当前位置: 仪器信息网 > 行业主题 > >

激光引伸计

仪器信息网激光引伸计专题为您提供2024年最新激光引伸计价格报价、厂家品牌的相关信息, 包括激光引伸计参数、型号等,不管是国产,还是进口品牌的激光引伸计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光引伸计相关的耗材配件、试剂标物,还有激光引伸计相关的最新资讯、资料,以及激光引伸计相关的解决方案。

激光引伸计相关的资讯

  • 英斯特朗全新视频引伸计AVE 2.0首秀中国市场
    2014年英斯特朗复合材料应用研讨会暨新产品推荐会   仪器信息网讯 2014年10月24日,为了更好地帮助用户解决测试阶段遇到的疑惑,提高试验质量,&ldquo 2014年英斯特朗复合材料应用研讨会暨新产品推荐会&ldquo 在北京香格里拉大酒店举行,50余位复合材料测试领域的专家学者与技术人员出席会议;仪器信息网作为特邀媒体参会。 会议现场   本次会议特别邀请了英斯特朗英国复合材料应用专家Ian McEnteggart,为参会者带来了一场最新技术产品与最热方法标准的精彩报告。英斯特朗中国区业务发展和运营总经理王志勇、市场经理张弛、静态试验机产品经理杨卫刚等人纷纷到会,现场与用户交流互动。 英斯特朗英国复合材料应用专家Ian McEnteggart   不同于一般材料,复合材料由不同性质的材料组成,具有很复杂的性能,需要由拉伸、压缩、剪切、弯曲等多种不同的测试方式来表征,并且对测试精度有很高的要求。英斯特朗最新推出的AVE 2.0高级视频引伸计,正是这样一款可以满足复合材料复杂性能测试的利器。   借此次会议举办之际,英斯特朗在现场特别展示并演示了AVE 2.0视频引伸计,据悉,此次亮相是AVE 2.0视频引伸计的中国市场&ldquo 首秀&rdquo 。 英斯特朗最新高级视频引伸计AVE 2.0   AVE 2.0将数据采集率提高到了490Hz,可以避免复合材料剧烈断裂时数据丢失问题;其精度符合ISO 9513 0.5级,适用于广泛的国际测试标准,包括ISO 527、ASTM D638和ISO 6892-1;高达670mm的测量范围,允许AVE 2.0容纳多个试样标距长度或不同试样。&ldquo 特别强调的是,AVE 2.0可与任何品牌的材料拉伸试验机实现兼容。&rdquo Ian McEnteggart补充到。   今年6月,英斯特朗最新研发推出了数字图像相关软件(Digital Image Correlation,以下简称:DIC),实现了可视化实时监测跟踪整个测试周期,可用于检测试样整个二维表面上发声的应变与位移。   Ian McEnteggart表示:&ldquo DIC技术并非英斯特朗开发的,但英斯特朗却首次将该技术成功集成进AVE 2.0。&rdquo 据其介绍,DIC软件采用了LED灯光专利设计,大大降低了周围光线对试验数据的影响。对于一直困扰用户多年的软件界面复杂和数据同步问题,英斯特朗根据材料试验用户的需求将软件进行了简化,使得操控界面简洁却不生疏 同时,DIC软件中还内置了同步功能,实现了DIC图像与采集的试验数据的同步。 全自动接触式引伸计AutoX 750同时亮相   会上,Ian McEnteggart还重点介绍了ISO 14126 纤维增强塑料复合材料面内压缩性能的特点、AITM 空中客车公司测试纤维增强塑料冲击后压缩强度的方法、AutoX750在执行ASTM D695标准测试中的优势等精彩内容,并现场回答用户提问,在一定程度上解决了参会者在复合材料试验过程中的&ldquo 疑难杂症&rdquo 。 现场回答用户提问   在互动环节,英斯特朗专业工程师现场对AVE 2.0进行了操作演示,面对面解答了客户在仪器操作和软件设置中的相关问题。 工程师操作AVE 2.0,用户围观 编辑:刘玉兰
  • 天氏欧森:光学引伸计的未来已来
    近日,CHINAPLAS 2023国际橡塑展在深圳国际会展中心举办,吸引逾3,900家全球高质量展商、超240000名海内外观众汇聚。 作为行业领先的静态拉伸和压缩材料试验机供应商,天氏欧森(Tinius Olsen)携电子万能材料试验机、可变标距光学引伸计、熔融指数仪、HORIZON软件等产品盛装亮相。天氏欧森展位在展会现场,仪器信息网有幸采访到了天氏欧森测试设备(上海)有限公司市场经理张赞蓉,不仅请她介绍了本次的展品,也对试验机的发展趋势、公司未来的发展计划等进行了交流。现场采访视频张赞蓉女士在采访中重点介绍了一款新产品——Vector光学引伸计。这款“黑科技”不仅能够辅助进行拉伸、压缩、剪切、弯曲试验中的应变试验,且具有非接触式的数字化设计,支持自动化过程的标距标记。此外,还可提供模拟或数字格式的输出数据。全球首创双镜头技术立体视野,稳定测量,不受外界噪音干扰。并且平面外容忍度高,对材料基本无限制。与同类光学引伸计相比,Vector光学引伸计的反应更快,开机即可测量,并可与测试软件集成,适合于金属、合金、复合材料、低应变塑料等领域。Vector光学引伸计张赞蓉女士认为,经过这么多年的发展,试验机的技术已相对成熟,未来将会朝着数字化、智能化以及个性化发展,而天氏欧森新推出的Vector光学引伸计已经在这三个方面显示出了非常大的技术优势。最后,张赞蓉女士说到,天氏欧森非常重视中国市场,公司下一步将加大对中国市场的投入,扩大销售团队,发展多渠道销售,以让更多的国内用户用到好的产品和技术。
  • 英斯特朗全新AUTOX自动引伸计
    AUTOX被用来确定包括模量,规定非比例屈服和塑性(非比例)断裂伸长率。并且符合ISO9513,ASTM E83,和ISO527-1(2011)的标准要求, AutoX可自动标距长度定位,自动接触试样,从而提高了测试试样的试验室试验效率。通过除去手动操作中繁琐耗时的步骤,试验室操作员可以在提高效率的同时简化测试过程。此外,可减少传统接触式引伸计在关键测试中出现的重复性的不一致现象.   AutoX也可以使用在全自动或手动的测试系统上。在不使用时,操作员能快速,安全地把引伸计定位出试验区域,并提供了一个安全存储环境的测试空间。操作员能够轻松从试验区域卸载AutoX,不需要额外的工具设备来切换夹具和固定装置.   以下功能正在申请专利:   - 引伸臂:双臂通过只用一个电机驱动的旋转扣栓同时打开/关闭,使双臂更轻,同时降低摩擦力。   - 碎片防护:覆盖未使用区域,最大限度地减少污垢/碎片进入防护罩内仪器。   - 张紧轮:符合人体工程学的设计,操作员可以使用一个参考标签去标记张紧轮在测试过程中的位置。确保每个测试的准确和可重复性。   如需了解更多关于AUTO X 产品的信息,请报名参加2013年英斯特朗 新产品发布会   将您的姓名、单位、联系电话或邮箱发送到he_ying@instron.com, 标题请注明“参加英斯特朗2013年新产品发布会” 。
  • 助力材料高温变形测量——钢研纳克推出YYHT系列高温引伸计
    材料在外力作用下发生形状尺寸的变化称为材料的变形,变形的大小直接影响材料的性能,因此材料变形是其力学性能的重要指标。变形的测量都是通过引伸计来实现,材料在高温环境中的变形测量需要用到高温引伸计,YYHT系列高温引伸计可以满足各种形状尺寸材料在高温环境下变形的测量需求。1、简介YYHT系列高温引伸计具有精度高、灵敏度高、稳定性好、使用方便等特性,符合JJG762、GB/T12160、ASTM E83、ISO 9513等标准中对0.5级(或者B2级)精度的要求,可以适应不同规格和尺寸试样,相比于普通的引伸计,使用调节简单便捷,基于其极低的试样接触力,YYHT系列引伸计可以应用于薄板等对表面接触力比较敏感的样品测试。其技术参数如下:精度等级0.5级引伸计标距10mm/25mm/30mm/50m/80mm或定制最大变形量±5mm/±10mm或定制使用温度室温至1200℃输出灵敏度≈2.5mV/V应变片阻值350Ω供桥电压值≤8V输出端接头常规四芯、五芯、九孔、九针或USB等插头,可根据用户需求定制初始接触力0.15N最大接触力1.27N同时钢研纳克还推出活动支架方便高温引伸计与试验机的连接,试验机无需改动可根据试样尺寸和高温炉位置调整引伸计的上下位置,调节方便,操作简单,与试验机连接稳固,刚性好。2、验证高温引伸计测量的数据直接影响材料的性能,这就要求高温引伸计测量必须准确、稳定、可靠,所以引伸计不只要满足引伸计标定器的校准要求,还需要大量的测试和试验进行验证,保证数据的准确性。以下是我们部分验证的数据。(1)与普通引伸计的一致性检验,如图所示将普通手动引伸计和YYHT系列高温引伸计同时安装在同一根试样上,测试特定位置的变形量,测试结果如下表所示:特征点Rp0.1Rp0.2Rp0.3Rp0.4YYU引伸计(mm)0.11400.16450.21570.2672YYHT引伸计(mm)0.11420.16440.21580.2675从表中可以看出YYHT系列引伸计和常用引伸计测得的变形量一致。(2)与进口引伸计的一致性检验,分别将YYHT引伸计和进口引伸计安装在同一台试验机上,在特定温度条件下分别测试同一组标准样品,应力应变曲线如下所示:其中红色和绿色线为进口引伸计所得,其余为YYHT高温引伸计所得,曲线重合度高,一致性好。通过大量,多次及不同温度区间反复测试比较,YYHT高温引伸计测试精度高,稳定性好,测试数据准确,能够完成高温环境下材料变形的测量工作。3、应用YYHT系列高温引伸计已应用于用户的材料测试工作,如图所示为某测试中心一机双YYHT高温引伸计,可以满足不同尺寸试样的高温变形测量要求。通过权威机构的校准检验,完全满足国标0.5级和美标B2级的要求,证书如下:同时也满足高温拉伸新标准GB/T228.2中对应变控制的要求,曲线如下:目前YYHT系列高温引伸计以其应用范围广,数据准确稳定,精度高,安装便捷,性价比高等特点已广泛应用于材料在高温环境下的变形测量,助力高温材料的性能测试,受到用户的一致好评。
  • 天氏欧森推出非接触式引伸计
    p style=" text-align: justify text-indent: 2em " 天氏欧森( span style=" text-align: justify text-indent: 32px " Tinius Olsen /span )Epsilon One是一种新型光学非接触式引伸计,可通过视频进行高精度,高分辨率,非接触式轴向应变和位移测量,以测量应变。它的易用性是独一无二的。 /p p style=" text-align: justify text-indent: 2em " 它适用于测试高模量材料,例如金属和复合材料以及更高伸长率的材料,薄或易碎的样品,循环疲劳,应变控制测试,挠度计应用以及测量裂纹开口位移。 /p p style=" text-align: justify text-indent: 2em " 通过Epsilon全面的光路优化,将多种光学技术和信号处理算法统一起来,可达到一流的精度和分辨率。 /p p style=" text-align: justify text-indent: 2em " 它具有超高的摄像头分辨率,高达3000Hz的实时数据速率,最小化的光学误差源以及信号处理技术,可提供最高的应变分辨率和精度,并具有最低的噪声。 /p p style=" text-align: justify text-indent: 2em " 应变或延伸量被实时测量并输出。Epsilon One的高分辨率和ISO 0.5 / ASTM B-1精度等级使其适用于从金属,复合材料到弹性体以及介于两者之间的各种应变值的非接触式测量。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/b7ff6102-bb64-4a72-831e-44d16ee02dae.jpg" title=" ProductLarge15694.jpg" alt=" ProductLarge15694.jpg" / /p
  • 第九届科仪展开幕——三思进口引伸计备受关注
    2011年4月25日,第九届中国国际科学仪器及实验室装备展览会在北京展览馆隆重开幕。 嘉宾为开幕式剪彩 本届展会吸引超过700家国内外科学仪器及实验室装备相关的展商参展,展示科学仪器产业新产品与技术,吸引了众多国际参观团和观众到会参观与交流。 协会领导到三思纵横展台参观(一) 协会领导到三思纵横展台参观(二) 三思纵横展出的新一代进口引伸计,引起了现场观众的广泛关注,更有客户现场就表达了购买意向。我们将随时发布展会现场最新动态,欢迎新老朋友继续关注三思纵横试验机产品。 现场观众参观三思纵横全自动引伸计
  • 美国T.O天氏欧森公司最新型高精度视频引伸计面世
