当前位置: 仪器信息网 > 行业主题 > >

共焦显微仪

仪器信息网共焦显微仪专题为您提供2024年最新共焦显微仪价格报价、厂家品牌的相关信息, 包括共焦显微仪参数、型号等,不管是国产,还是进口品牌的共焦显微仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合共焦显微仪相关的耗材配件、试剂标物,还有共焦显微仪相关的最新资讯、资料,以及共焦显微仪相关的解决方案。

共焦显微仪相关的资讯

  • HORIBA推出精巧型全自动显微共焦拉曼光谱仪XploRA
    研究级带显微镜的激光拉曼光谱仪,通常体积庞大,无法移动。然而,HORIBA Scientific (Jobin Yvon 光谱技术)的新款精巧型全自动显微共焦拉曼光谱仪——XploRA,采用创新技术设计并制造,将高精度显微拉曼测量仪器的体积缩小至便于移动的同时,仍然保持了光栅光谱仪制造专家 Jobin Yvon 显微共焦功能的高性能。 ◎ 多激发波长的可移动显微拉曼光谱仪 通常的便携式拉曼光谱仪不可以有多个激发波长,但 XploRA 可以内置 3 个激光器,并且激发波长完全自动切换。 ◎ 可以改变光谱分辨率的可移动显微拉曼光谱仪 全自动切换4块内置光栅,自由选择多种光谱分辨率。 ◎ 真正意义的全自动化操作 从切换波长到变化分辨率,完全自动操作; 自动校准功能和自检功能,自动跟踪仪器状态。 ◎ 一键式入门功能 对于固体和液体样品,只需一个按钮,即可进行结构鉴定,并获得化学图像。 ◎ 中文软件操作界面 使拉曼分析变得前所未有的简单。
  • 慧眼识宝——共焦显微拉曼技术助力红蓝宝石价值鉴定
    供稿 | 文军红蓝宝石,与钻石、祖母绿、金绿猫眼石被列为世界五大名贵宝石,其珍贵价值毋庸置疑。很多人认为宝石好不好主要看品质(重量、颜色、切工等),其实宝石产地也很重要。贵重宝石像红蓝宝石、祖母绿,对产地的要求都很高,那代表的是宝石的血统。比如高级的蓝宝石,公认都是克什米尔蓝宝石。克什米尔产的蓝宝石呈微带紫的靛蓝色,著名的矢车菊蓝宝石就产于此。其次是斯里兰卡的皇家蓝价值高,而斯里兰卡还有cat blue以及俗称卡兰的蓝宝石。绝世「克什米尔」蓝宝石传世「皇家蓝」蓝宝石红宝石产地质地好的是缅甸,它的鸽血红就像动脉的血色,很艳,又浓又亮,特别漂亮,但是颗粒小、杂质多,产量比较少,经常只出现在拍卖会上。莫桑比克红宝石颗粒也不是很大,但净度比较好,颜色也比较纯正。稀世「鸽血红」红宝石跨世「莫桑比克」红宝石如何鉴定红蓝宝石的产地?1追根溯源——红蓝宝石产地鉴定在天然红蓝宝石生长过程中,由于外来物种的侵入或者环境条件的变化,宝石内部会形成包裹体。红蓝宝石因外在形成环境地质条件的不同, 它的包裹体也会呈现不同特征。通过这些特征我们就可以判断某一红宝石或蓝宝石的来源,做出产地鉴定啦著名的星光红蓝宝石,就是因为含针状或纤维状金红石包裹体,而产生美丽的六射星光星光红宝石、蓝宝石斯里兰卡蓝宝石包裹体的天鹅绒效应2共焦显微拉曼技术助力红蓝宝石中包裹体鉴别常规宝石鉴别,主要利用显微镜观察其内部细小包裹体、裂隙、色带以及宝石的表面特征等,结果带有主观性,不可靠、信息量少。近年来,人们多用共焦显微拉曼来研究红蓝宝石包裹体。显微拉曼光谱仪把拉曼光谱仪和光学显微镜耦合在一起,利用显微镜观察包裹体中微小特征的同时,还可以测量观察区域(直径约1微米)的拉曼光谱信号,从而对包裹体的内含物物种做出鉴别。此外也可以利用拉曼成像技术,描绘出一定范围内的样品成分分布。Valentina Palanza等人就利用共焦显微拉曼分析了一系列不同产地蓝宝石的包裹体,以下是一些典型案例:1产自变质岩环境的蓝宝石a 是斯里兰卡出产的蓝宝石(P1标记处的圆形区域内部为其包裹体)b 是包裹体局部放大c-5 为包裹体的拉曼光谱,位于157, 335, 450, 667, 795, 1195 cm-1 处的特征峰归属于包裹体中的水铝石矿物而1285, 1387 cm-1处的特征峰归属于包裹体中的二氧化碳气体。其他几条分别是越南锐钛矿、斯里兰卡的金红石和硫、马达加斯加金红石、马达加斯加方解石。2产自岩浆岩和碱性玄武岩环境的蓝宝石其拉曼光谱结果如下图所示,分别是澳大利亚蓝宝石中的赤铁矿包裹体、坦桑尼亚的金红石和石墨、碱性玄武岩锆石。3产自坦桑尼亚的蓝宝石显微镜下可见蓝宝石表面下几个微米深处的红色包裹体,根据拉曼光谱特征峰可以确认包裹体的成分是赤铁矿(hematite, Fe2O3)。实际研究中,由于包裹体大多位于宝石表面之下一定深度,宝石本体的拉曼信号会掩盖包裹体内含物的信号。HORIBA真共焦拉曼技术,引入可以调节的共焦针孔光阑,构建出共轭光学系统,在纵向上限制了样品范围(可以达到微米量级的纵向分辨率),进行拉曼切片,从而大化了包裹体的拉曼信号,抑制了其他干扰信号,为研究宝石包裹体提供了强有力的工具。XploRA PLUS智能型全自动显微拉曼光谱仪研究这些包裹体,不仅可以帮助鉴别天然红蓝宝石的产地,区分天然宝石与人造宝石,同时还能揭示宝石形成时的物理化学条件、介质成分和性质以及后期成矿活动的特征,从而指导宝石矿的寻找及宝石的合成和优化工作。更多信息请参考:Valentina Palanza, et al. J. Raman Spectrosc. 2008 39: 1007.
