当前位置: 仪器信息网 > 行业主题 > >

光子晶体泵

仪器信息网光子晶体泵专题为您提供2024年最新光子晶体泵价格报价、厂家品牌的相关信息, 包括光子晶体泵参数、型号等,不管是国产,还是进口品牌的光子晶体泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光子晶体泵相关的耗材配件、试剂标物,还有光子晶体泵相关的最新资讯、资料,以及光子晶体泵相关的解决方案。

光子晶体泵相关的资讯

  • 3D打印新技术精细“雕刻”光子晶体
    五彩缤纷的蝴蝶翅膀、光鲜靓丽的孔雀羽毛、闪耀着金属光泽的昆虫甲壳……点缀着这些大自然奇妙杰作的并非普通色素,而是光与光子晶体结构发生散射、干涉、衍射等作用后形成的结构色。光子晶体是由不同折射率介质周期性排列而形成的光学超材料,也被称为光学半导体。通过设计和制造光子晶体材料及相关器件来控制光子运动,并在此基础上进一步实现光子晶体材料的各种应用,是人们长久以来的梦想。近日,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林、副研究员吴磊等研究人员组成的研究团队利用连续数字光处理(DLP)3D打印技术,实现了具有明亮结构色的三维光子晶体结构制备,为创新结构色制备方法及扩展3D打印的应用开创了新的途径。创新方法,让光子晶体精准“生长”光子晶体作为未来光子产业发展的基础性材料,其独特的三维光学控制能力使其在集成光学元件、光子晶体光纤及高密度光学数据储存等领域都有广阔的应用前景。3D打印技术近年来的成熟发展,也使其成为最好的光子晶体制备手段之一。宋延林向记者介绍,虽然近年来有一些将3D打印技术应用于多种图案化光子晶体制备的案例,但普通的3D打印技术因为墨水中树脂的光固化速度和纳米粒子组装速度的差异,存在结构色效果较差、打印精度较低、难以实现复杂三维结构等问题。上述方法制备的多种图案化光子晶体具有表面形貌粗糙和保真度较差等缺陷,难以被广泛应用于光学器件中。要实现高精度、高保真的光子晶体结构3D打印,就必须要开拓出新的方法。此次研究中,研究团队使用了连续数字光处理3D打印技术。与常见的将原材料层层挤出、堆叠而成的3D打印技术不同,连续数字光处理3D打印技术基于光敏树脂材料在紫外线照射下会快速固化的特性,利用紫外线光束在光敏树脂溶液中雕刻形成3D结构。此次研究团队所采用的连续数字光处理3D打印方法主要的打印步骤如下:首先,在透明基板上滴上墨水,将墨水上方的成型平面缓缓下降,与墨水进行接触;接下来,通过基板下方的光束将打印图案照射在墨水上;之后,受到紫外线照射的墨水会凝固成预先设计好的形状。一滴滴小小的墨水被“雕刻”为一个3D光子晶体结构,其整个产生的过程仿佛是从基板上“生长”出来。宋延林表示,研究团队所采用的连续数字光处理3D打印技术主要在两方面上取得了重要改进。在打印模式上,市面上的光固化连续数字光处理3D打印技术大都是层层打印,打印速度较慢。研究团队研发出的低黏附光固化界面,让液滴与基底之间的粘附力极低,打印过程没有任何“拖泥带水”,能够实现迅速连续打印成型,极大地提升了打印的速度。在成型方式上,市面上的光固化连续数字光处理3D打印技术通常要采用液槽来盛装大量液态树脂。采用液槽来盛装大量液态树脂的方式导致在连续打印过程中,不该固化的区域因为受到照射而固化,不仅造成原材料的大量浪费,也降低了连续打印过程中的稳定性及分辨率。研究团队摒弃了液槽,而是以单墨滴为成型单元,通过控制固化过程中气、固、液三相接触线,显著减少了液体树脂在固化结构表面的残留。同时,以单墨滴为成型单元还降低了界面粘附,增加了液体内部树脂的流动,显著提高了3D打印的精度和稳定性。克服困难,逐个击破墨水难题除了创新打印方式,此次研究中,研究团队对打印所需的墨水也进行了大胆革新。“我们这次研究中最困难的环节就是打印墨水的开发。”宋延林表示。针对上述问题,研究团队创造性地研发出了利用氢键辅助的胶体颗粒墨水,赋予了打印结构高质量的结构色与光子晶体特性。研究团队研发的墨水由三部分组成:实现三维结构构建的光固化单体和光引发剂、保证结构色的纳米颗粒、减少光散射的添加剂。在单体的选择和引发剂合成上,考虑到环保要求,研究团队合成的墨水为水性体系。但由于目前广泛使用的引发剂大多为油溶性,少数水溶性的引发剂又与3D打印所采用的光波波长不匹配,光引发效率较低。为了能够得到较高光引发效率的水溶性引发剂,团队查阅了大量文献并进行了反复的摸索实验,最终成功合成出了水溶性的光引发剂。除了引发剂,光固化单体的选择更加至关重要。宋延林表示,合格的光固化单体必须满足既能实现三维结构化,又不能在打印过程中引起聚合物和纳米颗粒的相分离的条件。论文第一作者张虞表示,“最终我们找到了丙烯酰胺这种适合的单体。”选定单体后,还需确定光固化单体与纳米颗粒的比例。如果光固化单体较少,就会无法打印。反之,如果光固化单体太多,则会影响纳米颗粒的运动和分散,进而影响结构色的质量。团队经过大量实验,对多种不同的比例组合反复尝试,最终确定了最佳比例。最后,为了减少光的散射对打印过程的影响,尽可能地提高打印结构的色彩饱和度,在添加剂的选择上,团队尝试了包括碳纳米管、碳纳米纤维以及黑色墨水等多种材料。但上述材料均存在种种缺陷,研究团队最终将经过特殊处理的炭黑作为添加剂。前景广阔,让结构色“五彩斑斓”在此次研究中,研究团队发现,视角、胶体颗粒粒径以及打印速度等因素都会影响3D结构色的呈现。当胶体颗粒粒径和打印速度不变时,随着视角增加,结构色蓝移,即从橙色转变为黄绿色,最后转变为蓝紫色。这种视角依赖的特性,使得连续数字光处理3D打印技术在个性化珠宝配饰及装饰、艺术创作等领域有着比较广阔的应用前景。除了视角变化会影响结构色的呈现外,当打印速度固定时,控制固定胶体颗粒粒径、调节打印速度,都可以得到覆盖可见光范围的系列结构色。采用顺序切片、依次投影、分段打印的方式,还可使同一物体结构上呈现出多种结构色。除了实现“信手拈来”般地制备结构色,研究团队利用此种连续数字光处理3D打印技术制备出的多种具有光滑内外表面、低光学损耗及颜色选择性的线性光传输和非线性光传输3D结构,也验证了该方法在制造高效光学传输器件方面的独特优势。宋延林表示,未来研究团队会在光子晶体功能器件的制备方面继续进行新的探索。
  • 耐上千摄氏度高温的光子晶体问世
    据美国物理学家组织网近日报道,美国麻省理工学院(MIT)的一个研究小组找到了一种采用金属钨或钽制造出可耐受1200摄氏度高温的光子晶体途径。这种材料可广泛应用于智能手机、红外线化学探测器和传感器、深度探索太空的宇宙飞船等供电装置。相关论文刊登在最新一期的《美国国家科学院院刊》上。   光子晶体指能对光作出反应的特殊晶格,可影响光子运动的规则光学结构,类似于半导体晶体对于电子行为的影响。其晶格尺寸与光波的波长相当,是不同折射率的电介质材料在空间呈周期性排列构成的晶体结构。   MIT军用纳米技术研究所工程师赛拉诺维奇表示,几乎完全可以采用标准的微细加工技术和现有设备将这种新型耐高温、二维光子晶体制造成计算机芯片。与早期制造的高温光子晶体的方法相比,采用新方法制造出的材料具有“更高性能、简单操作、坚固耐用”等特点,适合低成本的大规模生产。   美国国家航空航天局也对这种材料很感兴趣,因为它具有为深度探索太空提供永续动力的潜力。完成这样的任务通常利用少量的放射性物质的能量,采用放射性同位素热电源(RTG)。例如,计划在今年夏天抵达火星的“好奇”号探测器使用的就是RTG系统,可以连续不间断作业多年,而不像太阳能供电站,到了冬天就会出现发电不足的情况。   这种耐高温光子晶体应用前景十分广阔,可用于太阳能光热转换或太阳能光化学转换装置、放射性同位素的供电设备、氮氢化合物发电机或工业领域电厂余热回收的配套设施等。但制造这种材料还存在许多障碍,高温会导致晶体蒸发、扩散、腐蚀、开裂、熔化或快速化学反应。为了克服这些挑战,MIT的研究小组正在对高纯度的钨在结构上进行专门精密的几何设计,以避免材料在被加热时损坏。   该材料还可以取代电池,为便携式电子设备有效供电,采用丁烷作燃料运行热光生电机产生能量,作业时间比电池长10倍。
  • Science:石墨烯莫尔(moiré )超晶格纳米光子晶体近场光学研究
    光子晶体又称光子禁带材料。从结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体,其物理思想可类比半导体晶体。通过设计,这类晶体中光场的分布和传播可以被调控,从而达到控制光子运动的目的,并使得某一频率范围的光子不能在其中传播,形成光子带隙。 光子晶体中介质折射率的周期性结构不仅能在光子色散能带中诱发形成完整的光子带隙,而且在特定条件下还可以产生一维(1D)手性边界态或具有Dirac(或Weyl)准粒子行为的奇异光子色散能带。原则上,光子晶体的概念也适用于控制“纳米光”的传播。该“纳米光”指的是限域在导电介质表面的光子和电子的一种耦合电磁振荡行为,即表面等离子体激元(SPPs)。该SPP的波长,λp,相比入射光λ0来说多可减少三个数量。如果要想构筑纳米光子晶体,我们需要在λp尺度上实现周期性介电结构,传统方法中采用top-down技术来构建纳米光子晶体,该方法在加工和制造方面具有较大的限制和挑战。 2018年12月,美国哥伦比亚大学D.N. Basov教授在Science上发表了题为Photonic crystals for nano-light in moiré graphene superlattices的全文文章。研究者利用存在于转角双层石墨烯结构(twisted bilayer grapheme, TBG)中的莫尔(moiré)超晶格结构,成功构筑了纳米光子晶体,并利用德国neaspec公司的neaSNOM纳米高分辨红外近场成像显微镜研究了其近场光导和SPP特性,证明了其作为纳米光子晶体对SPP传播的调控。 正常机械解理的双层石墨烯是AB堆叠方式,但是,当把其中的一层相对于另一层旋转一个角度,就会形成AB和BA堆叠方式相间排列的莫尔超晶格结构,AB畴区和BA畴区之间是AA堆叠方式的畴壁,如图例1A所示。如果通过门电压对该双层石墨烯施加一个垂直电场,会在AB畴区和BA畴区打开一个带隙,从AB畴区到BA畴区堆叠次序的反转连同能带结构的反转则会在畴壁上形成拓扑保护的一维边界态,如图例1C。一维边界态的存在会使得畴壁上光学跃迁更加容易,表现为畴壁上增强的光导能力。研究者通过德国neaspec公司的neaSNOM高分辨率散射式近场红外光学显微镜对样品进行近场纳米光学成像,在近场光学振幅成像中观察到了转角双层石墨烯上六重简并的周期性亮线图案,成功可视化了这种光导增强的孤子超晶格网络。从近场光学振幅成像上可以看到孤子超晶格周期长度大约为260nm,据此,研究者推断对应的转角大约为0.06°。 