    国际知名的材料试验机生产商-美国T.O天氏欧森公司最新开发出精密视频引伸计,其主要用于非接触地精密测量试样的应变数据。这种新型的视频引伸计采用了高精度的数码相机、冷光源、高速图像处理系统及现今最前沿的数据处理模式 -&ldquo 次级映像点插值法(sub-pixel interpolation) &rdquo ,因此,点位影像可以对拉伸、弯折或压缩进行实时持续测量及控制直致试样断裂,其测量精度甚至超过ASTM E83 B1级标准及ISO 9513 标准中的0.5级的要求。 其主要特征有: 非接触式应变测量 分辨率高于镜头视野范围的1/100,000 测量精度达到0.5%或更高 试样准备简便 配有小型的试样照明用冷光源 自动标距设定功能,可设定任意标距 用户自编备注方便保存相关信息 多种纵向与横向标距同时测量 (HESC型视频引伸计测量塑料或金属试样) 视频引伸计有多种型号,其中一种是适用于测试低延伸率材料(如金属)的LESC视频引伸计,另一种是适用于测试高延伸率材料(如塑料)的HESC视频引伸计。高分辨率低延伸率的视频引伸计配有25毫米视野范围的材料测试专用镜头。高延伸率的视频引伸计配置的是通用镜头,它的视野范围可以达到1,000毫米。还有同时包含高精度及大量程的DCHT双镜系统。这种技术使视频引伸计适用于所有的材料测试,包括(但不限于)以下材料:金属(包括细金属线)、弹性纤维、纺织物、塑料、合成物。 (LESC型视频引伸计测量细钢线试样) 视频引伸计还配有冷光源;虽然在普通的日照条件下引伸计就可以跟踪目标,但采用冷光源可以防止环境光源条件改变时引起的目标跟踪掉失。 任何可见的标志都可以用做图像识别,无论是试样表面的天然图案、笔的划痕、水滴、打孔的记号,还是不规则的喷溅小斑点都可以。图像识别系统会自动跟踪观察面上的独特纹路,因此图案越不规则,图像识别就越精确。 (DCHT型双镜头视频引伸计) 系统工作的方式如下:首先获取图像,然后图像识别技术锁定两个目标,它们相当于一个标距。用户可以定义这两个目标,也就是说用户可以任意设定原始标距。当测试试样时,视频引伸计点对点地跟踪这两个目标的移动,从一桢图像跟踪到另一桢图像并考虑每桢图像间,目标的相对位置,移动速度及方向,通过&ldquo 次级映像点插值法&rdquo 计算模型,这样应变的数据就可以实时测量出来。在横向及纵向上可以采用多个标距进行试样的塑性应变比(r值)及硬化指数(n值)等力学性能的测量。采用我们的&ldquo 次级映像点插值法&rdquo 原理,可以达到比传统视频引伸计高出最少100倍的分辨率。 视频引伸计的所有测量与输出都有时间记录,并且可以存档便于日后使用。此外,未经压缩的视频图像输出也可以记录下来,用作测试后的测量与分析。
  • 一场应变测量的革命 --英斯特朗推出新视频引伸计AVE.2.0
    英斯特朗是全球领先的力学性能测试设备供应商,产品广泛应用于评价材料和部件机械(力学)性能。英斯特朗最新推出先进的视频引伸计AVE 2.0,这款视频引伸计可以充分满足各项严苛的测试标准要求,例如ISO527,ASTM d3039 ,ASTM D638等。这款第二代视频引伸计,也是当今市场上采用专利的,先进的视频引伸计技术中最快速,最准确的非接触式应变测量装置。AVE2.0一体化装置非常容易安装,可以适用于各种条件下的试验室环境,也适用市场上任何±10伏模拟输入的试验装置(测试表现则与各款试验机本身条件有关)。该产品设计自动降低了试验室测试中受热和照明变化产生的误差,同时AVE 2.0 也是目前市场上唯一具有实时490赫兹数据采集率并实现1微米精度的视频引伸计。AVE2.0出色性能使得用户可在各种试验环境条件下进行应变测试,与数字图像相关技术相结合(DIC)。还可以测量任何材料的模量和失效时的应变,包括塑料,金属,纺织,薄膜,复合材料,生物材料及更多。 关于英斯特朗:英斯特朗(INSTRON )是全球领先的材料和构件物性测试试验机制造商,美国五百强公司ITW集团旗下品牌,从基本的软组织到先进的高强度合金材料,其产品被广泛运用于测试各种材料,组件和结构在不同环境下的力学性能和特性。 自1946年英斯特朗成立并研制了世界上第一台闭环控制的电子万能材料试验机和第一个应变片式载荷传感器以来,英斯特朗以成为公认的力学性能测试设备世界领导者为使命,通过提供最高品质的产品,专业的技术支持和世界水平的服务,从而使用户获得拥有英斯特朗产品的最佳体验。 了解更多信息请访问英斯特朗官方网站: www.instron.cn用手机扫一扫,关注英斯特朗微信账号,获取更多英斯特朗的产品信息和测试tips
  • 长春机械科学研究院视频引伸计亮相科仪展引关注
    由中国仪器仪表行业协会主办的第十届中国国际科学仪器及实验室装备展览会于2012年5月15-17日在北京&bull 中国国际展览中心举行,展出面积25000平方米,为历届规模之最。该展览会被业界誉为&ldquo 中国科仪第一展&rdquo 。 长春机械科学研究院作为中国仪器仪表行业协会试验仪器分会理事长单位及中国仪器仪表学会试验机分会秘书处常驻单位应邀参加了此次展会,由经管中心推广部组织展出了新型DDL200型电子万能试验机和先进的RTSS视频引伸计,引起业内专业观众和广大用户的极大关注。 RTSS视频引伸计是基于数字摄像与实时图像处理技术的非接触式光学测量系统,用于精确测量试样的轴向与径向变形。可进行材料变形测量、拉伸试验中的应变控制、裂纹探测、动态拉伸试验中的应变研究、动态与高速试验及震动分析等,具有无接触、高精度、测量范围大、支持破断测量等传统引伸计无法比拟的优点。视频引伸计的采用不仅会提高变形测量精度,提供多媒体的试验结果,还将会扩展传统试验内容,提高整体试验水平,创造新的试验价值。 更多新产品详情请致电垂询或关注长春机械科学研究院网站!
  • 获评“国内领先”!海塞姆单目三维视频引伸计通过科技成果评价
    4月2日,由中国仪器仪表行业协会组织的“单目三维视频引伸计”科技成果评价会在深圳市海塞姆科技有限公司总部召开。本次评价委员会由中国科学院院士于起峰,中国仪器仪表行业协会教授级高工/分会秘书长姚丙南,上海交通大学教授/国家级实验教学示范中心主任陈巨兵,南京玻纤院标准认证技术研究院教授级高工/副院长马丹,中机试验装备股份有限公司教授级高工/技术总监马双伟,深圳信测标准技术服务有限公司教授级高工/首席专家李荣锋,北京长城计量测试技术研究所高级工程师甘晓川等7位专家共同组成。同时会议邀请了哈工大(深圳)教育发展基金会与校友工作办公室副主任李志丹老师、深圳市南山区科技创新局吴迪老师、深圳市南山战略新兴产业投资有限公司投资总监索得榕、深圳大学胡彪老师、尹义贺老师等嘉宾。按照科技成果评价规定的标准及程序,由中国仪器仪表行业协会郑朝松秘书长介绍与会专家,海塞姆科技领导介绍与会嘉宾。郑朝松秘书长主持会议,并成立评价委员会,选举于起峰院士为主任委员。深圳市海塞姆科技有限公司李长太董事长作“单目三维视频引伸计”成果汇报,重点介绍了项目背景及目的意义、研究方法与技术路线、实施方案、主要创新点、转化应用情况及项目带来的经济、社会效益等。专家组听取了项目成果汇报,并观看了现场仪器演示,严格查阅了相关资料。经质询和讨论,形成评价意见:本项目研制的单目三维视频引伸计属于国内首创,成果创新性强,具有自主知识产权。项目总体达到国内先进,部分指标达到国内领先水平。评价委员会一致同意通过评价。科技创新是引领企业发展的永恒动力。未来,海塞姆将不断加大研发投入力度,持续聚焦原创性、颠覆性技术、创新技术攻关,加快现有产品升级迭代,为未来力学性能测量领域创新发展提供有力支撑。
  • 华裔教授研制出世界最小半导体激光器
    美、中科学家联合研制出世界最小的半导体激光器。这项被称为“表面等离子体激光技术”的研究在激光物理学界堪称里程碑,于八月三十日在《自然》杂志上刊登,由加州大学伯克利分校华裔教授张翔率领的研究团队、北京大学戴伦教授及其博士生马仁敏共同完成。   两年前,张翔的研究团队开始与戴伦教授合作,使用戴伦等研制的硫化镉纳米线,这种纳米线比人类头发细一千倍。张翔将纳米线与银金属相隔,二者之间仅有深亚波长五个纳米的绝缘间隙,在这个比真空波长还小二十倍的空间里产生激光出射,由于激光大量储存在这个非金属的狭小间隙里,大大降低了光流失的可能性。   曾经因研制隐身衣技术被美国《时代》杂志列入二00八年十大科学发现的张翔教授三十一日接受中新社访问时表示,这项研究成果打破了激光限度的传统概念,人类第一次能够把光聚到只有头发丝万分之一的范围实现激光出射,第一次实现了表面等离子体激光技术,这个尺寸仅相当于单个蛋白质分子的大小,已经很接近电子波长,光子和电子在今后能够真正实现相互作用。   这项技术对人类将产生怎样的影响?张翔说,这项技术不仅在基础科学研究获得重大突破,而且对生物医学、通信和电脑等应用科学也将产生深远影响。“以生物医学来说,科学家可以在分子尺寸上检测DNA和癌症。而对通信和电脑技术而言,可以帮助实现更高密度的光或磁信息储存。”   由此我们可以相信,在不远的将来,一张光盘可以储存一个图书馆的藏书量。   张翔在南京大学物理系完成了学士和硕士学位,一九九六年自加州大学伯克利分校获得博士学位,分别在宾州州立大学、加州大学洛杉矶分校任教,二00四年回到伯克利分校,目前是Ernster SKur讲座教授,同时担任美国国家纳米科学与工程研究中心主任。他率领的研究团队去年八月研制出隐形材料技术,将人类制做隐身衣实现真正隐身的梦想变为可能。
  • 美造出最小和最高效的无阈值激光器
    美国加州大学圣地亚哥分校的研究人员制造出迄今最小的室温纳米激光器以及一台效率很高的无阈值激光器,能让所有光子都以激光形式进行发射,不浪费任何光子。   所有激光器都需要源于外部特定数量的抽运功率来发射相干光束或激光。产生激光还必须满足阈值条件,也就是相干输出要大于产生的自发辐射。然而,激光器越小,达到发射激光的阈值所需的抽运功率越大。为了解决这一问题,科学家们为新激光器设计了一种新方法,使用共轴纳米腔内的量子电动力效应来减轻阈值限制。该激光腔包含有一个被一圈金属镀层所包裹的金属棒,通过修改该激光腔的几何形状,科学家们制造出了这种无阈值激光器。   新设计也使他们制造出了迄今最小的室温激光器。新的室温纳米尺度的共轴激光器比两年前《自然—光子学》杂志介绍的最小激光器小一个数量级,整个设备的直径仅为半微米。   这两台激光器需要的操作功率都非常低,这是一个重要的突破,这些小尺寸且超低功率的纳米激光器可成为未来微型计算机芯片上的光学电路的重要元件。这些高效的激光器可被用于增强未来光子通讯使用的计算芯片的能力,光子通讯领域需要使用激光器在芯片上遥远的点之间建立通讯链接。这种激光器需要的抽运功率更少,也意味着传送信息需要的光子数量也更少。   参与该研究的雅可布工程学院的Mercedeh Khajavikhan认为,这种无阈值激光器还能被缩小,这使其能从更小的纳米设备捕获激光,因此能被用于制造和分析比目前激光器发出的光波波长更小的超材料。超材料的应用范围从能看见单个病毒或DNA分子的超级镜头到能让物体周围的光弯曲使它“隐身”的隐形设备。(黄健)
  • 超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。   新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。   这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。   太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。   研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。   另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。   研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 美利用超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。   新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。   这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。   太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。   研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。   另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。   研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 我科学家提出单向量子声子激光技术方案
    p style=" text-align: justify "   在量子芯片中,跟超导比特耦合的声子谐振器,是连接转换光电信号和执行量子逻辑操作的关键部件。这类相干声子器件,在量子信息、纳米力学与热电材料、超灵敏传感及无损检测与地质勘探等诸多领域具广泛的应用价值。不过,这一关键部件的制造,存在着一个技术“困扰”,即信号质量和计算精度易受环境噪声的干扰甚至破坏。湖南师范大学物理与电子科学学院教授景辉,提出了一种单向量子声子激光技术,既能实现信号高保真度的定向放大,又可明显抑制反向噪声对芯片功能的干扰或损害。该技术方案不依赖材料非线性,方便拓展到集成阵列电路,填补了国际上单向声子激光研究的空白,为量子计算、单向通信、隐身探测、热流控制等的实际应用提供了一种通用方法。相关成果12月15日,在美国物理学会刊物《物理评论· 应用》上在线发布。 /p p style=" text-align: justify "   在这项工作中,景辉提出,可利用旋转腔的相对论光学效应,实现声波的单向放大与传输。首先利用光学辐射压,巧妙设计耦合腔参数,实现声子相干放大,即声子激光。然后利用相对论萨格纳格效应,即在沿着或逆着腔旋转方向的光的频率及辐射压会存在差异,使其中一个方向产生的声子相干放大,而相反方向的声子激发则完全被禁戒。最终,实现了既可信号高保真度定向放大,又可明显抑制反向噪声对芯片功能的干扰的新型单向声子相干放大技术。 /p p /p