  • 北京2015激光共焦超高分辨显微学研讨会通知
    关 于 举 办 &ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 的 通 知   为推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用,北京理化分析测试技术学会和北京市电镜学会共同决定在2015年3月17日下午13:00-18:00(星期二),在北京市北科大厦举办一次&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 。会期半天。届时将邀请国内专家学者和青年科技工作者作相关学科的发展前沿学术报告。同时还邀请相关的主要厂商和公司到会宣讲及展示其最新产品、仪器及其最新功能。(学术报告时间安排表附后)   具体事项通知如下:   1、会议日期及报到时间:   报到时间:2015年3月17日(星期二)。下午1:00&mdash 1:30   会议日期:2014年3月17日(星期二)。下午1:30至下午6:00。   2、会议地点:北京市海淀区西三环北路27号,北科大厦(路西,中国剧院对面)三楼报告厅。   3、乘车路线:可乘300、704、708、730、811、830、817、849、968、特5、运通103、运通201、运通206等,在万寿寺站下车便到。中国剧院对面就是北科大厦(路西)。   4、会议将根据实际报名情况准备好资料,并提供饮料、饮品等。   5、特邀请您及您的同事、学生参加。并将回执务必于2015年3月13日前,用EMAIL告知:yujing8855@126.com。   6、会议负责人的具体联系地址、联系电话、邮箱如下:   (1)北京理化分析测试技术学会:于靖琦:   EMAIL:yujing8855@126.com, 联系电话:010-68731259,13521470325,   (2)北京市首都师范大学,郑维能,   EMAIL:Cnu_zhengweineng@163.com,联系电话:13671116332。   (3)北大医学部,何其华,   EMAIL:hqh@bjmu.edu.cn,联系电话:13501058133。   (4)军事医学科学院,张德添 ,   EMAIL:Zhangdetian2008@126.com,联系电话:13366267269。   此致   敬礼!   北京理化分析测试技术学会   北京市电镜学会   2015年2月27日   回执用EMAIL发回yujing8855@126.com告知。 姓名 工作单位 个人邮箱 联系电话和手机号码 &ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 学术报告时间安排表(2015年3月17日下午13:00-18:00,星期二,北京北科大厦) 时 间 主持人 报 告 人 报 告 内 容 或 题 目 13:10&mdash 13:30 于靖琦 会议报到。资料发放等。 13:30&mdash 13:55 郑维能 北大工学院:席 鹏。 超高时空分辨率光学显微镜技术及应用。 13:55&mdash 14:20 何其华 蔡司:库玉龙。 ZEISS new generation of Confocal, with the advanced Airyscan technology。 14:20&mdash 14:45 张德添 清华大学:谢红。 双光子活体成像技术在学习记忆和阿尔兹海默病研究中的应用。 14:45&mdash 15:10 孙 飞 徕卡:王怡净。 徕卡激光共焦超高分辨显微学最新进展。 15:10&mdash 15:35 王素霞 北航:李晓光。 应用组织工程修复脊髓损伤的基础及临床试验研究。 15:35--15:45 会议之间休息。 15:45&mdash 16:10 张德添 尼康:赵 媛。 尼康超分辨显微镜的最新进展。 16:10&mdash 16:35 孙 飞 生物物理所:李岩。 Functional Imaging of a Single GABAergic Neuron during Learning in Drosophila Central Brain。 16:35&mdash 17:00 郑维能 奥林巴斯:方 琳。 奥林巴斯透明化定制技术及超分辨率共聚焦显微镜。 17:00&mdash 17:25 何其华阜外医院:聂 宇。 激活心外膜&mdash &mdash 哺乳动物心肌再生调控的新途径。 17:25--17:50 王素霞 PE:卢 毅。 激光共聚焦高内涵系统在高通量生物学上的应用。 17:50&mdash 18:00 郑维能 何其华、张德添。 解答问题、自由交流、宣布会议圆满结束。   注:上述所有报告时间均为20分钟以内,提问答疑时间均为5分钟以内。   北京理化分析测试技术学会   北京市电镜学会   2015年2月27日
  • 2015激光共焦超高分辨显微学研讨会举行
    仪器信息网讯 2015年3月17日,北京理化分析测试技术学会和北京市电镜学会主办的&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 在北科大厦举行。该会议旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。会议得到了相关学者的热烈响应,约160余人参加了此次会议。 会议现场   北京市电镜学会理事长郑维能、秘书长张德添,北大医学部何其华、北大医学部第一医院王素霞主持会议。   超高分辨显微技术进展   自荷兰博物学家、显微镜创制者列文虎克在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了列文虎克的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。   然而为了更好地理解生命过程和疾病发生机理,生物学研究需要观察细胞内器官等细微结构的精确定位和分布,阐明蛋白等生物大分子如何组成细胞的基本结构,重要的活性因子如何调节细胞的主要生命活动等,而这些体系尺度都在纳米量级,远远超出了常规的光学显微镜的分辨极限(约为200nm)。   为了解决生命科学研究面临的一系列难题,超高分辨率显微技术应时而生,并且一经问世就得到了广泛的响应。2008年Nature Methods将这一技术列为年度之最。2014年,美国科学家Eric Betzig,德国科学家Stefan W. Hell,美国科学家William E. Moerner,因他们在超分辨率荧光显微技术领域取得的成绩,获得了该年度的诺贝尔化学奖。 报告人:北京大学 席鹏   目前,超高分辨显微技术虽然能获取很高的空间分辨率,却总是以牺牲时间分辨率为代价。同时,这些方法技术复杂、系统成本较高,这给推广应用带来一定困难。如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。   北京大学席鹏课题组一直致力于超分辨显微成像技术研究。在报告中,席鹏介绍了超分辨显微技术的发展与应用,并详细介绍了课题组研究的两类超分辨技术:多色联合标记超分辨技术和多模态三维超分辨技术。其中多色联合标记超分辨研究成果发表于Nature出版的Scientific Reports期刊,多模态三维超分辨技术相关研究成果发表于Springer和清华大学出版社联合出版的Nano Research期刊上。 报告人:蔡司 库玉龙   库玉龙介绍了蔡司在2014年最新推出的Airyscan技术。Airyscan技术可以应用于蔡司LSM 800和LSM880激光共聚焦显微镜,是第一款可用于正置显微镜观察的超高分辨率产品。据介绍,传统的共聚焦显微镜通过针孔来阻止非焦平面的发射光。Airyscan检测器不在针孔处限制光通量,而是直接用一个32通道的六边形平面探测器收集所有发射光,其中每个探测器元件都是有效的单个针孔。这一技术的使用,使LSM880的总体分辨率增加了1.7倍,即140 nm的横向分辨率和 400nm的轴向分辨率。 报告人:徕卡 吴立君   吴立君介绍说,2014年诺贝尔化学奖获得者Stefan W. Hell与徕卡显微系统的工程师和科学家有长期良好的合作关系,从他还是博士生时,他就与徕卡共同研发超高分辨显微镜,至今双方合作超过15年。早在2004年双方合作推出了商业化4Pi超高分辨显微镜 2007年, Stefan W. Hell将STED(受激发射损耗)专利技术授权徕卡研发。   此外,吴立君介绍了徕卡推出的Leica TCS SP8 STED 3X受激发射损耗显微镜,以及即将推向市场的光谱更宽、分辨率更高、样品保护更强的受激发射损耗显微镜新产品。 