工处理等关键技术;研究增材制造空间推进系统的检测方法及评价标准。4.5 高品质激光剥离与解键合在电子制造领域应用示范(应用示范类) 研究内容:针对 Micro-LED 显示、超薄晶圆封装中的激光剥离、解键合等制造技术瓶颈,研究紫外和深紫外光束传输与空间整形、光斑形貌与能量监控以及焦点跟随等关键技术;研究可减少器件损伤的激光剥离、解键合方法与加工工艺;研发光束整形器、焦点跟随等核心功能模块;开发 Micro-LED 显示激光剥离装备、超薄晶圆紫外激光解键合装备,研究成套工艺。4.6 科技型中小企业技术创新应用示范(科技型中小企业项目) 研究内容:面向增材制造与激光制造领域不断涌现的新兴产业增长点,开展个性化医疗器械制造、医疗植入物表面微功能结构制造、光纤微纳传感器制造、光子/电子器件制造、印制电路板 (PCB)增材制造等新兴增材制造与激光制造技术的产业化应用研究,发展新兴技术商业化装备,实现创新型构件或器件的小批量或个性化定制生产;开展具有产业新增长潜力的前沿新技术产业化研究,实现颠覆性创新新技术产业化应用。
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。   激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。   2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。   半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?   半导体市场:黯然神伤   虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。   “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。   “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”   ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”   相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。   作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。   Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。   “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”   随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:   1 激光技术在晶片/芯片加工领域的应用   1.1在划片方面的应用   划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。   目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。   1.2在晶片割圆方面的应用   割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。   传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。   2 激光打标技术   激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。   激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:   (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。   在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。   3 激光测试技术   3.1激光三角测量术   微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。   在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。   3.2颗粒测试   颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。   对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。   4 激光脉冲退火(LSA)技术   该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。   该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
  • 《自然》特写:无需标记的激光特技
    《自然—方法学》特写:无需标记的激光特技   非线性光学显微术帮助科学家看到活体细胞和组织中化学组成     哈佛大学的Brian Saar,Gary Holtom和谢晓亮教授(从左至右)发展了非线性显微成像技术和应用。     一个富含蛋白质的毛发及其周围的富含脂肪的皮脂腺。该图像是通过受激拉曼散射方法采集的,绿色为脂肪,蓝色为蛋白质。   最近出版的《自然—方法学》刊登特写文章——《无需标记的激光特技》(Laser tricks without labels),称非线性光学显微术可帮助科学家看到活体细胞和组织中的化学组成。文章内容如下:   两年前,Annika Enejder在她关于线虫的脂肪贮存研究中,遇到一个令人困惑的结果。荧光显微图像非常清晰地表明,在用他汀类药物处理这些蛔虫时,来自脂肪粒的信号将降低。他汀类药物是一类被广泛用于降低胆固醇的药物。然而,在同时进行的另一种显微实验中,直接观察脂肪颗粒却看不到这样的变化。实际上,相干反斯托克斯拉曼散射(CARS)显微技术能够识别出脂肪颗粒,而荧光显微技术做不到。   