  • 863计划“先进激光材料及全固态激光技术”项目申请指南公布
    国家高技术研究发展计划(863计划)新材料技术领域“先进激光材料及全固态激光技术”主题项目申请指南  在阅读本申请指南之前,请先认真阅读《国家高技术研究发展计划(863计划)申请须知》(详见科学技术部网站国家科技计划项目申报中心的863计划栏目),了解申请程序、申请资格条件等共性要求。  一、指南说明  依据《国家中长期科学和技术发展规划纲要(2006-2020年)》,为满足先进制造、精密测量和国家重大科学工程等对全固态激光器的迫切需求,设立“先进激光材料及全固态激光技术”主题项目。  本项目通过突破人工晶体材料及全固态激光器研制和产业化关键技术,开发出具有自主知识产权的系列化高功率、皮秒和紫外全固态激光器产品,促进我国人工晶体材料和全固态激光器产业的发展。  本主题项目的任务落实只针对项目整体进行,项目申请者应针对指南内容,围绕项目总体目标和任务进行申请,而不要只针对项目部分目标和任务进行申请。  项目可以由一家申请,也可以由多家共同申请。对于多家共同申请的主题项目,由研究单位自行组合形成项目申请团队(一个单位只能参加一个申请团队),并提出项目牵头申请单位和申请负责人,由项目牵头申请单位具体负责项目申请。  项目申请要提出项目分解(包括任务分解及经费分解)方案,提出项目课题安排及承担单位建议,并填写课题申请书(项目拟分解的课题数最多不超过10个)。  二、指南内容  1、项目名称  先进激光材料及全固态激光技术  2、项目总体目标  突破人工晶体、全固态激光器及其核心器件的研发和产业化关键技术,开发出系列化高功率、皮秒和紫外全固态激光器产品并实现工业示范应用,促进我国人工晶体和全固态激光器产业的发展。  3、项目主要研究内容  (1)深紫外激光器及人工晶体关键技术  KBBF/RBBF晶体生长、KBBF-PCT器件制备、激光高次谐波和激光线宽控制等技术研究。  (2)新型晶体材料及器件技术  超晶格晶体制备、超晶格可调谐锁模、Nd:YAG激光陶瓷材料制备等技术研究。  (3)千瓦级光纤材料及全光纤激光器  低光子暗化光纤制备、全光纤种子源研制、全光纤激光器整机设计和装配等技术研究。  (4)单频激光器关键技术  纵模控制、增益光纤与标准光纤熔接、倍频晶体抗光损伤工艺等技术研究。  (5)紫外激光器产业化关键技术及应用  光学晶体长寿命使用、激光器单元模块化、系统集成等产业化关键技术开发 紫外激光微加工应用技术开发。  (6)高功率激光器产业化关键技术及应用示范  大批量Nd:YAG单晶高质量低成本生长及加工、激光振荡放大、系统集成等产业化关键技术研发 高功率激光在焊接、表面处理等方面的应用技术开发。  (7)皮秒激光器产业化关键技术及应用示范  皮秒激光振荡、再生与行波放大、系统集成等产业化关键技术研发 皮秒激光微加工应用技术开发。  4、项目主要考核指标  (1)深紫外人工晶体及激光器  KBBF晶体尺寸15×10×4mm3,RBBF晶体尺寸12×6×1.5mm3,KBBF-PCT器件透过率95%@193nm 177.3nm激光器功率100mW。  (2)光学超晶格锁模器件  线性损耗0.5%/cm、尺寸≥20×3×1mm3 锁模激光器:1.0μm/0.5μm双波长和1.3μm 激光陶瓷尺寸≥100×100×20mm3、透光率≥80%@1064nm。  (3)千瓦级光纤材料及激光器  双包层光纤材料光子暗化12dB/m@633nm 全光纤激光器功率1.5kW、光束质量M21.5。  (4)单频激光器  倍频晶体KTP抗光损伤阈值2GW/cm2@1064nm/10ns/10Hz 单频绿光激光器功率10W、线宽2MHz、噪声0.03%RMS 单频光纤激光器功率5W、线宽10kHz、边模抑制比60dB。  (5)紫外激光器  功率10W/20W/30W系列,重复频率50~150kHz,光束质量M2≤1.3,8小时内功率起伏3%,无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  (6)高功率激光器  Nd:YAG晶坯直径≥100mm、单程损耗≤2×10-3/cm@1064nm,键合晶体的键合面损耗≤0.1% 3kW和5kW激光器产品:光纤芯径为400μm,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产 激光器功率≥6kW,8小时内功率起伏±2%。  (7)皮秒激光器产品  千赫兹10~20mJ@1064nm、5~10mJ@532nm、1~2mJ@355nm,脉冲宽度≤20ps,光束质量M2≤2,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  5、项目支持年限为2年。  6、项目国拨经费控制额为9000万元,自筹经费不低于国拨经费控制额。  三、注意事项  1、鼓励“产学研用”联合申报,项目下设每个课题的协作单位原则上不超过5家。  2、受理时间:项目申请受理截止日期为2010年12月8日17时。  3、申报要求:项目申请采取网上申报方式,申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。请按要求编写《国家高技术研究发展计划(863计划)主题项目申请书》,具体申请程序、要求及其他注意事项详见《国家高技术发展计划(863计划)申请须知》。  4、咨询联系人及联系电话、电子邮件  咨询联系人:史冬梅  联系电话:010-88372105/68338919  电子邮件:shidm@htrdc.com  863计划新材料技术领域办公室  2010年10月20日
  • 资本大鳄隐身聚光科技 股权腾挪上市出口转内销
    12月21日上会的聚光科技(杭州)股份有限公司(以下称聚光科技)有着迄今为止最豪华的创业板发起人阵容。在聚光科技的24家发起人股东中,有着VC/PE背景的股东就多达20余家。   不过,聚光科技最初计划登陆资本市场的目的地并不是创业板。聚光科技原想在境外上市,并在2007年经过复杂的离岸股权设计。但两年后,聚光科技还是决定“出口转内销”,把目光瞄准了创业板。为此,聚光科技又再度进行了纷繁复杂的股权腾挪术。最终,公司主要创始人得以国内公司持股的方式选择登陆创业板。   大鳄隐身   本报记者注意到,被福布斯誉为国内最佳投资人的朱敏算得上是聚光科技登陆资本市场的引路人。   2002年3月,聚光科技实际控制人王健、姚纳新留学期间与朱敏、YUEN KONG在美国共同设立了FPI(US),并控股聚光科技的前身聚光有限。当时,朱敏是以天使投资人的身份入股FPI(US),投入60万美元,获得聚光有限11.905%的股份。   截至目前,朱敏及其关联人控制的香港富盈控股有限公司(RICH GOAL HOLDINGS LIMITED,下称香港富盈)、绍兴龙山赛伯乐、杭州灵峰赛伯乐(合伙企业)分别持有聚光科技发行前16.45%、1.61%、1.61%股份。其中,香港富盈位列公司第二大股东。   本报记者调查发现,在香港富盈的背后还站着另一海外私募巨头合众集团。   2008年5月23日,朱敏与合众集团成立合资基金CYBERNAUT GROWTH FUND L.P.,由朱敏配偶徐郁清持有的聚光科技股权出资,合众集团以现金出资,当时确定的聚光科技转让价格为2.56美元/股。合众集团已在SIX瑞士证券交易所上市(代码:PGHN),管理的资产规模约为201 亿欧元。   在持股5%以上的股东中还包括公司第四大股东杭州赛智创业投资有限公司(下称杭州赛智),其持有公司7.26%的股份。   此外,隐身聚光科技背后的资本大鳄还包括,千橡互动集团董事长陈一舟以嘉成公司名义持股2.97% 原深圳晓扬投资管理公司总经理余紫秋任管理合伙人的天津和光持股2.39%,而藏身背后的国内另一创投大鳄上海重阳投资有限公司持有其3.33%的股份 陈茫控股的卓远控股公司持股2.19%等。   股权腾挪   根据聚光科技招股说明书预披露稿,自2002年成立至2007年9月期间,聚光科技一直由FPI(US)作为唯一控股股东。   但自2007年12月开始,为了筹备境外上市,聚光科技便展开了眼花缭乱的股权腾挪术。   2007年12月20日, FPI(US)将其所持有的公司100%股权以 1000 万美元转让给香港富盈。此前,香港富盈已发行1股股份,FPI(CAYMAN)是拥有其股份的唯一股东。本报记者调查发现,作为公司原拟境外上市的资本运作平台,公司股东均是通过FPI(CAYMAN)层面迂回持有聚光科技股份。   统计表明,在2005年9月1日至2007年4月15日期间,FPI(CAYMAN)先后定向发行了九次新股,股本增加至51020935股。   经过此后八轮新股发行后,王健和姚纳新在FPI(CAYMAN)的股份被稀释至33.67%和23.23%,分别持股约1717万股和1185万股。   2008年4月2日,控股股东层面的股权腾挪进一步升级。王健将所持股份平移至旗下空壳公司 FOCUSED EQUIPMENT LIMITED,转股价格为每股0.001美元 姚纳新将其持有的8852712股转让给控制的空壳公司BRIGHT GAIN GROUP LIMITED,转股价格为每股0.001美元,同时,姚纳新还将其持有的3000000股转让给其前妻MIAO XIN名下的EVER ELEGANCE HOLDINGS LIMITED,转股价格为每股0.001美元。   2009年1月12日,持有FPI(CAYMAN)股份的公司78位员工也将其持有的FPI(CAYMAN)股份平移转给BEST STRIVE INTERNATIONAL LIMITED。转让前后,78位员工各自持有FPI(CAYMAN)的股权保持不变。   此后,为了适应国内上市的股权结构要求,公司又于2009年10月对FPI(CAYMAN)进行了层层剥离。公司的间接股东不再继续在FPI(CAYMAN)层面上持股,而是转到国内公司持股,或是通过香港公司持股。另外,还对FPI(CAYMAN)除CYBERNAUT GROWTH FUND L.P.外的其他股东的股权进行了回购,回购价格为每股0.0332美元,对应公司注册资本为1200万美元。   在确定了回归国内资本市场以后,聚光科技股权腾挪的阵线又转移到了国内。   2009年10月19日,香港富盈与浙江睿洋科技有限公司等14家机构签订股权转让协议,约定以注册资本的价格转让其持有聚光有限81.11%的股权。   与此同时,国内创投开始蜂拥而至。2009年10月26日,杭州灵峰赛伯乐创业投资合伙企业(有限合伙)、绍兴龙山赛伯乐创业投资有限公司、杭州赛智创业投资有限公司、华软投资(北京)有限公司和北京中凡华软投资有限公司五家创投以1美元注册资本对应90元作为增资价格,共注资1.6亿元。   10月28日,公司员工持股公司杭州凯升投资合伙企业、杭州凯健投资合伙企业以1美元注册资本对应 121.49元为转让价格,悉数转让了所持2.04%和1.22%的股权,累计套现5450万元。   截至目前,公司创始人王健和姚纳新分别以控股浙江睿洋科技有限公司和浙江普渡科技有限公司的方式持股28.38%和14.94%,持有公司注册资本金额分别为391.0237万美元和205.776万美元。
  • 《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目汇总
    近日,工信部将2021年申请立项的《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目和项目建议书予以公示,截止日期为2021年4月9日。这125项项目中,包括石化行业(26项)、有色金属行业(7项)、建材行业(14项)、机械行业(20项)、纺织行业(9项)、兵工民品行业(14项)、电子行业(15项)、通信行业(8项),目录如下表所示。