报告人:尼康 赵媛   赵媛介绍了尼康的N-SIM和N-STORM超分辨显微镜。据介绍,N-SIM结构照明显微技术专门为活细胞超高分辨率成像而设计,使用了全内反射结构照明(TIRF-SIM)来提高样品表面的空间分辨率,并且时间分辨率可以达到0.6秒/帧。其中结构照明显微技术(SIM)由旧金山加州大学授权。   N-STORM则将哈佛大学授权的&ldquo 随机光学重构显微术(STORM)&rdquo 与尼康的Eclipse Ti研究级倒置显微镜结合在了一起,能够显著提高分辨率,可达到传统光学显微镜分辨率的十倍或者更多,可采集纳米级的二维或三维多光谱图像。 报告人:奥林巴斯 方琳   方琳介绍了奥林巴斯近年来推出的多光子扫描显微镜和超高分辨技术。2013年9月,奥林巴斯推出了FVMPE-RS多光子扫描显微镜,具有高速高灵敏度双光子成像技术、空间精确红外光刺激和可见光光刺激及更深的成像深度,更长波长光校准及透过率系统。能够有效收集动态影像,如被标记的细胞在血液中&ldquo 缓缓&rdquo 流动,斑马鱼的心脏&ldquo 慢慢&rdquo 起伏等。   2014年10月,奥林巴斯推出了独创的超高分辨技术FV-OSR,结合了众多精良的光学部件和超高灵敏度探测器,成功将传统共聚焦显微镜的分辨率提高了两倍,理想条件下XY水平分辨率可达120~150 nm。实现了简化操作和广泛兼容等新特性,将共聚焦技术与特制的超分辨光学附件相结合,可以在FV1000或FV1200共聚焦系统上升级。 报告人:珀金埃尔默 卢毅   高内涵筛选(HCS)系统可以对细胞形态或生化特性所发生的改变进行高通量分析。现在,高内涵筛选系统已经成为基础科学和药物研发领域中的一个重要工具。   卢毅介绍说,PerkinElmer在2014年推出了Opera Phenix&trade 共聚焦HCS系统。这款设备的设计旨在令速度最大化,同时不牺牲系统的灵敏度。对于HCS系统来说,在获取数据的同时进行数据分析会限制检测的灵敏度,不过这样能够节省筛选的时间。有时光谱重叠会导致不同的荧光素发生相互干扰,从而限制整个系统的灵敏度。而Phenix依赖于PerkinElmer的专利技术Synchony&trade Optics,该技术可以控制荧光素的激发,从而减少荧光信号之间的干扰,提高了系统的灵敏度。   超高分辨显微技术应用   很长时间以来,人们都认为光学显微镜技术无法突破&ldquo 阿贝分辨率&rdquo ,即永远不可能获得比所用光的波长一般更高的分辨率。然而近十多年来,科学家们在此领域获得了精彩的成果,突破了光的衍射极限分辨率。其中尤其是STED(受激发射损耗)显微技术和分子定位显微技术,让科学家能在纳米水平观察到活细胞内个别分子的作用路径,可以看到分子是如何在大脑神经细胞形成突触的 也可以跟踪哪些与帕金森症、阿茨海默症等疾病有关的蛋白质分子聚集,在真正意义上扩大了科学家们的视野。而这些都将有助于人们进一步了解这些疾病的形成机理,帮助我们去克服治愈它们。 报告人:清华大学 谢红   清华大学谢红在报告中介绍了双光子活体成像技术在学习记忆和阿尔兹海默病研究中的应用。双光子显微镜现在已经成为活体脑功能研究中重要的研究工具,双光子成像具有较深的穿透力、更为集中的空间聚焦、较小的组织损伤性等特征。因此,一方面利用双光子显微镜能够在细胞甚至是亚细胞水平上对活体中的神经细胞结构形态、离子浓度、细胞运动、分子相互作用等生理现象和过程进行直接的成像监测,另外还能进行光裂解、光激活、光转染和光损伤等光学操纵。 报告人:中科院生物物理所 李岩   中科院生物物理所李岩目前的研究主要为:以果蝇为动物模型,探索高级脑功能的细胞分子机制,涉及的研究领域和方法包括神经发育生物学、分子遗传学、学习认知行为的神经环路等方面。并以已有的行为范式,如进食,睡眠和学习记忆为基础,深入研究单基因对细胞形态、神经网络发育、及高级脑功能的作用,并探讨环境因素,如地磁场等对生物高级脑功能的影响及其机制。在她的研究中,激光共聚焦超分辨显微学技术发挥了重要作用。 报告人:阜外医院 聂宇   阜外医院聂宇则介绍了激光共聚焦超分辨显微技术在&ldquo 激活心外膜&mdash &mdash 哺乳动物心肌再生调控的新途径&rdquo 中的应用。据介绍,由于心肌梗死发生后,梗死区被纤维组织替代,心脏泵功能受损,最终导致心衰和死亡 其原因在于心肌无法实现对损伤的自我修复,心肌细胞发生凋亡或坏死后,如果有充足的心肌细胞来源,对其进行替代和补充,将可能实现心功能的重新恢复。故而,心肌再生是目前心血管科学领域的研究热点。 撰稿:秦丽娟
  • 精巧型全自动显微共焦拉曼光谱仪XploRA在国内正式亮相
    HORIBA Scientific (Jobin Yvon 光谱技术)的新精巧型全自动显微共焦拉曼光谱仪,6月正式在国内亮相,并参加了清华大学举办的 NT09(碳纳米管国际会议)。在会议现场,拉曼应用工程师刘仕锋先生为清华大学化学系从事碳纳米管研究的师生进行了现场测样,并就所得结果现场讲解和讨论。 XploRA 的精巧外观吸引了专家们的目光,特别是在亲眼目睹 XploRA 在清华大学综合体育馆嘈杂和多干扰的环境下,仍能测得高品质结果后,XploRA 的高性能、易操作和高稳定性得到了与会专家的普遍认可。 XploRA 将在国内的 HORIBA 应用中心进行展示,相信这将有利于广大中国用户得到更多、更真切的仪器体验。
  • 激光共焦及超高分辨显微学学术研讨会日程公布
    为推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用,北京理化分析测试技术学会电子显微学专业委员会,决定于2024年3月31日(星期日)在北京,举办“北京市2024年度激光共焦及超高分辨显微学学术研讨会”。届时将邀请国内专家学者和青年科技工作者作相关学科的发展前沿学术报告。同时还邀请相关的主要厂商和公司到会宣讲及展示其最新产品、仪器及其最新功能。会议日期及报到时间会议日期及时间:2024年3月31日(星期日) 8:00--16:30报到时间:2024年3月31日(星期日) 7:30---8:40会议地点北京四川五粮液龙爪树宾馆(四川省人民政府驻北京办事处)北京市朝阳区小红门路312 号会议厅:四川会馆一层黄龙厅交通路线公交:乘坐公交352路,分钟寺站下车,前行约50米即可见宾馆园区。地铁:乘10 号线地铁,分钟寺地铁站D口出,南行约50米即可见宾馆园区。自驾:可自行驾驶车辆,宾馆园区设有停车场(收费标准:每小时4元,会议全天15元)会议日程08:50-09:10北京师范大学:张毅报告题目:《高尔基体形变促进纤维素合酶胞内转运的机制》09:10-09:30蔡司公司:董文浩报告题目:《无损、高清、实时多维成像新体验》09:30-09:50EVIDENT Olympus公司:戚少玲报告题目:《OLYMPUS/EVIDENT新一代共聚焦显微镜FV4000》09:50-10:10瑞孚迪公司:王瑜报告题目:《高内涵—从高通量样本拍摄到大数据分析》10:40-11:00北京大学:吴聪颖报告题目:《细胞骨架对线粒体精细结构的调控及其对癌细胞迁移的影响》11:00-11:20横河电机(中国)有限公司:林雨报告题目:《横河生命科学高内涵成像分析与单细胞解决方案》11:20-11:40艾锐精仪科技有限公司:周建春报告题目:《从共聚焦到超分辨—艾锐全体系解决方案介绍》11:40-12:00中国科学技术大学:唐爱辉报告题目:《单分子超分辨成像在神经生物学中的应用》13:30-13:50北京大学:席鹏报告题目:《偏振结构光超分辨与多色高速共聚焦》13:50-14:10徕卡公司:南希报告题目:《超高分辨率成像的新维度》14:10-14:30清华大学:吴嘉敏报告题目:《扫描光场显微镜》14:30-14:50尼康公司:王丽丽报告题目:《尼康新品 Eclipse Ji多模态成像解决方案》14:50-15:10北京大学:施可彬报告题目:《高时空分辨光学成像技术探讨》15:10-15:30北京脑科学与类脑研究所:赵瑚报告题目:《透明化包埋技术与外周和大脑神经投射图谱成像》15:30-15:50超微动力公司:葛鹏报告题目:《phaseview先进光片显微镜》参会报名1、会议特邀您及您的老师、同事、学生参加。2、由于会场座位有限,会务组将根据报名情况,适当控制参会人数;学会会员享有优先参会名额;3、会议免费参加,并提供自助午餐,并准备了丰富的礼品,我们期待您的参加;4、如果这期间,发生不可预测的特殊情况,会务组会及时通知与会者,关于会议延迟或取消会议的通知。报名链接:https://jiguanggognjiao.mikecrm.com/EZqhcFz 会务组联系人梁莹莹:lhxhdj@126.com 13401114774,88517114朱凌云:lhxhdj@126.com 13717666003,68722460