其实是这么回事,用常用的Nile red荧光染料饲喂的线虫把这种染料当作毒物处理了:染料被隔离到脂肪粒周围的肠类溶酶体颗粒中,而不是脂肪粒中。实际上,这种染料还在别的方面具有误导性:他汀类本身似乎会影响它的染色或者荧光。“在使用荧光基团的时候,有很多假象要考虑到。” 来自位于瑞典查尔姆斯理工大学的Enejder说。   没人能够否定荧光探针和分子染色在细胞内行为探测上的实力,但是这种标记办法仍然有诸多问题。如何标记是一个问题,尤其是对整个有机体而言。有些标记只能在已死亡的细胞内有作用 其他的标记标记方法则会损伤细胞,或者干扰所研究的生物过程。非标记的显微技术提供了一种能够大幅度降低人为干扰的活体观察技术。虽然有些技术仍然依赖内源性荧光基团,不过它们基本上可以摒弃荧光技术,也就避免遇到光漂白这个常见问题。这些新技术探测的是光在通过生物样品时被吸收或者改变时发生的微小变化,而不是探测被激发荧光基团的光子。这种办法依赖在高光功率密度下观察到的非线性光学过程。一言以蔽之,激光脉冲可以被用来“看”化学组成:脂质里面的C-H键,蛋白质里的酰胺键,还原态或者氧化态的生物分子,胶凝蛋白或者微管里面有规律地重复的单元。   当然,这样的技术也自有其局限性:与荧光标记能够识别单分子相比,非标记技术的灵敏度和特异性都要弱一些。只有特别常见的基团才不会淹没在一些丰富样品产生的信号当中。“这种技术的好处是,你不需要任何标记,你只需要去成像就行了”,荷兰癌症研究所(Netherlands Cancer Institute)的生物物理学家Kees Jalink解释道,“但是不好的地方是,信号太弱了,你需要大量能量来照射一个细胞,而可能仅仅得到一些粗枝大叶的细节。   非线性的众多模式   除CARS以外,其他可用的非标记手段包括双光子吸收,二次谐波产生(SHG)以及受激拉曼散射,每一种都有自己的配置需求和优势。然而,这些手段并没有在生物学家中间闪电般地传播开。昂贵的激光需要被耦合进显微镜 光的短脉冲需要精确的瞄准、调整和整形 探测器必须被优化,从而能够拾取信号,舍去背景。“组装这些仪器需要丰富的专业经验 这些仪器都要求苛刻”,供职于加拿大不列颠哥伦• 比亚大学化学与工程系的Robin F.B. Turner这样评价。而仅仅搭建仪器是不够的。“你得根据每天的情况重新校准”,Turner补充道。   Turner说,他有充分的理由跟踪这些技术:他想知道干细胞在分化成其它细胞的时候,其中的组分如何变化,而且再也没有比这个更好的办法能够研究这个问题了。“我们之所以选择拉曼和CARS,是因为它们能够做这种研究而不损伤细胞”,他说。其它研究手段都会毁损细胞,得到的仅仅是在某个时间点上的一个瞬间状况 这样的数据对于包含自发分裂细胞的异质性细胞培养并不是十分有用,Turner补充道,“我们想追踪细胞的生长”。   同样的优势在组织层次的研究上也很突出。比如,哈佛大学的Gary Ruvkun通过对线虫诱导RNA干扰筛选来研究上千个基因在脂质生成中的角色,同时通过一种叫做受激拉曼散射(SRS)的技术来监视这些结果。   Ruvkun的合作者谢晓亮教授也来自哈佛大学。大约十年前,谢晓亮因为发布了CARS显微术而引发了巨大轰动。这种技术通过一种叫做自发拉曼散射的现象来增强信号。在自发拉曼散射中,样品内的化学键能够改变通过其中的光的波长。更早使用的拉曼散射显微术要求的激光功率很高,而且有时候需要曝光时间长达一天。谢晓亮和他的同事证明,CARS可以用于活细胞研究。通过使用两束激光,它们的频率差等于需要成像化学键的振动频率,细胞产生的微弱的拉曼信号能够被不断放大。“它的灵敏度比自发拉曼散射的灵敏度高了好几个数量级”,谢晓亮说。但是CARS也有缺陷。在同一时间里,它只集中在很宽的拉曼谱中很短的一段,限制了所能采集的信号的数量 同时还带来了很高的背景信号。从实用的角度讲,这些限制意味着如果要应用CARS技术,大部分时间要基于对脂质的探测,因为碳氢键的大量富集能够产生很强的特征信号。   谢晓亮的兴趣已经转移到了SRS,这是他和他的组员闵玮、Christian Freudiger共同发展出来的技术,相关论文于2008年发表。“在CARS里面,信号峰位发生了移动,”谢晓亮解释道,“这意味这我们不能使用现有的、数量巨大的拉曼谱数据进行化学鉴定。”他还讲到,与此相比,SRS能够通过对激光异常迅速和精确地调制来去除背景噪音。这样一来,不仅能够得到与传统拉曼光谱一样的谱图,而且信号强度高了几个数量级,采集时间也远低于未经放大的拉曼信号。谢晓亮说,更妙的是,SRS产生的信号与振动化学键的数量是线性关系,这使得SRS能够进行定量分析。SRS技术可以应用于实时观测:比如在在药物和化妆品研究领域,观察维生素A酸是如何被皮肤吸收的。SRS技术还可以用于观测酸或者酶是如何从植物细胞壁表面去除木质素,从而提高生物燃料的生产效率。   谢晓亮最早是通过与Pfizer以及哈佛研究者的合作研究获得对该技术的原理的证据的。谢晓亮甚至预言,SRS技术有一天会取代CARS技术,然而其他研究人员对此有所保留。SRS需要对多个光源的信号进行混合和解读,而谱的叠加也会使去卷积变得困难。Turner说,他曾经尝试用SRS观察溶液中的核酸,最后还是决定继续使用原来的老技术。利用那些老技术,就可以从细胞的DNA里分辨出RNA。他说,尽管拉曼显微镜可能慢一些,“但是应用SRS技术来扩展我们的知识也挺费劲的,跟使用传统拉曼技术差不多。”   采购与分享   谢晓亮预计,一旦SRS被植入商用系统,很快就会传播开来,他认为早在今年底之前就会取得这样的进展 据报道,蔡司和徕卡已经于去年获得这项技术的授权。然而,就像荧光显微镜的前车之鉴,技术的传播可能相当缓慢。第一台商用多光子显微镜于1996年发布 而2003年的一项调查发现,66%使用多光子显微镜的生物学研究仍然使用定制系统。现在,商用多光子显微镜则相当普遍。   2009年10月,适逢谢晓亮的文章发表十年,奥林巴斯宣布要提供可以安装在多光子显微镜系统上的femtoCARS模块。2010年1月,Newport公司展示了可以附接到激光和多光子显微镜上的波长扩展单元,用以支持CARS、SHG以及其他成像方式。据悉,徕卡也将于下半年推出自己的产品。