附:《激光甲烷遥测仪校准规范》等125项行业计量技术规范计划项目建议书.zip2021年行业计量技术规范申报项目汇总表 行业:石化 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域1JJFZ(石化)001-2021激光甲烷遥测仪校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院、济宁市计量所石油化工2JJFZ(石化)002-2021磷化氢气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工3JJFZ(石化)003-2021柴油十六烷值机校准规范制定/2023中国石油和化学工业联合会中石化(洛阳)科技有限公司、山东省计量科学研究院石油4JJFZ(石化)004-2021乙醇气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工5JJFZ(石化)005-2021丙酮气体检测报警器校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工6JJFZ(石化)006-2021石油产品定氮仪(化学发光法)校准规范制定/2023中国石油和化学工业联合会天津市计量监督检测科学研究院石油化工7JJFZ(石化)007-2021润滑油蒸发损失测定仪(诺亚克法)校准规范制定/2023中国石油和化学工业联合会中国计量科学研究院石油8JJFZ(石化)008-2021开路式红外可燃气体探测器校准规范制定/2023中国石油和化学工业联合会中国石油化工股份有限公司青岛安全工程研究院石油化工9JJFZ(石化)009-2021恒温振荡培养箱校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院石油化工10JJFZ(石化)010-2021涂料耐溶剂擦拭仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料11JJFZ(石化)011-2021涂膜、腻子膜打磨性测定仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料12JJFZ(石化)012-2021厚漆、腻子稠度测定仪校准规范制定/2023中国石油和化学工业联合会上海市质量监督检验技术研究院涂料13JJFZ(石化)013-2021二氧化氮气体检测报警器校准规范制定/2023中国石油和化学工业联合会中国石油天然气股份有限公司吉林石化分公司石油化工14JJFZ(石化)014-2021管状输送带试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶15JJFZ(石化)015-2021汽车同步带疲劳试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶16JJFZ(石化)016-2021橡胶软管外覆层耐磨耗性能试验机校准规范制定/2023中国石油和化学工业联合会青岛中化新材料实验室橡胶17JJFZ(石化)017-2021润滑脂锥入度测定器校准规范制定/2023中国石油和化学工业联合会济宁市计量测试所石油化工18JJFZ(石化)018-2021激光甲烷气体检测报警器校准规范制定/2023中国石油和化学工业联合会济宁市计量测试所石油化工19JJFZ(石化)019-2021帘线干热收缩仪校准规范制定/2023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶20JJFZ(石化)020-2021橡胶压缩屈挠试验机校准规范制定/2023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶21JJFX(石化)021-2021直读式橡胶密度计校准规范修订JJG(化)106-912023中国石油和化学工业联合会北京橡胶工业研究设计院有限公司橡胶22JJFZ(石化)022-2021石油产品盐含量测定仪校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院石油23JJFZ(石化)023-2021甲醛气体检测报警器校准规范制定/2023中国石油和化学工业联合会山东省计量科学研究院石油化工24JJFZ(石化)024-2021氧化性固体重量试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定25JJFZ(石化)025-2021撞击感度试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定26JJFZ(石化)026-2021易燃液体持续燃烧试验仪校准规范制定/2023中国石油和化学工业联合会浙江省化工产品质量检验站有限公司化学品鉴定2021年行业计量技术规范申报项目汇总表 行业:有色金属 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域27JJFZ(有色金属)001-2021隔热型材用高温持久试验机校准规范制定/2023中国有色金属工业协会广东省科学院工业分析检测中心力学28JJFZ(有色金属)002-2021闭路循环法铝及铝合金液态测氢仪校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司工艺29JJFZ(有色金属)003-2021电热恒温水浴锅校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司温度30JJFZ(有色金属)004-2021电子式温湿度计校准规范制定/2023中国有色金属工业协会西南铝业(集团)有限责任公司温度31JJFZ(有色金属)005-2021有色金属材料用循环腐蚀试验箱校准规范制定/2023中国有色金属工业协会国标(北京)检验认证有限公司腐蚀32JJFZ(有色金属)006-2021铜合金冲刷腐蚀试验机校准规范制定/2023中国有色金属工业协会国标(北京)检验认证有限公司腐蚀33JJFZ(有色金属)007-2021非接触式引伸计标定器校准规范制定/2023中国有色金属工业协会西安汉唐分析检测有限公司力学2021年行业计量技术规范申报项目汇总表 行业:建材 序号申报号计量技术规范名称制、修订代替规范完成年限技术委员会或技术归口单位主要起草单位领域34JJFZ(建材)001-2021水泥企业用转子计量秤现场校准规范制定/2023中国建筑材料联合会建筑材料工业技术监督研究中心水泥35JJFZ(建材)002-2021垂直安装的成束电线电缆火焰垂直蔓延试验装置校准规范制定/2023中国建筑材料联合会北京建筑材料检验研究院有限公司、国家建筑防火产品安全质量监督检验中心防火性能测试
  • 纳米氧化锌在隐身技术中的应用研究进展
    p style=" text-indent: 2em " 随着军事高技术的迅猛发展,世界各国防御体系的探测、跟踪、攻击能力越来越强,陆、海、空各兵种地面军事目标的生存能力以及武器系统的突防能力日益受到严重威胁。为了提高国防体系中地面军事目标的生存力与武器系统的突防和纵深打击能力,发展和应用隐身技术成为国防体系发展的重要方向。而隐身材料又是隐身技术最重要的环节。因而国内外近年来掀起了隐身材料的研究热潮。 目前己在使用和尚在研制的新型隐身材料有:宽频带吸波剂、高分子隐身材料、 手征隐身材料、纳米隐身材料等。而近年来关于纳米材料具有高的电磁波吸收系数越来越多的报道,引起了军事科技人员极大的兴趣。 /p p style=" text-align: center " & nbsp img src=" http://img1.17img.cn/17img/images/201805/insimg/0c54b75f-dafd-463e-812a-345c9518e969.jpg" title=" 1.jpg" / & nbsp & nbsp /p p style=" text-align: center " span style=" font-size: 14px color: rgb(127, 127, 127) " 图一 新型隐身材料应用于军属领域 /span /p p style=" text-indent: 2em " 纳米氧化锌也是纳米隐身材料中的研究热点之一。纳米氧化锌是一种非常有发展前途的新型军用雷达波吸收剂,具有轻质、厚度薄、颜色浅、吸波能力强等优点。 /p p style=" text-indent: 2em " 一、纳米氧化锌的制备方法 /p p style=" text-indent: 2em " 纳米氧化锌的化学制备方法种类繁多,新工艺层出不穷,如液体-固体-溶液相转移与分离法,但研究较多的主要有沉淀法、溶胶-凝胶法、微乳液法、水热(溶剂热)法等。 /p p style=" text-indent: 2em " 1、沉淀法 /p p style=" text-indent: 2em " 沉淀法一般分为直接沉淀法与均匀沉淀法。直接沉淀法是在可溶性锌盐溶液中加入沉淀剂制得氧化锌前驱体,将其洗净后在一定温度下热分解得纳米氧化锌。常见的沉淀剂为氨水、碳酸氢铵等。而前驱物为Zn(OH)2、Zn2(OH)2CO3等 。 /p p style=" text-indent: 2em " 2、溶胶-凝胶法 /p p style=" text-indent: 2em " 溶胶凝胶法是制备超微颗粒的一种湿化学法。其基本原理是将金属无机盐或 金属醇盐溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或与醇反应,反应生成物经聚集后,一般生成纳米级粒子并形成溶胶。 /p p style=" text-indent: 2em " 3、微乳液法 /p p style=" text-indent: 2em " 两种互不相溶液体在表面活性剂作用下形成的热力学稳定的、各向同性、外 观透明或半透明、粒径在1-100 nm的分散体系则称为微乳液。微乳液通常是由表面活性剂、助表面活性剂、油和水组成的透明的、各向同性的热力学稳定体系。 /p p style=" text-indent: 2em " 4、水热(溶剂热)法 /p p style=" text-indent: 2em " 水热合成法是液相中制备超微颗粒的一种新方法。一般是在100-150oC温度 下和高气压环境下实现从原子、分子级的微粒构筑和晶体生长。溶剂为水称水热法,为其它溶剂如乙醇、异丙醇等时称溶剂热法。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/72a45ed5-3a7f-4aab-ac13-26fff845a89a.jpg" title=" 2.jpg" / /p p /p p style=" text-align: center " span style=" font-size: 14px color: rgb(127, 127, 127) " 图二 纳米氧化锌的SEM图 /span /p p style=" text-indent: 2em " 二、纳米氧化锌作为隐身材料的基本原理及应用 /p p style=" text-indent: 2em " 隐身材料是用于降低军事目标可探测性的材料。材料隐身的基本原理是降低 目标自身发出的或反射外来的信号强度;或减少目标与环境的信号反差,使其低 于探测器的门槛值;或使目标与环境反差规律混乱,造成目标几何形状识别上的困难。目前雷达在各种探测器中仍占主导地位,因此雷达波隐身材料是隐身技术 中最主要和发展最快的隐身材料。雷达波隐身材料的基本性能要求是吸收雷达 波,因而这种材料又称为雷达吸波材料。 /p p style=" text-indent: 2em " 雷达吸波材料是通过吸收衰减入射的能量以减少反射能量,降低军事目标 可探测性。吸波原理通常是以下3类:一是雷达波作用于材料时,材料吸收雷达波的能量,并通过产生电导损耗、高频介质损耗、磁滞损耗等,使电磁能转化为热能散发掉;二是使雷达波在材料表面的反射波能量分散到目标表面的各个部 分,减少雷达接收天线方向上散射的电磁能;三是使雷达波在材料表面的反射波与进入材料后在材料底层的反射波叠加产生干涉相消。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/7bdaafeb-819d-4b2c-9e93-7c6be4801a38.jpg" title=" 3.jpg" / /p p /p p style=" text-align: center " span style=" font-size: 14px color: rgb(127, 127, 127) " 图三 波与物质作用示意图 /span /p p style=" text-indent: 2em " 氧化锌是一种直接带隙的多功能宽禁带新型无机半导体材料。在室温下禁带 宽度为3.37 eV,激子束缚能高达60 MeV,具有良好压电特性,在紫外光发射材料、透明导电、场发射显示器件、太阳能电池与气体传感器、紫外半导体光电器件材料方面有着广泛应用。近年来人们发现氧化锌是不错的吸波材料,引起了人们极大的兴趣。 /p p style=" text-indent: 2em " 纳米氧化锌是一种新型多功能的无机材料,在声、磁、光、电等方面具有很多优异性能,并且现在工业化生产各种形状的纳米氧化锌已得以实现,因此,随着研究的日益深入,纳米氧化锌将可能成为一类多功能复合型吸波隐身材料。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/d0ebb66e-64b9-4619-8e93-c88086741f42.jpg" title=" 4.jpg" / /p p /p p style=" text-align: center " span style=" font-size: 14px color: rgb(127, 127, 127) " 图四 纳米氧化锌应用于隐身材料 /span /p
  • 【综述】红外隐身材料的应用及其研究进展