  • 200万!华中科技大学激光共焦荧光寿命成像显微镜采购项目
    项目编号:WHCSIMC2022-1808554ZF(H),HW20220419项目名称:华中科技大学激光共焦荧光寿命成像显微镜采购项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:1.本次公开招标共分1个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。(1) 项目包编号:1(2) 项目包名称:激光共焦荧光寿命成像显微镜(3) 类别:货物(4) 数量:一套(5) 简要技术要求:可实现荧光强度成像、荧光寿命成像、载流子扩散成像、光电流成像、单点荧光寿命/光谱采集。具体参数详见招标文件。(6) 采购预算:200万元人民币(7)其他:本项目不接受进口设备投标合同履行期限:交货期:合同签订后150天内供货。质保期:验收合格后一年。本项目( 不接受 )联合体投标。
  • 北京2019激光共焦及超高分辨显微学学术研讨会在京召开
    p    strong 仪器信息网讯 /strong 2019年3月19日,“北京2019年度激光共焦及超高分辨显微学学术研讨会”在北京天文馆召开。会议由北京理化分析测试技术学会和北京市电镜学会共同举办,旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。200余名光学高分辨显微学领域国内专家学者、青年科技工作者,及相关检测仪器厂商代表共同参与了本次研讨会。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/54180d3d-ac1e-4e40-a04e-5dd3855d52cb.jpg" title=" IMG_7154.jpg" alt=" IMG_7154.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研讨会现场 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/5ff22fdd-bdf9-48f3-bbd6-82ed351ddf29.jpg" title=" IMG_6948.jpg" alt=" IMG_6948.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 北京市电镜学会秘书长张德添致辞 /span /p p   会前致辞中,北京市电镜学会秘书长张德添表示,激光共焦技术商业化的30余年来,从单光子到双光子再到高通量等,取得了飞速的发展。为紧随技术发展步伐,打通高端应用专家与一线科技工作者之间的屏障,秉承北京市电镜学会“学术与公益第一”的原则,此次论坛特邀十余位在光学高分辨显微学领域杰出专家与行业领先的仪器商技术专家,与大家共同分享激光共焦及超高分辨显微学领域最新应用成果及最新技术动态,并期待与会者能够满载而归。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/ddd048d5-7074-4e86-b77f-400bca4e7d92.jpg" title=" IMG_7005.jpg" alt=" IMG_7005.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:李栋(生物物理所) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:掠入射结构光超分辨显微镜(GL-SIM)揭示细胞器、细胞骨架动态相互作用 /span /p p   李栋曾在“北京市2016年度激光共焦超高分辨显微学学术研讨会”报告介绍了当时其团队开发的两种光学超分辨技术:high NA TIRF-SIM和PANL-SIM。李栋笑称,今天再次在此论坛报告,算是对自己三年来工作成效的一个汇报。 /p p   掠入射结构光超分辨显微镜(GL-SIM)技术由李栋团队与美国霍华德休斯医学研究所合作完成。该技术能够以97纳米分辨率、每秒266帧对细胞基底膜附近的动态事件连续成像数千幅。并利用多色GI-SIM技术揭示了细胞器-细胞器、细胞器-细胞骨架之间的多种新型相互作用,深化了对这些结构复杂行为的理解。微管生长和收缩事件的精确测量有助于区分不同的微管动态失稳模式。内质网(ER)与其他细胞器或微管之间的相互作用分析揭示了新的内质网重塑机制,如内质网搭载在可运动细胞器上。据悉,2019年2月底,该GL-SIM技术成功入选科技部高技术研究发展中心公布的2018年度中国科学十大进展。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/8c003b42-f045-4b4e-8b39-942e0322002e.jpg" title=" IMG_7010.jpg" alt=" IMG_7010.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:王怡净(徕卡显微系统(上海)贸易有限公司) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:高分辨率成像的新突破 /span /p p   样品表征首先找到适合的表征技术手段十分重要,王怡净介绍了一种更加适合活细胞实时成像、大样品图像拼接方面的表征技术——徕卡THUNDER imagers技术,该技术基于宽场成像技术,由徕卡近期推出。 /p p   宽场成像是生命科学显微成像中最重要的方法之一。但限于其本身不能有效避免背景信号及多焦面间的信号互扰,因此主要被用于单层细胞或厚度不超过50 μm组织切片。过厚的样本将导致宽场成像变的模糊,成像结果无法用于发表的论文或数据分析,如厚病理切片、培养皿中大量生长的活细胞(尤其悬浮细胞)、微孔板中的Colony、模式动物等样本等。而分辨率更高的共聚焦成像技术又存在成像时间过长(很多生命过程十分迅速)、对于厚样本单层共聚焦图像有时不能很好代表整体生物学信息等缺陷。THUNDER imagers技术则可以在与普通宽场成像相同成像速度的基础上,获得更高清晰度的图像,同时兼具与共聚焦相同的大样本拼接、层扫和3D重建功能。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/1101dc9e-1569-4f58-814c-8e8b1d47103e.jpg" title=" IMG_7078_副本.jpg" alt=" IMG_7078_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:陈建国(北大生科院) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:中心体的结构与组装 /span /p p   中心体是一个部分真核细胞的细胞器,由两个互相垂直的中心粒构成,是动物细胞与低等植物细胞中主要的微管组织中心,同时也能够调节细胞周期进程。陈建国结合其团队近期工作进展,首先介绍了中心体与微管网络结构的组织概况、中心体的结构、中心体的复制与细胞周期、子中心粒的组成、中心体的蛋白组分等。接着介绍了中心粒亚远端附属结构的组装以及中心粒远端结构蛋白和纤毛结构的组装及其调控机制,并对中心粒可能在人体中的功能进行了分析。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/dc539b06-860a-4157-8cb0-0d591d817d08.jpg" title=" IMG_7090.jpg" alt=" IMG_7090.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:朱凤胜(上海宇北医疗器械有限公司) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:前瞻性超分辨活细胞纳米荧光成像技术与系统 /span /p p   受激辐射光淬灭超分辨率共聚焦显微影像系统 (pulsed-STED)由2014诺贝尔化学奖Stefan W.Hell团队设计,并随之创立Abberior公司。朱凤胜表示,Abberior pulsed STED具有的诸多优势包括:大幅减少“无意义”激光伤害和荧光漂白;高效时间分辨率,使各触控逐渐高度智能化协调,同时提供解析度;提供升级空间,满足更多应用需求等。