当前位置: 仪器信息网 > 行业主题 > >

固体稀释仪

仪器信息网固体稀释仪专题为您提供2024年最新固体稀释仪价格报价、厂家品牌的相关信息, 包括固体稀释仪参数、型号等,不管是国产,还是进口品牌的固体稀释仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固体稀释仪相关的耗材配件、试剂标物,还有固体稀释仪相关的最新资讯、资料,以及固体稀释仪相关的解决方案。

固体稀释仪相关的论坛

  • 固体饮料添加剂测试问题

    我有一固体饮料,测试环己基氨基磺酸钠(甜蜜素)含量,GB 2760中限值是≤0.65m/kg(固体饮料按稀释倍数增加使用量)。我现在的固体饮料是4g小包装,使用时冲调至100mL,即稀释25倍。那我测试环己基氨基磺酸钠时,是直接用固体试样测试?还是将试样溶解至100mL,按液体样品测试呢?

  • 测固体粉末样品时标准样品如何选择?

    众所周知的是,在使用紫外可见分光光度计测量液体样品的含量时,标准样品也是不同浓度的液体样品,这个较为容易配制(将标准母液稀释定溶即可)。可是当样品为固体粉末样品时,虽然可以使用积分球和粉末样品盒来检测,但是标准如何选定呢?如何将标准制作成不同浓度含量的粉末标准呢?

  • 固体食品作金黄色葡萄球菌检测

    固体食品作金黄色葡萄球菌检测时,取10倍稀释液5ml接种于7.5%NaCl或胰酪胨大豆肉汤()中,置温箱培养。 A、10ml B、50ml C、100ml D、150ml

  • 固体饮料添加剂测试问题

    [color=#444444]我有一固体饮料,测试环己基氨基磺酸钠(甜蜜素)含量,[/color][color=#444444]GB 2760[/color][color=#444444]中限值是[/color][color=#444444]≤0.65m/kg[/color][color=#444444](固体饮料按稀释倍数增加使用量)。我现在的固体饮料是[/color][color=#444444]4g[/color][color=#444444]小包装,使用时冲调至[/color][color=#444444]100mL[/color][color=#444444],即稀释[/color][color=#444444]25[/color][color=#444444]倍。那我测试环己基氨基磺酸钠时,是直接用固体试样测试?还是将试样溶解至[/color][color=#444444]100mL,[/color][color=#444444]按液体样品测试呢?[/color]

  • 用固体培养基对微生物进行分离纯培养

    单个微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体,称为菌落(colony)。当固体培养基表面众多菌落连成一片时,便成为菌苔(lawn)。不同微生物在特定培养基上生长形成的菌落或菌苔一般都具有稳定的特征,可以成为对该微生物进行分类、鉴定的重要依据。大多数细菌、酵母菌、以及许多真菌和单细胞藻类能在固体培养基上形成孤立的菌落,采用适宜的平板分离法很容易得到纯培养。所谓平板,即培养平板(culture plate)的简称,它是指固体培养基倒入无菌平皿,冷却凝固后,盛固体培养基的平皿。这方法包括将单个微生物分离和固定在固体培养基表面或里面。固体培养基用琼脂或其它凝胶物质固化的培养基,每个孤立的活微生物体生长、繁殖形成菌落,形成的菌落便于移植。最常用的分离、培养微生物的固体培养基是琼脂固体培养基平板。这种由Kock建立的采用平板分离微生物纯培养的技术简便易行,100多年来一直是各种菌种分离的最常用手段。   1. 稀释倒平板法(pour plate method)  先将待分离的材料用无菌水作一系列的稀释(如1:10、1:100、1:1,000、1:10,000......),然后分别取不同稀释液少许,与已熔化并冷却至50℃左右的琼脂培养基混合,摇匀后,倾入灭过菌的培养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出现菌落。如果稀释得当,在平板表面或琼脂培养基中就可出现分散的单个菌落,这个菌落可能就是由一个细菌细胞繁殖形成的。随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。   2. 涂布平板法(spread plate method)  由于将含菌材料先加到还较烫的培养基中再倒平板易造成某些热敏感菌的死亡,而且采用稀释倒平板法也会使一些严格好氧菌因被固定在琼脂中间缺乏氧气而影响其生长,因此在微生物学研究中更常用的纯种分离方法是涂布平板法。其做法是先将已熔化的培养基倒入无菌平皿,制成无菌平板,冷却凝固后,将一定量的某一稀释度的样品悬液滴加在平板表面,再用无菌玻璃涂棒将菌液均匀分散至整个平板表面,经培养后挑取单个菌落。  3. 平板划线法(streak plate method)  用接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来,如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。   4. 稀释摇管法(dilution shake culture method)  用固体培养基分离严格厌氧菌有它特殊的地方。如果该微生物暴露于空气中不立即死亡,可以采用通常的方法制备平板,然后置放在封闭的容器中培养,容器中的氧气可采用化学、物理或生物的方法清除。对于那些对氧气更为敏感的厌氧性微生物,纯培养的分离则可采用稀释摇管培养法进行,它是稀释倒平板法的一种变通形式* 。先将一系列盛无菌琼脂培养基的试管加热使琼脂熔化后冷却并保持在50℃左右,将待分离的材料用这些试管进行梯度稀释,试管迅速摇动均匀,冷凝后,在琼脂柱表面倾倒一层灭菌液体石蜡和固体石蜡的混合物,将培养基和空气隔开。培养后,菌落形成在琼脂柱的中间。进行单菌落的挑取和移植,需先用一只灭菌针将液体石蜡--石蜡盖取出,再用一只毛细管插入琼脂和管壁之间,吹入无菌无氧气体,将琼脂柱吸出,置放在培养皿中,用无菌刀将琼脂柱切成薄片进行观察和菌落的移植。