    随着红外探测技术的飞速发展,红外隐身材料的开发已成为一个迫切的需求。红外隐身效果受温度和红外发射率的共同影响,但以往的研究大多集中在单一因素上,从而限制了红外隐身产品的有效性。据麦姆斯咨询报道,近期,西安工程大学的科研团队在《印染》期刊上网络发表了以“红外隐身材料的应用及其研究进展”为主题的文章。该文章第一作者为陈海通,通讯作者为王进美教授。本文介绍了各类红外隐身材料的优势和局限性、近年来的研究进展以及未来发展趋势,重点包括基于不同的材料在红外隐身领域所发挥的独特作用。红外隐身原理在了解红外隐身机理之前,深入研究其探测原理有利于更好地规避和反制。隐身技术与探测技术双方是相互抵制的关系,二者都是围绕目标和背景两个对象进行展开,探测是通过不断放大目标与背景的差异,从而识别出目标,隐身则是缩小两者的差异。例如,在飞机上,不同的探测器通过六个相应的特征——声学、视觉、烟雾、雷达、红外和轨迹特征来探索它们存在的迹象。红外探测主要基于热成像原理,加之物体本身就是红外光源。红外波可以覆盖0.76~1000μm的范围,可细分为五个部分(如图1所示):近红外波(NIR,0.76~1.5μm),短红外波(SWIR,1.5~ 3μm)、中红外波(MWIR,3~8μm)、长红外波(LWIR,8~15μm)和远红外波(FIR,15~1000μm)。由于地球大气层吸收了大部分红外线,仅对3~ 5μm和8~14μm范围内的电磁波相对透明。因此,在两个大气窗口中隐藏目标的自发辐射是击败红外探测器的有效措施。图1 各种波段的比较及相应的隐身应用除此以外,材料性质、表面粗糙度和厚度等许多因素都会影响红外发射率。考虑到材料的自身特性,其红外发射率与原子核和外核电子的相对位移(正负电荷中心不一致产生的电偶极矩)密切相关,带负电的外核电子和带正电的原子核会受到外电场的影响。这三个方面体现在复介电常数、电导率和晶格振动对材料红外发射率的影响上。红外发射率的复介电常数实部依赖性主要受材料的极化度控制,与本征极化偶极矩数、离子半径、晶格常数等因素密切相关。而表面粗糙度对红外发射率的影响可归纳如下:一方面,入射辐射在物体不平整表面的漫反射增加了物体表面吸收红外辐射的机会,导致吸收率增强;另一方面,凹凸不平的表面提高了辐射体的相对辐射面积,从而增加了辐射能量和相应的发射率。此外,随着材料厚度的增加,红外发射率也会增加。金属材料的热辐射特性发生在几微米的表层,可以认为表面特性和发射率与厚度无关。对于大多数非金属介电材料,辐射都有一定的穿透深度。因此,非金属电介质和半透明材料的发射率不仅取决于它们的表面状态,还取决于样品厚度。红外隐身方法点源探测和成像探测是两种主流的红外探测方法。点源探测主要与探测距离有关,可检测到的最大距离R。为了最小化目标检测距离,红外辐射特征J越小越好。成像检测主要是利用背景与目标间的热辐射能量之差进行测试。一般来说,发射率高,物体很容易暴露在红外探测器下。为了实现红外隐身伪装,背景和目标物体之间的红外发射强度差异应该足够接近可以忽略不计。因此,降低辐射能E对于红外隐身是必不可少的。控制目标表面温度和降低目标表面发射率ε是获得良好红外隐身能力的主要途径之一。到目前为止,控制表面温度的主要方法是热隔离和热通量控制。理想的绝缘材料是空心玻璃微球(HGM)、气凝胶、热毯、纳米纤维膜、微/纳米多孔泡沫、软木和皮革等隔热材料。其中,HGM和气凝胶在红外隐身领域应用较多。但这种方法的局限性同样明显,因为环境等限制条件,有时物体的表面温度很难改变,所以当物体的T难以改变时,具有低ε的产品具有出色的红外隐身能力。根据Hagen-Rubens定律,电导率与低ε正相关。例如Cu、Ni和Al等金属,以及一些导电聚合物,如聚苯胺(PANI)是低ε材料。但是金属在可见范围内具有高反射率,这会降低视觉伪装效果。因此,金属材料一般被用作填料。目前,研究人员主要通过对金属填料进行改性来实现低发射率与低光泽度的兼容。综上所述,实现红外隐身的最佳途径是削弱和调整目标的红外辐射能量特性,同时使其尽可能接近背景。因此,将“目标+背景”的组合识别为“与背景相似的物体+背景”的组合,这样更有利于欺骗检测器。红外隐身材料隔热材料中空微珠作为隔热材料具有超微小孔隙结构、空心结构或多层结构等特点,因而具有很低的导热系数和吸水率。将其作为填料可以显著降低目标热量的传导,从而有效降低目标的红外辐射能量。2018年,焦钰钰团队开发了一种由纯无机矿物组成的玻璃微珠,该微珠会与基体表面形成一个中空气体层从而阻断热传导,因其蜂窝中空结构故,而它的导热系数很低,涂层具有非常好的隔热保温效果。同时,中空玻璃微珠可以将太阳85%以上的热量反射阻隔在基体表面。PAKDELl团队在2020年将空心微珠颗粒与TiO₂纳米粒子共混,制备了织物用隔热涂料,涂料具有良好的隔热性能并降低了织物的可燃性,另外空心微珠颗粒的存在及其浓度也会直接影响织物的近红外反射率。该团队利用红外热成像仪证明空心玻璃微珠防止涂层织物快速散热,此功能可以应用于保暖织物,还可以减少从室内空间到建筑物外的热量损失,进而有效提升红外隐身性能。凝胶系列中的气凝胶具有极低的密度、低导热性和高比表面积,是一种具有3D互穿网络的高度多孔材料。空气层分裂成小块,可以抑制热量的相对流动。此外,气凝胶骨架赋予固体热传导路径复杂而漫长,从而增强散热能力。2020年,ZHANG的团队开发了双向各向异性聚酰亚胺/细菌纤维素(b-PI/BC)气凝胶,它们具有良好的各向异性成型性、质量轻和出色的隔热性能(图2)。与单一的PI气凝胶和其他商业绝缘材料(聚氨酯和聚苯乙烯泡沫)相比,b-PI/BC气凝胶在相当大的温度范围内有效地阻止了传热,并具有稳定的隔热性能(图3)。图2 b-PI/BC气凝胶的合成流程图3 与其他商业绝缘材料相比,bPI/BC气凝胶具有良好的隔热性能此外,WU的团队在2022年通过改变CuS的添加量和热还原策略设计了rGO/CuS复合气凝胶。CuS的添加有效地调节了红外发射率和隔热性能。加热30 min后,由于其多孔结构,它会保持原始温度。因此,层压多孔结构和多组分赋予复合气凝胶隔热和红外隐身多功能性。该团队还通过简便的溶剂热法和随后的冷冻干燥制备了rGO/CuS@PCM气凝胶(图4)。它们在8 ~ 14 μm的红外发射率从0.82调节到0.59。虽然气凝胶是当前密度最小、隔热性能最好的固态材料,但其存在强度低、易碎等缺陷,在一定程度上限制了它的应用。图4 rGO/CuS@PCM气凝胶制备过程示意图相变材料相变材料(PCM)由于其卓越的热管理能力在红外隐身功能材料领域受到特别关注。目前,许多研究人员将相变材料微胶囊化再应用于红外隐身涂层中。相变微胶囊(MPCPs)是一种具有核壳结构的相变储能材料,其原理是通过相变材料的放热和吸热过程来调节温度。GU Jie团队在2021年采用二十烷作为相变材料(PCM),三聚氰胺、尿素和甲醛(MUF)作为壳材料形成微胶囊。然后,将聚苯胺(PANI)沉积在这些微胶囊的表面以形成了具有温度控制和低红外发射率的双壳微胶囊(DSM)。经测试,具有1.354 mm厚涂层的红外隐形织物可冷却高达11.2 ℃,并且控温过程持续27 min,红外发射率达到0.794。该面料在实际使用中具有显著的红外隐形效果和良好的耐用性(图5)。图5 红外隐形织物的红外图像然而传统的PCM通常表现为具有固定转变温度的刚性固态或流动液态,极大地限制了它们的应用,特别是在多波段隐身和多场景中。因此,很多团队在这方面进行了改良,例如2023年DENG团队首次设计并构建了一种用于同步视觉/红外隐身的本征柔性自愈合相变薄膜。该相变膜具有固-固相变行为,转变温度(从38.8 ℃到51.1℃)和热函(从79.7 J/g 到116.7 J/g)可调,该相变薄膜可定制不同颜色和多种配置,在多场景下展现极佳的视觉隐身功能。此外,该相变薄膜具有热管理能力,并在各种温度下对目标物表现出红外隐身性能,且具有长期循环稳定性(500次循环)和出色的柔性。此外,PCM与气凝胶结合的复合材料也可以达到优秀的红外隐身效果,在2019 年,LYU的团队首先制备了Kevlar纳米纤维气凝胶(KNA)薄膜,然后与PCM结合以获得KNA/PCM薄膜,发现具有热管理功能的KNA/PCM复合薄膜在太阳光照的室外环境中表现出优秀的红外隐身性能。在此基础上该团队还提出了一种由隔热层(KNA薄膜)和红外吸收表面层(KNA/PCM)组合的结构,以隐藏红外检测中的热目标。与其他红外隐身材料相比,KNA−KNA/PCM组合结构涂层靶材由于优异的隔热性和超低红外透过率,红外隐身性能更优秀。这样的结构在未来军事和工业领域的应用具有巨大的潜力,为红外隐身技术提供了更有效的解决方案。纳米结构材料纳米结构材料在很宽的频率范围内表现出均匀的吸波特性。因此,它在红外和雷达波隐身材料的应用较多。由于红外光的波长远大于纳米颗粒的尺寸,导致纳米材料对红外光具有高透过率,使红外探测器接收到的反射信号变得很微弱,从而实现红外隐身效果。为了促进材料的多通道相容性,由两种或多种组分组成的纳米复合材料显著增强目标的红外隐身性能。研究发现,核壳纳米复合材料可以通过核和壳组分的相互修饰来调节。由于壳成分存在于核壳结构的外表面上,所以表面功能的操纵可以有效地满足不同的应用需求。近年来,由结构核和功能壳组成的核壳纳米复合材料在低发射领域受到越来越多的关注。例如WANG团队通过在SiO₂颗粒表面上层层组装剥离的LDH(层状双氢氧化物)纳米片和DNA生物分子,成功制备了SiO₂@DNA-LDH(图6)纳米复合材料,并测试了样品在8~14 μm波长下的红外发射率值,发现SiO₂@DNA和SiO₂@LDH的红外发射率值分别降至0.732和0.658。以DNA插层LDH为功能壳构建SiO₂@DNA-LDH核壳纳米复合材料,由于DNA和LDH纳米片之间的氢键或静电相互作用,以及DNA-LDH壳层形成加强的物理限制,红外发射率值进一步降低至0.458。图6 (a)SiO₂和(b)SiO₂@DNA-LDH纳米复合材料的扫描电子显微镜(SEM)图像,(c)原始SiO₂(d)、(e)和(f)SiO₂@DNALDH纳米复合材料的透射电子显微镜(TEM)图像此外,纳米金属材料在隐身材料中的应用同样备受关注。ZnSe因其在红外区域优异的非线性光学性能,Co在红外区的良好吸收特性,为过渡金属的掺杂提供了选择。但一种材料的微观结构会影响其光学特性,例如吸收、反射和透射。尽管ZnSe和Co具有良好的红外特性,但其电子空间分布仍然较差,不利于材料的吸收和光传导。Ga表现出高电子浓度和结构保护特性。因此,将Ga元素引入到材料中,不仅可以控制材料的微观结构,还可以改善材料的空间电子态分布。2021年PAN等人通过PLD(脉冲激光沉积)在不同的Ar气体下制备了一种适用于抗近红外探测的纳米CoGaZnSe多层薄膜。通过XRD(X射线衍射)、拉曼光谱和模拟研究了薄膜的微观结构发现通过控制生长压力来改变晶体特性、键合和电子的空间分布。在不同压力下获得的薄膜具有不同的透射率。根据这一特性,将具有不同透光率的薄膜与多层薄膜相结合,可以减少红外反射。该团队将多层薄膜涂在普通衣服的表面,然后使用红外探测器进行测试。结果表明,CoGaZnSe多层薄膜的抗近红外检测率最高可达86%,大大降低红外探测的量子效率。碳基复合材料碳材料以其质量轻、比表面积大、机械强度高和良好的导电性等的特性,彻底改变了隐身技术领域。炭黑、碳纳米管以及石墨烯的使用为合成轻质、多功能和智能红外隐形材料提供了新的可能性。例如,可以使用低发射率材料改性的碳纳米管用于屏蔽目标的红外辐射;可以通过石墨烯的添加巧妙地实现温度的动态调节,从而改善静态微/纳米结构只能改变热发射率,固定的热管理材料不能根据需求和环境调节温度的缺点。因此,碳基复合材料为红外隐身领域的设计和性能控制提供了高度的灵活性(图7)。图7 碳材料在红外隐身方面的优势零维材料炭黑作为全球生产最丰富的碳形式之一炭黑(CB),是碳基材料最早使用的原材料。但是单独添加炭黑会增强红外波段吸收,这对红外隐身不利。涂料的三个部分分别为添加剂、填料和黏合剂。其中实现红外隐身的关键在于各种填充物。金属填充物可以显着降低红外发射率,例如铝。但是金属对可见光的强烈反射与视觉隐身相冲突。2019年,LI和他的团队将直径为30~45 nm的炭黑纳米粒子直接喷涂到纳米多孔硅渐变折射薄膜上的5μm厚可转移阳极氧化铝(AAO)模板上。经实验测试,该薄膜在2.5~15.3 μm范围内平均吸光度为97.5%,远高于纳米多孔硅和AAO模板。此外,带有炭黑的AAO模板可以很容易地转移到其他结构上,可以更好地隐藏不同物体的热特性,从而进一步隐身。其本质是光通过AAO模板在内部多次反射,而随机的炭黑颗粒充当散射中心。通过炭黑和纳米多孔硅对光的进一步吸收和捕获,使复合结构能够实现非常低的反射率。因此,炭黑需要与具有较低红外发射率的材料结合使用,才能实现良好的隐身性能。一维材料碳纳米管兼具轻质、可控、高导电、形貌可调和优异机械性能的碳纳米管成为红外隐身复合材料的中流砥柱。许多文献表明,碳纳米管的强度是钢的100倍,密度是钢的六分之一。此外,碳纳米管具有约6 000 W/mK的高导热率,且导电率远高于铜。这些优势将成为多壁和单壁碳纳米管在红外隐身领域应用的关键。低红外发射率材料能以涂层和复合材料的形式制备。2016年,CHU团队成功开发了银颗粒改性碳纳米管纸(SMCNP),并制备了一种具有超低红外发射率的SMCNP/玻璃纤维增强聚合物(GFRP)复合材料用于红外隐身,以解决飞行器中金属添加剂和纤维增强聚合物(FRP)复合材料难以形成整体的问题。此外,静电纺丝是生产薄膜的独特方法。静电纺丝可以生产2纳米到几微米的纤维。2018年,FNAG等人通过静电纺丝制备聚偏二氟乙烯(PVDF)纤维膜和单壁碳纳米管(SWNT)改性PVDF(命名为SWNT/PVDF)(图6)。壳聚糖处理后,将金纳米粒子浸入金溶胶中并搅拌以修饰薄膜。在静电力的作用下,Au纳米粒子牢固且非常均匀地固定在两种纤维的表面。研究发现,PVDF和Au-PVDF纤维膜的红外发射率值分别为0.82和0.76,而SWNT/PVDF和Au-SWNT/PVDF薄膜的值分别低至0.77和0.68,说明单壁碳纳米管与金颗粒结合后性能更好。二维材料石墨烯石墨烯具有独特的二维蜂窝状晶格结构,从而赋予其相互连通的多孔结构、高表面积、良好的导热性和优异的导电性等性能,被广泛应用于催化、电池、生物医药等领域。然而,石墨烯在传统红外隐身领域,如降低涂层发射率、隔热、吸收热辐射等,既没有表现出突出的性能,也不具备足够的潜力与其强大的性能相匹配,这是因为蜂窝结构对波的散射有强烈的影响。此外,基于热辐射产生原理,由于石墨烯的能隙为零,所以石墨烯本身不发射热辐射。因此,石墨烯很难以传统的方式直接制造具有极低发射率的材料。但石墨烯可以通过石墨烯层中的离子液体嵌入和外部电压调制,将红外发射率控制在0.3~0.7的范围内。