奥林巴斯的产品经理YiWei(Kevin)Jia宣称,早在飞秒femtoCARS模块发布之前,他已经在帮助各个研究组着手搭建CARS系统 而这个用来探测脂肪的模块能够让起步更加容易。他说,如果CARS的商业化产品推广像多光子显微镜一样,那么销售则能在数年之内有一个大的飞跃。不过目前大多数应用CARS显微技术的主要还是物理实验室,而且使用的是自己搭建的系统。   不过,这些研究人员已经开始和生物学家们合作。在普渡大学,生物医学工程教授程继新利用CARS在细胞中迅速地寻找脂肪体,然后使用同样的光源,切换到共聚焦拉曼来做同一个区域更详细的化学成分分析。新近关于人类前列腺肿瘤细胞的研究发现,先前被认为由脂肪组成的区域,实际上是被氧化的脂肪酸。下一步是考察这种脂肪酸会否可以用于标记前列腺癌的严重性。在别的项目中,程继新已经发展了一个平台,可自动收集CARS信号的来观测脂肪,还利用一种叫做和频产生的技术看到特定的蛋白纤维。有了这种技术,程继新及其合作者们可以研究富脂免疫细胞如何将自己嵌入到血管壁的胶原蛋白基质中去的——这类观测可以揭示动脉粥样硬化中的血块是如何形成的。程继新和他的同事还独立监测了多发性硬化症的老鼠模型中的神经元髓鞘,并且精确地指出是轴突的某个地方出现了损伤。他说,“以前在活体组织中对髓鞘的监测是没有办法达到单细胞水平的。”   Jalink说,髓鞘因为紧密堆积了大量脂质,特别适合用CARS成像。非标记显微技术在其他方面的应用则可能没那么容易。他说经常使用激光器的研究人员很可能会想办法采用这样的技术,他补充道,“技术上讲,这是完全可行的,但是如果我能用另一种方式来获得同样的信息,我为什么要采用这个多少有些复杂而且昂贵的技术呢?”   技术一旦发展起来,研究人员就能把它们应用到新的方面。哥伦比亚大学的Rafael Yuste利用光学手段来测量神经电位。二次谐波发生(SHG)成像技术依赖于排列非常规则的分子产生的超散射光。这些分子具有极强的诱导偶极矩,或者特定的电荷分布。Yuste对位于神经元细胞膜这类分子非常感兴趣——因为电场贯穿其中。由于二次谐波信号和电场强度直接成比例,因而可以自动获得电压信号。   问题在于,能够很好地实现这一目标的分子非常少。为了达到好的效果,Yuste说,“你需要非常仔细地去扫描全谱,来寻找潜在的内源性二次谐波发色基团。”他说,发展这种技术需要依赖学科交叉,需要研究人员在他们研究领域的边缘工作。但是在现实中,这种工作往往在研究者们自己的系里得不到足够的资金和支持,这也是为什么能够实现这一目标的分子资源较少的原因。   Enejder等人相信,学科交叉能够帮助人们解决大量只能由非标记的非线性显微技术来观测的问题。虽然Enejder的背景的是物理学,她还是转到了生物系。因为在那里可以更容易的了解生物学家们在成像上到底遇到了什么问题,非线性光学如何才能帮得上忙。她说,那些把自己的眼光牢牢地局限在物理系内部的人可以继续优化技术,但是他们或许不了解生物学家到底希望看到什么:“我就完全没有这个问题。在我眼里,应用随处可见。”   当这样的交流变得日益重要的时候,对新实验的大胆尝试也变得重要起来——而这些实验与物理学家们以往的经验可能截然不同。在一项旨在制造弹性血管的生物工程项目中,Enejder和同事们想要监测植入纤维素基质的肌肉细胞的生长。与CARS一起,Enedjer和同事们利用SHG观察了植入的细胞。他们很高兴地发现,自己可以监测到被植入细胞是如何与纤维素网进行接触,开始生成胶原蛋白纤维的。在组织工程研究中,这种方法可以大大帮助确定最优参数。尽管纸张中的植物纤维素SHG成像看不到,但是细菌分泌的植物纤维素确实拥有一种有规律的模式,能够产生SHG信号,Enejder解释说,“仅仅依赖别人文章里说的哪些可以观测是不行的,你得自己去试才行。”
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laserinterferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 【超全解析】用于智能制造的滨松激光解决方案
    讲到滨松的激光技术,最早要从参与激光核聚变研究开始讲起。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发以及相关技术的研究。滨松四大事业部之一的激光事业部 在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,积极推进了各类激光技术的研发。逐渐拥有了包括了半导体激光器、固体激光器、激光器配套附件、以及有着全球专利的隐形切割等产品。正在工作的滨松隐形切割引擎(SDE)世界首创也是唯一可进行晶圆内部切割的技术,与多个知名厂商有着紧密合作关系 随着中国制造2025的不断深入推进,激光技术已成为一种不可或缺的支撑技术,在晶圆切割、手机屏幕粘贴、玻璃切割、塑料焊接以及表面处理等众多应用中都不可替代。而针对这些应用,滨松可提供从元器件一直到整套系统的全产线产品。并以各自的独特性能,为目前的技术应用带来更好的可能。 元器件产品半导体激光器泵浦源作为光纤激光器的重要组成部分,主要由半导体激光器芯片(CWLD)和快轴准直镜(FAC)封装而成。滨松拥有两款输出功率分别为12 W和22 W的 CWLD芯片,对应的条宽分别为100 μm和190 μm。由于CWLD发射的激光在快轴方向的发散角较大,大约达到25°,非常不利于之后的光纤耦合,因此需要在芯片发射前加上FAC,进行快轴方向光束准直。为此,滨松可提供在800 nm~1050 nm波长范围为内透过率达到99%以上的FAC来解决上述问题。同时,对于FAC的尺寸规格(长度、高度、宽度)以及有效焦距,可根据需求进行定制。模块化产品为了解决大功率半导体激光器封装的问题,滨松可为客户提供巴条模块和叠阵模块供选择。巴条模块主要有以下两款产品:L8413-50-808(808 nm)及L8413-50-940(940 nm),输出功率分别为50 W和60 W。巴条模块除了可以单个使用外也可以组合使用。多个巴条模块呈线阵排列,在与冷却装置配合使用时可达到高输出功率以及高可靠性。此外,滨松还可将多个巴条一起封装成940 nm的叠阵模块。