与传统STED的3D分辨率(130*130*130nm)相比Abberior pulsed STED高至70*70*70nm,2D分辨率则由STED CW的80nm和g-STED的50nm提升至20nm。接着介绍了新一代 3D STED 超分辨纳米成像技术——Easy 3D STED,其SLM 调控的单一光路,提供镜头像差修正,可以切换使用油镜、水镜、甘油镜、硅油镜等,使得成像的厚度深达180微米。最后,朱凤胜预告了该公司的另一项革命技术MINFLUX,表示该技术将能够实现分辨单一纳米水平的分子结构。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/c6ef7e30-dbe0-4494-87c6-a2af27b0f6db.jpg" title=" IMG_7130.jpg" alt=" IMG_7130.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:纪伟(生物物理所) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:通过冷冻和干涉成像提高单分子定位显微镜的分辨率 /span /p p   纪伟首先介绍了单分子定位成像技术的原理和进一步提升定位精度的方法(新的荧光探针和抗漂白试剂)。基于此,又分别介绍了冷冻单分子定位成像和干涉单分子定位成像技术,并针对已有的技术弊端进行改进;设计搭建冷冻超分辨光电融合成像系统以及干涉单分子定位成像系统,实验验证了其优异的性能表现。最后表示,纳米精度成像的应用方向包括:原位结构方面,为原位电镜结构解析提供导向定位;细胞成像方面,100nm以内的亚细胞结构解析和分子定位、功能;以及生物大分子动态构想变化等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/b88d1cf7-7252-4273-a089-8f3938f7d10e.jpg" title=" IMG_7168.jpg" alt=" IMG_7168.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:孟丽丽(奥林巴斯(中国)有限公司) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:海量活细胞筛选下的超分辨成像技术 /span /p p   孟丽丽报告中表示,海量活细胞的筛选具有“大数据”和“云计算”的特征,具体表现包括海量数据的快速采集与定量定性分析;获得全部样本数据;通过对对海量数据筛选,获得稀有事件(日CTC循环肿瘤癌细胞)等。奥林巴斯围绕这种需求提供了全面解决方案,如scanR软件可提供全自动海量细胞采集过程中的细胞周期精细分析、Time-Lapse活细胞动态分析,实时快速部件保证速度与精度,提供超高分辨/共聚焦高内涵/宽场高内涵显微三种成像模式等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/ed552f26-bc0c-46b6-b1da-aeac60a9beee.jpg" title=" IMG_7196.jpg" alt=" IMG_7196.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:张毅(北京师范大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:花粉微丝骨架动态的调节机制 /span /p p   花粉粒的萌发和花粉管的伸长对于开花植物完成双受精从而进行繁殖至关重要。花粉粒多为球形或椭球形的对称结构,其如何建立极性,进而确定萌发位点,一直是植物细胞生物学领域重要的科学问题。然而,由于花粉粒不易进行荧光显微镜观察,目前对这一重要生物学问题的研究非常滞后。张毅研究组以双子叶模式植物拟南芥为材料,利用转盘式激光共聚焦显微镜对花粉粒内微丝的动态变化进行长时间的实时追踪观察,发现微丝骨架在花粉粒萌发前建立极性并标记萌发位点;进一步的药理学和遗传学实验发现了不同于经典的以微丝作为运输轨道的细胞内物质运输方式。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/205d6c81-9c02-4a6d-b917-e1bf146874d4.jpg" title=" IMG_7242.jpg" alt=" IMG_7242.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:Jaron Liu(GE公司) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:Deltavision OMX Technology :One System, All the Answers /span /p p   来自新加坡的Jaron Liu主要介绍了GE公司的DeltaVision OMX SR超高分辨率显微镜的主要优势和应用。该系统提供2D和3D结构照明(SIM)技术以及单分子定位显微镜以及快速宽场采集高分辨率成像模式。创新Blaze SIM模块实现了高速SIM成像,使活细胞超高分辨率成像成为现实。此外,该系统支持创新的Ring-TIRF系统使得TIRF模式下也能实现的大面积均匀照明视野,用于多种应用,比如单分子追踪和单分子定位超高分辨率成像。其专利的BlazeSIM模块可以实现最多每秒15幅的超高分辨成像速度,轻松完成活细胞超高实验。单分子定位模块最高分辨率可以达到20nm。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/b7765b64-ac53-4c45-b5b3-cdc2e80ea8df.jpg" title=" IMG_7264.jpg" alt=" IMG_7264.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:席鹏(北京大学) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:为结构光超分辨赋予极性 /span /p p   席鹏利用GE公司的DeltaVision OMX系统与尼康公司的N-SIM系统,通过小鼠肾段肌动蛋白的Polar-3D-SIM等对结构光超分辨的极性研究,获得启示:关于超分辨,新的维度或许可以打开新的视野。而偶极取向或是荧光分子的一个新的维度,如超分辨偶极取向显微镜、SIM与SDOM之间相似性、利用SIM直接获取极性信息等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/cd59bc20-53b2-4059-978b-a15df45fcb4c.jpg" title=" 微信图片_20190319230724_副本.jpg" alt=" 微信图片_20190319230724_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:周建春(尼康仪器(上海)有限公司 ) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:尼康新型共聚焦及超分辨率系统介绍 /span /p p   周建春介绍了尼康新型共聚焦及超分辨率系统的一系列创新:激光器方面,最多支持8个激光器,全固体激光器,寿命长,稳定性高等;Scan head方面,视野由传统的18mm增至25mm,使得“所见即所得”升级为“见,所未见”,高通量成像,节约成像时间等;新型高级共振扫描头(适用于活细胞成像)方面,高速和高清晰度(1k)、低光毒性等;可扩展功能方面,多模块成像、可定制软件、HCA软件、分辨率增强升级等。最后介绍到活细胞超分辨成像技术的优越之选——N-SIM S(高速成像达15fps,极低光毒性)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/e36ef2de-b217-4abc-bb05-12ecc899e320.jpg" title=" IMG_7306.jpg" alt=" IMG_7306.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:张然 (蔡司) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:关于新一代蔡司超高分辨技术的应用 /span /p p   张然介绍了蔡司于2018年年底推出的全新一代超高分辨率显微镜3D成像系统——Elyra 7平台。