2021年,SHI的团队通过组合石墨烯纳米片和Fe₃O₄纳米粒子,显着增强微波吸收且提供轻巧而坚固的支撑。该团队将其进一步集成到具有隔热性能的PI气凝胶中,并使用聚乙二醇(PEG)作为相变材料,获得了一种新型的兼容电磁和红外的双隐形薄膜。PI/石墨烯/Fe₃O₄杂化气凝胶薄膜具有多孔结构,导热系数低,可以抑制红外热辐射,使其具有红外隐身性。为防止温度随外界不断发生变化,上部采用PI/石墨烯/Fe₃O₄气凝胶/PEG薄膜,既能提供低温显热吸收,又能提供高温潜热吸收,最终实现双重热缓冲,从而更好地协调热力学与红外隐身的关系。图8 (a) (S1) PI/石墨烯/Fe₃O₄混合气凝胶薄膜、(S2) PI气凝胶/PEG复合薄膜和(S3) PI/石墨烯/Fe₃O₄气凝胶/PEG复合薄膜在加热和冷却过程中记录的红外热成像图像。根据红外热像分析格式确定的(b)加热和(c)冷却过程中温度随时间变化的图像光子晶体光子晶体是一种新型结构材料,由于其光子带隙和光子局域化两个特性使得控制物体的自发辐射成为可能。通过调节光子晶体的结构,可以使光子带隙处于特定红外电磁波段,最终在红外波段具备高反射率与低发射特性。利用光子晶体禁带的高反射、低辐射等特点,可以改变目标的红外辐射特性,以干扰探测器的捕获光谱,使其无法被红外线侦察装置侦测到,从而实现红外隐身。目前,光子晶体在红外隐身材料的研究主要集中在一维光子晶体材料和三维光子晶体材料,这两种材料由不同折射率的介电层堆叠而成。由于一维光子晶体易于设计和制造,近年来许多研究人员对其进行了深入研究。例如DONG Qi等人开发了基于ZnS/Ge的一维光子晶体(1DPCs),在波长3~5 μm处测量反射光谱,得到了95.1%的平均反射率;使用ET-10红外发射仪测得平均发射率低至0.054,完全满足红外隐身需求。三维光子晶体的制造方法有微机械加工法、半导体工艺法、激光全息干涉法等。由于三维光子晶体在不同方向上存在很好的对称性,因此利用上述制造方式能够成功得到具有禁带的光子晶体结构,例如层叠的硅棒排列制备三维光子晶体可以有效减少红外波段带隙内目标的红外辐射,并增强带隙外的红外辐射。此外,以钨为代表的三维金属叠层结构具有更宽的禁带,可以选择性地控制辐射。这两种光子晶体红外隐身材料结构复杂,价格昂贵,不利于大规模应用。而胶体基元自组装法因方法简便、容易操作、成本低廉、重复性好等优势,成为一种相对普遍的实验室制备光子晶体方法。LI团队使用机械强度高、化学稳定性强和高温稳定性好的聚苯乙烯胶体微球采用逐层法制备了红外吸收波长为3.30 μm和3.42 μm的三维光子晶体材料,并通过气液界面自组装制备单层聚苯乙烯光子晶体膜。该材料实现了3~5 μm可探测波段红外辐射特性的调制,满足红外隐身要求。总结与展望在过去的几十年里,研究人员对红外隐身材料性能的研究主要集中在调整发射率和温度控制进行热管理这两个方面,而对其机理研究不够深入。随着电子技术和先进探测器的不断发展,单波段隐身材料已难以适应现代军事环境。因此,隐身材料的研究需要向多波段兼容隐身方向发展。其中,突破的关键是弄清楚各个电磁频段之间的内在联系。例如对于红外-可见隐身,光谱和背景光谱特性应尽可能一致(0.38 ~ 0.76 μm),需要一个合适的ε来减小目标与背景之间的红外辐射差异(8 ~ 14 μm、3 ~ 5 μm和1 ~ 2.5 μm)。而对于雷达红外兼容隐身,雷达吸波材料需要高吸收率和低反射率,而红外隐身材料需要高反射率和低ε,这就要求综合考虑隐身机理、制备工艺、材料稳定性和兼容性等问题。目前,实验室制备的样品量很少。如何让合成和设计的材料可以大规模生产,并具有其他优良特性,以确保它们可以在实际环境中使用,仍然是一个很大的挑战。其中,可调整、简便的合成路线备受关注。如何设计具有综合特性的产品也是未来发展的方向之一。例如,耐高温是一个重要因素,因为受保护设备(如飞机)的外表面热平衡温度,飞行时高度很高,普通涂层无法提供隐身性。此外,飞机、舰船等军事装备通常在浓烟、潮湿、气候恶劣的环境下工作,容易产生腐蚀缺陷。因此,耐蚀性对于提高军事装备的质量和可靠性具有重要意义。为适应环境变化,开发智能隐身材料势在必行。传统的伪装防护技术是静态的,缺乏环境适应性。智能隐身材料具有感知、信息处理、自主指挥和对环境信号作出最佳反应的功能。因此,如何设计能够主动适应环境的智能隐身材料是伪装隐身技术进一步提高军事目标在复杂战场环境中的生存和突防能力的重要发展趋势。
  • 我国隐身技术航空科技重点实验室揭牌
    隐身技术航空科技重点实验室揭牌   日前,隐身技术航空科技重点实验室在中航工业沈阳所通过中航工业评审验收并揭牌。该实验室成为中航工业依照国家重点实验室标准在隐身技术专业领域建立的第一个航空科技重点实验室。   隐身技术航空科技重点实验室聘请国内20多位资深专家组成学术委员会,不断强化实验室的学术水平和研究能力,积极开展对外交流合作,将全力打造为隐身设计/测试行业领域内具有国际先进、国内领先水平的开放式研究平台,国内一流的研究基地和学术中心。   一直以来,沈阳所始终瞄准航空科技和国家航空隐身装备发展的前沿需求,围绕航空隐身技术的战略发展目标和武器装备的隐身技术发展趋势,加强科研环境建设,依托强大的科研实力,不断展开关键技术研究,使我国航空装备隐身特性及生存力研究实力大幅提升。
  • 高铁检测仪器发布等双轴拉伸试验机(橡胶有限元分析)新品
    1 研发背景:橡胶材料具有许多独特的物理特性,如强弹性、易变形、耐磨性等,这使得其在工程上得到了广泛应用,同时作为一种超弹材料,橡胶在受力过程中可以看作一种只有形状改变而其体积几乎无变化的不可压缩物体,同时还伴随着几何非线性和物理非线性变化,所以在进行有限元分析(简称FEA,是将连续问题离散化的一种方法)时,正确了解橡胶材料的力学性能参数十分重要。想要完整的表述橡胶超弹性材料模型需要6种纯应变状态的力学实验,单轴拉伸、单轴压缩、双轴拉伸、双轴压缩、平面拉伸以及平面压缩,传统的拉力试验机搭配合适的夹具以及位移传感器可以进行单轴以及平面的实验,但是对于双轴实验的局限性较大。2 原理:等双轴拉伸(又叫多轴拉伸)借助多个环形排列的滑轮、钢丝绳和特制环形治具等代替传统的双轴试验机对试样进行拉伸,其形式也由垂直形式的双向拉伸转换为单向的拉伸,在保证实验效果的前提下更易实现;同时借助平面夹具可以进行单轴的平面拉伸试验,其中平面拉伸和平面压缩试验在应力状态上是等效的。创新点:创新点:16轴等双轴拉伸,目前国内外多采用双轴拉伸,误差较大。首创唯一。 1.等双轴拉伸,是企业和高校有限元分析建立橡胶材料的本构材料模型所必需。 2.采用激光引伸计,位移分解度可达0.00004mm 3.测试功能丰富,可实现进行单轴拉伸、等双轴拉伸、平面拉伸三种测试。 等双轴拉伸试验机(橡胶有限元分析)
  • 乐金涛:我国全自动拉伸试验机技术的发展、挑战与前景
    乐金涛老师乐金涛,1983年开始在宝钢集团从事金属材料力学性能检测工作,目前还兼任中国仪器仪表学会试验机分会副秘书长、广东省金属学会理化检验专业委员会副主任委员、全国冶金物理测试网力学与试样加工技术委员会副主任委员、全国钢标准化技术委员会力学及工艺性能试验分技术委员会顾问、《理化检验-物理分册》副主编、中国国际招标网机电产品评标专家等。近日,仪器信息网有幸采访了乐金涛老师,请他谈一谈国内全自动拉伸试验机技术的发展、挑战与前景。 仪器信息网:请问,为什么要研发全自动拉伸试验机技术?乐金涛老师:三年疫情给智慧制造的发展带来非常有利的机遇,如何让试验室利用先进技术提高自动化检测和抗风险的能力,在特殊情况下也可以稳定、高质量、无人值守的开展检测工作,是业内同行普遍关心问题。为了保证测试结果精准、可重复、可追溯,提高劳动生产率,利用信息化、自动化、智能化等技术建设一个可以实现整个试验过程无人值守、无人干预的钢铁材料力学性能检测全自动试验室,已经成为这个领域的发展方向。 随着工业发展至4.0时代,制造业逐渐步入智能化、数字化时代,对于钢铁材料生产企业,质量检测环节中的材料拉伸试验也向半自动化、全自动化快速发展。全自动电子拉伸试验机(薄板材料)近年来,国内钢铁企业检测系统已经在许多领域实现了全流程的自动化检测。国内一些大型钢铁企业的力学试验室,依靠多套全自动拉伸试验机一天可以轻松地完成1000多件拉伸试样的自动检测。 材料试验机如实现了自动化智能化后,可以实现试验室装备水平的大幅度提升;减少人为因素影响,提高检测精度,确保试验数据准确性;缩短检验周期;提高劳动生产率等。仪器信息网:要建设好一个自动化检测试验室,需具备哪些条件和掌握哪些关键技术?乐金涛老师:要建设好一个自动化力学性能检测试验室,必须要了解试验室的工艺流程、特点,掌握当前拉伸试验机和自动化、智能化等最新技术的发展状况。1. 钢铁企业成品力学性能检验特点和对设备配置的要求1) 检验量大,设备要耐用;2) 产品规格相对集中、检验项目相对简单,设备要专业化配置;3) 检验周期紧,试样来样量不均匀,设备配置要有一定的富余量;4) 对检验的精度要求相对较低,主要判断产品是否合格。2. 建设自动化力学检测试验室的关键技术自动化、智能化建设适合于流水线、重复性等作业,根据钢铁企业试验室的流程和特点,其比较适合开展自动化项目的建设工作。要建设一个成功的自动化力学性能检测试验室,必须包含以下基本的关键技术:1) 通过机械手实现试样自动上、下料功能;2) 样号的自动识别;3) 试样传送系统;4) 全自动试验设备;5) 样品自动收集保存等。仪器信息网:当前,我国全自动拉伸试验机已经发展到了什么程度?乐金涛老师:我国试验机制造业通过近二十年的努力,在钢铁材料力学性能检测中最主要、使用最多的拉伸试验机产量、品种和得到了快速发展,技术水平有了很大的提升。通过验证或比对试验可以证明,我们国内试验机制造行业的一线品牌的试验机制造厂家制造的静态电子试验机、微机控制电液伺服试验机的技术指标已接近或已达到国际同类产品的水平,完全能够满足如ISO6892-1和GB/T 228.1等试验方法标准的要求,虽然还存在不少的问题,但并不是想像中的那么差。国内最早使用全自动拉伸试验机大概是在2005年左右,是国内几个特大型的钢铁企业试验室开始引进的。它们主要是做薄板拉伸试验的采用往复式机械手的小吨位全自动拉伸试验机、做厚板拉伸试验的采用龙门桁架式机械手的大吨位全自动拉伸试验机。记得在那个时候,国内有试验机厂家想仿制,但由于种种原因没有成功。全自动电液伺服拉伸试验机(中、厚板和螺纹钢)2015年以来,根据钢铁企业试验室检验量大、产品规格相对集中、检验项目相对简单、检验周期紧、流水线重复性检验等作业特点,国内部分一线品牌的试验机制造厂家,运用自动化、智能化、信息化等先进技术,开发研制了各种全自动试验机,国内全自动试验机的技术才真正开始发展,大大地推进了钢铁企业智慧试验室的建设工作。其中早期的小吨位往复式机械手全自动拉伸试验机、大吨位龙门桁架式机械手全自动拉伸试验机,到目前采用比较多的多工位六轴机械手全自动拉伸试验机的开发运用,实现了对各种类型全自动试验机的全覆盖。仪器信息网:全自动拉伸试验机主要的工作流程是什么?乐金涛老师:全自动拉伸试验机试验时,试验人员根据自动接收到的试验顺序、试验项目要求等,将经过打标的试样用机械手放入试样架内或通过AGV小车送达指定的位置→机械手根据预先在试验程序上设置好的试样位置抓取试样→进行试样长度测量→进行试样平行部分位置对中测量→试样横截面尺寸测量(可取n次测量数据的最小值或者平均值等)→机械手将试样放置到试验机测试位置,在确保按平行段对中的情况下自动调用预定的试验方法进行试验→试验结束后机械手自动取下断样→自动分拣合格与不合格试样→试验数据自动保存并发送给上位机。全自动拉伸试验机的工作效率一般不低于每小时15件。仪器信息网:全自动拉伸试验机除了主机以外,其配套的主要零部件技术对于整个系统也是非常关键,请举例介绍一下其优点?乐金涛老师:简单介绍一下全自动拉伸试验机中主要的配套零部件视频引伸计在整个系统中的应用。在全自动化拉伸试验系统中常用的变形测量手段是自动化接触式引伸计,但接触式引伸计大多只能测量一组标距变形,使用中常常遇到试样断裂在标距外或是贴近标距的位置,导致测试数据的不准确甚至不可用。1) 视频引伸计采用标准化DIC技术,可非接触实现三维变形测量,在拉伸试验过程中能同时测量多组纵向和横向标距变形。配合全自动拉伸试验系统使用时,可实现同步触发、自动测量、实时以数字信号或模拟信号向试验机传输数据。2) 视频引伸计可自动识别多种标距标识,同时也可对试样进行无标识点自动识别测量,监控试样直至其断裂,可自动测量试样断裂伸长率,大大提高检测效率。3) 自动识别应变分布状态,可以在整个试验过程中自动追踪最大应变产生的实际位置,从而将原始标距L0重新定位在最高应变区域的中心。4) 与接触式引伸计相比,使用视频引伸计避免了试样断在标距外或标距附近时的无效测试,有效提高试样利用率,节省试样成本。5) 带全自动引伸计的电子拉伸试验机的普及,特别是视频引伸计开发运用,加速了应变硬化指数n值和塑性应变比r值等全自动测量技术的发展,根据宝钢湛江钢铁有限公司验证试验的文献介绍:——采用人工、半自动、全自动方法测量的r值不存在显著性差异,其中全自动测量方法测量r值的精度最高;——视频引伸计与机械接触式引伸计测量r值的结果接近,但前者的精度更高。配置视频引伸计的全自动拉伸试验机仪器信息网:据了解,为了满足用户个性化要求,国内也研发了一些有特殊功能的全自动拉伸试验机,请您介绍一下?乐金涛老师:常规的全自动拉伸试验机在一根试验结束后,机械手自动取下断样→自动分拣合格与不合格试样→机械手将断样扔到对应的料框里。