  • 固体标准品配制

    固体标准品在配制标准溶液曲线时是如何操作的?用溶液稀释后的浓度如何计算才是正确的?直接用天平称量后用溶剂容解,将百分比换算成PPM值还是需分不同的物质根据其化学式和分子量去计算呢?请楼上楼下,左邻右舍的朋友们帮帮忙,谢谢

  • 【讨论】固体制剂溶解定容体积的问题

    定量检测时, 一般是称取适量的样品溶于容量瓶中,在分析主药含量较少(要求做含量均匀度的固体制剂)的药品时,取样量往往比较多,但常常不溶性辅料也很多,影响了实际定容体积,这时,加入的溶剂体积与容量瓶的实际体积有较大差距,还能以容量瓶的体积做的计算稀释倍数代入计算吗?

  • 【讨论】注射剂(固体样品)如何测定含量?

    想到一个问题:如果注射剂是冻干粉针或者注射用***,每个西林瓶的样品是如何测定含量的?A.取多支样品,分别加入溶剂使之完全溶解后,倒出混匀,精密量取适量,再稀释为规定方法的样品浓度,进行液相含量测定。B.取固体粉末,测定装量差异后,将粉末混合,按照平均装量称量样品,再按照标准溶解,稀释为规定方法的样品浓度,进行液相含量测定。应该选哪一个?谢谢![em44]

  • ICP-oes 做固体废弃物

    在第三方检测公司,现在准备申请固废的检测资质。使用的时《HJ 781-2016 固体废物 22种金属元素的测定 电感耦合等离子体发射光谱法》因为固体废弃物没有相应的标准物质,使用土壤标样作为参考。测定时,可能因为基体的原因,有连续背景干扰,通过调整背景,得到与标准样品相符合的值(其中钛与标准样品相差几十倍)。但一旦将标准样品稀释(5倍),测定值与标准值一个都无法对应。那怎么样才能更加准确的测定各元素呢。

  • 【求助】固体酶没有完全溶解,怎么办?