图例1:散射式近场光学显微镜(neaSNOM)对转角双层石墨烯(TGB)进行近场纳米光学成像研究的结果。A:实验示意图(AB,BA,和AA表示石墨烯不同堆叠类型);B:近场纳米光学振幅成像及TEM图;C:畴壁上电子能带结构。 不仅孤子超晶格的周期性和等离激元的波长相匹配,而且之前的研究表明,双层石墨烯中的孤子对SPP具有散射行为,转角双层石墨烯中规律的孤子结构所形成的周期性散射源恰好满足了作为纳米光子晶体的条件。接下来研究孤子超晶格对SPP的光子晶体效应,实验中研究者利用neaSNOM近场光学显微镜的针作为SPP发射源,并通过改变门电压和入射光波长改变SPP的波长,在该器件上同时得到了两组近场光学振幅图和相位图(如图例2B和2C)。从图中可以看到,λp=135 nm和λp=282 nm的情况下,近场光学振幅图和相位图表现出截然不同的周期性明暗图案,这种周期性明暗分布正是SPP在孤子超晶格传播过程中干涉效应的显现,近场光学振幅图、相位图和理论计算结果显示出的吻合性。对近场光学成像的傅里叶变换使得研究者可以进入动量空间研究其光子能带结构,结合模拟计算,对光子能带结构的研究表明,虽然孤子对SPP的散射较弱,还不足以形成纳米光学带隙,但是转角双层石墨烯中SPP的传播毫无疑问符合纳米光子能带色散行为。 图例2:散射式近场光学显微镜(neaSNOM)研究石墨烯超晶格中等离激元(SPP)传播近场光学成像结果。A,C: 通过改变门电压和入射光波长,λp分别为135nm和282nm下近场光学成像结果(同时获得近场光学振幅成像和相位成像);B,D: 模拟计算结果。 在该项工作中,研究者利用转角双层石墨烯设计实现了石墨烯SPP纳米光子晶体,并利用德国neaspec散射式近场光学显微镜从几个途径进行了研究。先,畴壁区域增强的光导响应来源于孤子的一维拓扑边界态,neaSNOM近场光学显微镜以高的分辨率可视化了孤子超晶格网络。其次,双层石墨烯纳米光子晶体的主要参数(周期性、能带结构)可以通过改变转角角度和静电场等实现连续调控,这可以突破标准top-down或光刻等技术来构筑纳米光子晶体的限制和挑战。在电中性点附近,孤子被预言具有拓扑保护的一维等离激元模式,此时,双层石墨烯纳米光子晶体作为一维等离激元的二维网络载体,可能会展现出很有意思的光学现象。 特别值得指出的两点是:1. 即使研究者通过0.06°的超小转角制造了高达260nm的孤子超晶格周期长度,如果没有neaSNOM近场光学显微镜高的空间分辨率(取决于针曲率半径,高可达10nm),清晰地看到孤子超晶格网络依然是非常困难的。2. neaSNOM近场光学显微镜具有的伪外差相位解调模块,可以同时实现高信噪比下的近场光学信号振幅成像和相位成像。该项工作中实验结果和模拟计算结果的吻合很好地证明了这一点。作为二维材料纳米光学领域为专业的研究工具,neaspec近场光学显微镜已经助力国际和国内多个研究机构在为的杂志发表了诸多研究成果。不仅是在纳米光学成像领域,neaspec开放兼容的设计使得它在纳米傅里叶红外光谱(nano-FTIR)、太赫兹(THz)、拉曼、荧光、超快、光诱导等多个领域均有广泛应用。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 光子晶体光纤与传统光纤差异较大,市场前景具有不确定性——访锐光信通副总经理张涛
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了锐光信通科技有限公司副总经理张涛。据了解,锐光信通主要面向特种光纤领域,属于光纤行业的细分领域。本次展会,锐光信通主要带来了三大解决方案,面向陀螺仪用户的传感光纤、光子晶体光纤以及面向激光制造的的激光光纤。以下为现场采访视频:
  • 我国科学家创制极化激元晶体管
    纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳甚至原子尺度对光进行精准操控是其中的关键的科学问题。中国科学院国家纳米科学中心研究员戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,而且可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。   该团队通过十多年的努力,实现了极化激元的高效激发和长程传输。在此基础上,研究设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元奠定了重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等方面的性能瓶颈。   与电子相比,光子具有速度快、能耗低、容量高等优势,被寄予未来大幅提升信息处理能力的厚望。因此,光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电-光-电转换)是光电融合主的基础,相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。   极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。   戴庆团队以攻克高速光电互联这一世界技术难题为目标,提出以纳米材料的表面波(极化激元)为媒介,实现高效光电互联的新思路。构筑光-极化激元-电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:一是效率高,光/电激发材料表面波的效率相比光电效应提升潜力巨大;二是集成度高,光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;三是算力强,材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+12”的效果。   戴庆提出,我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这一研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供了新思路。   2月10日,相关研究成果以Gate-tunable negative refraction of mid-infrared polaritons为题,发表在《科学》(Science)上。该论文审稿人评价道,这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。图示极化激元晶体管的基本原理,通过在氧化钼上覆盖石墨烯构筑范德华异质结,天线激发极化激元传输穿过界面后形成负折射。极化激元晶体管的光学显微镜照片
  • 打破空白局面,KRS-5红外晶体实现国产
    红外光谱作为“分子的指纹”,可用于分子结构和物质化学组成的研究,被广泛应用在药品质量监测、油品鉴别、工业大气空间特性测定等领域,而绘出红外光谱的红外光谱仪也就成了科学家们的重点青睐对象。其中,红外光学窗片则是该仪器中必不可少的器件,其品质的好坏直接影响红外光谱仪的性能。现有的红外光学材料能同时应用于中红外、远红外两个波段的材料较少。目前应用最为广泛的红外窗片是溴化钾和氯化钠,但这两种材料均存在潮解问题,大大限制了其应用。表1所示为几种常用的傅立叶红外光谱仪窗片,与其他材料对比,KRS-5窗片因有相当宽的红外透射范围和不易潮解的特点脱颖而出。窗片名称性能透射波长KRS-5窗片不易潮解,耐高气压,强度高0.5~40μm氯化钠窗片容易潮解,适合测试无水样品0.2~15μm溴化钾窗片容易潮解,适合测试无水样品0.2~15μm氟化钙窗片不易潮解,耐一定温度200℃1~11μm石英窗片不易潮解,耐高压,耐高温190nm~4.5μm硫化锌窗片不易潮解,耐高压1~14μm表1 常见傅立叶红外光谱仪窗片材料对比KRS-5,又名溴碘化铊,是溴化铊和碘化铊的混合结晶体,呈橘红色,如图1所示,不易潮解,对红外线有较好的透过性,尤其在空气中能透过相当宽的红外线波段,在波长为0.6~40μm的区域内,其透过率可达70%以上,是一种性能优良的红外材料,可用于制作红外光学零件,窗片、透镜、组合物镜、棱镜等。图1 KRS-5晶体由于KRS-5晶体的生产工艺技术难度较高,该晶体的生产和应用主要集中在海外,且价格比较昂贵,此前国内一直处于空白状态。不过现在,这个空白已经被北京滨松光子技术股份有限公司(简称北京滨松)所填补。北京滨松一直致力于晶体的开发生产,并已完成多种闪烁晶体的研发并实现稳定生产。凭借多年的经验,近期成功研制出KRS-5晶体,性能与国外同类产品相当,且价格方面相比国外晶体具有很大的优势。图2 北京滨松公司KRS-5与国外同类产品透过率对比除可供应常规规格产品外,北京滨松还可根据用户具体需求提供定制服务,如加工各种薄片、方形棱镜、纽扣状晶体、锥形晶体等,同时也可以提供KRS-5窗片的研磨、抛光等处理。图3 北京滨松公司KRS-5样品北京滨松是滨松光子学株式会社(简称滨松公司)与北京核仪器厂于1988年共同投资兴建的,是国内著名的以光电探测为核心的高新技术企业。滨松公司在华的全资子公司——滨松光子学(商贸)中国有限公司(简称滨松中国)负责北京滨松产品在国内的商务活动。如希望对KRS-5有进一步了解,敬请联系我们。
  • III-V族半导体与硅的有效耦合,打破硅基光子半导体性能限制
