当前位置: 仪器信息网 > 行业主题 > >

红外观测仪

仪器信息网红外观测仪专题为您提供2024年最新红外观测仪价格报价、厂家品牌的相关信息, 包括红外观测仪参数、型号等,不管是国产,还是进口品牌的红外观测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外观测仪相关的耗材配件、试剂标物,还有红外观测仪相关的最新资讯、资料,以及红外观测仪相关的解决方案。

红外观测仪相关的论坛

  • 洗后尺寸稳定性和洗后外观测试

    大家有没有发现洗后尺寸稳定性和洗后外观测试涉及很多洗衣粉。而且都是外面的牌子,做消耗品数据库的时候都不知道怎么命名为好。比如碧浪,比如汰渍,比如洁霸,还不说标准上面有的。你们公司怎么做的呢?

  • 【分享】远红外甲烷观测仪

    【分享】远红外甲烷观测仪

    http://ng1.17img.cn/bbsfiles/images/2012/09/201209051045_388799_2571111_3.jpg(小型、轻便、专业的甲烷检测设备) 新型的 GasCam SG 为您提供了最轻量化和最紧凑的检测系统。作为专门检测甲烷成分的手段,它是检测天然气泄漏和生物制气系统泄漏的理想选择。  检测距离达100米时,甲烷依然可以准确检测,并以与背景差异极大的彩色云图的形式,时时显示。 技术参数GasCam SG 光谱范围LWIR 远红外线当量浓度长度,50米距离,温差ΔT = 5K 5 Hz 分辨率384 x 288 max. (用于燃气检测模式时,可选装低分辨率) 焦距25 mm(选装 50 mm) 视野(燃气检测模式) 约 180 mrad x 140 mrad 聚焦模式电动驱动运行温度-10 °Cbis 40 °C 电源可充电锂电池组功耗(不含 PC) 5 h 外形尺寸(约) 325 x 140 x 225 mm 重量(不含PC和电池,大约) 5.7 kg  GasCam SG  快速检测天然气储备设施、门站调压设施的密闭性  到目前为止,使用传统的火焰离子或半导体传感器的检测手段,对天然气储备设施和门站调压设施的检测是一件非常费时投入巨大的工作。使用Esders公司的GasCam SG远红外甲烷观测仪, 你可以快速完成上述检测:通过彩色的泄漏燃气的云团,你可以时时观察到被检测设施的密闭情况, 准确确定漏点,最远检测距离可以达到100m 2 GasCam SG 远红外甲烷观测 1. 远红外镜片2. 检测单元3. 锂电可充电电池组4. 三角支架5. 高性能便携电脑6. 开/关7. 外界电源接口8. 高速数据线缆

  • 红外天文观测卫星,有人了解吗?

    来源::《国际太空》1981年第10期 作者: 饶国宝红外天文卫星(以下简写为IRAS)主要任务是对整个空间的红外辐射源(包括银河系中心及深空星际气体和尘埃物质)进行普查和绘图,并在此基础上对某些感兴趣的空域和红外辐射源加以专门的观测。

  • 美标手洗外观

    美标手洗外观测试方法AATCC TS 006和AATCC LP2,推荐的话这两个都可以么,有什么区别么?

  • 大米外观品质检测仪的原理是什么

    大米外观品质检测仪的原理是什么

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]大米外观品质检测仪的原理是什么[/color][/font]大米外观品质检测仪的原理主要是基于光学技术和图像处理算法。首先,这种检测仪会使用特定的光源来照射大米样品。通常,这种光源是白光或近红外光,能够提供足够的亮度和适当的波长范围。选择合适的光源对于检测仪的准确性和稳定性至关重要。其次,检测仪的传感器能够接收被照射的大米样品反射回来的光信号,并将其转化为电信号。这些电信号包含了大米样品的光谱信息,可以反映出大米的颜色、透明度、纹理等特征。然后,图像处理算法会对传感器采集到的光谱信息进行处理,得到大米样品的图像。这些算法能够对图像进行分割、滤波、增强等操作,以提取出大米样品的特征信息。最后,通过数据分析,检测仪可以评估大米样品的外观品质。例如,可以通过颜色的均匀性、透明度的一致性、纹理的清晰度等指标来评判大米的品质。总之,大米外观品质检测仪是一种利用光学技术和图像处理算法来评估大米外观品质的设备。通过对大米外观进行图像分析,它可以确定大米的色泽、形态、大小等外观特征,从而评估大米的外观品质。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311061009502850_6383_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 小型环境气象仪湿地气象观测站