    做生物样品,加了固体酶,发现很难溶解,稀释到2600units/ml了(即2mg加2ml缓冲溶液),发现还有大部分酶没有溶解,有什么办法可解决这个问题?(保证酶的浓度大于2000units/ml的情况下)

  • 固体制剂稳定性

    (一)固体制剂稳定性特点  1、复杂性  固体制剂为一多相系统,有固相、液相(吸附的水和溶剂)、气相(空气与水气),三相的组成与状态常发生变化,影响实验结果。其中水分的影响最大,有时温度升高,反应速度下降,原因是水分减少;各组分之间的相互作用可导致成分分解,如对乙酰氨基酚与乙酰水杨酸之间的乙酰基转移反应,使乙酰水杨酸分解。  2、系统不均匀性  每片主药含量与水分含量不相同,分析结果重现性差;氧化作用局限于固体表面,而将内部分子保护起来,使表里不一。  3、反应速度缓慢  固体药物降解速度较慢,需要较长时间和精确的分析方法;温度对反应速度的影响,一般仍可用阿仑尼乌斯定律描述,但当反应达到平衡后,则不宜再使用。  4、反应类型的多样化  既有氧化、水解等化学变化,也有晶型转换等物理变化。  (二)影响固体制剂稳定性的因素  1、药物的晶型  同一药物,不同晶型,其溶解度、稳定性、熔点、密度、蒸气压等也不同。如醋酸可的松使用不合要求的晶型制成的混悬液可导致结块;利福平的无定型在70℃/15天,含量下降15%,而晶型A、B只下降1-4%.  2、含水量  对于在水中发生水解而水量又不足以溶解所有的药物时,每单位时间药物降解的量与含水量成正比。如氨苄青霉素钠的水分应控制在1%以下,否则水分增加则稳定性显著下降。  3、温度  温度升高,一般反应速度增加;但由于含水量下降,有时反而有利于稳定稳定。故实验过程应控制含水量不变。  4、湿度  当大气中的水蒸气压(PA)大于药物表面的饱和溶液蒸气压(P)时,固体开始吸湿。吸湿速度与(PA-P)、表面积成正比。故应控制湿度在药物的临界相对湿度以下。  5、光线  光线影响易光解和氧化的药物,应注意避光操作、避光贮存。  (三)稳定性试验方法  1、试验应注意的问题  由于固体制剂的特殊性,试验时应特别注意以下事项:  (1)每个样品必须测定水分,加速试验过程中也要测定;(2)样品必须用密封容器;(3)测定含量和水分的样品,要分别单次包装;(4)固体制剂含量应均匀;(5)药物颗粒的大小及分布应一致;(6)实验温度不宜过高,以60℃以下为宜。  2、试验方法  固体制剂的稳定性试验方法基本与液体制剂相同,常用的也是留样观察法和加速实验法,而经加速试验后药物间或药物与辅料间的相互作用及稳定性可用热分析法和温反射法来判断。  (1)热分析法  通过观察热分析曲线形状的改变,判断药物间的相互作用、稳定性情况,包括差示热分析法(DTA)、差示扫描量热法(DSC)。  (2)漫反射光谱法  药物间反应后,有时会变色;当光线照射在样品表面时,部分光线被样品吸收,部分光线从样品表面向各个方向反射(漫反射),测定反射率,判断药物-辅料或药物-药物有无相互反应、有否化学吸着作用。本法常用于片剂赋形剂筛选的常规试验。

  • TOC分析仪 固体进样

    有个问题想向大家请教下:好像艾力蒙塔的TOC分析仪有一点介绍是,带有固体进样器可以直接固体进样,这个跟TOC分析仪配备固体进样单元的区别是什么呢?如果选配的话,我还可以选择不配还能省点钱,直接可以固体进样会不会仪器就贵了?还是说在使用上确实有很大区别呢?一般都测什么固体呢?[img]https://simg.instrument.com.cn/bbs/images/default/emyc1010.gif[/img]

  • 【求购】固体含量分析仪

    请问有没有"固体含量分析仪"的卖家?就是分析一中溶液中固体成份含量的设备,我找了好久也没找到.大家帮个忙啊.有的请按下面的方法联系我:Tel:075533858027联系人:杨小姐