    近几十年以来,伴随着大数据、传感器、云应用等多种新兴技术的快速发展,数据流量也呈现出指数级增长的态势。使用电子电路的传统集成电路,通过摩尔定律推动电子器件的体积缩小、性能增加,从而推动数据流量的进一步增长。根据摩尔定律,电子器件上可以容纳的晶体管数量,大概每两年增加一倍。而数据流量的不断激增,给电子器件的带宽、速度、成本和功耗等诸多方面都带来了较大的挑战。换言之,传统电子设备的发展即将到达极限。此时,使用光子或光粒子将光与电子进行结合的光子集成电路,尤其是硅基光电子器件,因能够建立高速、低成本的连接,并实现对大量数据的一次性处理,在数据通信领域具有显著优势。从硅基光电子学技术目前的发展来看,以硅材料为基础的微电子器件已经能够处理被动光学功能,但却很难有效地完成主动任务,比如产生光(激光)或检测光(光电探测器)等数据生成和读取时需要用到的关键步骤。那么,要想在完成主动功能的同时增强器件的性能,就必须在硅基底上集成 III-V 族半导体化合物,也就是元素周期表中 III 族和 V 族的材料。可问题是,如今 III-V 族半导体化合物还无法与硅实现良好的配合。近期,来自香港科技大学的薛莹研究助理教授和该校刘纪美(Kei-May Lau)教授,带领团队设计出一种名为横向纵横比捕获(lateral aspect ratio trapping,LART)的方法。薛莹据介绍,其作为一种选择性直接外延生长的技术,能够在不需要厚缓冲层的条件下,在绝缘的硅衬底(silicon-on-insulator,SOI)上,横向选择性地生长 III-V 族材料。基于该技术,研究人员在 SOI 晶圆上制造了 III-V 分布式反馈激光器,能与硅层呈共平面配置,实现 III-V 族激光器与硅波导之间的高效耦合。另外,这种特殊的 III-V 族绝缘层结构,还为激光器提供了良好的光学约束。据了解,该光泵浦分布式反馈激光器具有约 17.5µJcm-2 的低激光阈值、1.5µm 的稳定单模激光、超过 35dB 的边模抑制比和 0.7 的自发辐射系数。这些数据结果也充分表明,单片生长激光器在晶圆级硅光子集成电路方面迈出了重要一步,或将推动集成硅基光电子学领域的发展。近日,相关论文以《在(001)SOI 上选择性生长的面内 1.5µm 分布式反馈激光器》(In-Plane 1.5 µm Distributed Feedback Lasers Selectively Grown on(001)SOI)为题在Laser & Photonics Reviews上发表,并被选为期刊封面。薛莹是第一作者,刘纪美担任通讯作者。“我们的方法解决了 III-V 族器件与硅的不匹配问题,实现了 III-V 族器件的优异性能,并使 III-V 族器件与硅的耦合变得更加高效。”薛莹对媒体表示。Laser & Photonics Reviews期刊当期封面不过,需要说明的是,虽然该技术有望在传感和激光雷达、生物医学、人工智能、神经和量子网络等研究领域获得应用,但要想将它更好地应用于现实生活,还必须克服一些关键的科学挑战。因此,基于目前的研究,该课题组打算从高输出功率、长寿命、低阈值、高温下工作等维度入手,进一步增强与硅波导集成的 III-V 族激光器的能力。另外,值得一提的是,薛莹目前的研究兴趣主要集中在集成光子学、电子光子集成电路、硅光子学、纳米光子学等领域,并已经在以高效、可扩展和低成本的方式,缓解基于硅的光子集成电路的性能限制方面,做出了重要突破与创新。基于此,她曾在近期荣获 2023 年 Optica 基金会挑战赛资助的 10 万美元奖金,该奖项旨在表彰 10 名在利用光学和光子学,并解决全球问题方面具有杰出想法的早期职业专业人员。显而易见,这笔资助将有助于推进她接下来的研究。
  • 新疆理化所创制全波段相位匹配晶体
    短波紫外全固态相干光源具有光子能量强、可实用化与精密化、光谱分辨率高等特点,在激光精密加工、信息通讯、前沿科学和航空航天领域颇具应用价值。获得全固态短波紫外激光的核心部件是非线性光学晶体。在非线性光学过程中,若使基频光的能量源源不断地转换到倍频光,需要保持基频光激发的二次极化谐波和倍频光在晶体中位置时刻相同,但由于晶体的本征色散导致基频光和倍频光的折射率不同,进而导致两束光在晶体中群速度不同,无法实现倍频光的持续增长,此为相位失配。因此,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,如晶体各向异性的双折射相位匹配技术、晶体内部自发畴结构的随机准相位匹配技术和人工微结构准相位匹配技术等。其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该技术利用各向异性晶体的双折射特性,使一定偏振的基频光沿晶体的特定方向入射,或者改变晶体的温度,实现角度或者温度相位匹配,即使基频光和倍频光在晶体中特定方向传播时的折射率相同。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相片匹配波长的差值表征(λcutoff-λPM)。中国科学院新疆理化技术研究所晶体材料研究中心致力于新型紫外、深紫外非线性光学晶体的设计与合成。该团队前期基于领域前沿进展的研究和对非线性光学晶体双折射相位匹配现状的剖析,在特邀综述中首次提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?若该假设在晶体中得以实现,将为晶体在整个透过范围内均实现双折射相位匹配提供新途径和新思路。近期,该团队创制一类新非线性光学晶体即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,从折射率的微观表达及双折射色散曲线、折射率色散曲线和相位匹配等光学条件等角度出发,给出两种独立的全波段相位匹配晶体的评价参数,并将此评价参数应用于一些经典的非线性光学晶体材料,讨论以此参数评估晶体相位匹配波长损失的可行性和普适性。基于此,研究获得一例非线性光学晶体(GFB)。实验通过多级变频的方案或光参量技术方案,研究晶体在整个透过范围内的直接倍频输出能力,并基于相位匹配器件已经实现193.2-266 nm紫外/深紫外可调谐激光输出,验证其该晶体全波段相位匹配能力,使该晶体成为目前首例且唯一一例实现了全波段双折射相位匹配的紫外/深紫外倍频晶体材料。该材料193.2 nm处晶体透过率deff = 1.42 pm/V)、短相位匹配波长(~194 nm)和高抗激光损伤阈值(BBO@ 266/532 nm, 8 ns, 10 Hz)等,是颇具应用前景的266 nm激光用非线性光学晶体材料。相关研究成果以全文形式发表在《自然光子学》(Nature Photonics)上。研究工作得到科技部,国家自然科学基金委员会和中国科学院等的支持。GFB晶体结构、微观性能分析及晶体照片
  • 新型生物纳米电子晶体管构建成功
    5月13日,美国劳伦斯利弗莫尔国家实验室的科学家 建造了可由三磷酸腺苷(ATP)驱动和控制的生物纳米电子混合晶体管 。他们称,新型晶体管是首个整合的生物电子系统,其将为义肢等电子修复设备与人体的融合提供重要途径。相关研究发布在近期出版的《纳米快报》(Nano Letters)上。   三磷酸腺苷可作为细胞内能量传递的“分子通货”,储存和传递化学能,为人体新陈代谢提供所需能量;其在核酸合成中亦具有重要作用。   该实验室的研究人员亚历山大诺伊表示,离子泵蛋白是新型晶体管装置中最核心的部分。此次开发的晶体管由处于两个电极之间的碳纳米管组成,起半导体的作用。纳米管的末端附有绝缘聚合物涂层,而整个系统则包裹于双层油脂膜之中,与活体细胞膜的原理相似。当科学家将电压加在电极之上时,含有三磷酸腺苷、钾离子和钠离子的溶液便会倾泻而出,覆盖在晶体管装置表面,并引发电极之间电流的流动。使用的三磷酸腺苷越多,产生的电流也越强烈。   科学家解释说,之所以会产生如此效果,是由于双层油脂膜内的蛋白质在接触三磷酸腺苷时会表现得如同“离子泵”一般。在每个周期中,蛋白质会往一个方向抽送3个钠离子,并向相反方向抽送2个钾离子,致使1个电荷在“离子泵”的作用下越过双层油脂膜抵达纳米管之中。随着离子的不断累积,其将在纳米管中部的周围产生电场,从而提升纳米晶体管的传导性。   耶路撒冷希伯来大学的伊特玛维尔纳表示,这一生物电子系统通过离子运动将纳米层级的机械能转化为了电能,从而为晶体管的运行提供了支持。在这种情况下,晶体管可被用于制造由生物信号驱动和控制的电子设备。例如,这一进展能使电子仪器不需电池或其他外界电力供给便可永存于体内,而义肢等人体修复器械也有望直接与人体 神经系统 “连线”。诺伊希望,这种技术将来能被用于建设无缝生物电子界面之中,以实现生物体和机器的更好沟通。
  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。   在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。   最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。   福建物构所深紫外非线性光学晶体材料研究获进展
  • Nature Communications:中红外单光子成像新突破
    华东师范大学重庆研究院曾和平教授和黄坤研究员课题组在红外灵敏成像领域取得重要进展,提出了基于啁啾极化晶体的上转换广角成像新方法,实现了宽视场、超灵敏、高帧频的中红外光子成像,是当前国际上最高速、最灵敏的中红外成像系统之一。相关成果于近日在线发表在《自然》子刊。图 1《自然》子刊刊登曾和平教授课题组研究成果中红外探测与成像在天文观测、空间遥感、生物医学、材料检测等众多领域都有重要应用,而实现单光子量子极限的超灵敏中红外测控仍颇具挑战。近年来,红外上转换探测技术备受关注,其结合高保真光子频率变换与高性能硅基探测器件,为红外单光子探测与成像提供了一条可行之道。然而,现存上转换探测方案受相位匹配限制,信号接收角较小,难以实现宽视场成像,是当前阻碍该技术向更广泛应用推进的最主要瓶颈。为此,研究团队提出了基于啁啾准相位匹配的上转换广角成像技术,利用啁啾极化铌酸锂晶体(CPLN)实现了不同角度入射信号的自适应相位匹配,获得的接收角较传统方案提升了至少1个量级。同时,该团队结合同步脉冲泵浦技术与窄带高效滤波技术有效压制背景噪声,获得了1光子/脉冲极低照度下单光子水平的中红外大视场成像。进一步地,研究人员利用该中红外成像系统实现了校园卡内部结构的实时扫描检测,清晰识别了卡片芯片与金属线圈(图2)。该成像技术有望应用于半导体芯片检测、材料无损探伤等领域。图 2:利用中红外上转换成像系统扫描校园卡内部结构,内嵌的芯片与线圈清晰可见值得一提的是,上述上转换广角成像技术通过单次采集即可实现大视场成像,规避了传统方案对机械扫描、参数调节或数据后处理的依赖,显著提升了成像速率。具体地,该团队采用高性能硅基CMOS相机实现了超高速中红外成像,实时拍摄了高速旋转的斩波片,其外沿线速度高达30 m/s(图3)。得益于成像系统的高灵敏度,实验中相机曝光时间可低至微秒量级,中红外成像帧频达到了216 000帧/秒,相比于现有中红外相机提高了2-3个量级。此外,该系统还具有高精度三维成像能力,利用超快光学符合门控技术,可以精确测量反射信号光子的相对飞行时间,从而得到被测物体表面的形貌信息。结合高灵敏、高分辨、高帧频的优点,所形成的大视场成像技术有望发展出超灵敏中红外时间分辨光谱成像分析仪,可为高通量生物与材料多维(空间-时间-光谱)复合检测提供新工具。图 3:超高速中红外成像。右下角成像帧频达到216 000 帧/秒,图示播放帧频相较于实际速率减慢了2万余倍。
  • 美国研发出可同时操控光线和振动的晶体
