金属组学

仪器信息网金属组学专题为您整合金属组学相关的最新文章,在金属组学专题,您不仅可以免费浏览金属组学的资讯, 同时您还可以浏览金属组学的相关资料、解决方案,参与社区金属组学话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

金属组学相关的资讯

  • 第五届金属组学国际研讨会在京开幕
    p   2015年9月9日晚,第五届金属组学国际研讨会在北京西郊宾馆召开。该会议由中国科学院高能物理研究所、清华大学共同主办,来自世界各地的近200位金属组学领域的专家学者参加了此次会议。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/insimg/10299b51-7aa0-4ce4-b09a-2eb5f0d29a26.jpg" title=" 现场.jpg" / /p p style=" text-align: center " strong 会议现场 /strong /p p   2002 年10 月在日本举行的国际生物痕量元素研讨会上,日本名古屋大学Hiroki Haraguchi教授提出了系统研究细胞、器官或生物组织中金属或类金属元素的新的研究方向——“金属组学(metallomics)”,这是综合研究生命体内,特别是一种细胞内,自由或络合的全部金属原子的分布、含量、化学种态及其功能的综合学科。 /p p   金属组学是继基因组学,蛋白质组学之后,综合研究生命体内全部金属元素的分布、属性、化学种态、含量及其功能的一门新兴综合学科。开展金属组学研究是认识微量元素生物效应及其机理、与微量元素相关疾病的发生机制的基础,也是金属药物设计的依据。金属组学中的金属元素,不仅包括与蛋白质和酶结合的生物金属,还包含金属-核酸、金属-小分子配体(有机酸、氮基酸等)、金属-多糖等、自由离子以及不同价态等所有存在形式,金属组学研究对于全面阐述金属元素在生物体内的富集和代谢机制及其生物功能,对于理解各种重要的生物学现象有重要意义。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/insimg/f0681c8e-4b64-491a-a650-8f23264426f7.jpg" title=" 柴.jpg" / /p p style=" text-align: center " strong 中科院高能物理研究所柴之芳院士致开幕词 /strong /p p   日本名古屋大学名誉教授Hiroki Haraguchi、中科院生态环境研究中心江桂斌院士、法国国家科学研究中心的Ryszard Lobinski都带来了精彩的大会报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/insimg/1cee7248-0edf-443a-b0fe-614f3d109864.jpg" title=" 日.jpg" / /p p style=" text-align: center " strong 日本名古屋大学名誉教授 Hiroki Haraguchi /strong /p p style=" text-align: center " strong 报告题目:Metallomics: Current status and perspectives /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/insimg/788b68ae-ea68-4ff4-ba93-39c298f9fbe3.jpg" title=" 江.jpg" / /p p style=" text-align: center " strong 中科院生态环境研究中心 江桂斌院士 /strong /p p style=" text-align: center " strong 报告题目:Metallomics in Environmental Research /strong /p p style=" text-align: center " strong & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Mercury:from speciation to global issue /strong br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201509/insimg/d0e10efc-f517-4142-bdca-38659e1f2da6.jpg" title=" 法.jpg" / /p p style=" text-align: center " strong 法国国家科学研究中心 Ryszard Lobinski /strong /p p style=" text-align: center " strong 报告题目:The metallomics toolbox: Recent advances and trends in analytical chemisitry /strong /p p   金属组学国际研讨会是金属组学研究领域最有影响力的学术会议。自从2007年第一届金属组学国际研讨会开始,已经连续举办了四届,分别在日本、美国、德 国、西班牙等国召开。会议每两年一次,汇集了世界上该领域的顶尖科学工作者。2015年9月9日-12日召开的第五届金属组学国际研讨会,是金属组学研讨会首次在我国举办。 /p
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1. Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 基于大科学装置的金属组学研究获进展
    金属组学是系统研究生命体内自由或络合的金属/类金属的分布、含量、化学种态及功能的一门新兴学科。大科学装置可为金属组学研究提供卓越平台,发展新的金属组学研究框架。近日,中国科学院高能物理研究所与东北大学等合作,以硒超富集植物-堇叶碎米荠(Cardamine violifolia)单粒种子为研究对象,借助北京同步辐射装置X射线荧光微分析实验站硬件和软件功能升级契机,发展了基于同步辐射X射线荧光二维/三维成像技术、同步辐射X射线吸收谱技术、二维质谱成像技术以及微区计算机断层扫描(micro-CT)技术的空间金属组学(spatial metallomics)研究框架,实现了堇叶碎米荠单粒种子中有机硒和无机硒的原位二维/三维成像(图1),首次发现堇叶碎米荠种皮中存在甲基硒代化合物,加深了对堇叶碎米荠富硒机制的认知。相关研究成果以Spatial metallomics reveals preferable accumulation of methylated selenium in a single seed of the hyperaccumulator Cardamine violifolia为题,发表在Journal of Agricultural and Food Chemistry上。这是北京同步辐射装置X射线荧光实验站首次利用飞扫技术结合连续切片技术实现样品中元素三维成像(图2)。研究工作得到国家自然科学基金的资助,并获得北京同步辐射装置、高能同步辐射光源相关线站的支持。图1.堇叶碎米荠单粒种子的空间金属组学研究框架图2.同步辐射X射线荧光谱飞扫技术结合连续切片技术实现样品中元素三维成像