    小型环境气象仪湿地气象观测站

    小型环境气象仪湿地气象观测站小型环境气象仪外观美观,功能强大,是智慧型的气象系统产品,可广泛应用于农业生产、科研和标准测量等用途,是现代农业科研、生产,发展优质农业的的重要保障。小型环境气象仪配置1、监测参数:空气温湿度风速、风向、雨量、大气压强、土壤温度、土壤湿度、总辐射等各种气象要素传感器。含立杆、防水箱等相关配件(传感器可根据需求选配)2、配套精讯云平台,实时上传数据,对天气环境实时监测[img=小型环境气象仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209300914152865_4747_4136176_3.jpg!w690x690.jpg[/img]小型环境气象仪功能特点:1、采集器:采用工业级处理芯片,搭配ABS外壳,整体轻便、坚固美观。适用于各种恶劣环境。2、具有外部U盘存储扩展功能。3、传感器:环境温度、湿度、风速、风向、气压、雨量、土壤温度、土壤湿度、总辐射传感器、等各种气象要素传感器(传感器可根据需求选配)。4、支架:主杆表面采用热镀锌、静电喷塑工艺处理,抗腐蚀、抗氧化性强,主杆高度3米,配备防风拉索。5、气象站云平台常用功能:数据查询功能:支持任意时间段的各类实时数据、历史数据的查询、导出、打印功能。数据统计功能:支持单要素统计功能:可按年、月、日、小时、10分钟或任意时间段进行单要素大值、小值、平均值的统计。数据图表功能:根据采集的数据可以形成实时曲线,并可以以柱形图、饼状图等直观的方式呈现。[img=小型环境气象仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209300914288236_4210_4136176_3.jpg!w690x690.jpg[/img]

  • ICP光谱观察方式比较:垂直观测、水平观测、双向观测

    在ICP光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观测(Radial)、水平观测(Axial)和双向观测(DUO),下面介绍他们的区别:ICP光谱仪垂直观测:又称为垂直观测或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号。  对不同的元素不用进行炬管调节,是分析测试的常用观察方式。具有更小的基体效应和干扰,特别是对有机样品;对复杂基体也有好的检出限。可以测定任何基体的溶液,如高盐分样品测定、复杂样品的分析、有机物而积炭相对不严重的分析。较低的氩气消耗量。侧向观测方式的炬管是垂直炬,热量和分析废气自然向上进入排气系统。ICP光谱仪垂直观测示意图ICP光谱仪水平观测:又称为轴向观察或端视观测,是采用水平放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向呈水平重合;可使整个火焰个个部分的光都全部通过狭缝。  水平观测方式的优点是:由于整个“火焰”各个部分的光都可以被采集导致灵敏度高,对简单样品有较好的检出限;其缺点:基体效应和电离干扰大,线性范围小,炬管溶液积炭和积盐而沾污,需要及时清洗和维护,RF功率设置不能一般不超过1350W;使用于光谱仪水质分析中。ICP光谱仪水平观测示意图总体而言,ICP垂直观测检测的只是最佳分析区给出的发射信号,其特点就是干扰信号少,但分析元素的发射强度不如水平观测的效果好;水平观测检测的是整个分析通道的发射信号,其特点是分析元素的发射强度大,但缺点是干扰信号比较大。双向观测:  传统双向观测是在水平观测ICP光源的基础上,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误;同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。ICP光谱仪双向观测示意图  在有上述考虑之后,需要改变传统,尤其是改变光路使其简单,几家都推出了双向观测技术。安捷伦的双向观测  首先是安捷伦的5100,它采用ZL的智能光谱组合技术 (DSC),以及全新的仪器设计理念,推出区别于传统的、极具创新的、全新概念的双向观测 5100 SVDV ICP-OES,可实现同步的水平和垂直双向观测分析。安捷伦5100同步垂直双向观测技术的设计原理  传统的双向观测 ICP-OES 需要人为定义测量 元素、分析波长及观测模式,无法完成同 步的双向观测分析。 某些系统甚至采用多狭缝模式,分别应对不同波段、不同观测方式以及不同灵敏度样品的分析要求,极大地降低了样品分析通量和测量效率。5100 SVDV ICP-OES 凭借独特的智能光谱组合技术 (DSC) 一次测量完成水平和垂直信号的同步采集读取,实现高速高效的样品分析,确保复杂基质样品的分析准确度斯派克的双向观测  斯派克公司也推出了双向观测技术  首先,斯派克专门开发了不需经过很多的光路反射、折射,而是采用了无需反射镜的MultiView 等离子体接口,让等离子体切换方向,真正实现直接观测。比如在贵金属分析中,贵金属作为基体元素,其含量90%多,其他微量元素含量极低;而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多;那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。MultiView 的切换示意图  此外,斯派克的产品还采用垂直同步双观测(DSOI)技术,一种全新的等离子体视图设计方法,采用垂直等离子体炬,通过新的直接径向视图技术进行观察。两个光学接口捕获从等离子体两侧发射的光,仅使用一个额外的反射,以增加灵敏度和消除困扰新的垂直火炬双视图模型的问题。因此,垂直同步双观测(DSOI)提供了传统径向系统的两倍灵敏度,但是避免了垂直双视图模型的复杂性、缺点和成本。垂直同步双观测(DSOI)示意图  采用同步双向观测应用于斯派克的多款ICP光谱上,包括ACRO,SPECTROGREEN等。  除了观测方面,斯派克的ICP光谱整体采用的光学器件少,包括其不用中阶梯光栅,而用帕邢—龙格结构。优点包括:首先在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。其次是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢—龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。帕邢—龙格结构线性范围很宽。第三点,帕邢—龙格结构系统采用的光学器件最少,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。帕邢—龙格结构的缺点是:仪器体积大。