    光线传播和机械振动是两种不同的物理现象,而美国研究人员新研发出的晶体可以在一个小空间中同时操控这两者。这种光学机械晶体将有助于量子计算机等领域的科研工作。   英国《自然》杂志网站日前刊登研究报告说,美国加州理工学院的研究人员在一条只有10微米长的硅晶片上刻了许多凹槽,然后再利用具有特定共振频率的激光照射该晶体,光线在凹槽中多次反射并互相干涉,最后只有部分光线透出,这说明另一部分光线被截留在了晶体中间。与此同时,研究人员探测到晶体中间的小格子在进行前后的机械振动。   研究人员说,这种光学机械晶体可用于未来的计算机电路中,尤其是在当前的量子计算机研究中。量子计算处理器的基础各有不同,如原子、光子或超导体等,需要使用不同频率的光,难以结合到一起,而新晶体可以将一种量子处理器的光转化为振动,再将这种振动转化为另一种频率的光。这样,新晶体可以成为混合型量子计算机的理想“连接器”。   由于这种晶体对光频率的变化非常敏感,它还可以用作医疗探测器,检查DNA(脱氧核糖核酸)序列和病原体等。此外,它还可以帮助研发出能够检测单个气体分子的探测仪器,这将超出当前任何一种探测仪器的精度。
  • 化学所在金属配合物低维晶体方面取得新进展
    p & nbsp & nbsp 低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一,近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。 /p p style=" text-align: justify " & nbsp & nbsp 在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年/钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作(J. Am. Chem. Soc.2015, 137, 4058 Angew. Chem. Int. Ed.2015, 54, 9192 & nbsp Coord. Chem. Rev.2016, 312, 22 & nbsp Sci. China Chem.2017, 5, 583)。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察(J. Am. Chem. Soc.2018, 140, 4269-4278)。 /p p style=" text-align: justify " & nbsp & nbsp 最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭(ACQ)受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为0.2%时,此类晶体可以实现接近80%的三线态能量转移效率和800倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到40%。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息(Angew. Chem. Int. Ed.2018, 57, 7820-7825)。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/e32021df-136a-457d-afb5-bfd3ccfeb16d.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图:基于金属配合物低维晶体的光放大与温度响应 /p p br/ /p
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率
  • 中科院合肥研究院中红外激光晶体研究取得进展
    p   近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所激光技术中心研究员孙敦陆课题组在2.79微米中红外激光晶体研究中取得系列进展。 /p p   2.7微米至3微米中红外激光在光谱分析、气体检测、激光医疗及光参量振荡泵浦等方面有重要的应用前景。在前期研究工作的基础上,孙敦课题组进一步优化了新型高效抗辐射中红外激光晶体Cr,Er,Pr:GYSGG的掺杂浓度,并采用COMSOL软件对晶体的热分布进行了理论分析 理论分析结果表明,采用热键合技术在晶体两端键合了纯GYSGG晶体作为热沉(纯GYSGG比Cr,Er,Pr:GYSGG具有更高的热导率,自身无激活离子,不产生热量,可以作为热沉),加快了激光晶体棒两端散热速率,有效改善了晶体的热透镜效应,从而进一步提高了Cr,Er,Pr:GYSGG晶体的激光性能。 /p p   此外,Cr,Er:YSGG是目前发展较为成熟的中红外激光晶体,Cr3+离子掺入后能够提高晶体的闪光灯泵浦效率,但Cr3+离子掺杂浓度还有待进一步优化。课题组采用提拉法生长出两种不同掺杂浓度的Cr,Er:YSGG晶体,并对其吸收、荧光光谱、能级寿命及激光性能进行了对比研究,结果表明,在3at% Cr3+浓度掺杂的晶体中,其输出功率、激光斜效率等参数均有较大提高。 /p p   相关研究成果发表在Optics Express上。该研究得到了国家自然科学基金、国家高技术研究发展计划的资助。 /p p   论文题目: /p p   Influence of Cr sup 3 /sup sup + /sup concentration on the spectroscopy and laser performance of Cr,Er:YSGG crystal /p p   Thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite laser crystal operated at 2.79 μm /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201802/noimg/5668ce4a-c336-457a-b227-301125a80364.jpg" / /p p style=" text-align: center " strong 氙灯泵浦键合GYSGG/Cr,Er,Pr:GYSGG激光晶体的示意图 /strong /p p /p
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 近红外双模式单光子探测器----单光子探测主力量子通讯
    一. 近红外双模式单光子探测器介绍SPD_NIR为900nm至1700 nm的近红外范围内的单光子检测带来了重大突破。 SPD_NIR建立在冷却的InGaAs / InP盖革模式单光子雪崩光电二极管技术上,是NIR单光子检测器的第一代产品,可同时执行同步“门控”(GM)和异步“自由运行”(FR )检测模式。 用户通过提供的软件界面选择检测模式。冠jun级别的器件具有低至800 cps的超低噪声,高达30%的高校准量子效率,100 ns最小死区,100 MHz外部触发,150 ps的快速成帧分辨率和极低的脉冲 。 当需要光子耦合时,标准等级可提供非常有价值且经济高效的解决方案。基于工业设计,该设备齐全的探测器不需要任何额外的笨重的冷却系统和控制单元。 经过精心设计的紧凑性及其现代接口使SPD_NIR非常易于集成到最苛刻的分析仪器和Quantum系统中。OEM紧凑型 多通道控制器软件界面二. 近红外双模式单光子探测器原理TPS_1550_type_II是基于远程波长自发下变频的双光子源。TPS_1550_type_II采用波导周期性极化铌酸锂(WG-ppln)晶体,用于产生光子对。波导- ppln的转换效率比任何块状晶体都高2到3个数量级,并确保与单模光纤的高效耦合。0型和II型双光子的产生三. 近红外双模式单光子探测器应用特点特点: ▪ 自由模式 & 门模式▪ 集成电子计数▪ 校准后 QE可达 30%▪ TTL和NIM信号兼容▪ 暗记数 ▪ 盖革模式激光雷达▪ 量子密钥分发▪ 高分辨率OTDR▪ 光子源特性▪ FLIM 成像▪ 符合测试▪ 光纤传感四. 近红外双模式单光子探测器技术规格五. Aura 介绍AUREA Technology是法国一家知名的探测器供应商,公司致力于尖端技术的研发,基于先进的单光子雪崩光电二极管,超快激光二极管和快速定时电子设备,设计和制造了新一代高性能,功能齐全的近红外探测器。作为全球技术领导者之一,AUREA技术提供盖革模式单光子计数,皮秒激光源,快速时间关联和光纤传感仪器。此外,AUREA Technology直接或通过其在北美,欧洲和亚洲的专业分销渠道为200多个全球客户提供一流的专业支持。并与客户紧密合作,以应对当今和未来在量子安全,生命科学,纳米技术,汽车,医疗和国防领域的挑战。昊量光电作为法国AUREA公司在中国区域的独家代理商,全权负责法国Aurea公司在中国的销售、售后与技术支持工作。AUREA技术提供了新一代的光学仪器,使科学家和工程师实现卓越的测量结果。奥瑞亚科技与全球的客户和合作伙伴紧密合作,共同应对量子光学、生命科学、纳米技术、化学、生物医学、航空和半导体等行业的当前和未来挑战双光子是展示量子物理原理的关键元素,并实现新的量子应用。例如,双光子使量子密钥分发技术得以发展,以确保数百公里范围内的数据网络安全。在生物成像应用中,双光子光源产生原始的无色散测量。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 联影开建世界最大高端医械晶体生产基地