  • 【金秋计划】+固体核磁共振新进展!揭示固体催化剂表面物种吸附状态

    [size=16px][font=arial][color=#222222]近日,中国[/color][/font][font=arial][color=#222222]科学院[/color][/font][font=arial][color=#222222]大连化学物理研究所研究员侯广进团队利用高压原位固体核磁共振(NMR)技术,揭示了部分还原氧化铈催化剂表面上非解离吸附活化双氢物种的独特化学状态。相关成果发表在《美国化学会志》上。 [/color][/font] 氢气在固体催化剂表面的吸附活化是合成氨、合成气转化、储氢等诸多能源化工过程的关键步骤,这引发了研究人员对于催化剂表面氢物种化学状态及催化功能的研究兴趣。然而,受限于表面氢物种环境敏感的特点及固体催化剂表面结构复杂性问题,对催化剂表面氢物种的实验观测存在挑战。因此,亟需发展对表面氢物种的原位、高分辨分析方法,以研究其吸附位点、电子与几何结构、与催化剂的相互作用及对催化反应的影响等重要科学问题。 固体核磁共振技术是高分辨研究催化剂表面吸附物种的重要谱学技术。然而,常规的非原位固体核磁共振方法难以研究表面氢物种在内的气氛敏感的活性物种的真实化学状态。侯广进团队前期克服技术挑战,开发出了高温高压原位固体核磁共振技术,该技术具有较宽的压力和温度操作窗口,并用于固、液、气等多相体系的原位固体核磁共振研究中,揭示了材料合成机制、气体吸附、主客体相互作用、催化反应路径及动力学等关键科学问题。 本工作中,研究人员利用高压原位固体核磁共振技术,研究了氧化铈催化剂表面氢物种的化学状态。团队通过引入HD气体,原位动态下采集二维J耦合2H-1H相关谱,发现并证明了部分还原氧化铈表面存在非解离吸附的双氢物种。团队进一步通过精准测量其J耦合常数及运动弛豫的NMR分析,确定了该双氢物种的活化吸附状态,揭示了HD分子吸附在催化剂表面,H-D键被活化拉长。随后,团队与西安交通大学常春然教授理论计算团队合作,结合不同还原程度的氧化铈吸附氢气的原位1H NMR观测及DFT计算结果,证实了该双氢物种的吸附状态,及其与氧化铈表面氧空位缺陷之间的关联。此外,研究人员借助乙烯加氢的探针反应,利用原位NMR技术观测到了该物种的催化转化过程。 该工作有助于加深对固体催化剂表面氢气吸附活化过程的认识,相关研究分析方法也有望拓展用于研究其它气体的吸附转化过程,从而指导相关催化剂和催化过程的精准设计。[/size]

  • 稀释溶液用的容量瓶使用规程和注意事项

    [b] 稀释溶液用的容量瓶使用规程和注意事项[/b]容量瓶是一种细颈梨形平底的玻璃瓶,带有玻璃磨口塞或塑料塞,颈上有一环形标线,表示在所指定的温度(一般为20℃)下液体充满标线时,液体的体积恰好等于瓶上所标明的体积(如瓶上标有“E20℃250mL”字样,“E”指“容纳”意思,表示这个容量瓶若液体充满至标线,20℃时恰好容纳250mL)。容量瓶常用来把某一数量的浓溶液稀释到一定体积,或将一定量的固体物质配成一定体积的溶液。[b]试漏:[/b]使用前,应先检查容量瓶瓶塞是否密合,为此,可在瓶内装入自来水到标线附近,盖上塞,用手按住塞,倒立容量瓶,观察瓶口是否有水渗出,如果不漏,把瓶直立后,转动瓶塞约180度后再倒立试一次。为使塞子不丢失不搞乱,常用塑料线绳将其栓在瓶颈上。[b]洗涤:[/b]先用自来水洗,后用蒸馏水淋洗2~3次。如果较脏时,可用铬酸洗液洗涤,洗涤时将瓶内水尽量倒空,然后倒入铬酸洗液10~20mL,盖上盖,边转动边向瓶口倾斜,至洗液布满全部内壁。放置数分钟,倒出洗液,用自来水充分洗涤。再用蒸馏水淋洗后备用。[b]转移:[/b]若要将固体物质配制一定体积的溶液,通常是将固体物质放在小烧杯中用水溶解后,再定量地转移到容量瓶中,用一根玻璃棒插入容量瓶内,烧杯嘴紧靠玻璃棒,使溶液沿玻璃棒慢慢流入,玻璃棒下端要靠近瓶颈内壁,但不要太接近瓶口,以免有溶液溢出。待溶液流完后,将烧杯沿玻璃棒稍向上提,同时直立,使附着在烧杯嘴上的一滴溶液流回烧杯中。残留在烧杯中的少许溶液,可用少量蒸馏水洗3~4次,洗涤液按上述方法转移合并到容量瓶中。如果固体溶质是易溶的,而且溶解时又没有很大的热效应发生,也可将称取的固体溶质小心地通过干净漏斗放入容量瓶中,用水冲洗漏斗并使溶质直接在容量瓶中溶解。如果是浓溶液稀释,则用移液管吸取一定体积的浓缩液,放入容量瓶中,在按下述方法稀释。[b]稀释:[/b]溶液转入容量瓶后,加蒸馏水,稀释到约3/4体积是,将容量瓶平摇几次(切勿倒转摇动),作初步混匀。这样又可避免混合后体积的改变。然后继续家蒸馏水,近标线时应小心地逐滴加入,直至溶液的弯月面与标线向切为止。盖紧塞子。[b]摇匀:[/b]左手食指按住塞子,右手指尖顶住瓶底边缘,将容量瓶倒转并振荡,再倒转过来,仍使气泡上升到顶,如此反复15~20次,即可混匀。[b]注意事项:[/b](1)不要用容量瓶长期存放配好的溶液。配好的溶液如果需要长期存放,应转移到干净的磨口试剂瓶中。(2)容量瓶长期不用时,应该洗净,把塞子用纸垫上,以防时间久后,塞子打不开。