该叠阵模块内含15个巴条,输出功率高达1200 W(80 W/Bar)。当然,我们可以在叠阵前面加上FAC,对快轴方向的激光进行准直,耦合效率高达95%。 叠阵模块可用于高功率固体激光器泵浦源或是材料的表面处理。巴条模块叠阵模块半导体激光器随着传统工业制造朝着更加精密的方向发展,激光焊接俨然成为激光加工领域的市场风口。激光加热光源(LD-Heater & SPOLD)作为滨松在激光焊接领域的主要产品,其重要程度自然不言而喻。激光加热光源适用于新型的塑料焊接和OLED屏幕焊接。这些产品主要有能量分布均匀的平顶光束、改变镜头实现可变光斑面积、可实时监测表面温度,加工效果“可视化”等优势。针对不同的客户需求,滨松可提供波长为808nm、915nm以及940nm,输出功率从10W至200W的产品。目前在OLED屏焊接和无损拆解、智能腕表的防水焊接等中都发挥着重要作用。LD-Heater & SPOLD 除了激光加热光源之外,滨松也提供基于叠阵模块集成开发的直接输出半导体激光器(DDL)。该产品的中心波长为940nm,输出功率为4000 W、6000 W(可选)。主要应用为表面处理包括熔覆和淬火。为了获得更好的处理效果,DDL输出的光斑为矩形平顶光束,即照射到材料表面光斑形状为矩形,并且能量分布均匀。此外,为了满足各种不同材料的处理需求,输出的矩形光斑的长宽比例可以通过附加镜头实现1:1~1:5改变。直接输出半导体激光器(DDL)光斑长度比 超快激光加工解决方案皮秒固体激光器(Moil-ps)与Wavefront Shaper空间光调制器模块的结合,是滨松可为超快激光加工提供的,包括激光器和整形系统的全套解决方案。滨松超快加工解决方案 此套方案可实现在ITO薄膜上同时钻孔1000个(单孔直径为1.5 μm),也可实现在电子元件上微型二维码的一次成型,大大提升加工效率。ITO薄膜同时钻孔1000个,单孔直径1.5μm电子元件微型二维码一次成型Wavefront Shaper空间光调制器模块是滨松在光束整形领域的新品。同时采用了均匀激光强度分布的匀化器、非球面透镜成像的光学系统等高性能光学器件并配合核心器件——滨松空间光调制器(LCOS-SLM),实现了高强度的激光加工。(滨松LCOS-SLM可以承受200W以上的平均功率)相对于元件级别的LCOS-SLM,Wavefront Shaper更容易连接到系统,可实现简单的计算机控制系统(各种DLL适配),并具备温度控制功能(提高激光毁伤阈值)。在光束整形、像差校正、三维加工、并行加工等中有着广泛的应用。滨松Wavefront Shaper空间光调制器模块 2019年,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”。目前主要进行的,就是基于滨松空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。依托联合实验室,滨松也可以更快的为国内客户提供产品应用验证、打样等服务。激光隐形切割引擎&下一代激光加工引擎隐形切割可以说颠覆了现有的切割概念。该方法将激光聚焦至晶圆内部进行预切割,再通过扩张膜的张力实现晶圆的划片。相比传统的砂轮切割,可以实现完全干式工艺,切割后晶圆无崩片、高强度,并且可缩小切割道的宽度。滨松隐形切割是世界首创,也是唯一可进行晶圆内部切割的技术,目前在全球拥有600多项专利。为了提高使用的便捷性,滨松可为客户提供系统化产品——隐形切割引擎(SDE)。目前,已有4000台以上的隐形切割设备,在世界各大半导体工厂中稳定运行着。以深厚的隐形切割工艺积累,和卓越的SLM控制技术为基础,滨松最新开发出了下一代激光加工引擎JIZAI。其灵活性极强,客户可以自由选配SLM、扫描镜、自动对焦镜、物镜等内部器件,来获得不同成本和性能要求的JIZAI模块。JIZAI概念图这个小模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。内部打标玻璃打孔微通道成型滨松成立于1953年,已有66年的历史,其与中国结缘于1988年合资工厂的建立。为顺应中国市场发展,2011年全资子公司——滨松光子学商贸(中国)有限公司于北京成立,负责集团在中国的产品技术、服务、市场以及销售,随后在上海和深圳设立了分公司,以更好地服务于各地区的客户。针对激光加工的市场需求,滨松中国于本土配备了专门的产品技术、市场及销售人员。在提供更快速、优质、本土化的服务外,还会基于滨松集团的广阔视野,为客户带去具有价值的前沿产品技术、应用、市场信息。同时我们也不断推进着与国内高校的合作,如通过成立联合实验室(湖北工业大学-滨松激光加工联合实验室)这种方式,进一步优化产品的使用,加强与市场联系。以期为客户提供可更好满足应用需求的优质产品解决方案。
  • 精准医疗 | 准确测量皮肤表面积,3D扫描仪助力整形外科手术高效开展
    近年来,3D数字化技术在医疗行业的应用十分广泛,尤其是在口腔医学、骨科手术、矫形康复、生物医学工程等细分领域中,已成为数字化精准医疗基础手段之一。随着3D数字化技术在医疗领域的不断普及,在整形外科领域也逐渐被应用于临床治疗中,为患者带来福音。本期,小编将分享一则使用3D扫描技术帮助临床医生准确测量软组织扩张患者皮肤缺损表面积的应用案例。案例背景软组织扩张术作为一种革命性的整形外科治疗手段,已广泛应用于全身多个部位各种病损的治疗,在瘢痕修复、耳、鼻等多器官再造及体表肿瘤、先天性巨大痣等多个领域发挥着重要的作用。图片源自于网络小编解读:软组织扩张术是指将硅胶制成的软组织扩张器,经手术植入皮下或肌层下,通过定期注入生理盐水,使表面皮肤及软组织逐渐被延伸扩大,从而提供“额外”的皮肤和软组织,用以修复邻近组织的缺损。传统测量手段目前在临床上测量扩张皮肤面积的主要手段为薄膜涂色法、几何测量法、湿布取样法等。但这些方式存在一些弊端,如:1、测量过程较为复杂繁琐2、无法精确地实时评估扩张皮肤的表面积有多大3、无法精确地实时评估皮肤缺乏需要多少皮肤基于此,广州中山大学附属第一医院整形外科 刘祥厦课题组提出了一种创新性的方法,就是利用三维扫描技术在术前对皮肤缺损面积及扩张后获得的皮瓣表面积进行精确的评估。