新品发布信息中,Elyra 7被描述为一种“快速、温和、灵活”的超高分辨率显微镜3D成像系统。新增的Lattice SIM技术扩展了结构化照明显微镜(SIM)的应用范围:采用晶格图案而非光栅可使图像对比度更高,图像重构处理更高效。科研工作者可以采用2倍的采样效率降低光毒性,观察超高分辨率条件下细胞的快速移动过程。即使在高帧率下也能确保高图像质量。Elyra 7平台广泛扩展性包括:SMLM单分子荧光定位显微技术、LSM激光共聚焦显微镜、关联显微镜等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/92e7ff8f-acdc-465d-b675-2a8fda661f74.jpg" title=" IMG_7338_副本.jpg" alt=" IMG_7338_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人:齐冬(蒂姆温特远东有限公司) /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:光片显微镜——高速、低杀伤的发育及功能研究 /span /p p   齐冬首先通过与激光共聚焦的各项性能对比,介绍了光片显微镜的优点与不足,其主要适合对象为大样品长时程、低杀伤的发育生物学研究,如斑马鱼、果蝇、植物、早期胚胎、3D细胞培养、透明脑类研究等。接着介绍了蒂姆温特远东公司针对光片显微镜的设计与应用情况,创新的设计方案包括倒置式双轴、三轴(对侧照明& amp 单侧成像)、四轴(对侧照明& amp 对侧成像),并结合斑马鱼、果蝇、植物等介绍了其出色的应用。同时还介绍了其低杀伤、可大透明化样品直接观察等优势。面对大数据处理(TB级别以上)的问题,齐冬提出建立工作站、课题组共享的建议。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/65ce0dea-448a-4af8-ad15-56f63db80b66.jpg" title=" 展商.jpg" alt=" 展商.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 展商一角 /span /p
  • 139万!中山大学化学工程与技术学院显微共焦激光拉曼光谱仪采购项目
    项目编号:中大招(货)[2022]517号/1210-2241YDZB5553项目名称:中山大学化学工程与技术学院显微共焦激光拉曼光谱仪采购项目预算金额:139.0000000 万元(人民币)最高限价(如有):139.0000000 万元(人民币)采购需求:1、招标采购项目内容及数量:显微共焦激光拉曼光谱仪,1 套。2、经费来源:财政性资金。3、本项目允许产自中华人民共和国关境外的进口货物投标。合同履行期限:收到发货通知120个日历天以内交货。本项目( 不接受 )联合体投标。
  • 145万!中国科学院宁波材料技术与工程研究所采购显微激光共焦拉曼光谱仪
    项目概况中国科学院宁波材料技术与工程研究所采购显微激光共焦拉曼光谱仪项目招标项目的潜在投标人应在宁波中基国际招标有限公司在线购买链接(https://dwz.cn/BzVsB93Q)获取招标文件,并于2021年12月10日14点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:CBNB-20211851G项目名称:中国科学院宁波材料技术与工程研究所采购显微激光共焦拉曼光谱仪项目预算金额(元):1,450,000.00最高限价(元):1,450,000.00采购需求:标项一:标项名称:显微激光共焦拉曼光谱仪数量:1套最高限价(元):1,450,000.00简要技术需求:仪器采用长焦长光谱仪,焦长≥600mm。具体详见第二章《招标需求》。备注:本项目允许采购进口设备。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定。2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:3.1.未列入“www.creditchina.gov.cn、www.ccgp.gov.cn”网站失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信记录名单在禁止参加采购期限的供应商【以投标截止日当天采购代理机在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料。】。3.2.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一标项的投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得再参加本项目的投标。三、获取招标文件时间:2021年11月19日-2021年11月26日(北京时间,下同)地点(网址):https://dwz.cn/BzVsB93Q方式:在线购买售价:500元/标段注:本项目招标文件实行“宁波中基国际招标有限公司”在线获取,不提供招标文件纸质版。招标文件发售联系人:李小姐,联系电话:0574-88090098,电子邮箱:719126619@qq.com。四、提交投标文件截止时间、开标时间和地点1.提交投标文件截止时间:2021年12月10日14点00分(北京时间)2.投标地点:中国科学院宁波材料技术与工程研究所(浙江省宁波市镇海区中官西路1219号新能源所ME606室)3.开标时间:2021年12月10日14点00分(北京时间) 4.开标地点:中国科学院宁波材料技术与工程研究所(浙江省宁波市镇海区中官西路1219号新能源所ME606室)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。供应商可到中国政府采购网自行下载财政部《质疑函范本》。2.采购项目需要落实的政府采购政策:(1)对小微企业的产品给予价格优惠(监狱企业、残疾人福利性单位视同小微企业;残疾人福利性单位属于小型、微型企业的,不重复享受政策);(2)扶持少数民族地区和不发达地区政策;(3)优先采购节能环保产品(注:所采购的货物在政府采购节能产品、环境标志产品实施品目清单范围内,且具有国家确定的认证机构出具的、处于有效期之内的节能产品、环境标志产品认证证书)。3.本次政府采购活动有关信息在宁波政府采购网公布,视同送达所有潜在投标人。4.疫情期间特别提醒事项:4.1.供应商递交投标文件方式:4.1.1采用邮寄方式递交投标文件,需按以下要求递交:供应商须在2021年12月09日16:00前(北京时间)将投标文件邮寄至规定地点,由招标代理工作人员进行签收。各供应商自行考虑邮寄在途时间,邮寄过程中无论何种因素导致投标文件未按时递交的后果,均由供应商自行负责。投标文件递交时间以招标代理实际收到投标文件的时间为准。迟到的投标文件将被拒收。请各供应商确保密封包装在邮寄过程密封包装完好,并在邮寄包裹上注明项目名称,因邮寄过程的密封破损造成不符合开标要求的,本招标代理及招标人概不负责。投标文件邮寄地址为:宁波市鄞州区天童南路666号中基大厦19楼。收件人:陈冲 联系方式:130819286864.1.2采用现场递交方式递交投标文件,在投标当天投标人员需持绿色“甬行码”、佩戴口罩且体温测量正常后方可进入开标现场(以开标当日测量体温为准)递交投标文件。若供应商因未按上述要求办理而导致无法准时进入开标现场的,由供应商自行负责。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国科学院宁波材料技术与工程研究所地址:浙江省宁波市镇海区中官西路1219号联系方式:范老师0574-863245292.采购代理机构信息名称:宁波中基国际招标有限公司地址:宁波市鄞州区天童南路666号19楼联系方式:陈冲、张亮0574-87425731、880902133.项目联系人(询问):陈冲项目联系方式(询问):0574-87425731书面质疑联系人:杨未书面质疑联系方式:0574-87425382
  • 布鲁克发布Opterra II多点扫描共焦显微镜新品