  • 基础学习一:关于水中固体的种类和测量

    这是我总结的关于水中固体物质的术语和相应的测量,各位给指点下,看哪些理解有误,刚来学习,希望大家多多帮助。其中图件缺失,发在附件里了。3水中物质形态3.1 分类由于采用的标准不同,水中物质存在形态的类别有所不同。3.1.1从物质颗粒大小出发从水中物质存在的粒径大小的角度,水中物质可分为三类:1)悬浮物质:水中的悬浮物质是颗粒直径约在10-4mm(0.1μm)以上的颗粒。肉眼可见。这些微粒主要是由泥沙、沾土、原生动物、藻类、细菌、病毒、以及高分子有机物等组成,常常悬浮在水流之中,水产生的浑蚀现象,也都是由此类物质所造成。这些微粒很不稳定,可以通过沉淀和过滤而除去。水在静置的时候,重的微粒(主要是砂子和粘土一类的无机物质)会沉下来。轻的微粒(主要是动植物及其残骸的一类有机化合物)会浮于水面上,用过滤等分离方法可以除去。悬浮物是造成浊度、色度、气味的主要来源。它们在水中也不稳定,往往随着季节、地区的不同而变化。2)胶体物质:水中的胶体物质是指直径在10-4 ~10-6mm(0.001-0.1μm)之间的微粒。胶体是许多分子和离子集合物。天然水中的无机矿物质胶体主要是铁、铝和硅的化合物。水中的有机胶体物质主要是植物或动物的肢体腐烂和分解而生成的腐殖物。其中以湖泊水中的腐殖质含量最多,因此常常使水呈黄绿色或褐色。 由于胶体物质的微粒小,重量轻,单位体积所具有的表面积很大,故其表面具有较大的吸附能力,常常吸附着多量的离子而带电。同类胶体因带有同性的电荷而相互排斥,在水中不能相互粘合而处于稳定状态。所以,胶体颗粒不能藉重力自行沉降而去除,一般是在水中加入药剂破坏其稳定,使胶体颗粒增大而沉降予以去除。3)溶解物质:水的溶解物质是直径小于或等于10-6mm(0.001μm)的微小颗粒。主要是溶于水中的以低分子存在的溶解盐类的各种离子和气体。溶解物质可以用离子交换或除盐等方法予以去除。3.1.2从地球化学分析出发从水化学分析角度出发,水中物质分为两类:1)悬浮物质:粒径0.45μm的物质;2)溶解物质:粒径0.45μm的物质,包含有上一类的部分悬浮物质、全部胶体和溶解物质。即,在水化学中,0.45μm的滤膜时用来区分“dissolved”和“suspended”chemical constituents的标准。(注:微米:1μm=0.001mm。头发直径:75μm,肉眼可见最小黑点:40μm。)3.2测定项在水化学中,表示水中固体物质的指标较多,归纳起来有以下几种(参看:中華民國92 年10 月3 日環署檢字第0920072114 號公告):1)总固体重(TS):将搅拌均匀的水样在103~105℃下烘干至恒重,所得固体重量即为总固体重;2)悬浮固体重(SS):将搅拌均匀的水样以0.45μm的玻璃纤维滤片过滤,在103~105℃下将滤片烘干至恒重,所得固体重量即为悬浮固体重;3)总溶解固体重(DS):将总固体重减去悬浮固体重或将水样先经玻璃纤维滤片过滤后,其滤液在103~105℃下烘干至恒重,所得固体重量即为总溶解固体重。注意:在某些文献中,将直接测定的总溶解固体重称为溶解性固体,其重量加上重碳酸盐含量的一半(重碳酸盐在干燥时分解失去二氧化碳而转化为碳酸盐)才被认为溶解性总固体(参看:http://www.hygiene.cn.net/bzjyff/water/mwater9r.htm)。在此基础上,还可根据各固体种类的特性细分,见图2-1(此图出自何方?)。3.3取样采样时须使用抗酸性的玻璃瓶或塑料瓶,以免悬浮固体吸附于器壁上。分析前均应保存在4℃的暗处,以避免固体被微生物分解。采样后尽快检测,最长保存期限为7天。3.4测试原理总固体重、悬浮固体重和总溶解固体重的测试方法和步骤在文献中介绍较详细。主要是要注意恒重的定义,此处选择GB11901-89标准的规定,前后质量差≤0.2mg。如果考虑重碳酸盐的分解挥发,则溶解总固体的计算不能直接利用滤液烘干后前后质量的差来表示,而需将挥发跑掉的H2CO3增加进来,按下式计算(参看:饮用天然矿泉水检验方法1): ............................(1)式中: ρ──水样的溶解性总固体,mg/L;m1──蒸发皿质量,g;m2──蒸发皿和溶解性固体质量,g;V──水样体积,mL;ρ(HCO3-)──重碳酸盐的质量浓度,mg/L(必须先通过滴定求得)。当水样存在永久硬度时,构成永久硬度的钙、镁离子在蒸干时形成硫酸盐和氯化物,用105℃干燥法测定时,由于钙镁的硫酸盐所含结晶水不能去除完全,将使结果偏高;钙、镁的氯化物由于具有很强的吸湿性,对测量精度也将产生影响。向水样中预先加入适量的碳酸钠,使钙、镁离子在蒸干后形成碳酸盐,并在180℃干燥,将使上述影响得以消除(参看:http://www.hygiene.cn.net/bzjyff/water/mwater9r.htm。[em01] [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18755]水中物质形态[/url]