但经常会碰到有些重要的、异常的断样需要试验室保留以备查验等情况,传统的模式是试验室人员要等这一批次试验全部完毕后再按编号在留样框里翻找拼接,方式原始繁琐、效率低。现在全自动拉伸试验机断样收集专用料斗的配套设计,机械手可以按需按组收集需要保留的断样,大大方便了样品留存工作。带断料回收装置全自动拉伸试验机另外,如许多钢铁企业生产的螺纹钢或圆钢,由于轧钢工艺的需要,生产出来的产品是呈盘状的,俗称盘圆或盘螺。为了保证试样可以正常的在全自动拉伸试验机上装夹或保证试验时的同轴度,此类产品在做拉伸试验前,需要对带有一定弧度的样品进行矫直处理,目前国内绝大部分试验室都是采用人工矫直的方法。目前在常规全自动试验机里配套开发的全自动盘条多轮交叉弯曲矫直系统,比较完美的避免了用其他如敲击方式在矫直过程中应力集中等缺陷的产生,提高了盘圆盘螺类产品检测精度。带自动校直全自动拉伸试验机仪器信息网:您长期在中国宝武集团检化验系统工作,能否就宝钢范围的全自动试验技术方面提供一个案例分享给读者?乐金涛老师:针对繁琐的热轧带肋钢筋外部和内在质量的检测项目和不同的试验工位,运用自动化、智能化、信息化和机器人技术,宝钢武钢有限公司成功应用了钢筋全自动测试系统。该系统由电子拉伸主机,配上全自动视频引伸计、扫码系统、称重测长装置、ABB机器人、试样架、控制系统、软件等组成,集钢筋称重、测长、拉伸试验、弯曲和反复弯曲试验等功能,在一套全自动系统里实现全部检测功能。该系统还可以通过配置钢筋全自动弯曲校直、筋肋测量装置、温度养护箱等装置,完成试样矫直、钢筋外形检测、钢筋人工时效等工序。系统自动化模式运行时,可以同时在系统的不同组件上测试不同的样品,极大的提高测试效率。宝钢武钢有限公司1000kN钢筋试验系统仪器信息网:当前国内全自动拉伸试验机急需解决的关键技术是什么?乐金涛老师:当前,国内全自动拉伸试验机急需解决的关键技术主要归纳起来分如下几个方面:1) 激光引伸计、视频引伸计、全自动引伸计、高低温引伸计等技术;2) 高精度、高分辨率、宽量程的力传感器等技术;3) 高精度、高分辨率、宽量程的试样横截面尺寸测量传感器等技术。仪器信息网:能否针对目前我国全自动拉伸试验机的现状,谈谈您的感受或想法?乐金涛老师:在国外1000KN以上的电子拉伸试验机技术已经非常成熟,在国内常规的电子拉伸试验机绝大部分企业只能做到600KN。近三年,国内几家一线品牌的试验机制造厂家已经有在开发制造1000KN的电子拉伸试验机,但据了解总数也就在十台左右。国内已经有自主研发制造的2000kN电子拉力试验机,开创了中国试验机行业在大吨位电子拉力试验机的先河,为大吨位全自动拉伸试验机的开发运用打下了良好的基础。目前国内制造的全自动拉伸试验机如主要的配套零部件力传感器、位移传感器、引伸计等品牌选型更好,在其功能、试验精度等方面,完全可以胜任日常检验任务。随着钢铁企业智慧制造风潮的兴起,由拉伸试验机和机器人组合的全自动试验机需求大增,现在许多试验机厂家都去做全自动拉伸试验机或系统。目前我们国家研发制造的全自动试验机或系统的主要特点是集成其他自动化配套装置,但平心而论对试验机本身技术没有大的提高。我们现在国内生产的全自动拉伸试验机的长期稳定性和故障率等指标,和国外同类设备比还存在一定的差距。仪器信息网:最后,请您对国内的试验机制造厂家提一点要求或希望?乐金涛老师:希望国内的试验机制造厂家要重视市场需求和技术研发,以自动化、智能化为发展目标和发展方向,来满足用户个性化需求。要多与相关试验室合作开发关键技术,在高档或专用试验设备的研发制造等方面争取再获突破,包括对原来进口全自动拉伸试验机的技术消化和升级工作,以促进我国试验设备在自动化技术方面水平的提升,切实减少全自动试验设备的进口数量。
  • “增材制造与激光制造”重点专项2022年度项目申报指南
    近日,科学技术部发布“增材制造与激光制造”重点专项2022年度项目申报指南。本重点专项总体目标是:到 2025 年,使我国增材制造与激光制造成为主流制造技术之一,总体达到世界一流,基本实现全球领先,在战略新兴产业、新基建、大国重器中发挥不可替代的重大作用。同时,基本实现增材制造与激光制造全产业链主体自主可控,形成系列长板技术和一批颠覆性技术,并汇集为行业整体优势,为一批领军企业奠基强大的国际技术竞争力,高端装备/ 产品大批进入国际市场,实现大规模产业化应用,在制造业转型升级中发挥核心作用。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕“基础理论和前沿技术、核心功能部件、关键技术与装备、典型应用示范”全链条部署任务。拟启动 28 项指南任务, 拟安排国拨经费 3.58 亿元。其中,围绕难熔金属材料增材制造、 超快激光制造中光子—电子—晶格相互作用观测与调控等技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费 400 万元,每个项目 200 万元。围绕个性化医疗器械制造、医疗植入物表面微功能结构制造等技术方向,拟部署 5 个科技型中小企业技术创新应用示范项目,拟安排国拨经费 1000 万元,每个项目 200 万元。 共性关键技术类项目,配套经费与国拨经费比例不低于 1.5:1。应用示范类项目鼓励产学研用紧密结合,充分发挥地方和市场作用, 配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊 说明外,每个方向拟支持项目数为 1—2 项,实施周期不超过 5 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题不超过 4 个,项目参与单位总数不超过 6 家;共性关键技术类和应用示范类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名项目负责人,项目中每个课题设 1 名课题负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。 科技型中小企业项目要求由科研能力强的科技型中小企业 牵头申报。项目下不设课题,项目参加单位(含牵头单位)原则 上不超过 2 家,原则上不再组织预算评估,在验收时将对技术指 标完成和成果应用情况进行同步考核。科技型中小企业标准参照 科技部、财政部、国家税务总局印发的《科技型中小企业评价办法》(国科发政〔2017〕115 号)。1. 基础理论和前沿技术 1.1 跨尺度自润滑复合结构增材制造(基础研究类)研究内容:针对我国航空航天和高端装备对高度集成、精准按需润滑以及润滑异形件的设计与制造需求,开展复合润滑功能组件整体化增材制造研究,研究增材制造专用自润滑功能材料设计制备、跨尺度润滑功能结构、尺寸突变异形构件一体化精密制造关键技术,研发面向增材制造的自润滑复合材料体系,探索精准按需润滑结构增材制造新原理、新工艺,研究面向增材制造的可控自润滑表界面材料精准设计与构筑新方法,建立跨尺度增材 制造平台,发展润滑功能准确定制化系统设计与一体化制造技术。1.2 飞秒激光—电化学复合微纳增材制造(基础研究类) 研究内容:针对三维复杂金属微纳结构的飞秒激光辅助定域电化学增材制造,探索微结构无掩膜激光—电化学双耦作用定向诱导粒子原位增材制造机理,研究飞秒激光诱导下定域电化学沉积组织—结构—功能一体化微纳制造新方法,研究激光—电化学复合能场亚微米复杂构型和微米功能结构阵列制造、纳米体元与微米构型精准调控等技术。1.3 材料组分三维精确可控的粉末床熔融金属增材制造(基 础研究类) 研究内容:研发面向粉末床熔融增材制造的在线多组分材料精确添加技术,研究材料组分三维可控的非均质粉末床熔融增材制造工艺特性、材料原位冶金行为、材料梯度/界面行为和组织性能演化规律,明晰非均质材料构件成形过程中的应力—形变演化规律,建立非均质材料梯度/界面行为、组织与性能协同调控方法,研发材料成分过渡区间精确调控和后续热处理等关键技术,实现材料组分三维精确可控构件的创新设计、制造及评价。1.4 柔性光电器件的激光光场调控微纳制造(基础研究类) 研究内容:面向柔性光电器件中的关键微纳结构,研究激光时域/空域/频域光场调控方法,探索激光调控光场与柔性光子器件材料相互作用的新现象与新效应,研究激光远场与微腔等近场光学效应结合的宏微纳跨尺度无掩膜加工新技术,研制远场—近场复合光场的无掩膜高效激光微纳制造装备。1.5 异质仿生结构设计及一体化增材制造(基础研究类) 研究内容:探索仿生结构中材料/结构的多重耦合行为与机制,研究与高效减振、智能变形、损伤自修复等功能需求匹配的仿生结构模块化设计方法,揭示基于异质材料增材制造的仿生功能模块化调控规律,发展功能模块化构件的多维度、多尺度和异质材料的仿生设计技术;研究异质材料体系下模块化仿生构件的一体化增材制造关键技术,研发面向增材制造的宏微构型—异质材料仿生结构设计、仿真与工艺规划平台,发展多场复杂应用环 境下增材制造宏微构型—异质材料仿生构件的性能评价技术。1.6 功能化活性心肌组织增材制造(基础研究类) 研究内容:针对心肌组织损伤治疗,开展活性心肌组织高精度增材制造及其功能再生方法研究。研究功能化活性心肌组织复 杂微结构系统的仿生设计方法;研究具有电传导能力的活性心肌组织增材制造新原理与新工艺;研究增材制造活性心肌组织的体外三维定向排布生长与高频同步跳动方法,以及体外活性心肌组织电信号特征与其生物功能的作用关系;研究大型动物大面积心肌病变缺损修复的考核评价方法。1.7 面向前沿探索制造新原理(青年科学家项目) 研究内容:针对新能源、新材料等新兴产业领域重大需求, 重点开展难熔金属材料增材制造、超快激光制造中光子—电子— 晶格相互作用观测与调控、喷墨共形打印、复合制造等前沿制造新原理新方法研究。2. 核心功能部件 2.1 激光粉末床熔融增材制造在线监控与质量评价技术(共性关键技术类) 研究内容:研究合金成分、跨尺度微观组织/缺陷、应力/形变状态与激光粉末床熔融增材制造过程特征信息的相互关系;研究增材制造熔池动态行为、非均质宏/微观组织特征的多物理场在线监测方法和在线质量评价技术体系,研发铺粉状态快速准确识别与分类、熔池特征分析及质量预判、逐层熔凝区域组织/缺陷识别和轮廓变形分析、质量预警及多参量复合调控等关键技术;发展基于在线监测数据的多信息融合及高效率深度学习模型,明晰 工艺参数—特征信息—制造质量关联关系,研发基于过程特征的高效在线质量评价和多参量交互质量控制方法。2.2 大型复杂构件制造过程在线检测与智能调控技术(共性关键技术类) 研究内容:面向重大装备的高性能焊接与增材制造,研究大型复杂结构制造过程中的在线三维形貌及变形的跨尺度光学测量技术、制件与制造加工头的多自由度位姿测量技术;研究制造过程中熔池特征尺寸和温度场表征、制造缺陷非接触式在线检测技术;研发从微观位错演化到宏观结构件变形失效的跨尺度增材制造热力模拟预测技术和方法;揭示制造工艺与位错—晶界多级微 结构、结构变形和制造缺陷的关联关系;研究面向大型结构的表面形貌、结构变形、构件温度和制造缺陷等成形质量自适应闭环 控制系统与装备。2.3 增材制造构件长寿命服役行为表征与调控关键技术(共性关键技术类) 研究内容:研究增材制造构件在高温环境与复杂应力条件下的长寿命服役性能表征方法,典型增材制造构件/材料长寿命试验标准与疲劳数据库;研究增材制造构件微结构/缺陷与长寿命服役行为的关联机制,制造工艺—微结构/缺陷—服役性能的映射关系;研究提高服役寿命的增材制造缺陷/微结构在线调控技术,发展高服役性能构件增材制造工艺的优化方法;研究增材制造构件长寿命疲劳的评估技术。2.4 制造用高性能高功率飞秒激光器(共性关键技术类) 研究内容:探索飞秒激光产生、放大、线性和非线性调控过程的动力学机制,以及高功率大能量飞秒激光放大时由于增益导致的脉冲宽度劣化机制;攻克高单脉冲能量飞秒激光热管理、模式控制、高效率长寿命飞秒频率转换等关键技术,研究倍频产生高功率紫外飞秒激光参量的稳定控制及优化技术,开展高功率大能量飞秒激光器模块化设计和系统集成技术研究。2.5 制造用高性能高功率皮秒激光器(共性关键技术类) 研究内容:开展皮秒激光增益分布优化、模式控制机制和有效热管理等技术研究,攻克均匀泵浦、长寿命皮秒锁模及非线性抑制等关键技术,研究倍频转化效率提升、紫外皮秒激光光束质量控制及延寿等技术,研制高稳定性高功率红外、紫外皮秒激光器产品。3. 关键技术与装备 3.1 非均质材料飞秒激光制造技术与装备(共性关键技术类) 研究内容:面向复杂构件涉及的复合、多层膜、多孔等非均质材料的高性能加工共性需求,建立飞秒激光加工过程中光子能量吸收、电子状态变化、等离子体喷发、成形成性等多尺度连续观测系 统;从电子层面研究飞秒激光时/空/频域协同整形的非均质材料加 工新方法,突破损伤控制、选择性加工等关键工艺技术,研发飞秒激光跨尺度柔性加工装备和三维复杂构件微细加工装备。3.2 陶瓷多材料连续成形光固化增材制造技术与装备(共性关键技术类) 研究内容:研究高固含量/低粘度陶瓷打印浆料流变机理与稳定性优化方法,攻克陶瓷光固化增材制造精度光散射调控技术。 研发陶瓷多材料连续成形光固化增材制造技术与装备,开展高效加工策略与成形效能评估研究,开发材料—工艺—装备全链条性能评价方法。3.3 大能量高重频脉冲激光智能清洗技术与装备(共性关键技术类)研究内容:研究纳秒脉冲能量输出能力提升的新方法,开展大能量高重频脉冲激光光束控制、模式调控、高功率关断和多级放大等技术研究;揭示大能量纳秒脉冲激光高效高质清洗机制, 攻克基于机器视觉的精确定位、智能选区、残留物快速识别、复杂曲面路径智能规划、双光束联动无缝无重叠拼接等关键技术, 研制具备复杂曲面结构高效循环作业的激光智能化清洗成套工艺与装备。