3D数字化解决方案(部分患者案例展示)3D扫描临床医生为患有先天性巨大痣及小耳畸形症病人实施皮肤软组织扩张术后,深圳木比白科技的技术人员利用先临三维EinScan Pro系列多功能三维扫描仪获取了患者软组织扩张后的皮肤表面积。扫描过程展示部分扫描数据展示测量分析获取患者耳、痣及扩张器的三维模型后,课题组李泽泉医生利用软件对患者正常耳表面积、先天性巨痣&小耳畸形、每次扩张后的组织扩张器及其底面积进行三维测量及对比分析。数据重建最后,根据这些三维扫描的测量结果和其他相关因素,如皮肤的质地和扩张的总体积,综合判断是否进行第二阶段的重建。目前,这个新型技术手段在深圳木比白科技有限公司的协助下已应用于临床治疗中,帮助医生准确地做出了11例软组织扩张器重建患者的术前决策,并成功进行软组织扩张的重建。经临床研究证明,3D扫描技术与其他测量方式相比具有简单快捷,测量精度高,抗干扰能力强,立体构建图像逼真等优点,在软组织扩张术治疗中为确定扩张器的尺寸和第二阶段手术时间提供了有效的基础数据保障,为整形外科医生的决策提供帮助,让术前设计更客观、更科学。END非常感谢广州中山大学附属第一医院整形外科和深圳木比白科技有限公司为此案例提供素材。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 新型半导体激光器成功解决激光成像“光斑”问题
    美国耶鲁大学的科学家开发出一种新的半导体激光器,成功解决了长期困扰激光成像技术的&ldquo 光斑&rdquo 问题,有望显著提高下一代显微镜、激光投影仪、光刻录、全息摄影以及生物医学成像设备的成像质量。相关论文发表在1月19日出版的美国《国家科学院学报》上。   物理学家组织网1月20日报道称,全视场成像应用近几年来已经成为众多研究所关注的焦点,但光源问题却一直未能得到解决。这项由耶鲁大学多个实验室合作完成的项目成功破解了这一难题,为激光成像技术大范围的应用铺平了道路。   耶鲁大学物理学教授道格拉斯· 斯通说,这种混沌腔激光器是基础研究最终解决实际应用问题的一个典型范例。所有的基础性工作,都是由一个问题驱使的&mdash &mdash 如何让激光成像技术更好地在现实中获得应用。最终,在来自应用物理、电子学、生物医学工程以及放射诊断等多个学科的科学家努力下,这一问题得到了解决。   此前,科学家们发现激光在成像领域极具潜力。但&ldquo 光斑&rdquo 问题却一直困扰着人们:当传统激光器被用于成像时,由于高空间相干性,会产生大量随机的斑点或颗粒状的图案,严重影响成像效果。一种能够避免这种失真的方法是使用LED光源。但问题是,对高速成像而言,LED光源的亮度并不够。新开发出的电泵浦半导体激光器提供了一种不同的解决方案。它能发出十分强烈的光,但空间相干性却非常低。   论文作者、耶鲁大学应用物理学教授曹辉(音译)说,对于全视场成像,散斑对比度只有低于4%时才能达到可视要求。通过实验他们发现,普通激光器的散斑对比度高达50%,而新型激光器则只有3%。所以,新技术完全解决了全视场成像所面临的障碍。   论文合著者、放射诊断和生物医学助理教授迈克尔· 乔马说:&ldquo 激光斑点是目前将激光技术用于临床诊断最主要的障碍。开发这种无斑点激光器是一项极其有意义的工作,借助这一技术,未来我们将能开发出多种新的影像诊断方法。&rdquo
  • 纯相位空间光调制器(SLM)零级光的产生及消除方法
    引言:空间光调制器(一般指相位型SLM)可以对光的振幅、相位、偏振态等进行调制,在光学研究领域拥有广泛和悠久的历史。目前相位型空间光调制器在全息光学,全息光镊,激光并行加工,自适应光学,双光子/三光子/多光子显微成像,散射或浑浊介质中的成像,脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域应用广泛。很多的科研人员在使用空间光调制器时,往往会受到零级光的困扰,零级光对研究结果也产生了非常大的影响。可以说大家苦零级光久矣。本文对液晶空间光调制器零级光的产生原因及其消除方法进行了阐述。Meadowlark Optics公司拥有40年纯相位SLM研发经验,可以提供模拟寻址的纯相位空间光调制器(1920x1200 & 1024x1024分辨率),产品工作波段可以覆盖400-1700nm,相位稳定性可以达到0.1%,帧频可以到1436Hz,损伤阈值可以达到200W/cm2以上。 关键词:空间光调制器、SLM,液晶空间光调制器,纯相位,LCOS,零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立调制。相邻像元之间会有微小的缝隙,缝隙部分无法加载电压,因此对应的液晶层无法加载相位,这部分未被调制的光会反射回去,产生零级光。4)入射光照射到非工作区域如果入射光照射到了非工作区域,则这部分光也会不被调制,直接反射回光路,产生零级光。5)入射光的偏振态或者偏振方向错误目前市面上所有的相位型空间光调制器(SLM)均要求线偏光入射,线偏方向与液晶的e轴平行(extraordinary axis)。如果入射光与e轴存在夹角,或者入射光的偏振态不是线偏光,则会有一部分分量的光不被调制,从而产生零级光。Meadowlark公司SLM零级光消除方法?硬件方面:1)提高空间光调制器的填充率,蕞小化缝隙影响。Meadowlark Optics公司可以提供1024x1024的纯相位空间光调制器,填充因子可以达到目前世界蕞高的97.2%,大大减小了缝隙产生的影响。2)提高空间光调制器的线性度。1920x1200的液晶空间光调制器,MLO公司在出厂前会对每一台SLM进行高精度的校准,保证每一台空间光调制器都具有高度的线性准确性,从而提高相位调制精度,达到蕞优的调制效果。软件方面:a)叠加闪耀光栅Meadowlark公司的SLM控制软件提供生成任意周期闪耀光栅的功能,该光栅可以方便的与客户的全息图进行叠加,从而把结果偏转到1级位置,客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到最小。2)光路中添加使用0阶块(0th order block),阻挡零级光上海昊量光电设备有限公司可以提供什么样的空间光调制器?1)1920x1200纯相位空间光调制器(标准速度) 2)1024x1024纯相位空间光调制器(超高速度)关于昊量光电:昊量光电可以给客户提供SLM样品试用,以及全面的技术支持。上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