  • ICP光谱仪之双向观测

    在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO)。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • 气相色谱法观测本底大气中的甲烷和二氧化碳

    周凌NFDA1  汤 洁(中国气象科学研究院大气化学研究所,北京100081)张晓春 季 军 王志邦(青海省气象局,西宁 810001)Douglas Worthy Michele Ernst Neil Trivett(Atmospheric Environment Service, Toronto, CANADA)摘要 根据世界气象组织全球大气监测网(WMO/GAW)开展全球温室气体监测的要求,建立了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)法甲烷和二氧化碳(CH4/CO2) 连续观测系统.概述了该系统在加拿大大气环境局(AES)5个月的组装调试,以及在中国大气本底基准观象台(CGAWBO)一年多时间里的业务运行和标定情况.组装调试和运行标定,与红外吸收(NDIR)法、气瓶采样-实验室分析(FLASK)法数据,以及与国内外其它台站观测资料的对比结果表明,该系统具有良好的线性、灵敏度、精度和准确度,其设计完全符合WMO全球大气本底测量的要求,具有高自动化的操作性能和严格的质量控制;所获我国大陆上空本底大气中CH4和CO2的浓度资料具有国际可比性,观测结果反映了我国西部高原地区大气CH4和CO2的本底变化特征.关键词 甲烷;二氧化碳;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];大气本底.1 引言  近百年来,大气中温室气体含量的增加及其可能导致的气候变化和生态环境问题,已引起人类社会日益广泛的关注,对主要温室气体——CH4和CO2本底浓度的监测就显得十分重要[1]. 科学家们自60年代起开始了对主要温室气体本底浓度的连续监测和研究,并相继在全球的不同经纬度地区建立起主要温室气体的本底监测站网,但这些台站大多建立在岛屿及海岸,导致内陆大气本底观测资料的稀少.1989年起,中国气象局与WMO及全球环境基金组织合作,在我国青海省海南藏族自治州的瓦里关山顶 (海拔3816m,纬度36°17′N,经度100°54′E)建立了世界上第一个内陆高原型的全球大气本底监测站CGAWBO(以下简称瓦里关本底台).在进行温室气体/大气臭氧/降水及气溶胶化学/太阳辐射和气象观测的所有全球大气本底观象台中,它的海拔最高,具有开展大气本底监测较为理想的自然地理环境.在严格的国际检验比对技术基础上,使用先进技术设备建立起较为系统完整的大气本底监测体系,填补了WMO/GAW监测网在欧亚大陆腹地的重要地域空白[2,3].采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法大气本底基准监测技术的GC-CH4/CO2连续观测是其中的一个重要监测项目,这种高度定型的装配有氢火焰离子化检测器(FID)的GC系统是在1981年发展起来的,它对CH4的测量精度是目前实际应用的连续观测方法中最好的,对CO2的测量精度已经接近通常用于CO2测量的红外吸收技术(NDIR)的精度水平,据报道,这种GC系统还成功地应用于对大气中微量气体如氧化亚氮和氟里昂的监测[4—7].瓦里关本底台的GC系统由AES根据中加双边大气科学合作协议援助提供,中方业务 人员在AES接受培训,并对系统进行了组装调试;1994年7月系统运抵瓦里关山观测基地,由中加双方的专家共同完成安装,对瓦里关山大气中的CH4和CO2浓度进行连续测量,开始系统的业务运行.  2 仪器系统及测量方法  该系统主要包括:装配有FID和HP19205A镍催化剂管的HP5890(Ⅱ)型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url];HP3396Ⅱ型积分仪及HP样品/外部事件控制器 (S/ECM);带有HP82169C HP-IL/HP-IB接口的HP9122C型磁盘驱动器;用HP19238E阀加热器保持恒温的4路选择阀和6口进样阀;保存于高压铝瓶和钢瓶内的两个标准气、高纯氮气、高纯氢气;合成空气发生器.图1是系统工作流程的示意图.图1 工作流程示意图