金属组学相关的方案

  • 组学技术在食品科学方向的应用
    食品组学作为一门科学,是利用基因组学、蛋白质组学和代谢组学的数据来确定食品的分子特征,以全面研究食品的。近两年来,一门新科学,也就是食品组学已逐渐被人们熟知。这门科学可以从更宽泛的角度来定义特定的食品。仅仅知道宏量营养素的组成或只了解其中某些成分的详细信息,已不能满足当下的需求。从健康特性角度出发研究新型食品的生产,或者从类似角度对现有食品进行归类,都需要用到基于食品组学的新的详细定义,特别是针对那些原产地和名称受到保护或者属于法律规范范畴的食品。事实上,近年来国际食物组学会议已成功举办了两次。作为一门科学,食品组学通过基因组学、蛋白质组学和代谢组学的数据来测定食品的分子结构,以便对其进行全面研究。气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等多个平台均可用于研究代谢物的特性。但得益于现代模拟数字转换器(ADC)的发明,使用NMR具有以下多项优势:重现性高、样品制备简单,且由于其动态范围广,NMR能提供被测生物样品中有关分子组成的详细且可靠的信息。即便其灵敏度略低于其它技术,NMR仍可以完全复原生物生命系统的代谢状态。
  • 代谢组学技术的其他应用
    近年来,代谢组学受到研究者越来越多的关注,是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。代谢物种类众多,在体内的分布广泛,且不同代谢物的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。许国旺研究员课题组(大连化物所高分辨分离分析及代谢组学组)是我国最早进行代谢组学研究、同时也是目前国内外实力最强的专注于代谢组学研究的课题组之一:该课题组多年来根据分析化学的特点和国际前沿研究领域的发展趋势,立足于中国现状,结合国家重大应用领域的需求与自身技术优势,以分离分析研究为立足点,生命科学、重大疾病、中医药现代化、公共安全等领域的复杂样品分析为切入点,开展极端复杂体系分析的方法学研究及其应用、代谢组学方法及其应用研究和转化医学等工作。目前,课题组拥有以许国旺研究员为核心的固定职工17人,现有硕、博士研究生20多名,学科背景涵盖分析化学、生物化学、临床医学、药学和微生物学等领域。
  • 组学研究加速生化制品生产效率
    通过impact II Q-TOF 质谱进行蛋白组学和代谢组学研究,可以深入观察到合理的菌种如何设计提高了生物生产效率。基于代谢组学和蛋白组学的组学研究,可以找到精氨酸合成途径改变的理由和解决生化合成途径存在的瓶颈。