    据介绍,此款仪器是下一代定量活细胞显微镜的代表。Opterra II的低光毒性和光漂白功能与旋转磁盘共焦的方法相比具有显著的优势。该系统具有独特的功能,可以实时调整成像速度、分辨率和灵敏度等以优化实验的成像条件。Opterra II场均匀性偏差为-10%,允许所得图像任何维度的定量分析。  因为具有采集时间短和保护细胞等特性,Opterra II是理想的活样品的研究工具,包括蛋白质定位和运输,细胞核、微管和囊泡动力学的研究等。使用Opterra,不仅可以使高度敏感的标本保持生命力,他们的细胞功能也尽可能保持与自然生物条件一致。  “在设置系统后短短几小时内我们就收集发布Opterra II的数据,”Wisconsin大学(Madison, WI)细胞和分子生物学教授 William Bement博士说,“系统的速度,再加上其光活化功能允许我们收集数据,并查看相互作用,这些理论上我们认为存在但直到现在没有看到过的。Opterra II让我们克服过去5年中研究的障碍。”
  • 北京2017年度激光共焦超高分辨显微学学术研讨会召开
    p    strong 仪器信息网讯 /strong 2017年3月21日,一年一度由北京理化分析测试技术学会和北京市电镜学会共同主办的“北京市2017年度激光共焦及超高分辨显微学学术研讨会”在北京理工大学国际教育交流大厦举行。大会旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。 /p p   据悉,此次研讨会已是北京理化分析测试技术学会携手北京市电镜学会共同主办的第八届,与往届不同的是,应广大参会者的需求和呼声,大会日程首次由过去的半天增至一天,报告数增至17个,参会人数也达到历届新高,近200名专家、学者和厂商技术人员等参加了本次研讨会。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/bac3ce0b-e65e-4ec2-9d82-ae98af194d67.jpg" title=" 1.jpg" / /p p style=" text-align: center "    strong 会议现场 /strong /p p   北京市电镜学会秘书长张德添、北大医学部何其华、北大医学部第一医院王素霞等多位业内专家主持会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/39ee371c-54a4-4541-bfbc-a394978d72bd.jpg" title=" 2.jpg" / /p p style=" text-align: center "    strong 报告人:北京大学神科所 张勇 /strong /p p style=" text-align: center " strong   报告题目:Visualizing AMPA receptor synaptic plasticity in vivo /strong /p p   人类大脑是世界上最复杂的器官之一,据统计,人类大脑中神经元数量约达1000亿个,如此庞大数量的神经元是如何协同工作,如何在大脑中“对话”呢?张勇研究员以“在活体动物样本上观测AMPA受体突触的可塑性”为题,介绍了其在国外期间的一项相关研究,通过运用双光子活体成像的技术,研究了神经元表面AMPA型谷氨酸受体动态变化、神经元活性,以及神经元内多种信号通路的活性对动物行为的影响。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/adb7a5a7-39e1-47dc-8377-609523fee294.jpg" title=" 3.jpg" / /p p style=" text-align: center "    strong 报告人:JPK公司 郭云昌 /strong /p p style=" text-align: center " strong   报告题目:原子力显微镜与超高分辨光学最新联用技术 /strong /p p   从1999年成立以来,德国JPK公司成立历史虽然不足20年,但JPK近来的发展却不可小觑,其原子力显微镜产品不仅在生命科学领域获得广泛好评,2016年还推出了世界首台光镊-原子力显微镜联用仪OT-AFM。作为JPK中国区总经理,郭云昌博士在报告中介绍了JPK的发展历史,同时还详细讲解了JPK的产品系列、JPK原子力显微镜的全针扫描技术,以及AFM-Raman、AFM-光镊等联用技术。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/0331fee5-a95e-4678-827c-e098f021ee05.jpg" title=" 4.jpg" / /p p style=" text-align: center "    strong 报告人:中国科学院过程所 魏炜 /strong /p p style=" text-align: center " strong   报告题目:基于材料设计高效的疫苗佐剂 /strong /p p   针对胞内病毒感染需要增强细胞免疫的关键问题,魏炜研究员团队构建和设计了具有pH敏感特性的薄皮大腔PLGA纳微球,并将其进行了模式抗原OVA的装载,体外考察表明其具有良好的pH敏感释放行为。同时,DC细胞实验表明所构建的纳微球被摄取后,能够有一部分抗原成功逃逸至胞质中,循MHCⅠ途径递呈,增强细胞免疫,而未逃逸的抗原则可以循MHCⅡ途径提呈,活化B细胞分泌抗体,动物实验结果也证实,所构建的薄皮大腔PLGA纳微球与传统实心颗粒相比,能够获得更好的细胞与体液免疫水平。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/2fc57a5b-1131-41c2-9c25-7337ed390de0.jpg" title=" 5.jpg" / /p p style=" text-align: center "    strong 报告人:蔡司 傅利琴 /strong /p p style=" text-align: center " strong   报告题目:蔡司共聚焦超高分辨快速成像的新方法 /strong /p p   来自蔡司的傅利琴重点介绍了蔡司革新共聚焦LSM8系列产品:搭载Airyscan技术的LSM800和LSM880。据蔡司针对250多位专业共聚焦用户调研结果显示,用户更加关注的需求包括:兼具更优异的图像质量、清晰(更多细节)、活细胞快速成像、组织或活体深度成像等,而LSM8系列产品的优良性能则正是满足了客户上述的需求。另外傅利琴还介绍了蔡司的光电联用解决方案,包括关联显微镜样品台、一体化软件解决方案、光电图像半自动化重叠等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/649a113c-0ef6-44c9-81bd-80812a4ca0de.jpg" title=" 6.jpg" / /p p style=" text-align: center "    strong 报告人:中国科学院生物物理所 候冰 /strong /p p style=" text-align: center " strong   报告题目:组织透明技术研究进展 /strong /p p   作为一种与传统切片技术互补的新兴组织学技术,组织透明技术因目前最先用于、也最常用于脑组织而又被称为透明脑技术。候冰老师在报告中为大家介绍了组织透明技术的产生背景、技术原理,以及该技术在发展演化历史长河中的教条及突破。最后,候冰老师还分享了时下流行组织透明技术的比较以及该技术的选择原则。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/256e9493-9919-46d5-adf5-3e01c4c42a9f.jpg" title=" 7.jpg" / /p p style=" text-align: center "    strong 报告人:FEI公司 于洋 br/ /strong /p p style=" text-align: center " strong   报告题目:FEI光电关联技术的应用 /strong /p p   2016年,赛默飞世尔科技完成对电子显微镜制造商FEI的收购,来自FEI的于洋首先介绍了光学显微镜与电子显微镜的应用区别以及光电联用的技术背景,接着重点讲解了FEI电镜与其他光学显微镜联用的桥梁软件MAPS,搭载这款软件的光电联用设备的多图片拼接技术,可以实现电子显微镜高精度和光学显微镜大视野图像的完美拟合。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/73de4795-ef8e-40e7-9b61-d2cde516cff6.jpg" title=" 8.jpg" / /p p style=" text-align: center "    strong 报告人:安道尔公司 王刚 /strong /p p style=" text-align: center " strong   报告题目:多模式高速共聚焦成像平台-Dragonfly /strong /p p   隶属于牛津仪器的安道尔科技有限公司的王刚向大家介绍了多模式高速共聚焦成像平台-Dragonfly,Dragonfly 核心功能是多点高速,高灵敏度共聚焦成像,其采集速度比普通点扫描共聚焦技术快至20倍。