  • 莱赛激光拟挂牌新三板 主营激光测量仪器
    1月3日消息,莱赛激光科技股份有限公司(以下简称:莱赛激光)已于近日正式申请新三板挂牌,全国股转系统披露的挂牌资料显示,莱赛激光董事长陆建红、副董事长张敏俐2人,通过直接和间接合计占股72%,为莱赛激光共同实际控制人。  公告显示,莱赛激光2014年度、2015年度、2016年1-9月营业收入分别为1.11亿元、9961.31万元、8212.80万元 净利润分别为546.37万元、678.32万元、791.14万元。  资料显示,莱赛激光主要业务为激光测量仪器设备的研发、生产和销售,主要为客户提供激光测量的整体解决方案。
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p   近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 中标项目 /strong /span /p p style=" text-align: center " strong 干式激光成像仪 /strong /p p   项目编号:HYEZ2J2018007 /p p   项目名称:干式激光成像仪采购 /p p   总成交金额:6.97 万元(人民币) /p p   采购单位名称:北海市华侨医院 /p p   中标单位名称:江西伟晨医疗设备有限公司 /p p style=" text-align: center " strong 密封式同轴送粉激光增材制造系统 /strong /p p   项目编号:HBT-15170140-173892 /p p   项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目 /p p   总成交金额:208.85 万元 /p p   采购单位名称:武汉理工大学 /p p   中标单位名称:南京中科煜宸激光技术有限公司 /p p style=" text-align: center " strong 原子吸收分光光度计及涡度相关系统 /strong /p p   项目编号:CEIECZB03-17ZL144 /p p   项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目 /p p   中标金额:54.43万元 /p p   中标供应商名称、地址及成交金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 大连工业大学信息学院光电实验室建设 /strong /p p   项目编号:LNZC20171001868 /p p   项目名称:大连工业大学信息学院光电实验室建设采购项目 /p p   中标金额:54.18万元 /p p   中标单位:大连万慧科技有限公司 /p p   主要成交标的: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title=" 2.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光治疗系统 /strong /p p   项目编号:Q5300000000617001570 /p p   项目名称:昆明医科大学附属医院购置激光治疗系统采购项目 /p p   中标金额:129万元 /p p   中标供应商名称:贵州邦建医疗科技设备有限公司 /p p   主要成交标的: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 193nm 激光剥蚀进样系统等 /strong /p p   项目名称:中国海洋大学 /p p   项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目 /p p   采购单位名称:中国海洋大学 /p p   中标金额:1367.93612 万元 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title=" 4.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光雷达项目 /strong /p p   项目编号:JXBJ2017-J28802 /p p   项目名称:南昌大学空间科学与技术研究院激光雷达采购项目 /p p   采购单位:南昌大学 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 308准分子光治疗系统和激光光子工作站 /strong /p p   项目编号:[350823]SHHY[GK]2017015-1 /p p   项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目 /p p   中标金额:169.9万元 /p p   中标供应商:厦门海辰天泽仪器有限公司 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 复杂曲面三维激光扫描系统 /strong /p p   项目编号:LNZC20171201441 /p p   项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目 /p p   中标金额:58.9万元 /p p   中标单位:北京金鹰腾飞科技有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 双光子激光共聚焦显微镜采购项目 /strong /p p   项目编号:中大招(货)[2017]993号 /p p   采购单位名称:中山大学 /p p   中标金额:489.803430万元 /p