  • 样品消解后稀释问题

    0.1g固体样品,加入2mL浓硝酸消解,要稀释50倍进样ICPMS,但是酸度又要5%。有什么好办法。

  • 请教:固体光气有关的如下文字解释。

    用固体光气时,视具体反应体系而定,一般说来体系中若含有引发其分解的物质(有机胺,活性碳,有机碱)时,无需加任何引发剂,反应即可顺利进行。否则,则加入1-5%(本品重量)的DMF或吡啶等有机碱于另一相(一般分为两相反应,一相为固体光气溶液,另一相为与光气反应物质),控制一相滴加到另一相的速度来控制反应进行的速度。BTC的溶剂有苯、氯仿、二氯乙烷、环已烷等,该溶剂应不是引发其分解的物质,而另一相的溶剂最好是以引发其分解的溶剂。-------------------------------------------------------------------------------------------------------上面是固体光气反应成光气的文字说明(也就是添加其它物质产生光气的过程)。具体的说明是:(一)固体光气加入引发剂可直接反应生成光气,(二)固体光气还可加入溶剂溶解后再加入引发剂产生光气(其溶解剂应是不含引发剂的成份)。 那么请问: (1) 上面说明有引发分解的物质非常广泛(有机胺,活性碳,有机碱),请问这其中常用的有机胺有哪些?请举例说明几个;另外固体的有机胺是否不行,是否需液体的?(2)上面所说的溶解剂有苯、氯仿、二氯乙烷、环已烷等(不含引发剂),需用时加入1-5%(本品重量)是不是这样? 谢谢!问题补充: (固体的有机胺是否不易引发?是否要液体的有机胺?)