金属组学相关的论坛

  • 代谢组学简介

    欢迎大家一起交流讨论~代谢组学是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分。基因组学和蛋白质组学分别从和蛋白质层面探寻生命的活动,而实际上细胞内许多生命活动是与代谢物相关的,如细胞信号(cell signaling),能量传递等都是受代谢物调控的。代谢组学正是研究代谢组(metabolome)——在某一时刻细胞内所有代谢物的集合——的一门学科。基因与蛋白质的表达紧密相连,而代谢物则更多地反映了细胞所处的环境,这又与细胞的营养状态,药物和环境污染物的作用,以及其它外界因素的影响密切相关。因此有人认为,基因组学和蛋白质组学能够说明可能发生的事件,而代谢组学则反映确实已经发生了的事情。新陈代谢网络是十分复杂的网络,特别是人体的代谢网络,一直被认为是最复杂的代谢网络。现在多数信号通路的研究都是集中在代谢网络的一个很小的领域。基因组学、蛋白组学研究已经揭示了部分调节通路,但是和代谢网络直接相关的是代谢产物。但是从茫茫多的代谢产物中选取研究对象,无疑是大海捞针。代谢组学研究通过一定的手段能够帮助研究员从代谢产物海中跳出来,提供一个“航拍”的视角,一目了然地发现差异性代谢产物。然后通过已知的代谢通路逆推找出调节酶和基因,完成疾病发病机制、药物治疗机制等方面的研究。代谢组学主要研究的是作为各种代谢路径的底物和产物的小分子代谢物(MW1000)。其样品主要是尿液,血浆或血清,唾液,以及细胞和组织的提取液。主要技术手段是核磁共振(NMR ),液-质联用(LC-MS),气-质联用(GC-MS),色谱(HPLC,GC)等。通过检测一系列样品的谱图,再结合化学模式识别方法,可以判断出生物体的病理生理状态,基因的功能,药物的毒性和药效等,并有可能找出与之相关的生物标志物(biomarker)。代谢组学在新药的安全性评价,毒理学,生理学,重大疾病的早期诊断,个性化治疗,功能基因组学,中医药现代化,环境评价,营养学等科学领域中都有着极其广泛和重要的应用前景,是一门充满朝气的学科。 从近年来发表的相关SCI论文的数量可以看出代谢组学研究呈一个蓬勃发展的局面。从近年来国家拨付的相关研究基金也可以看出国家对代谢组学相关研究的重视。