    在科创板过会、研发取得重大突破的联影医疗又有大动作!6月18日上午,2022年常州国家高新区重点项目集中签约“拿地即开工”仪式上,联影高端医学影像设备及核心部件项目等总投资103.4亿元的12个重点项目落地。随着“健康中国”已上升为国家战略,我国大健康市场快速扩容、高端医学影像行业支持力度增加以及新冠疫情的常态化防控等因素都促进了对医学影像设备的潜在需求,经过十余年国产医学影像设备技术的发展以及相关核心部件公关,国产品牌的进口替代趋势愈发明显,进口品牌的市场份额呈现下降趋势。据了解,联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力,项目建成后,将成为世界上最大的高端医疗设备晶体生产基地,这将极大地满足国内医学影像设备需求。01、要建世界最大高端医疗设备晶体生产基地围绕《新材料产业发展指南》明确的十大重点领域,力争到2020年在关键领域建立20家左右。“医疗器械材料生产应用示范平台”即此前工信部按照国家新材料产业发展总体规划,在“生物医药 和高性能医疗器械材料”领域部署的国家级应用示范平台。LYSO/LSO晶体在核医学设备、高能物理、油井钻探、安全检查、环境检查等领域应用广泛,是目前全球最重要和最理想的射线探测器材料之一。当前,我国正推动大型医疗设备国产化,为打破国外材料供应商对国内医疗设备厂商的垄断供应局面,进一步完善国产高端医疗设备的研发、生产体系,LYSO/LSO晶体等闪烁晶体材料的国产化是重要环节。而在影像产业链中,核心部件主要涉及闪烁晶体、液氦、X射线球管、高压发生器、探测器等。闪烁晶体是能够与X射线、伽玛射线、带电粒子等粒子发生作用,将粒子沉积在闪烁晶体中的动能转换为可见光光子的透明晶体。硅酸钇镥(LYSO)稀土闪烁晶体作为PET探测器的核心部件,占到PET/CT整机成本的40%-50%,与溴化镧稀土闪烁晶体同为最具商业价值的新材料。国产PET/CT无论是关键技术还是核心材料,均已不逊色国外品牌,甚至在一些“卡脖子”的原材料方面也取得了突破性进展,2019年,联影医疗联合下游企业——上海新漫晶体,通过上海市工业强基项目“符合PET/CT需求的大尺寸晶体的开发与产业化”的持续攻关,制定晶体性能指标要求,承担晶体性能检测、效果验证等工作,实现了LYSO 晶体的国产化,解决了国产PET/CT对进口晶体的依赖问题。现在,上海新漫系联影重要子公司,为公司提供分子影像产品重要原材料LYSO闪烁晶体。除了晶体制造技术,联影公司还掌握探测器技术、数据传输和处理技术、产品设计和制造能力等,在高端医疗影像设备研发及产业化中联影展现更大雄心,在刚过科创板的招股书中:联影要新建高端智能制造工厂,购置和安装必要的产线生产设备、自动化升级设备、自动控制设备、立体仓库和物流设备以及搭建厂区智能化系统,建成后主要用于生产高端XR、CT、PET/CT、MR和PET/MR等系列产品;新建生产研发楼;新建配套综合楼以及其他配套设施。RT在研产品 CT在研产品2018 年,联影医疗uRT-linac 506c 获NMPA 医疗器械技术审评中心第三类医疗器械认证,是世界首款一体化CT 直线加速器。目前联影医疗在放疗领域的前沿性、关键性技术的掌握情况如下:联影医疗对加速管、多叶光栅已实现自研自产,并结合治疗床技术,精密剂量控制系统,治疗计划系统,肿瘤信息系统等方面形成技术基础。未来联影医疗在放疗领域核心部件的布局规划主要包括下一代功率源系统、加速管系统、新一代多叶光栅等。经过多年的经营积累,常州联影已具备包括MR、CT、DR和RT在内的高端医学影像设备上游机加工和整机生产能力。此次,常州联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力。项目建成后,将成为世界上最大的高端医疗设备晶体生产基地。02、揭秘联影常州基地重大项目建设,是经济发展的“稳定器”。二季度,常州强保障、优服务,启动“拿地即开工”攻坚行动,保障重大项目快开工、快推进、快投产,以项目之“进”撑经济发展之“稳”。在科技创新的加持下,常州产业发展的韧性得以进一步加强:全国每五台工业机器人中,就有一台是“常州造”;动力电池年产值国内第一,占全国份额的三分之一、全省的三分之二;智能制造装备、新型碳材料产业集群进入“国家队”… … 瞄准“国际化智造名城、长三角 中轴枢纽”发展定位,常州正在智能制造上找准定位、增强特色、拉长长板。2022年,常州国家高新区确立实施173个重点项目,年内计划投资367亿元。今年以来,常州高新区全面深化“招推服一体化”改革,最大程度压缩审批时限,在签订土地出让合同的当天即同步下发“四证五书”,实现从拿地到开工“零时差”。本次集中签约项目共24个:包括总投资30亿元重大项目1个,精品外资项目5个,高端智造产业及生产性服务业项目12个,科技人才项目6个。在此次签约仪式上,新北区代区长石旭涌为12个拿地即开工项目代表:联影(常州)二期项目负责人颁发了证书。据了解,今年二季度,常州国家高新区共有40个开工重点项目,总投资达231.6亿元。联影(常州)医疗科技有限公司是全球单体规模最大的全线高端医疗设备生产基地。联影(常州)项目总占地面积340亩,一期用地162亩,建筑面积91505平方米,总投资15亿元,建成后形成年产数字平板X射线成像系统3600套、CT系统500套、分子影像系统(磁共振成像)720套、放射治疗仪系统400套的生产能力。2020年销售额为9.92亿元,纳税额为1.3亿元。联影自落户常州高新区以来,始终保持高质量发展态势,取得了很好的发展。新冠疫情期间,联影在第一时间驰援武汉,更是展现出了让人称赞的“中国速度”。据介绍,从小年夜到年初五,按计划生产的移动DR15台,CT530系列设备10台,已基本按需完成。后续,仍保质保量供应。去年1月19日上午,常州国家高新区与联影医疗技术集团举行项目签约仪式,联影医疗技术集团决定在常州高新区投资30亿元,建设二期新项目,作为全国获得国家专利金奖和商标金奖仅有的两家企业之一,上海联影医疗科技股份有限公司在投资联影(常州)一期项目基础上,今年投资建设的二期项目正式启动,此次联影高端医学影像设备及核心部件项目要建成的世界最大高端医疗设备晶体生产基地便在该期项目中。联影(常州)医疗科技有限公司总经理严全良感慨道:“联影(常州)一期项目在整个报建、生产过程中,得到了市、区、镇各级政府的大力支持和帮助!原本至少近70个工作日的审批过程,缩短为1个工作日,真正做到了‘拿地即开工’。政府部门高效的审批,让我们企业真正实现了‘少走路’、‘少等待’,帮助我们项目‘早开工、早投产’”。03、差异化定位、区域化分工构建的全球化产能格局形成上海联影医疗科技股份有限公司成立于2011年3 月,是联影医疗技术集团的总部,研发中心辐射全球,主要从事高端医学影像诊断产品、放射治疗产品及高端生命科学仪器的设计、研发、生产和销售,并提供配套智能化、信息化解决方案,主打高端医疗设备市场,有国内唯一设计、研发、制造医用1.5T、3.0T超导磁体等全线产品的能力。2020年,联影医疗在武汉全面布局,总投资约50亿元,占地20余万平方米的联影医疗武汉总部基地一期已正式启用,是全球高端医疗设备行业规模最大,最具特色的研发、生产、运营中心。同时,联影智能武汉分部、UIHCloud联影云总部也“安家”于此。联影武汉总部基地智能制造中心该基地投用后,到2028年,将实现高端医疗设备本土化生产和销售,预计年收入百亿元。联影医疗将在武汉重点打造联影高端医疗设备研发及智能制造中心,自主研发生产手术机器人、医疗可穿戴设备等先进医疗装备。常州是一个世界级加工基地,联影认为整个产业链的把控才能确保产品的质量,才能确保最优的性价比利用一流设备,从原材料精加工到模具都是自己做。此外联影在美国德州还拥有休士顿研发基地,并称未来在国外还会建更多生产基地,进入世界市场。去年9月24日,虹桥国际开放枢纽重大项目集中开工长宁区分会场活动,在联影智慧医疗产业园项目建设工地举行,联影智慧医疗产业园是此次5个集中开工的参与项目之一。联影医疗科技智慧医疗总部项目位于广顺北路临华路,用地面积约2.99万平方米,地上建筑面积约9.45万平方米,地下建筑面积约8万平方米。园区主要包括联影智慧医疗全球总部、中国智慧医学影像研究院及智慧影像产业基地、智慧医疗亚洲体验中心及旗舰店、联影互联网医院管理中心、联影全国基层医疗升级指导培训中心和共建关键学科专家工作室中心,将建成具备集团优势、生态优势和运营团队优势的产业集聚区。据文汇报报道,未来五年联影智慧医疗预期年收入100亿元,团队接近5000人,服务覆盖国内大部分地区,带动医疗大健康领域人工智能技术设备创新和医疗健康产业的产融结合服务创新,催生1000亿元产业规模,助力长宁相关产业发展。联影医疗产业化示范基地二期效果图今年1月6日,联影医疗产业化示范基地二期项目作为嘉定新城今年首批6个重大项目之一正式启动建设。此次启动建设的联影医疗产业化示范基地二期,将建成为全球规模领先的、国际一流的现代化、智能化高端医疗装备研发生产基地。据悉,联影医疗产业化示范基地二期项目总投资31.26亿元,总建筑面积约42万平方米,将建设成为集技术研发、智能制造、国际交流培训、全球品牌展示、生活服务、中央公园等功能于一体的智慧园区,可容纳8000-10000人。园区将由曾设计上海中心大厦的全球顶尖建筑设计公司Gensler设计,预计2024年底竣工。此次,大手笔打造的“超级工厂”将作为公司全球研发总部,新基地对标国际最高水平,加速下一代产品与技术研发创新,推动PET/MR、PET-CT、MR、CT、XR等全线高端医疗装备、核心部件与先进技术从研发到产业化的进程,推动“卡脖子”技术自主可控。新基地还将打造数智化超级工厂,借助工业物联网、大数据、人工智能等前沿技术,将实现生产制造、仓储、物流等各环节生产要素全面感知和控制,以自动化、智能化、精密化的生产及运营管理,大幅提升全线高端产品全球供给能力与速度。由此,上海总部基地、常州工厂、武汉基地、美国基地几大基地之间也将构建起差异化定位、区域化分工的全球化产能格局。两月前,万众瞩目的联影医疗终于过会了!融资金额高达124.8亿元,市值有望破千亿,这也是科创板市场2022年以来IPO规模最大的上市企业。募集资金用于下一代产品研发、高端医疗影像设备产业化基金项目等,提前规划“多中心、分级次”的生产基地战略布局,新建生产基地,将有力提升公司品牌的全球影响力。
  • HEPS首批X射线拉曼散射谱仪分析晶体完成在线测试
    近日,中科院高能所自主研制的球面弯曲分析晶体取得突破性进展,助力高能同步辐射光源(HEPS)高能量分辨谱学线站建设。针对国内高压科学、能源材料等多学科的学科优势,为满足广大用户需求,HEPS高能量分辨谱学线站正在设计建造一台具有先进国际水平的X射线拉曼散射(XRS)谱仪—“乾坤”。其中,球面压弯分析晶体基于罗兰圆几何条件,将特定能量的X射线聚焦至探测器上,是XRS谱仪的核心光学部件。聚焦面形精度和高能量分辨是球面弯曲分析晶体的两项极为关键,又互相影响的技术指标,因而极具挑战性。“乾坤”谱仪采用6组模组化分析晶体阵列,由90余块半径1m的分析晶体构成,其晶体能量分辨的设计指标与电子-空穴态寿命展宽数量级相当,达到ΔE/E~10-5,球面弯曲面形精度满足1:1聚焦需求。在HEPS工程指挥部的部署下,HEPS高能量分辨谱学线站团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关。线站核心成员郭志英、多学科中心晶体实验室刁千顺,经过多年技术攻关和反复尝试,不断改进优化分析晶体制备工艺,最终探索出兼顾能量分辨与聚焦特性于一体的球面弯曲分析晶体制备方法。今年10月2日-5日,项目团队在北京同步辐射装置(BSRF)1W2B线站上,采用Si(111)双晶单色器Si(220)切槽单色器两次单色化、毛细管微聚焦的光学配置,利用自研三元谱仪样机,对谱仪单模组内15块分析晶体(图1),采用EPICS-Bluesky控制系统实现单色器联动扫描,开展了批量、高精度指标测试(装置见图2)。优化后入射能量带宽实现高分辨,达到半高全宽0.8eV@9.7keV,分析晶体自身能量分辨(图3)达到半高全宽~1eV@9.7keV,与理论预测值相当,聚焦特性得到充分验证(图3、图4),各项指标全部满足工程设计需求。HEPS高能量分辨谱学线站是我国首条专注于硬X射线非弹性散射谱学实验的线站,聚焦核能级超精细结构、声子态密度、芯能级电子跃迁和价电子激发的探测,主要提供核共振散射(NRS)、XRS、共振非弹性散射(RIXS)等谱学方法,服务于量子科学、能源科学、材料科学、凝聚态物理、化学、生物化学、地学、高压科学、环境科学等多学科前沿研究。其中,XRS是一种基于X射线非弹性散射原理的先进谱学实验技术,欧洲ESRF (72块分析晶体)、美国APS(19块分析晶体)、日本SPring-8(12块分析晶体)、法国SOLEIL(40块分析晶体)、英国Diamond光源等光源已建成或规划建设XRS旗舰线站。由于非弹性散射截面极小,比X射线吸收截面小4~5个量级,XRS实验技术需要高亮度光源以增加入射光子通量,同时也需要大立体角谱仪提高探测效率,而大立体角探测需要多块发现晶体实现。首批分析晶体的指标通过在线测试,将满足大批量分析晶体加工的工程需求,对HEPS“乾坤”谱仪、高能量分辨谱学线站的实施都具有里程碑意义。值得一提的是,该类型分析晶体的工艺也已经用于多种类型谱仪分析晶体的研制。接下来,该团队将高质量完成其余模组分析晶体的批量加工,同时,将致力攻关无应力高能量分辨分析晶体的研制。晶体研发工作还获得先进光源技术研发与测试平台PAPS的支持,BSRF-1W2B、3W1、4W1A、4W1B线站提供机时。图1. HEPS自研分析晶体图2. 分析晶体测试装置,其中,左图给出了散射光和分析晶体分析光路示意图图3 分析晶体测试结果,左上为4#晶体能量分辨率实验结果和拟合曲线,左下为三块晶体在探测器上的聚焦光斑,右侧为分析晶体能量分辨率批量测试结果图4 扫描单色器能量时探测器上的光斑变化情况图5 测试人员合影