3.4 薄壁弱刚性构件激光电解复合高效铣削加工技术与装备 (共性关键技术类)研究内容:针对薄壁弱刚性整体复杂构件制造瓶颈,研究气液环境下激光束流作用过程、超高电流密度电化学加工材料去除机制及成形规律;研究激光—电解复合铣削制造新方法,攻克复 合能量场形性调控、束流流域设计等关键技术;研制大型构件激 光—电解复合铣削加工装备。3.5 结构功能部件飞秒激光精密制造技术与装备(共性关键技术类)研究内容:针对航空航天等领域结构功能一体化部件精密制造的需求,揭示飞秒激光光束运动参量调控的微结构控形控性制造机制,研究制造结构的几何特征、质量对部件功能和服役性能的映射关系;发展“压敏、密封、润滑”等功能部件飞秒激光制造方法,攻克激光脉冲三维整形、内腔光束运动姿态参量控制等关键技术,研制飞秒激光制造成套工艺与装备。3.6 海洋装备水下原位高效增材修复技术与装备(共性关键技术类)研究内容:针对海洋装备在服役过程中的修复需求,研究适用于水下原位增材修复的专用材料;研发复杂水下环境空间重构、 姿态感知和损伤区域快速三维测量技术与装备;研发水下空间约束环境下的增材修复过程规划、组织性能调控、修复部位服役性 能预测等技术;研究应急响应条件下的水下结构可修复性评价和修复方案智能决策方法;研发水下现场环境修复工艺和装备。3.7 大型点阵结构无支撑高效增材制造技术与装备(共性关键技术类) 研究内容:研究面向增材制造的多功能大型点阵结构设计技术;研究点阵结构的无支撑高效增材制造、高性能连接、多层点阵夹芯结构制造、结构变形控制等关键技术;研究大型点阵夹芯结构的无损检测技术;研发规模化低成本高效增材制造装备。3.8 大幅面纤维增强热塑性复合材料增材制造技术与装备 (共性关键技术类) 研究内容:研究面向大型纤维增强热塑性复合材料构件的多丝束挤出增材制造成形机理及翘曲变形行为,发展大型纤维增强热塑性复合材料构件设计方法,攻克大型纤维增强热塑性复合材料增材制造的路径优化、多材料性能匹配、多工艺参数匹配、界面结合优化、成形精度控制等关键技术;研究增材制造复合材料构件非降级回收再制造技术和构件的性能评价方法;研制大型纤维增强热塑性复合材料构件增材制造装备。3.9 超强韧中熵合金构件增材/强化/减材复合制造(共性关键技术类)研究内容:研究适用于增材制造的超低温超高强韧中熵合金高通量设计与性能验证方法;研究中熵合金在复合制造过程中形性调控机制与方法,以及表面损伤动态演变机制及抑制理论,研发激光增材/强化/减材复合制造工艺与装备,研究复合制造中熵合金在室温、液氧和液氮超低温环境下的强韧化机制,以及疲劳断裂等性能评价方法;研究面向服役环境的复合制造中熵合金构件重复使用评估体系。3.10 大型高性能结构件增等减材复合绿色智能制造(共性关键技术类) 研究内容:研究增材/等材/减材复合制造形性协同控制机理 和增材/等材/减材一体化复合制造技术;研究复合制造工艺—组 织—缺陷—性能的一体化映射关系,研发大型结构件综合力学性 能、疲劳性能提升关键技术;发展全过程智能化在线质量监控系统,研发大型复合绿色智能化制造装备。4. 典型应用示范 4.1 无人机十米级机身承力结构整体化增材制造示范应用 (应用示范类) 研究内容:针对高性能大型无人机研制需求,研究基于增材制造的大尺寸机身关键构件一体化设计方法;突破大尺寸精密复杂构件增材制造跨尺度形性主动调控及后处理关键技术;研究增材制造大尺寸机身整体构件无损检测评价关键技术;建立基于增材制造的大尺寸机身整体构件“材料—设计—工艺—检测—评价” 全流程技术体系。4.2 多材料功能梯度结构增材制造在无人潜航器领域应用示 范(应用示范类) 研究内容:针对万米深海无人潜航器应用需求,研究面向增材制造的无人潜航器多材料轻型耐压壳体的仿生优化设计方法, 包括无人潜航器壳体仿生结构、多材料梯度耐压结构、壳体外表面防生物附着结构等设计方法;研究高分子、陶瓷、金属等多材 料增材制造工艺及形性控制方法;研发无人潜航器多材料一体化智能增材制造装备,包括金属及高分子材料增减材一体化装备, 陶瓷材料高效增材制造装备;研究高分子、陶瓷、金属等多材料一体化增材制造构件的检测技术和评价方法。4.3 大型关重结构件激光高效高稳定增材制造工程应用示范 (应用示范类) 研究内容:研究面向规模化生产的大型关重结构件高效高精度激光增材制造材料、工艺稳定性控制方法与技术体系;研究质量性能一致性控制、检测和评价方法;研究激光增材制造典型材料关键力学性能许用值和数据库;研发面向规模化生产的高效高精度成套装备。4.4 内部精细流道增材制造在空间推进领域应用示范(应用示范类)研究内容:开展基于增材制造的空间推进系统集成化、轻量化和模块化设计研究,研发基于增材制造空间推进系统的流—固 —力—热多物理场耦合一体化设计方法及增材制造技术;研究小尺寸复杂内流道成形、内表面加工及质量控制、薄壁耐压结构成形质量控制及后续加工处理等关键技术;研究增材制造空间推进系统的检测方法及评价标准。4.5 高品质激光剥离与解键合在电子制造领域应用示范(应用示范类) 研究内容:针对 Micro-LED 显示、超薄晶圆封装中的激光剥离、解键合等制造技术瓶颈,研究紫外和深紫外光束传输与空间整形、光斑形貌与能量监控以及焦点跟随等关键技术;研究可减少器件损伤的激光剥离、解键合方法与加工工艺;研发光束整形器、焦点跟随等核心功能模块;开发 Micro-LED 显示激光剥离装备、超薄晶圆紫外激光解键合装备,研究成套工艺。4.6 科技型中小企业技术创新应用示范(科技型中小企业项目) 研究内容:面向增材制造与激光制造领域不断涌现的新兴产业增长点,开展个性化医疗器械制造、医疗植入物表面微功能结构制造、光纤微纳传感器制造、光子/电子器件制造、印制电路板 (PCB)增材制造等新兴增材制造与激光制造技术的产业化应用研究,发展新兴技术商业化装备,实现创新型构件或器件的小批量或个性化定制生产;开展具有产业新增长潜力的前沿新技术产业化研究,实现颠覆性创新新技术产业化应用。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 广东激光后来居上 湖北激光正“加速”突围
    自2006年汽车产业率先突破千亿大关后,湖北的千亿产业一路小跑,划出一道靓丽的上升曲线。截至2012年底,汽车、钢铁、石化、电子信息、食品、纺织、机械、电力、建材、有色金属等十大“台柱”产业支撑湖北经济快速发展。肩负工业强省重任,走新型工业化道路,湖北哪些产业将策动经济实现弯道超车?   为此,记者多方探寻未来助力湖北经济快速发展的源动力。   作为中国激光技术的发源地、先行者、排头兵,湖北汇聚了大批激光领域的优秀技术人才和研究成果,但在激光业的产值上,湖北激光业先后被广东、江浙和环渤海地区超越。用“起了个大早,赶了个晚集”这句俗语来形容湖北激光产业,再恰当不过。   在新一轮竞争中,如何发挥湖北激光技术优势,向激光产业大省迈进?   “成为下一个千亿产业,激光业有很大的潜力”。全国政协常委,湖北省工商联主席赵晓勇去年曾对湖北激光业的发展有过深入的调研,日前在接受记者采访时感叹:我省激光业在经历了萌芽、突破性、规模化发展阶段后,目前已经进入进阶发展阶段,只要打通全产业链的发展链条,激光业将有望实现千亿产业的大跨越。   竞争比拼日趋激烈   赵晓勇提供给本报的一份《关于推动湖北千亿元激光产业建设的建议》的调研报告显示:经过十多年的发展,截至2011年底,武汉地区规模以上(产值1000万以上)激光企业仅26家,其中包括,产值规模过亿元以上企业7家、5亿以上企业3家、10亿以上企业2家、15亿以上企业1家(团结激光) 在全国规模以上激光企业数量占比25%左右,其中,激光装备制造规模以上企业占比40%左右,全国第一。   而深圳大族激光一家以民用激光为主营方向企业,2011年的营收总额就超过36亿元,远远超过湖北相关激光企业的营收。   不仅在单个企业的比拼上,湖北不如外省,在全省或地区激光产业的产值上,截至2011年,约150亿元产值的湖北,也远远落后于国内相关省份,处于“抱着技术、却饿肚子”的尴尬境地:数据显示,2011年,广东地区激光设备产值虽然仅35亿元,但激光加工及激光制品产值达到260亿元以上,在激光应用领域排在全国第一位。   不仅广东的激光业产值后来居上,长三角、环渤海湾地区特别是辽宁依托庞大的经济规模和快速的产业升级,激光产业发展大有后来居上之势。去年初,辽宁省在鞍山市规划建设我国首个以激光技术为特色的产业园辽宁(鞍山)激光科技产业园,最终打造成集激光技术研发、应用和生产为一体的国家级激光产业基地,目标产值1000亿元。   “广东等华南地区激光业后来居上,源于其先天优势。”华工科技常务副总裁、华工激光董事长、总经理闵大勇分析,最近10年,当地企业承接了来自世界的代加工服务,要求其适合激光产业的应用,所以激光加工及其制品的产值比较大。这既是区位优势使然,也是市场资源配置的结果。   有望彰显集群效应   后来者居上,激光产业的竞争日趋激烈,在技术上更占优势的湖北,怎样才能立于不败之地?记者在多日的调研中获悉,湖北已悄然擂响了“打造激光千亿产业”的战鼓:相关部门已为激光产业的发展筹划并完善产业规划。   借助东部产业转移,以及中部崛起等外围政策和环境的变化,湖北激光业也正在迎接着“美好时光”。   面对这样的机遇,赵晓勇建议:目前仅依靠单个企业自发的发展壮大的动力还不足,还要把分散的动力集合起来,推动其发展。延伸产业的覆盖面,使企业合作,产业合作,区域合作,技术合作有效地结合起来。逐步完善激光产业的产业链条。   闵大勇也表示:“政府搞好产业规划、引导及招商,可以极大促进武汉激光产业。”   公开资料显示,东湖高新技术开发区拟在左岭新城筹建目前国内最大的激光产业基地。根据武汉官方说法,该基地一期工程预计5年建成,届时,园区科工贸年生产总值可达300亿元,创税25亿元并间接带动相关产业生产总值500亿元左右,最终基地将打造千亿激光产业链。   据了解,正是基于光谷激光产业的这种集群效应,截至2012年底,仅华工科技就将国家千人计划人才徐进林等12位全球顶尖激光人才收入麾下。如今,华工激光从上游激光器到下游激光先进精密微细加工装备、大功率数控激光加工系统、激光再制造系统,已形成完整的产业链。   湖北优势下的“加速度”   闵大勇估算,激光产业链产业规模往下游成几何级数放大增长,1个单位的激光材料产值,将产生约10倍的激光器产值、约5—10倍的激光系统集成产值、约20倍激光应用产值。   “激光产业特征就是规模不大,所有新的市场开拓都是基于不断发现新的应用领域。”闵大勇称。   去年6月,华工科技公司与武钢研究院历时两年合作,开发出了国内首套激光拼焊机组,并将投入使用。武钢将在全国建20条激光拼焊设备生产线,建成后年产值将达百亿元。   不仅华工激光,在湖北规模最大的团结激光、产业品类最全的楚天激光也都拥有自身的拳头产品。   楚天激光2007年底与欧洲一流的激光系统制造商—意大利ELEN集团合资组建武汉奔腾楚天激光公司,专业生产经营中高功率激光切割设备,如今在国内占有重要市场份额,还实现批量出口,该公司已成为我国航天器精密加工装备的供应商。   而团结激光下属武汉科威晶激光公司2007年产值仅1000万,得益于国际合作,2011年产值突破2亿元。   “我感觉,5年左右,中国将取代日本,在激光产业与美国、德国形成三强鼎立的格局。”闵大勇称。   他山之石   在美国,受激光技术应用影响和推动的国民经济年产值约为7.5万亿美元,涉及生物与国民健康、交通与能源、通信与IT业、文学艺术与制造业等。   在我国,激光技术在国民经济中逐步显现放大效应。   2011年,全国激光产业总产值约1100亿元。其中,激光设备销售收入约300亿元,产业链下游的激光加工服务业约350亿元,激光制品约450亿元。
  • 大族激光全资子公司中标新微半导体1台激光开槽机
    9月27日,上海新微半导体有限公司(以下简称“新微半导体”)化学气相沉积设备(钨)和激光开槽机项目中标结果公布。化学气相沉积设备(钨)项目中标人为上海谙邦半导体设备有限公司(以下简称“谙邦半导体”),标的物1台化学气相沉积设备(钨),用于6英寸GaN晶圆制造过程中W金属填孔沉积工作;激光开槽机项目中标人为深圳市大族半导体装备科技有限公司(以下简称“大族半导体”),标的物1台激光开槽机,可加工2/3/4/6/8inch的GaN-Si、Low-K、Metal等材料晶圆的激光开槽。据悉,谙邦半导体是上海邦芯半导体科技有限公司的临港落地项目公司(全资子公司),是一家专注于真空等离子体技术的半导体设备厂商,重点研发项目包括化合半导体和硅基芯片加工设备,如化合物半导体刻蚀机、化合物芯片介质刻蚀机等。大族半导体是大族激光科技产业集团股份有限公司全资子公司,专业聚焦为LED、面板、半导体等泛半导体行业提供系统加工和智能化车间解决方案,主要研究蓝宝石、玻璃、陶瓷、硅、碳化硅、氮化镓、砷化镓和柔性薄膜等材料的加工工艺,提供从精细微加工,到视觉检测等一系列自动化专业装备。
  • 莱赛激光拟挂牌新三板 主营激光测量仪器
    1月3日消息,莱赛激光科技股份有限公司(以下简称:莱赛激光)已于近日正式申请新三板挂牌,全国股转系统披露的挂牌资料显示,莱赛激光董事长陆建红、副董事长张敏俐2人,通过直接和间接合计占股72%,为莱赛激光共同实际控制人。  公告显示,莱赛激光2014年度、2015年度、2016年1-9月营业收入分别为1.11亿元、9961.31万元、8212.80万元 净利润分别为546.37万元、678.32万元、791.14万元。  资料显示,莱赛激光主要业务为激光测量仪器设备的研发、生产和销售,主要为客户提供激光测量的整体解决方案。
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制