金属组学相关的资料

金属组学相关的仪器

  • timsTOF fleX 实现 MALDI 引导的空间定位组学高灵敏度:timsTOF fleX 空间定位组学方案,结合特征区域 MALDI 成像和 PASEF 组学分析,能从有限样本中获得高鉴定率。空间分辨率:高空间分辨率的 MALDI 源和平台机械设计获得分子分布图,增加组学空间维度信息。多功能:双离子源设计使您在同一个质谱平台上完成分子空间分布和 ESI 多组学鉴定。microGRID -- 精准、可靠的硬件升级,使高空间分辨成像实验唾手可得实现高空间分辨的成像实验并不是一件容易的工作。布鲁克推出了全新 microGRID 技术 -- 整合了 MALDI 机械平台和 smartbeam 3D 激光器的光束定位系统,进一步提升了质谱成像实验的图像质量,可获得 5 μm 的超高空间分辨率。microGRID 是一款适用于所有 timsTOF fleX 系列质谱仪的选配功能模块,将它整合进布鲁克现有的质谱成像工作流程中,展现出了突破极限的超高空间分辨率。该技术与布鲁克的自动一体化的成像数据采集流程 SCiLS™ autopilot 无缝衔接,使它不仅适用于成像专家,也同样适用于新购入成像仪器的用户及常规的成像数据采集应用。该技术与布鲁克的 SCiLS™ Lab 软件配合使用,可实现对于高分辨成像数据的深度挖掘。从 4D-组学到分子成像的无折中解决方案双离子源设计将无标记分子定位与 PASEF LC-MS/MS 鉴定匹配,解析生物样本的分子变化。 建立在 shotgun 蛋白组学标准上的 timsTOF fleX 将布鲁克一流的 4D-组学分析与尖端的 MALDI 成像技术整合于一个平台,包括高频率的 smartbeam 3D 激光器。配置有双离子源的 timsTOF fleX,把持久稳定的 ESI 分析和组织分子空间分布集成于一体,是进行空间定位组学研究的理想平台。在此之前,没有质谱仪能为组学研究者同时提供这两种能力。 ESI 和 MALDI 的切换操作,只需在软件中开启 smartbeam 3D 激光源,仅需几秒即可完成。简单的切换操作意味着从组学深度鉴定和定量流程到组织高清成像的方便转换,又不影响效率和功能,从而发现真正有用的信息。增加 MALDI 成像新维度,挖掘更多信息由 MALDI 和 ESI 产生的离子,经过同一路径从离子源到达探测器,因此 MALDI 工作流程可以利用 timsTOF HT 的主要优势,包括根据分子碰撞截面 ( CCS ) 来进行捕集离子淌度分离( trapped ion mobility separation,TIMS )。调谐和校准可在 ESI 模式下进行,并用于 MALDI 模式,方便了仪器的优化。TIMS 允许根据离子形状分离分子。离子与气流一起进入双 TIMS 装置,在第一个TIMS 分析器通过电场进行累积。实际分离发生在第二个 TIMS 分离器。通过降低电位以时间和空间的方式释放离子。可变扫描速度和淌度范围适应性可对不同种类分子优化,为用户带来更多灵活性。为组学增加空间维度信息将特征区域 MALDI 成像和深度多组学分析结合现在变得容易可行。MALDI 成像适用于类型广泛的分析物,包括代谢物、脂类或聚糖,并与显微工作流程无缝衔接。针对空间定位组学,MALDI 成像可识别特征区域化合物分布。timsTOF fleX 采用双离子源设计,与可靠的高品质消耗品和用户友好软件一起使用,方便了研究工作,节省了研究人员的时间。使用布鲁克 IntelliSlides™ 预制玻片,使 MALDI 成像和空间定位组学流程在 timsTOF fleX 上完全自动化。分离相近质量或同分异构体离子捕集离子淌度谱( TIMS )有助于复杂样品( 如组织切片 )的分析。通过分离近质量或同分异构的代谢物、脂质、肽段或糖苷,以获得分析物的真实空间定位。高质量分辨率无助于这些问题的解决,timsTOF fleX 提供了唯一的机会来区分同分异构体的分布。碰撞横截面( CCS )是 TIMS 给出的测量结果,提供了从另一角度来验证质谱分析结果。CCS 关联软件智能地将空间 MALDI-TIMS 成像数据与多组学结果相匹配,并使鉴定结果与重要的形态学内容相关联。从色谱分离技术到在像素点的原位分析,一切变得触手可得 … … timsTOF fleX 是一台多功能的质谱仪,用于测量样品的分子情况。timsTOF fleX 建立在布鲁克开创性 timsTOF HT 平台上,功能齐全、速度快、灵敏度高的 ESI 质谱,可用于所有 多组学分析。结合了高空间分辨率的 MALDI 源和平台机械专业设计,用于解析分子分布和带来组学分析的空间维度。将蛋白质组学分析转换为空间蛋白质组学,将脂质组学转换为空间脂质组学,将代谢组学转换为空间代谢组学,并获取数据的组织学背景。与其它学科相结合,从你的分析数据中获取更多信息以达到科研目标。为质谱成像初学者量身打造的自动一体化成像数据采集流程 SCiLS™ autopilot我们提供 “ 购入即用 ” 的成像耗材和软件产品,帮您迅速采集数据,并随后挖掘出组织的分子表型信息。我们推出了基于 IntelliSlides 预制载玻片的自动一体化成像数据采集流程,不仅大大减少了对用户输入的操作要求,还能确保所采集数据的高品质和可重现性。我司还推出了预制的 fleXmatrix 基质,高品质的基质可以保证实验效果并简化基质施加过程。作为质谱成像数据处理的 “ 行业金标准 ”,SCiLS™ Lab 软件可以实现原始数据的可视化以及后续的数据统计分析操作。此外,SCiLS™ Lab 可以与 MetaboScape 软件联用,实现了通过数据库检索信息或 LC/MS 实验结果直接对高分辨的 MALDI 成像热图进行快速分子注释的功能。将这种联用机制应用于空间定位组学工作流程中,可实现生物背景信息与整体组学或单细胞组学信息的有效整合。多组学性能和高灵敏度 MALDI 的结合timsTOF fleX 实现 SpatialOMx无论蛋白组学、脂质组学、糖组学还是代谢组学,timsTOF fleX 都是空间定位组学分析的理想平台。