  • 科研人员制备稳定钙钛矿纳米晶体,可使LED灯成本更低/寿命更长
    据外媒报道,发光二极管(LED)是照明行业的无名英雄。它们运行效率高,散发的热量少,持续时间长。现在,科学家们正在研究一种新材料以使LED在消费电子、医药和安全领域的应用变得更有效且寿命更长。来自美国能源部(DOE)阿贡国家实验室、布鲁克海文国家实验室、洛斯阿拉莫斯国家实验室和SLAC国家加速器实验室的研究人员报告称,他们已经为此类LED制备了稳定的钙钛矿纳米晶体。来自中国台湾地区的研究院也在这项研究中做出了贡献。钙钛矿是一类具有特殊晶体结构的材料,具有吸光和发光的特性,在一系列节能应用中非常有用,包括太阳能电池和各种探测器。虽然钙钛矿纳米晶体是一种新型LED材料的主要候选材料,但在测试中证明其不稳定。研究小组将纳米晶体稳定在多孔结构中,这种多孔结构被称为金属有机框架,简称MOF。基于地球上丰富的材料并在室温下制造,这些LED有朝一日可能会使成本更低的电视和消费电子产品以及更好的伽马射线成像设备,甚至是用于医学、安全扫描和科学研究的自供电X射线探测器。“我们通过将钙钛矿材料封装在MOF结构中来解决其稳定性问题,”DOE用户设施办公室Argonne的奈米材料中心(CNM)的科学家Xuedan Ma说道,“我们的研究表明,这种方法使我们能大幅提高发光纳米晶体的亮度和稳定性。”美国洛斯阿拉莫斯大学前J. R. Oppenheimer博士后Hsinhan Tsai补充称:“在MOF中结合钙钛矿纳米晶体的有趣概念已经以粉末形式被证明,但这是我们首次成功地将其集成为LED的发射层。”之前试图制造纳米晶体LED的尝试被纳米晶体降解回不需要的体积相所阻碍,这使其失去了纳米晶体的优势并削弱了它们作为实用LED的潜力。大块物质由数十亿个原子组成。像钙钛矿这样的材料在纳米阶段是由几个到几千个原子组成的,因此表现不同。在他们的新方法中,研究小组通过在MOF的矩阵中制造纳米晶体来稳定纳米晶体,就像网球被铁丝网夹住一样。他们使用框架中的铅节点作为金属前体,卤化物盐作为有机材料。卤化物盐的溶液中含有甲基溴化铵,它跟框架中的铅反应并在基体中的铅核周围组装纳米晶体。由于基质会使纳米晶体保持分离,所以它们不会相互作用和降解。这种方法是基于一种解决方案涂层的方法,比目前广泛使用的用于制造无机LED的真空处理要便宜得多。MOF稳定的LED可以制造出明亮的红色、蓝色和绿色光以及每种光的不同色调。洛斯阿拉莫斯国家实验室综合纳米技术中心的科学家Wanyi Nie说道:“在这项工作中,我们首次证明了在MOF中稳定的钙钛矿纳米晶体将创造出各种颜色的明亮、稳定的LED。我们可以创造不同的颜色、提高颜色纯度并提高光致发光量子产量,这是一种衡量材料发光能力的指标。”该研究小组使用先进光子源(APS)--DOE位于阿贡的科学用户设施办公室--进行时间分辨X射线吸收光谱分析,这项技术使他们能发现钙钛矿材料随时间的变化。研究人员能跟踪电荷在材料中移动的过程并了解光发射时发生的重要信息。“我们只能通过APS强大的单个X射线脉冲和独特的时间结构来实现这一点,”阿贡X射线科学部的小组负责人Xiaoyi Zhang说道,“我们可以追踪带电粒子在微小钙钛矿晶体中的位置。”在耐久性测试中,该材料在紫外线辐射、热和电场下表现良好且不会降解并失去其光探测和发光效率,这是电视和辐射探测器等实际应用的关键条件。
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 突破性成果!从“盖房子”到“顶竹笋”:我国科学家首创晶体制备新方法
    晶体是计算机、通讯、航空、激光技术等领域的关键材料。传统制备大尺寸晶体的方法,通常是在晶体小颗粒表面“自下而上”层层堆砌原子,好像“盖房子”,从地基逐层“砌砖”,最终搭建成“屋”。北京大学科研团队在国际上首创出一种全新的晶体制备方法,让材料如“顶着上方结构往上走”的“顶竹笋”一般生长,可保证每层晶体结构的快速生长和均一排布,极大提高了晶体结构的可控性。这种“长材料”的新方法有望提升芯片的集成度和算力,为新一代电子和光子集成电路提供新的材料。这一突破性成果于7月5日在线发表于《科学》杂志。图为用“晶格传质-界面生长”新方法制备晶圆级二维晶体北京大学物理学院凝聚态物理与材料物理研究所所长刘开辉教授介绍,传统晶体制备方法的局限性在于,原子的种类、排布方式等需严格筛选才能堆积结合,形成晶体。随着原子数目不断增加,原子排列逐渐不受控,杂质及缺陷累积,影响晶体的纯度质量。为此,急需开发新的制备方法,以更精确控制原子排列,更精细调控晶体生长过程。为此,刘开辉及其合作者原创提出名为“晶格传质-界面生长”的晶体制备新范式:先将原子在“地基”,即厘米级的金属表面排布形成第一层晶体,新加入的原子再进入金属与第一层晶体间,顶着上方已形成晶体层生长,不断形成新的晶体层。实验证明,这种“长材料”的独特方法可使晶体层架构速度达到每分钟50层,层数最高达1.5万层,且每层的原子排布完全平行、精确可控,有效避免了缺陷积累,提高了结构可控性。利用此新方法,团队现已制备出硫化钼、硒化钼、硫化钨等7种高质量的二维晶体,这些晶体的单层厚度仅为0.7纳米,而目前使用的硅材料多为5到10纳米。图为基于二维晶体的电子和光子集成电路“将这些二维晶体用作集成电路中晶体管的材料时,可显著提高芯片集成度。在指甲盖大小的芯片上,晶体管密度可得到大幅提升,从而实现更强大的计算能力。”刘开辉说,此外,这类晶体还可用于红外波段变频控制,有望推动超薄光学芯片的应用。
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
  • QSense发布QSense High Pressure 高压石英晶体微天平新品
    QSense® High Pressure高压石英晶体微天平专业研究高压条件下油岩界面的相互作用,可以实时了解真实高压条件下,石油组分、驱油添加剂和其他相关化学物质之间的界面相互作用,为您的研究提供了一整套的解决方案。即使是微小的改变,也能对您的工作产生极大的影响,而将您的决定建立在分析科学的基础上,则会增加成功的机会。借助QSense® High Pressure高压模块,我们希望能充分激发您的想象力,通过实验测试、分析讨论和方法优化以得到更好的结果。QSense® High Pressure高压石英晶体微天平是一款可模拟现实高压反应条件的石英晶体微天平分析设备。压力设置高至200Bar,温度设置高至150℃。您也可以对仪器参数进行个性化定制,以满足特定的实验需求。高压石英晶体微天平由高温样品台、高压流动池、高压泵、液体处理单元和电子单元组成 QSense® High Pressure高压石英晶体微天平——专家之选您比我们更了解您的研究领域。然而,无论是努力提高石油产量,防止管道的污染,还是为发动机寻找适合的润滑添加剂,充分地了解反应过程都极具价值。通过提高对油岩界面相互作用的理解,您或许能在未来做出更明智的决定。QSense® High Pressure高压石英晶体微天平——强有力的研究工具QCM-D是耗散型石英晶体微天平的简称。该技术可记录石英晶体芯片的振荡频率和耗散的变化,为在纳米尺度上研究分子与表面的相互作用提供了新的视角。使用QSense® 耗散型石英晶体微天平分析仪,您可以实时跟踪表面上发生的质量、厚度和结构物理特性等变化。QSense® 检测得到的质量吸附/脱附量以及反应速率 模拟现实高压反应条件不同的反应条件下进行的测试可能得到完全不同的结果,而这就是我们开发QSense® 高压石英晶体微天平的驱动力。我们可提供芯片表面定制,以满足您的不同实验需求。基于QCM-D的检测结果,您可实时根据界面反应得出结论,并对反应流程进行优化。1. 在高压和高温的条件下进行QCM-D实验2. 根据您的特定需求选择芯片的材质和涂层3. 使用不同的有机溶剂和样品,筛选实验方案选择QSense® High Pressure高压石英晶体微天平的三个理由:1. 基于对结果至关重要的表面相互作用过程信息做出更明智的决定2. 从表面材料、化学反应、压力和温度等方面模拟真实的反应条件3. 为您的实验室装备一套高灵敏度的科学分析工具QSense® High Pressure高压石英晶体微天平的典型应用领域:石油开采从地下油藏或沥青砂中提取石油需要仔细考虑工艺条件。通过运用科学的分析可找到优化的方法。提高原油采收率聚合物和表面活性剂的使用可以改变注入水的粘度和岩石的润湿性,从而更好地溶解矿物中的石油。测量矿物芯片表面上聚合物或表面活性剂的吸附和释放的原油,可以优化采收液组成并提高原油采收率。使用较少的表面活性剂可以提供更环保的解决方案并降低成本。沥青提取从油砂中提取沥青非常困难。可以使用涂有沥青的二氧化硅芯片模拟油砂并对沥青的释放过程进行分析。通过研究沥青的脱附情况,找出优化的pH和温度条件,进而尽可能地提高采收率。管道流动保障管道污染和堵塞是一个代价高昂的问题。通常通过添加化学物质对管道流动进行保障。防止污垢沉积检测污垢形成的过程,寻找方法或添加剂以减少污垢沉积。使用碳钢芯片模拟管道表面,研究不同条件下原油/沥青质的吸附和释放,进而找出优化的化学成分、表面材料、压力和温度。燃料和润滑油润滑油被广泛用于控制摩擦和增加运动部件的使用寿命。