  • 【前沿科技】科学家首次观测到从量子通道逃离出的电子

    德国科学家在最新一期英国《自然》杂志上发表论文介绍说,他们最近首次测量到通过量子通道“逃离”原子的电子,而且发现每个电子“逃离”的速度极为惊人。 电子带负电荷,在带正电荷的原子核的吸引下被束缚在原子内部。就经典物理学而言,如果电子没有在一段时间内获得足够的能量,它就无法“逃离”原子核的束缚。但量子力学可以提供另一种方法,电子可以直接通过量子通道逃脱出来。科学家比喻说,这好比站在一座山前的人们需要到达山的另外一边,通常情况下只能翻越山岭,但量子世界里还有另外一种可能,即通过“隧道”直接抵达山的另一边。 量子通道在微观世界普遍存在,但这一现象迄今仍未被观测到,原因是原子在失去电子后迅速从外界环境又找回新的电子进行补充,其过程过于短暂,任何传统方法都无法测量。不过,近年来光学研究的进步,为观测这一现象提供了有力工具。 德国马克斯普朗克量子光学研究所的弗伦克克劳兹介绍说,光学研究已经迈进了阿秒(1阿秒为百亿亿分之一秒)领域,这为测量电子通过量子通道“逃离”提供了方法。 克劳兹领导的研究人员用两种精心设计成同步的阿秒级激光脉冲——紫外线脉冲和红外线脉冲——攻击氖原子,紫外线脉冲通过提升电子能量为电子“逃离”氖原子做好准备,但这一能量不足以使电子按照经典物理学描述的方式脱离原子。然后研究人员在红外线脉冲中设计3个峰值,以抵消来自原子核的吸力,这就给电子提供了3个“逃离窗口”。不过,由于所选用的脉冲是阿秒级的,因此“逃离窗口”开启时间非常短暂,只有通过量子通道的电子才有可能成功“逃离”。 结果发现,在这3个“逃离窗口”都能够测量到从原子“逃离”出来的自由电子,这就证明了单个电子可以在极短的时间内实现“逃离”,也进一步证明量子通道确实存在。来源:新华网

  • 【求助】双向观测问题

    请问双向观测是不是既可以垂直观测有可以水平观测,如果是的那在仪器软件里面是不是可以根据需要来选择垂直观测和水平观测。顺便问一下,垂直观测和水平观测是不是就是指竞相观测和轴向观测,它们都有哪些优点和缺点呢?问题有点多,就当给俺扫盲吧,哈哈。