p   中标供应商名称:广州市诚屹进出口有限公司 /p p   中标标的名称、规格型号、数量、单价、服务要求: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title=" 8.jpg" /    br/ /p center /center p style=" text-align: center " strong 超短强激光微纳制造实验室项目 /strong /p p   飞秒激光放大器 /p p   项目号:17A51870611-BZ1700401866AH /p p   项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购 /p p   中标总金额:145.9万元 /p p   中标供应商:相干(北京)商业有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title=" 9.jpg" / /p p style=" text-align: center " strong 便携式高分辨测风激光雷达 /strong /p p   项目编号:OITC-G170321151 /p p   项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目 /p p   中标总金额:280.0 万元(人民币) /p p   中标供应商名称:西南技术物理研究所 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title=" 10.jpg" / /p p style=" text-align: center " strong 激光共聚焦拉曼光谱仪、数字综合试验箱 /strong /p p   项目编号:ZX2017-12-13 /p p   项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目 /p p   中标金额:115.30万元 /p p   中标单位:西安共进光电技术有限责任公司 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title=" 11.jpg" / /p center /center p style=" text-align: center " strong 激光共聚焦拉曼光谱仪 /strong /p p   项目编号:OITC-G17031833 /p p   项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目 /p p   采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所 /p p   总中标金额:155.7781万元 /p p   中标供应商:雷尼绍(上海)贸易有限公司 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title=" 12.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 还有一个招标大单,注意关注哦! /strong /span /p p   招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器 /p p   项目编号:0811-184DSITC0089 /p p   项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次) /p p   采购单位:华东师范大学 /p p   预算金额:230.0 万元(人民币) /p p   采购内容: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title=" 2018-02-07_091003.jpg" / /p p   购买标书时间:2018年01月26日-02月02日 /p p   投标截止时间:2018年02月28日 /p p   联系方式:冯东海 ,021-62231151 /p
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界      经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。   开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
  • NKT Photonics A/S公司推出新一代SuperK EXTREM超连续谱光纤激光光源
    Birkerod,丹麦,2011年1月17日—超连续谱光纤激光技术的先行者和商业制造商NKTPhotonics公司宣布将在Photonics West 2011展会上推出下一代SuperK EXTREM超连续谱系列产品以及全面提升的配套选件,以SuperK EXTREM eco-system (系统解决方案)的方式推出。   SuperKExtrem“系统产品解决方案”现在提供了更加丰富的超连续谱光源产品线,涵盖不同的光谱范围和输出功率水平,配合广泛并且智能的附件产品组合,用户能够快速(on-the-fly)调整输出光重复频率,更加灵活地进行波长调谐,以及选择优化的光谱整形选项。应用领域包括荧光光谱学(fluorescence microscopy),流式细胞仪(flow cytometry),荧光寿命成像显微(fluorescence lifetime imaging microscopy: FLIM), 荧光共振能量转移(fluorescence resonance energy transfer: FRET),光学相干断层扫描(optical coherence tomography: OCT),非接触检测(non-contact inspection)等,以及任何其他需要使用宽光谱并且高亮度光的领域,SuperK Extrem能够提供“像灯光一样宽的光谱,像激光一样高的亮度”的输出。   