润滑油溶液由各种具有表面活性的化学物质组成。优化发动机润滑油了解表面活性化学物质的吸附性质是找到平衡润滑剂的关键。利用不锈钢芯片研究燃料和润滑油添加剂对发动机性能的影响。实时观察吸附情况,寻找化学物质间的微妙平衡,从而优化润滑油的性能。QSense® High Pressure高压石英晶体微天平的技术参数:芯片和样品处理系统工作温度a4 – 150 °C, 由软件控制,精度为 ± 0.02 °C工作压力90 – 200 bar (与交替蠕动泵联用,也可在常压下工作)芯片数量1芯片表面超过50种标准材料,包括金属、氧化物、碳化物和聚合物例如:金、二氧化硅、不锈钢SS2343 & SS2348、氧化铁、高岭石等其他材料如钢和矿物,可根据客户要求定制测量特性时间分辨率,1个频率 100 个数据点/秒液相质量灵敏度b电子单元参数电源和频率100 / 115-120 / 220 / 230-240 V AC, 50-60 Hz电源应正确接地软件和电脑要求数据采集软件 (QSoft)USB 2.0, Windows XP 或更高版本数据分析软件(QSense Dfind)操作系统:64位Windows 7 SP1, 8, 8.1, 10或更高版本显示器分辨率: 1366×768像素内存:4 GB数据输入/输出格式Excel, BMP, JPG, WMF, GIF, PCX, PNG, TXT尺寸和重量高 (cm)宽 (cm)长 (cm)重量 (kg)电子单元1836219样品池89112高压阀门和控制面板685050ca 30HPLC 泵14264210 a 温度的稳定性取决于环境变化对样品池升温或冷却的影响。如果附近有气流或热源使室温变化超过±1℃,则可能无法达到系统设定的温度稳定性。b 通过标准的QSense® 流动模块采集数据 (单频模式下每5秒采集一个数据点,假定Sauerbrey关系是有效的)。当QSense® 高压系统芯片背面存在液体时,灵敏度会降低。以上技术参数仅对此配置有效。所有技术指标如有更改,恕不另行通知。创新点:1. 市面上所有其他类似产品均无法实现压力控制和高温控制。 2. 高温高压测试是石油工业真是生产场景模拟的必不可少的条件,此产品第一次实现了此情景的界面实时跟踪表征。 QSense High Pressure 高压石英晶体微天平
  • 有机纳米光子路由器研制成功
    低维有机纳米光子路由器   纳米光子学主要研究如何在微纳米尺度上对光子运动进行操纵、调节和控制,在未来信号传播和信息处理方面具有广泛的应用前景。中科院化学所光化学重点实验室的科研人员成功研制出低维有机纳米光子路由器,可实现单点激发、多通道不同的光信号输出。相关结果近日发表于《美国化学会志》,英国皇家化学会《化学世界》杂志也对该成果作了报道。   据了解,该实验室近年来在低维有机材料光子学方面进行了系统的研究。在前期对一维有机光波导材料的研究中,研究人员发现了有机材料中的弗伦克尔激子与光子的强耦合作用所形成的激子极化激元(EP)在有机光子学中的作用机制 进而利用三重态敏化,通过EP传播过程中的双向能量转移作用,实现了稳定白光输出的光波导器件 进一步利用有机晶体材料中的激子极化激元的超高折射率,实现了双光子泵浦有机纳米线激光器。相关工作证实了有机低维材料在纳米光子学中的巨大潜力,为实现基于低维有机材料的光子学功能元件奠定了基础。   在此前研究的基础上,该实验室科研人员联合美国西北大学,从有机纳米线异质结的可控制备入手,利用有机小分子特定的组装与生长特性,通过液相和气相两步法,实现了客体分子在主体分子的一维主干结构上的可控外延生长,从而得到了一维有机分枝型异质结构。将有机异质结构中的荧光共振能量转移(FRET)和光波导性质结合起来,实现了信号可调制的纳米光子路由器。   这些成果为深入研究有机功能分子体系的组装行为,控制合成功能化有机复杂微纳结构,研究复杂结构中光子学的内在机制,以及探索光子通讯与运算中需要的各类元器件提供了重要的借鉴。
  • 安光所孙敦陆研究员团队在2.7~3微米中红外晶体制备及激光性能研究方面取得新进展
    近期,中国科学院合肥物质院安光所孙敦陆研究员课题组在2.7~3微米波段中红外晶体制备及激光性能研究方面取得一系列新进展,相关研究成果分别以《Ho,Pr:YAP晶体的热学、光谱及~3微米连续激光性能》、《Er:YGGAG晶体的结构、光谱与激光性能》和《LD侧面泵浦YSGG/Er:YSGG/YSGG晶体实现28.02瓦的2.8微米连续激光》为题发表在光学领域国际知名期刊Optics Express上,第一作者分别为乔阳博士研究生、陈玙威博士研究生和张会丽副研究员。2.7~3微米中红外激光处于水分子的强吸收带,在生物医疗、光学遥感及非线性光学等领域有着广泛的应用前景。稀土离子Ho3+(钬离子)通过5I6至5I7的辐射跃迁,可产生3微米附近波段中红外激光。然而,Ho3+的激光下能级5I7的荧光寿命较长,容易产生自终止效应,不利于实现激光上、下能级之间的粒子数反转。针对这一问题,我们提出提高激活离子Ho3+的掺杂浓度,同时共掺适量能级耦合离子Pr3+(镨离子),以降低Ho3+激光下能级寿命,抑制自终止效应。采用熔体提拉法,成功生长出了4 at.% Ho3+、0.1 at.% Pr3+共掺YAP晶体,系统开展了晶体结构、晶体质量、热学、光谱及其激光性能的研究。由于退激活离子Pr3+的掺入,其激光下能级寿命由5.391毫秒降至1.121毫秒,同时激光上能级寿命变化较小,表明共掺Pr3+能够有效抑制自终止效应,有利于降低激光阈值、提高激光性能。采用1150纳米拉曼光纤激光器端面泵浦,在Ho,Pr:YAP晶体上实现了最大平均功率502毫瓦的~3微米连续激光输出,相应的斜效率为6.3%。与Ho:YAP晶体相比,其激光阈值降低,最大输出功率及效率均得到了提高。目前,LD泵浦Er:YSGG晶体的中红外脉冲激光已高达数十瓦,而连续激光输出功率仅有瓦级,采用连续LD侧面泵浦有望进一步提高连续激光输出功率。由于在激光运转过程中,激光增益介质内部会产生温度梯度,导致产生各种热效应,限制了激光输出功率和效率的提高。我们通过在Er:YSGG晶体棒的两端键合高热导率的未掺杂YSGG晶体作为端帽,以改善热效应。采用978纳米LD侧面泵浦YSGG/Er:YSGG/YSGG键合晶体,实现了最大平均功率28.02瓦的~2.8微米连续激光输出,这是目前报道的在氧化物晶体中获得最高功率的~2.8微米连续激光输出,相应的斜效率和光-光转换效率分别为17.55%和12.29%。其最大功率和斜效率均高于相同泵浦条件下的未键合Er:YSGG晶体,表明键合可有效改善热效应,提高激光性能。实验测试并理论计算了LD侧面泵浦未键合Er:YSGG晶体和YSGG/Er:YSGG/YSGG键合晶体在不同泵浦功率下的热焦距,结果表明,YSGG/Er:YSGG/YSGG键合晶体更适于在高泵浦功率下工作。以上研究工作得到了国家自然科学基金、替代专项、安徽省自然科学基金和合肥物质院院长基金的支持。
  • 华东师范大学武愕教授团队在中红外单光子光谱学研究中取得重要突破
    近期,华东师范大学重庆研究院武愕教授科研团队在中红外单光子光谱学研究中取得重要突破,利用基于量子关联的波长-时间映射方案实现具有单光子探测灵敏度的中红外光谱学测量,无需依赖于光谱仪、干涉仪或阵列型探测器,有效降低了噪声对单光子光谱测量的影响,为样品的非破坏性检测提供了新方法。研究成果以“Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping”为题,于2024年4月19日在线发表于Science Advances。博士研究生蔡羽洁为论文第一作者,陈昱副研究员、Konstantin Dorfman教授和武愕教授为论文通讯作者。该项工作得到了国家重点研发计划、国家自然科学基金委等项目资助。中红外光谱能够揭示多种分子的基础吸收带和复杂化合物独特的光谱特征,是研究物质结构的重要工具。傅里叶变换红外(FTIR)光谱仪作为中红外光谱的常规测量仪器,主要构成部件为干涉仪系统,除结构复杂、体积庞大外,商售中红外探测器效率低、噪声大等问题严重影响了中红外光谱的研究。中红外频率上转换通过非线性和频过程,将中红外光子与强泵浦耦合并利用硅基单光子探测器实现有效探测。其优势是消除了对中红外探测器和干涉仪的需求,从而实现稳定且紧凑的结构。目前,使用高功率泵浦激光结合高亮度中红外照明是提取高信噪比光谱的直接方法。但在超灵敏中红外频率上转换的相关应用场景中,需要在复杂环境中有效地提取微弱信号,此时强泵浦在非线性晶体中产生的参量噪声难以滤除,影响了探测灵敏度。由于光敏样品和量子相干现象对光学探针的强度存在限制,在中红外上转换光谱中使用的明亮中红外照明并不适合此类应用场景。此外,红外光谱学研究均需要使用光谱仪、干涉仪或昂贵的多像素探测器才可实现中红外光谱采集。面对弱光照下进行样品高灵敏光谱分析的需求,提升探测灵敏度,降低噪声对光谱测量影响并避免机械扫描结构,是亟待解决的关键难点。通过自发参量下转换过程产生宽带关联光子对,分别为波长位于中红外波段的信号光子和近红外波段的预报光子。信号光子通过频率上转换到近红外波段,利用硅基单光子探测器探测。关联的近红外预报光子通过一根10公里的单模光纤,群速度色散允许波长到时间映射的实现。光纤介质内不同频率的光具有不同的速度,将在不同的时刻到达探测器,导致通过色散介质后的脉冲包络会在时域上展宽,从而可以反映出光脉冲的频谱信息。由于上转换光子继承了中红外信号光子的量子相关性,通过对上转换光子和近红外预报光子之间的量子相关性进行符合测量,可以非局域地将中红外信号光子所携带的光谱信息映射到相关测量的时间域中。得益于量子相关性,在每脉冲0.21个光子的中红外光强条件下,30分钟曝光时间的光谱平均信噪比达到了54.6,可以实现嘈杂环境中的弱中红外信号的检测。研究团队在无需光谱仪、单色仪或干涉仪,以及阵列型探测器的情况下,实现了1.18微米宽带中红外单光子上转换光谱探测。
  • 分析仪器的“眼睛”:半导体光探测器——访日本滨松光子学株式会社专务取缔役兼固体事业部部长山本晃永先生