  • 大米外观品质分析仪功能特点

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406050930542481_8633_5604214_3.jpg!w690x690.jpg[/img]  在现代农业与食品工业中,大米作为重要的粮食作物,其品质控制尤为关键。大米外观品质分析仪作为一种先进的检测工具,为大米的品质检测提供了有力的支持。  一、检测精度与全面性  大米外观品质分析仪通过高精度传感器和图像处理技术,能够实现对大米粒型、颜色、透明度、裂纹等外观特征的精确检测。其内置的算法能够自动对大米品质进行分类,确保检测结果的准确性和客观性。此外,该仪器还能检测大米的杂质、黄粒米等不良品质,使得检测过程更为全面。  二、自动化与智能化  该分析仪具有高度的自动化和智能化特点。通过内置的自动学习和识别功能,仪器能够自动分割粘连的大米粒,并进行自动分类分析。同时,仪器还具备自动校准和自动调整功能,能够根据检测环境的变化自动调整参数,确保检测结果的稳定性。此外,该仪器还支持云平台连接,用户可以通过手机或电脑随时查看和分析检测数据,实现远程监控和管理。  三、操作简便与高效  大米外观品质分析仪的操作界面简洁明了,用户只需按照提示进行操作即可完成检测任务。同时,仪器支持快速检测,能够在短时间内完成大量样品的检测,大大提高了检测效率。此外,仪器还具备数据保存和导出功能,用户可以将检测结果保存为Excel表格或图片形式,方便后续的数据分析和处理。  四、符合标准与规范  大米外观品质分析仪的设计和生产完全符合国内外相关标准和规范要求。仪器的检测方法和评价标准与国家标准和行业标准保持一致,能够确保检测结果的可靠性和权威性。此外,该仪器还经过严格的质量控制和校准验证,确保了仪器的稳定性和耐用性。  五、应用领域广泛  大米外观品质分析仪广泛应用于粮食加工企业、农业科研机构、食品检测部门等领域。在粮食加工企业中,该仪器可以用于对原料大米的品质进行检测和筛选,确保生产出的产品符合质量标准。在农业科研机构中,该仪器可以用于对新品种大米的品质进行研究和评估,为育种工作提供科学依据。在食品检测部门中,该仪器可以用于对市场上销售的大米进行抽检和监测,保障消费者的权益。  六、未来发展趋势  随着技术的不断进步和应用的深入,大米外观品质分析仪将继续向更高精度、更智能化、更多功能的方向发展。未来,该仪器可能会增加更多的检测项目,如营养成分分析、农药残留检测等,以满足更多领域的需求。同时,随着大数据和人工智能技术的发展,该仪器可能会与这些先进技术相结合,实现更精准的数据分析和预测功能。  综上所述,大米外观品质分析仪作为一种先进的检测工具,具有高精度、自动化、智能化、操作简便和符合标准等特点。它的应用不仅提高了大米品质检测的效率和准确性,也为现代农业和食品工业的发展提供了有力支持。未来,随着技术的不断进步和应用领域的扩大,大米外观品质分析仪将发挥更加重要的作用。

  • ICP光源双向观测

    [url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO),今天我们就来了解一下双向观测。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • 大气科学之气象观测==地面气象观测

    地面气象观测 提到“地面气象观测”,人们一般会想到四四方方的气象观测场,洁白的百叶箱、温度计、风向标等,并把这些理解为地面的观测。不过这样理解并不全面,因为天上的云、大气中的声、光、电等天气现象,也都属于地面气象观测的范围。所以地面气象观测的定义应为:利用气象仪器和目力,对靠近地面的大气层的气象要素值,以及对自由大气中的一些现象进行观测。 http://www.kepu.net.cn/gb/earth/weather/observe/images/obs001_pic.jpg   地面气象观测的内容很多,包括气温、气压、空气湿度、风向风速、云、能见度、天气现象、降水、蒸发、日照、雪深、地温、冻土、电线结冻等。在大气馆中我们会向气象爱好者介绍一些基本的观测项目。  地面气象观测的许多项目都是通过固定在观测场内的各种仪器进行的,所以气象站的站址和观测场地的选择以及维护,仪器的安装是否正确,都对资料的代表性、准确性和比较性有极大的影响。 一般说来,气象台站的地址应选在能代表其周围大部分地区天气、气候特点的地方,并且尽量避免小范围和局部环境的影响,同时应当选在当地最多风向的上风方,不要选在山谷、洼地、陡坡、绝壁上。观测场要求四周平坦空旷并能代表周围的地形,观测场附近不应有任何物体。孤立、不高的个别障碍物离观测场的距离,至少要在障碍物高度的三倍以上;宽大、密集、成片的障碍物,距离要在障碍物高度的十倍以上。观测场周围十米范围内不能种植高杆作物,以保证气流畅通。气象台站的房屋一般应建在观测场的北面。另外,一个气象台站建成之后,要长期稳定,不要轻易搬家,因为轻易搬家不仅会影响观测资料的连续性,影响使用,还会造成很大浪费。