  • 【分享】现行固体废物监测方法标准目录一览

    标准编号 标 准 名 称 实施日期 HJ 77.3-2008 固体废物 二噁英类的测定 同位素稀释高分辨[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-高分辨质谱法 2009-4-1 HJ/T 298-2007 危险废物鉴别技术规范 2007-7-1 HJ/T 299-2007 固体废物 浸出毒性浸出方法 硫酸硝酸法 2007-5-1 HJ/T 300-2007 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法 2007-5-1 GB 5085.1-2007 危险废物鉴别标准 腐蚀性鉴别 2007-10-1 GB 5085.2-2007 危险废物鉴别标准 急性毒性初筛 2007-10-1 GB 5085.3-2007 危险废物鉴别标准 浸出毒性鉴别 2007-10-1 GB 5085.4-2007 危险废物鉴别标准 易燃性鉴别 2007-10-1 GB 5085.5-2007 危险废物鉴别标准 反应性鉴别 2007-10-1 GB 5085.6-2007 危险废物鉴别标准 毒性物质含量鉴别 2007-10-1 GB 5085.7-2007 危险废物鉴别标准 通则 2007-10-1 HJ/T 85-2005 长江三峡水库库底固体废物清理技术规范 2005-6-13 HJ/T 153-2004 化学品测试导则 2004-6-1 HJ/T 154-2004 新化学物质危害评估导则 2004-6-1 HJ/T 155-2004 化学品测试合格实验室导则 2004-6-1 HJ/T 20-1998 工业固体废物采样制样技术规范 1998-7-1 GB 5086.1-1997 固体废物 浸出毒性浸出方法 翻转法 1997-12-1 GB 5086.2-1997 固体废物 浸出毒性浸出方法 水平振荡法 1997-12-1 GB/T 16310.1-1996  船舶散装运输液体化学品危害性评价规范 水生生物急性毒性试验方法 1996-12-1 GB/T 16310.2-1996  船舶散装运输液体化学品危害性评价规范 水生生物积累性试验方法 1996-12-1 GB/T 16310.3-1996  船舶散装运输液体化学品危害性评价规范 水生生物沾染试验方法 1996-12-1 GB/T 16310.4-1996  船舶散装运输液体化学品危害性评价规范 哺乳动物毒性试验方法 1996-12-1 GB/T 16310.5-1996  船舶散装运输液体化学品危害性评价规范 危害性评价程序与污染分类方法 1996-12-1 GB/T 15555.1-1995 固体废物 总汞的测定 冷[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 1996-1-1 GB/T 15555.2-1995 固体废物 铜、锌、铅、镉的测定 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 1996-1-1 GB/T 15555.3-1995 固体废物 砷的测定 二乙基二硫代氨基甲酸银分光光度法 1996-1-1 GB/T 15555.4-1995 固体废物 六价铬的测定 二苯碳酰二肼分光光度法 1996-1-1 GB/T 15555.5-1995 固体废物 总铬的测定 二苯碳酰二肼分光光度法 1996-1-1 GB/T 15555.6-1995 固体废物 总铬的测定 直接吸入火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 1996-1-1 GB/T 15555.7-1995 固体废物 六价铬的测定 硫酸亚铁铵滴定法 1996-1-1 GB/T 15555.8-1995 固体废物 总铬的测定 硫酸亚铁铵滴定法 1996-1-1 GB/T 15555.9-1995 固体废物 镍的测定 直接吸入火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 1996-1-1 GB/T 15555.10-1995 固体废物 镍的测定 丁二酮肟分光光度法 1996-1-1 GB/T 15555.11-1995 固体废物 氟化物的测定 离子选择性电极法 1996-1-1 GB/T 15555.12-1995 固体废物 腐蚀性测定 玻璃电极法 1996-1-1

  • 【讨论】讨论关于原吸的固体进样?

    看见有版友提及固体进样,觉的是原吸的一个优势,一个创新的地方,是一个卖点但是我持有不同意见:首先面临的一个问题就是标准样品的问题,你的样品是固体进样了,可现在据我所知,还没有固体的标样?你用液体的标样和固体的样品来进行比较定量,结果不得而知,不知道有人研究这方面嘛?希望有专家解释一下,谢谢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制