    一般而言,分析仪器的发展可分为两种:一是分析仪器本身、内部的发展,二是分析仪器相关器件的发展所带动的分析仪器的发展。光探测器是光谱类科学仪器的“眼睛”,是搜集信号、进行信号转换的核心、关键部件,其发展对分析仪器产业的发展起着巨大的推动作用。   光电倍增管是大家熟知的光探测器,广泛应用于各类光谱仪器中。但近年来,一些国际仪器生产厂家已开始将ICP、光电直读光谱仪等仪器中采用的光电倍增管逐渐换成了半导体光探测器,其中使用较多的是CCD(Charge-Coupled Devices,电荷耦合检测器)。那么,半导体光探测器能否取代光电倍增管?半导体光探测器技术发展现状与趋势如何?日本滨松公司未来将如何发展半导体光探测技术?该公司是如何看待中国仪器行业?未来将如何拓展中国市场?本文将逐一为大家解答。   日本滨松光子学株式会社(以下简称“日本滨松公司”)是光子技术和光电探测器的世界知名企业,其主要产品有光电倍增管、光电二极管、图像传感器、各种光源、大功率半导体激光器等光器件。该公司固体事业部主要研发、生产各种半导体光电器件及其模块化产品。   2010年9月1日,日本滨松公司固体事业部在北京举办“2010 HAMAMATSU光半导体技术交流会之专家交流会”。日本滨松公司专务取缔役兼固体事业部部长山本晃永先生亲临现场。以此为契机,仪器信息网编辑在专家交流会现场就半导体光探测器的技术发展现状和趋势、日本滨松固体事业部未来的发展方向采访了山本晃永先生。 日本滨松公司专务取缔役兼固体事业部部长山本晃永先生 半导体光探测器的发展现状与趋势   “Photon is Our Business”,日本滨松公司最初是靠光电倍增管起家,主要用该产品来探测肉眼看不见的光子。该公司致力于了解光子以及光子与其他物质的相互作用,将相关技术转化为产品并使其产业化。经过几十年的发展,日本滨松公司不仅不断改良真空管探测器,同时也大力发展了半导体光探测器。   该公司固体事业部多年来一直从事半导体光探测器相关技术的研究。近几年,固体事业部非常重视图像传感器的研发,并在半导体光探测器的集成化、模块化上取得了较大进展。山本晃永先生详细地阐述了滨松的研究成果以及他对半导体光探测器技术发展的看法。 日本滨松公司固体事业部的主要产品   (1)在光探测器领域,从真空管技术到半导体技术是大势所趋   山本晃永先生认为,从真空管技术到半导体技术是大势所趋,日本滨松公司不能逆流而上。光电倍增管虽然是高性能的探测器,公司也对真空管探测器进行了一些改进,如增强其量子效率、使其小型化等,但仍残留一些难以解决的问题,比如操作上玻璃材料的繁难性、高电压的必须性等,这些难题限制了光电倍增管的使用。   但光电倍增管拥有光子探测灵敏度高的固有优势,半导体光探测器不可能完全取而代之,但后者的市场主导优势将日益明显。目前在日本滨松内部,固体事业部的销售额已超过了生产光电倍增管的电子管事业部,占据滨松所有产品总销售额的半壁江山。   日本滨松公司在继续研究真空管技术和半导体技术的基础上,将专心致力于相关模块和系统的开发。总之,所有与光子相关的技术,日本滨松公司都将采取积极的态度。   (2)CCD已发展得比较成熟   随着技术的进步,用于分光光度计、近红外光谱、拉曼光谱等光谱仪器的CCD已发展得比较成熟,其性能已有了很大改进。   日本滨松公司研发出的背面入射(Back-illuminated)CCD图像传感器,能减少CCD的Etaloning Effect(注:Etaloning Effect是存在于非常薄的CCD芯片中,入射光线因为在芯片前、后表面发生光反射而产生干涉,导致CCD分光灵敏度曲线在900nm附近凹凸不平的现象),从而能显著提高图像传感器的灵敏度、量子效率、响应时间以及信噪比。通过拼接技术,滨松将许多CCD加以拼接,使其面积增大。目前最大的CCD平板图像传感器大小可达2mX2m,量子效率非常高,同时对近红外长波的探测能力也大幅提高,可用于天文和宇宙探测领域。目前,全世界大部分的天文望远镜、人造卫星都在使用日本滨松的半导体光探测器产品。 各类CCD图像传感器   (3)CMOS发展前景看好,日本滨松公司力求让其取代CCD   山本晃永先生说到,CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)图像传感器与CCD在生产工艺上有许多相似之处,因其在集成化、生产成本、响应时间、使用方便、耗电量等方面的优势,发展尤为迅速,甚至可能比CCD图像传感器发展更为快速。目前,CMOS和CCD各有所长,CMOS还不能完全取代CCD,但是未来在很多领域CCD会被CMOS所取代。   日本滨松非常看好CMOS的发展前景,在CMOS上倾注很大精力,不断加大该产品的研发力度,力求让CMOS取代CCD。公司针对CMOS的缺点进行了一些改进,引入背面入射技术(back-illuminated)的同时,采用碘化铯作为转化晶体,提高探测器的灵敏度与效率。经过改造之后,APS(Active Pixel Sensor,有源像素传感器,是CMOS的一种)的性能几乎可以做得与CCD一样好。   近期日本滨松推出了多款大小不一、功能各异的CMOS新产品。例如用于牙科检查的CMOS,形状小巧、适合人的嘴型,且可以一次成像 而用于乳腺癌检测的CMOS平板检测器具有面积大、探测速度快、解析度高、低剂量的特点,能避免X射线对人体的伤害。 日本滨松生产的各类CMOS图像传感器   (4)MOEMS、MEMS促成了半导体光探测器的模块化、小型化   MOEMS(Micro-Opto-Electro-Mechanical System,微光机电系统)是在MEMS(Micro-Electro-Mechanical Systems,微机电系统)基础上发展起来的新技术,该系统把微光学元件、微电子和微机械装置有机地集成在一起,能够充分发挥三者的综合性能,可实现光学元件间的自对准,可用于光学器件和装置的制造。   日本滨松公司不仅生产各类半导体探测器,还生产与各种探测器相关的信号处理电路、数据采集卡以及模块产品。固体事业部充分利用MOEMS与MEMS技术,在光电二极管、雪崩二极管、图像传感器等产品的基础上,生产出了光电二极管电路及模块、硅雪崩二极管模块、图像传感器模块等模块化产品。以CMOS图像传感器为例,采用MOEMS技术可将图像传感器、光栅、后续电路加工在同一块硅片上,这样实现了元器件的集成化、小型化,同时也方便用户的使用。 小型分光计系列产品 拇指大小的超小型分光计   近期研发出来的超小型分光计,采用了MEMS的纳米压印(NanoTechnology)技术,只有拇指大小,敏感波长范围为340-750nm。从产品到产品模块、系统,这将是日本滨松公司固体事业部以后所要坚持的方向。   随着时代的发展,人们对于小型、可携带的东西的需求将增加。在日本,一些测试化妆品美白效果的小仪器很流行,类似的小型仪器在美国也很受欢迎。分析仪器、医疗仪器要走进寻常百姓家,就必然要求其小型化,而仪器小型化必然要求其器件也小型化。半导体技术就是满足这种需求的有效手段,其目前发展的重要主题是MEMS,而NanoTechnology(纳米技术)应该是关键。   从真空管技术到半导体技术、MEMS、纳米技术,这是滨松技术的变迁。未来几年,日本滨松公司仍要彻底地钻研这些技术,这是不变的方针。而唯一要改变的是各项技术的开发速度。技术开发得越早,日本滨松的产品在技术上就越有竞争力,这是很重要的。 与会滨松高层   (日本滨松光子学株式会社专务取缔役兼固体事业部部长山本晃永先生(右二)、北京滨松光子技术股份有限公司总经理席与霖先生(左二)、北京滨松光子股份有限公司总经理助理兼第一事业部部长段鸿滨先生(左一)、日本滨松光子学株式会固体事业部伊藤伸治先生(右一)) 与会专家   (从左到右依次为:中国仪器仪表行业协会朱明凯副理事长、国家地质测试实验中心杨啸涛研究员、中科科仪原董事长金鹤鸣先生、中国分析测试协会汪正范研究员) 滨松将加大半导体光探测器在中国市场的推广力度   采访中,山本晃永先生表达了对中国科学仪器行业发展情况的看法:中国科学仪器行业正蓬勃发展,虽然目前日本滨松的半导体光探测器在中国的用户并不是很多,但公司更重视中国市场,将把最新的产品和技术推广到中国来。   (1)中国科学仪器行业必将崛起,其市场容量巨大   回顾过往,手机、计算机在中国发展都很快,下一步中国的仪器仪表行业一定也会快速发展。医疗仪器、分析仪器都与人们的健康密切相关。中国人口是日本的十倍,这意味着如果中国仪器行业发展起来,那么其市场容量可能会是日本的10倍。而跟科学仪器发展密切相关的就是仪器探测器件的发展。   满足用户的需求始终是日本滨松公司努力的方向。作为仪器元器件的供应商,日本滨松公司一定要领先市场一步,这样才能提供市场需要的产品。虽然中国科学仪器行业可能还需要十年、二十年才能发展起来,但日本滨松对此非常有耐心,会非常关注中国市场需要什么样的技术和产品,也会不断地研发新产品去满足这些需求。   (2)加大半导体光探测器在中国分析仪器行业的推广力度   山本晃永先生介绍了日本滨松中国用户的一些情况。滨松固体事业部生产的各式各样的半导体探测器有50%销往国外,其余在日本国内销售。许多国际知名的仪器生产商都在使用滨松的探测器。但在中国,虽有仪器企业也使用滨松的半导体探测器,但是数量较少。   日本滨松公司固体事业部的约50%的产品都应用于医疗仪器,这个领域仍然是其非常重视的领域。同时,因为医疗仪器与分析仪器存在许多相似之处,所以日本滨松公司打算将在医疗仪器领域的优势发展到分析仪器等领域。   同时,该公司将加强与中国用户的沟通与交流,加大市场推广力度,把固体事业部的半导体光电器件的新技术、新产品介绍给中国用户,同时也要告诉他们如何选择、使用和应用滨松的产品,希望能为中国仪器行业的发展尽一份力。 采访现场  后记   在采访过程中,笔者仔细聆听山本晃永先生对仪器企业发展的一些看法,他提到:“小规模的科学仪器企业若没有特色,就没有发展潜力与市场竞争力。岛津、贝克曼等国际知名企业都是由有特色的小企业发展起来的。企业规模小并不可怕,可怕的是小企业没有自己的特色、随波逐流,只知模仿重复,不知发明创造,最终导致价格竞争,互相残杀。日本滨松公司虽然是一家小公司,但一直很努力地研发光子相关的各种技术与产品,希望能够通过公司的产品来促进科学仪器行业的发展。”   也许,日本滨松公司能够发展壮大就在于它五十余年来一直坚持自己的特色,将主要精力集中在自己优势的光探测器领域,因而能在仪器光电元器件市场上占有其他公司不可替代的一席之地。然而相比之下,目前国内科学仪器企业总体“大不够大,小不够专”,仪器元器件企业发展更是缓慢,这些客观因素决定中国仪器行业短时间内或不会有较大改观。同时, 中国仪器生产企业不仅只盯着整机仪器的研发,也不能忽视仪器元器件的开发。   采访编辑:杨丹丹   附录1:山本晃永先生简介   1970年3月毕业于静冈大学研究生院工学部应用化学专业   1970年3月入职日本滨松公司   1985年1月就任日本滨松公司固体事业部部长至今   1985年12月就任取缔役   1987年12月就任常务取缔役   2004年12月就任专务取缔役   2005年7月就任代表取缔役专务取缔役   附录2:日本滨松光子学株式会社   http://www.hamamatsu.com/   附录3:北京滨松光子技术股份有限公司   http://www.bhphoton.com/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制