  • 气象五要素观测仪野外湿地应用

    气象五要素观测仪野外湿地应用

    气象五要素观测仪野外湿地应用气象五要素观测仪分布在各处的气象观测仪或气象站收集客户需要的各类测量数据,通过全网通数传终端将数据传送到中心监测分析系统,工作人员足不出户,即可了解到各气象监测节点的实时气象监测数据。在气象中心可进行节点位置査看、实时数据显示、数据召测、历史数据/历史操作查询、时段统计、曲线分析、测点管理、登录管理等功能,同时当出现异常情况时,系统会以多种方式发出预报警信息,提示管理人员应对报警点予以重视或采取必要的预防措施。气象五要素观测仪可定制多种气象参数,适用于环境监测大气测量。可提供多项联网或是不联网传感器,完全适用于室外工作,防雨雪,防干扰,应用范围广,适用于农业、校园、机场、医院、公园等多种环境。还可搭配GPRS主动上报功能,可将气象站采集到的数据主动上传到我们的云平台。云平台提供数据的记录、查询、导出、比较功能,发挥气象站更好的观测效益。[img=气象五要素观测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/08/202208170927269382_1205_4136176_3.jpg!w690x690.jpg[/img]地面气象观测工作中需要使用很多观测仪器设备,这些设备都属于高集成的电子器件,受周围环境的影较大,若在观测场四周存在电磁场,极易使观测数据缺测,地温数据缺测的情况较多。另外,气象五要素观测仪周围的小气候环境及所在区域内湿度、温度、日照时数等气象要素发生变化也会造成观测数据缺测。仪器性能不佳也会引起新型气象五要素观测仪观测数据缺测。例如采集器供电电压异常;传感器和数据线之间的连接口出现松动;外部数据线使用年限较长开裂,这些均会造成观测数据缺测;网络故障使采集数据掉包引起的观测数据缺测。这些因仪器观测性能造成的观测数据缺测,隐蔽性较强,很难及时发现,需要人工逐一检查后确定。为了提升新型气象五要素观测仪观测数据质量,不断完善网络监测平台,同时还要做好监测管理工作。对气象要素数据进行实时监测,一旦发现网络故障或数据异常,尽快使用有针对性的措施进行处理。[img=气象五要素观测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/08/202208170927472611_7786_4136176_3.jpg!w690x690.jpg[/img]

  • 【求助】氨基甲酸检测

    我最近实验反应可能会有氨基甲酸生成,但是用红外观测不到,大家能否给些建议还能用什么仪器检测是否有该物质的生成呢?不甚感激!