使用专利的smartbeam 3D 技术进行快速、无标记的 MALDI 成像,以绘制样品的分子分布图,并鉴定感兴趣的区域,对它们进一步深入分析。由 PASEF 技术支持的 LC-MS/MS 分析可以进行最高水平的鉴定并得到最可靠的结果。肿瘤远比看到的还复杂癌症的微环境是由健康细胞、肿瘤细胞、结缔组织、血管和炎症在不同时间点以不同的比例组合而成。每一种成分都有其独特的化合物分子标记。研究人员对疾病状态的判断在很大程度上依赖于组织病理学的解释,并在生物分子的背景下创建这些图谱,从而在传统的组学和理解疾病之间架起了桥梁。CCS 关联空间多组学发现差异癌细胞和其它疾病状态具有显著的遗传和表观遗传修饰,影响基因组表达层次。无论你观察的是蛋白质组、脂质组还是代谢组,化合物的空间分布都包含了有价值的解释信息。要了解复杂的样品,除了质量和电荷外,还需要有 timsTOF fleX 的离子淌度功能提供无与伦比的分析深度。近质量干扰可被区分,同分异构体可被分离。这有助于组织中近质量脂质的准确定位。原位 MS/MS 以及 PASEF 技术支持的 4D 多组学研究方案使您能够识别更多感兴趣的分析物。SpatialOMx 的自动分子注释工作流程布鲁克的业界领先的应用软件,现在可以直接对组织中的目标分子注释。只需将数据导入到 SCiLS™ Lab 软件,定义感兴趣的区域,并将峰列表数据导出到 MetaboScape。使用 LC-MS/MS 建立的数据库或成分列表对各个峰进行注释,然后导出注释表并送回到 SCiLS™ Lab 进行可视化。从 SCiLS™ Lab 软件中,可以使用通路和熟悉的命名法而不是分子量可视化实验结果,从而缩短从数据到最终结果的时间。
    留言咨询
  • 定制化原位显微光学/光谱学测试系统Customized In-situ Optical / Spectroscopic MicroscopeSystem我公司集成了自主研发的激光自动聚焦等自动化功能的核心光学/光谱学模组均采用模块化设计,物镜下方没有任何零部件占用空间,并且具备完整的软硬件接口,可以方便地集成到客户的工况环境或者研究机台上,为客户提供定制化的测试系统。技术特色:激光自动聚焦:&bull 显微光学和光谱学模组都可配备激光自动聚焦模块。
    留言咨询
  • 秒准MAYZUM金属切削液浓度配比仪MAY-3018智能切削液精准配液系统一、概述:五金加工过程中如果所用的切削液浓度过高,不仅会造成很大的浪费,并且还有可能导致某些不良后果,例如:泡沫增多(影响润滑和冷却功效)影响切削液品质,加快切削液变质。切削液的冷却性和清洗能力下降可能导致切削中冒烟,切削液里的杂质含量增多会造成作业工作员身体局部不适,或是引发非铁金属腐蚀、斑点等问题;如果浓度过低,可能会使金属材料生锈或是金属腐蚀,刀具磨损加剧,影响金属加工的质量。浓度过低的切削液还很容易滋长细菌,腐败变臭,导致使用寿命下降等问题。因此,配比合适浓度的切削液就显示格外重要。 二、简介:秒准MAYZUM金属切削液浓度配比仪MAY-3018(自动配液系统)适用于加工中心、数控机床、连体机床等高精密加工设备配套切削液的一种全自动配液装置;。用户收到设备只需要接入原液管和清水管,在配比系统中设定好需要配比的浓度和液体容量,点击“开始配比”,系统自动按用户设定参数进行原液和清水的混配,无需对现场进行任何改造,即插即用,全自动补液,智能化全自动配比供液,无需人工干涉。三、配比流程图五、秒准MAYZUM金属切削液浓度配比仪MAY-3018优势和特点描述: 1.浓度、液位精准控制:采用7寸触屏控制面板,内置温度补偿功能,用户设定目标浓度值和用液量,一键自动混配,浓度控制精度≤0.3%,克服了传统人工/比例泵混配中浓度不稳定/人工抛洒滴漏造成的浓缩液浪费,确保切削液质量,提高生产加工的稳定性。2.在线循环检测切削液的浓度值,配液灵活,无需人工干涉;3.实时检测液位状态及数据,切削液浓度及温度数据;4.新液/再生液均可实现自动配比;5.自动双路清洗,自动排污,省时省力;6.一机多用,便于集成:秒准(Mayzum)MAY-3018LACF智能切削液浓度自动配比仪(自动配液系统)可以作为一个独立的系统完成切削液的浓度在线检测、动态配比;也可以作为一个附加的功能模块与用户设备(如集中供液系统)集成,检测数据通过有线/无线方式,采用模拟量/数字量/开关量,检测数据远传至PLC、PC、DCS等上位机系统,通过PC远程查看实时状态与报警,可按需定制系统功能!7.配液容量没有限制:标准设定容量为1000L,用户按现场需求,可接吨桶无限扩展存液量; 8.自动液位监测、自动报警:自动实时监控液位情况,防止溢流,防止缺液空转。9.使用寿命长,成本低,全程无易损易耗品:整套设备没有易损易耗品,使用过程不存在二次耗材费,成本低,系统内部的测量光源寿命可长达10万小时,正常使用寿命5-10年以上。 10.无需对车间进行改造,安装灵活简便:MAY-3018LACF自动配以仪采用立式(可选壁挂式)安装,只需要将设备放置于清洗槽旁边,接上加液、出液管即可,无需对原设备进行大改造。六、秒准MAYZUM金属切削液浓度配比仪MAY-3018主要技术参数:浓度配比范围:0.0 - 18.0%(范围可自定义,可定制0-100%)浓度测量精度:0.1%浓度配比误差:≤0.3%配比时间:5~30分钟(配比时间与配液容积、目标浓度有关)配比容积:≤1000L/次(配比最大容积与配比桶有关); ≤24T/天适用液体温度:0.0 - 80.0℃浓度测量频率:≤5秒,用户可以自定义供电:AC 220V或AC380V(出厂前需提前说明)控制柜加液接口:混合液进出口:4分外牙,切削液进出口:1寸外牙, 清水进出口:1寸外牙控制柜尺寸:L550mm × W330mm × H1750mm(可定制) 在线切削液浓度计、在线切削液监控仪、切削液在线浓度计、切削液浓度配比仪、切削液配比机、切削液浓度混配仪、在线切削液检测仪、在线切削液监测仪、在线切削液测试仪、全自动切削液配比仪、金属切削液浓度配比仪、乳化液在线浓度监控仪
    留言咨询