完全重新设计的软件套件,SuperKontrol,能够让用户通过简单的图形界面对新一代SuperKEXTREM系统进行全面的计算机控制。此外,NKTPhotonics额外提供的软件开发组件进一步扩展了SuperKEXTREM系统的灵活性,用户可以通过二次开发满足更为苛刻的控制需求,例如需要严格的关键时钟序列或者触发条件等。   一如既往,SuperKExtrem系统的核心基于NKTPhotonics公司世界驰名的光子晶体光纤技术,该技术被用于产生和传输高性能、高可靠性的超连续谱光源解决方案的历史已经超过了十年。   “下一代SuperKEXTREM超连续谱光源是我们新的智能型SuperK系统产品解决方案(eco-system)的一部分,我们关注的是产品的灵活性和可靠性,以及操作的简便性。我们的目标是开发革命性的超连续谱白光激光器系统应对我们工业型客户以及学术研究客户现在和将来所面临的挑战,新一代产品的推出意味着我们实现了这样的目标。”NKTPhotonics的营销副总裁说到。   新一代的SuperKEXTREM和配件带有设计独特“面板智能化”性能,提供真正的“即插即用(plug&play)的操作,用户只需要把各种模块简单连接起来,而不需要特殊的设置和配置,SuperKEXTREM系统将自动处理系统的安装和控制。此外,这种“智能化”还能够允许用户在现场(on-site)升级SuperKEXTREM系统,例如另一个功率水平,不同光谱范围的输出,而不需要返回NKT Photonics的工厂。因此,用户可以逐渐建立和扩展自己的SuperK系统用来满足不断出现的新的应用需求。   “SuperKEXTREM系统总输出功率超过8W,超过2W的可见光功率输出已经实现,这些表现证明了SuperKEXTREM系列的高可靠性和高性能表现。我们重视系统的长期可靠性,系统的记录寿命测试已经超过了15000小时,这些结果能证明SuperKEXTREM系统是一款真正的免维护的超连续谱激光光源,满足OEM和工业应用的要求。我们对自己能够为客户提供新型的,性能提升的新一代超连续谱激光光源产品感到很兴奋,它集合了众多的有点,例如最高的输出功率水平,工业级的可靠性,最容易使用,这得益于我们自己拥有的领先的光子晶体光纤技术。”Chuong Tran进一步补充说到。
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon® 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p   日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。 /p p   根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   strong   /strong a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target=" _blank" strong 1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明 /strong /a /span /p p   本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。 /p p   基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。 /span /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target=" _blank" strong 2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target=" _blank" strong 3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p   联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373 /p p   邮编:100089 /p p   联系电话:010-6896 2373 /p p   传 真:010-6896 3156 /p p   邮件地址: a href=" mailto:bzsbjw@126.com" bzsbjw@126.com /a /p
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • “吞下”微激光器让活细胞发光
    最近,英国苏格兰圣安德鲁大学一个研究小组开发出一种新奇的方法,把一种微小的共振器放入人体活细胞内,一经照射就会发出荧光。研究人员指出,这一技术在细胞传感、医疗成像等领域有着广泛应用。相关论文发表在最近出版的《纳米快报》上。  据物理学家组织网7月24日(北京时间)报道,研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。  以往他们所用的光学共振器都比细胞要大,而新研究所用的共振器非常小,能放在细胞内。科学家曾把水母细胞中的绿色荧光蛋白引入到人类细胞中,然后用共振腔增强发光。新研究是对这一研究的扩展。  研究人员诱导细胞“吞下”一种“回音廊式”的共振器,在细胞内部形成一个微小的泡泡——当用一束激光照射时,光会在泡泡内部反射而增强,共振器内的荧光染料就会发光。发出的光波长不同,其颜色取决于泡泡的大小和折射率,就像一个微小的植入式激光器。  通过这种技术处理可以修改大量细胞。由于细胞发光可以持续一个较长的周期(几天或几周),可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感,自适应成像,还可能真正看到肿瘤细胞的生长过程。  研究人员指出,目前这一技术还只用在实验室培养的活细胞中,但他们希望进一步研究能带来用于动物实验的细胞跟踪系统,并最终用于人类。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制