  • 太阳辐射自动观测仪器光照度计

    太阳辐射自动观测仪器光照度计

    太阳辐射自动观测仪器光照度计在对太阳辐射理论和太阳运动理论的研究基础上,采用太阳模拟器技术和多自由度工作台,提出了一种新型多功能气象用太阳辐射自动观测仪器检定系统的总体设计方案,实现了对待检仪表的灵敏度,非线性误差、方位响应误差、余弦响应误差和倾斜响应误差等各项参数的检定。太阳辐射自动观测仪器检定系统主要山太阳模拟器和多维工作台组成。太阳模拟器为检定系统提供均匀稳定的模拟太阳光辐射:多维工作台能够为检定系统提供所需各种功能动作模拟不同的太阳角,两者集成共同实现了对太阳辐射自动观测仪器的标定。[img=太阳辐射自动观测仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140905147860_9891_4136176_3.jpg!w690x690.jpg[/img]由于在太阳辐射的测量中,存在太阳辐射自动观测仪器的“热偏移”现象。而对“热偏移”的研究过程中发现,太阳辐射自动观测仪器“热偏移”的大小主要和温度、湿度、风速和净波辐射这些环境因素有关,而太阳辐射自动观测仪器节点可以采集得到环境温度和湿度这些气象要素,风速和净波辐射的值则需要从协调器节点获得。当协调器节点需要向网络设备发送数据时,它会先发送信标帧在通信信道中,太阳辐射自动观测仪器节点在收到信标帧,会根据信标帧进行同步,而协调器节点会在下一个信标帧中指出协调器节点拥有某个传感器节点需要的数据,传感器节点收到信标帧后会向协调器节点的发送请求数据发送的MAC命令帧。太阳辐射自动观测仪器协调器节点在收到命令帧后,会先发送一个确认帧给传感器节点表示已经收到请求,紧接着开始传送数据。传感器节点成功接收数据后再回应一个数据确认帧给协调器节点。[img=太阳辐射自动观测仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140905378537_6710_4136176_3.jpg!w690x690.jpg[/img]

  • 气象观测站仪器布置安装要求

    气象观测站仪器布置安装要求

    气象观测站仪器布置安装要求随着大气监测自动化的实施,按照气象监测的管理要求,气象观测站仪器所采用的传感器一般采用手动方式,受人为因素影响较不能满足传感器的批量检测。鉴于此,采用计算机控制技术,着力研制了一种自动化程度高、操作简便、稳定性好、准确度高,可实现批量检测的传感器综合检测系统。其特点是系统采用模块化、高可靠性设计原则,测量准确度比传感器本身的精度高出一个数量级,达到有效数字数据测量。气象观测站仪器各要素的测量误差由两部分组成,是采集器的转换误差n1,二是传感器的误差n2,两个误差的合成为气象观测站仪器的误差确定采集器转换误差为零或接近零时,传感器的误差就是气象观测站仪器的误差。在气象观测站仪器的检验中,用在现场检采集器,室内检传感器,在现场更换传感器的方法来解决气象观测站仪器的定期检测、标定问题。[img=气象观测站仪器,690,690]https://ng1.17img.cn/bbsfiles/images/2022/03/202203290913277094_8113_4136176_3.jpg!w690x690.jpg[/img]气象观测站仪器前端设备主要由风速仪、风向仪、雨量计、大气压强监测仪、温度计等一系列传感器设备组成,采集包括风速、风向、降水、大气压强、空气温湿度等一系列环境数据。气象要素数据采集传输设备使用专用数据采集仪,采集仪通过RS232、RS485与前端采集设备进行连接,将前端数据使用5G/4G网络进行无线传输,同时接收管理中心下发的指令,联通前端与后端的通信。气象观测站仪器管理中心通过气象站智慧云平台对传输上来的数据进行展示,观察相应的数据变化,异常数据云平台自动报警,提醒相关人员及时响应,同时处理相应设备参数,及时调整。同时通过云平台可以对气象观测站仪器前端设备做到远程升级、远程管理、维护等操作。[img=气象观测站仪器,690,690]https://ng1.17img.cn/bbsfiles/images/2022/03/202203290914077030_3761_4136176_3.jpg!w690x690.jpg[/img]

  • 大气科学之气象观测==气象观测站网

    气象观测站网  大气是个整体,要掌握大气变化的规律,就必须了解从地面到高空大气中尽可能多的情况。由于纬度、海陆、地形地势、地面覆盖的不同,各个地方各有自己的天气、气候特色。为了整体和当地的需要,监视天气、气候变化的气象台站遍布全球。无论天涯海角,到处都有气象人员在坚持工作,气象仪器在监视探测,夜以继日、年复一年连续不断地获取大量气象信息。  由气象观测所取得的数以亿计的气象数据,要为当前及今后全世界所公用,必须有代表性、准确性和比较性,因此从观测场址的选择、仪器的安装布置、仪器的性能型号、观测的手续、方法、观测的时间和时限、观测数值的精确程度,到计算、记录、统计、编发报的方法,都有国际上统一的规定。同时,为了及时的应用,大量信息又必须通过各种传送手段,迅速地集中到一定的机构。在这里经过编排、加工,生产出可供各方面使用的气象产品有组织地向外传送出去。