金属组学相关的耗材

  • 复杂蛋白质组学标准品
    用于LC/MS 分析的蛋白质组学试剂安捷伦复杂的蛋白质组学标准品是含有1500 种蛋白的Pfu 蛋白提取物。与我们的TPCK-处理的蛋白质组学级胰蛋白酶一起使用,为LC/MS 生物标志物发现和其它蛋白质组学研究提供了理想的工作流程验证组合。订货信息:
  • 蛋白组学 SISPROT 试剂盒
    蛋白组学 SISPROT 试剂盒产品介绍:SISPROT,全称Simple and Integrated Spintip-based Proteomics Technology.该技术于2016年首次报道,是一种基于独特的离心移液枪头“Spintip”的集成式蛋白质组学前处理技术,可实现从原始样品出发一站式完成蛋白质组学样品前处理所有步骤,处理后的样品可直接用于色谱质谱检测。蛋白组学样品前处理从“毫克时代”迈入“纳克时代”。蛋白组学 SISPROT 试剂盒产品步骤:一站式样品前处理:集成提取、酶解、脱盐为一体的蛋白组组学样品前处理。蛋白组学 SISPROT 试剂盒产品特点:1、极高效,传统前处理方法需要16h,SISPROT法缩短至2h。2、高灵敏度,最低样本初始量可低至10个细胞或1ng,组织样本低至1mm2组织切片,鉴定能力与处理常规毫克级样品相当。3、结果具有很好的稳定性;蛋白组学 SISPROT 试剂盒适用领域:该试剂盒适用于低微克甚至纳克蛋白质样品;适用于科学研究领域如干细胞、蛋白质复合物、蛋白质翻译后修饰;临床样品检测行业如组织活检、液体活检、肠道微菌群;植物研究如经济作物、菌菇类、水果类等。蛋白组学 SISPROT 试剂盒产品图片:
  • 干血斑基因组DNA提取试剂盒
    产品特点产品特点: 处理样本: 3-10 片直径为 3 mm 的干血斑样品操作便捷:采用磁珠法核酸提取,45分钟内即可获得高质量DNA高纯品质:提取的DNA片段完整性好、纯度高、质量稳定可靠安全无毒:实验全程无需使用酚/氩仿等有毒有害溶剂自动化:可整合自动化提取仪,实现高通量自动化提取 应用场景提取的核酸可适用于SNP分型、NGS、多重PCR荧光定量、芯片杂交、高通量测序等检测方法,可应用于亲权鉴定、身份识别、数据库建立、肿瘤基因检测等检测项目。 干血斑基因组DNA提取自动化解决方案 适配全自动核酸提取纯化仪平台 实验案例
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制