  • 户外气象远程观测仪测量精度高

    户外气象远程观测仪测量精度高

    户外气象远程观测仪测量精度高户外气象远程观测仪是针对防灾减灾以加强应对突发性灾害天气应急监测与提高灾害预警能力而专门研发设计的一款产品。充分满足了各类用户的不同应用需求,是移动应急服务、突发事件气象保障、防灾减灾应急指挥、野外短期科学探测等相关应用的理想选择。整套户外气象远程观测仪采用模块化设计,由无线通讯模块或串口将数据传输到软件系统中,实现实时监测、数据接收和处理等功能。户外气象远程观测仪用于对大气温度、相对湿度、风向、风速、雨量、气压、太阳辐射、土壤温度、土壤湿度、能见度等众多气象要素进行全天候现场监测。具有手机气象短信服务功能,可以通过多种通讯方法与气象中心计算机进行通讯,将气象数据传输到气象中心计算机气象数据库中,用于对气象数据统计分析和处理。[img=户外气象远程观测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207290917234721_961_4136176_3.jpg!w690x690.jpg[/img]户外气象远程观测仪由气象传感器、微电脑气象数据采集仪、电源系统、防辐射通风罩、全天候防护箱和气象观测支架、通讯模块等部分构成。温湿度、风速风向等传感器为室外气象专用传感器,具有高精度高可靠性的特点。户外气象远程观测仪管理软件可在WINDOWS2000以上环境即可运行并支持新WIN7操作系统,实时显示各路数据,每隔10秒更新一次,每组数据自动存储(存储时间可以设定),与打印机相连自动打印存储数据,生成标准气象图文报表及统计分析曲线,存储量达数年以上,数据存储格式为EXCEL标准格式可供其它软件调用,强大数据库管理功能,支持sql、access、oracle等多种数据库,并可以将数据上传至中心管理网站进行实时数据更新发布便于查询。[img=户外气象远程观测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207290917390569_9861_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳辐射观测站基准太阳辐射监测仪

    太阳辐射观测站基准太阳辐射监测仪

    太阳辐射观测站基准太阳辐射监测仪太阳辐射观测站使用温度补偿检测器技术,它特别适合于气象网络和1.66秒的响应时间降低(63%)符合太阳能应用的要求。防水插座安装的签名黄色信号电缆,可在一个范围内的长度,天生防水插头。整体水平提高到壳体的顶部,可被视为没有去除遮阳板重新设计的单元,其中也包括连接器。镀金触点的连接器可以很容易地交换和重新校准。在干燥筒螺杆易于拆卸和更换干燥剂填充包提供方便。[img=太阳辐射观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207050855440174_6281_4136176_3.jpg!w690x690.jpg[/img]气象辐射观测是地面观测业务中重要的观测项目之一,包括总辐射、发射辐射、散射辐射、直接辐射和净辐射,其中总辐射是辐射观测中基本的项目。太阳辐射观测站是一种应用于太阳辐射观测的短波太阳辐射观测站。它符合新的ISO和WMO标准的“一级”表技术指标。太阳辐射观测站是用来测量从180°视场,以W/m2为单位,入射在一个区域表面的太阳辐射通量,采取完全无源工作方式,利用一个热电偶传感器生成一个与辐射通量成正比的输出电压。由于使用了两个球型玻璃罩,减少了测量误差;特别是热偏差,所以传感器具有很高的测量精度。太阳辐射观测站的使用十分简单,用户仅仅需要一个精确的毫伏量级的电压表来读取数据。要计算辐射等级,电压必须除以灵敏度,而灵敏度是一个每一台仪器都提供的常数。可以与大多数常用的数据采集系统连接。可以用于科学气象观测,建筑物理学,气候和太阳光采集试验。通常的应用是作为气象站的一个部分来测量户外的太阳辐射。[img=太阳辐射观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207050855590376_1581_4136176_3.jpg!w690x690.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制