另外采用高分辨,高灵敏的探测器,有效减少活细胞成像的光毒性及光漂白,同时也适合于固定样品的高分辨快速三维成像。Dragonfly 配制的Fusion软件简化了Dragonfly的控制系统,用它的多种成像模式,荧光基团和成像模式的选择可通过鼠标三次点击切换。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/c495d354-4d31-43a1-a7e7-119c4b8d531a.jpg" title=" 9.jpg" / /p p style=" text-align: center "    strong 报告人:中国医科大学 赵伟东 /strong /p p style=" text-align: center " strong   报告题目:活细胞中的半融合与半分裂现象 /strong /p p   真核细胞中动态的膜融合与膜分离对维持细胞的生命活动至关重要,赵伟东在研究半融合与半分裂现象过程中,利用活细胞显微成像结合膜片钳技术来检测单个囊泡的分泌及胞吞。最终证实了半融合假说,提供了实验模型,为探讨活细胞中膜性细胞器的膜融合及分裂机制提供了理论基础及实验模型。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/e4ff8a3f-3e0d-41e7-9ea6-b0d95d440ff1.jpg" title=" 10.jpg" / /p p style=" text-align: center "    strong 报告人:蒂姆温特 齐冬 /strong /p p style=" text-align: center " strong   报告题目:最方便易用的光电联用技术介绍 /strong /p p   蒂姆温特的齐冬向大家介绍了一种方便易用的光电联用技术:光电融合成像显微镜(CLEM),该技术具有的优势包括:解析光镜未见结构、实现电镜多色标记、准确区分小目标物、长距离结构关联性等。另外,齐冬还表示,他们已经做了一些光电融合成像设备的简单尝试,结果显示,该产品具有高速、易用、高效、简洁、高NA成像、自动图像叠加、开源软件等特点。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/382a1df1-bf69-45af-b2e9-a8c5e52c999e.jpg" title=" 11.jpg" / /p p style=" text-align: center "    strong 报告人:中国科学院生物物理所 李硕果 /strong /p p style=" text-align: center " strong   报告题目:3D-SIM超高分辨荧光显微镜使用经验分享 /strong /p p   李硕果向大家分享了自己多年在科学研究平台生物成像中心使用超高分辨荧光显微镜Delta Vision OMX V3的使用经验。从样品制备、设备保养、注意事项等多角度与大家进行了交流。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/1647a981-19d0-4959-8a21-f1ff481cd4ef.jpg" title=" 13.jpg" / /p p style=" text-align: center "   strong  报告人:GE公司 宁丰收 /strong /p p style=" text-align: center " strong   报告题目:SIM用于活细胞超高分辨成像 /strong /p p   超高分辨技术主要包括:SIM技术、STED技术、单分子定位超高技术(STORM/PALM),来自GE公司的宁丰收主要介绍了SIM技术的原理及应用,同时详解了GE产品在SIM技术方面的优势以及诸多广大客户的成功应用案例。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/54ba275a-866f-4c4d-84ca-0b4f889a4af3.jpg" title=" 14.jpg" / /p p style=" text-align: center "    strong 报告人:北京大学 席鹏 /strong /p p style=" text-align: center " strong   报告题目:超分辨显微成像:更清晰,更丰富 /strong /p p   超分辨显微成像技术的进一步发展受到如下方面的制约:分辨率仍需进一步提高,以及从超分辨图像中提取更多的生物信息。席鹏研究员在报告中介绍他们团队的一些相关工作:第一,通过引入镜面反射实现干涉,将STED超分辨的轴向分辨率提高了6倍,水平分辨率提高了2倍。首次观察到了细胞核孔中心孔的环状结构,分辨率达到了19nm,刷新了STED分辨率在生物样品上的世界纪录 第二,成功实现了在30mW的低功率连续光照射下,28nm的超分辨显微 第三,实现了一种全新的超分辨技术---荧光偶极子方位角超分辨(SDOM)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/b7d9574d-b1dc-4a6b-b8d2-84142395d25b.jpg" title=" 15.jpg" / /p p style=" text-align: center "    strong 报告人:奥林巴斯 戚少玲 /strong /p p style=" text-align: center " strong   报告题目:OLYMPUS最新共聚焦成像技术:FV3000 /strong /p p   来自奥林巴斯的戚少玲向大家分享了去年发布的新一代激光扫描共聚焦显微镜新品——FV3000,据介绍FV3000引入了两套扫描振镜,其中一套是高分辨率扫描振镜,具有先进显微镜特有的高分辨率成像能力 另一套是共振式扫描振镜,在保持大视野成像基础上兼顾了高速成像的表现。在全视野成像标准下,FV3000能够实现一秒钟内在屏幕上连续投射出 438张静止画面的采集速度,创下了业内扫描速度的新记录,可实时观察测钙、血流、心肌收缩等活细胞反应。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/3bf43132-90ed-4d76-874f-27b8898baa1e.jpg" title=" 16.jpg" / /p p style=" text-align: center "   strong  报告人:中国科学院植物所 张辉 /strong /p p style=" text-align: center " strong   报告题目:植物根样品钙火花来源的基础方法学研究 /strong /p p   与其他报告不同,张辉研究员报告内容的主题不是动物,而是植物。张辉研究员首先为大家科普了动物与植物细胞在超微结构上的巨大区别。最后介绍了自己团队进行植物根样品钙火花来源的基础方法学研究的研究背景以及前期设计的静态观察技术路线(高压冷冻和冷冻替代制备叶组织)。 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201703/insimg/b0407962-b620-48ab-829a-1bc28841e144.jpg" title=" 17.jpg" / /p p style=" text-align: center "    strong 报告人:尼康仪器 李勋 /strong /p p style=" text-align: center " strong   报告题目:超高分辨系统最新进展——N-STORM /strong /p p   来自尼康仪的李勋向大家介绍了尼康新一代N-STORM超分辨显微成像系统,与N-STORM相比,N-STORM 4.0的图像采集速度提高了10倍,使得活细胞纳米级分辨率图像的拍摄成为了可能。N-STORM 4.0 实现了激光激发设计和sCMOS相机的升级,单张图像的采集速率从分钟级提高到秒极。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/6415041d-a54c-43c6-b54c-116eb46b0a0c.jpg" title=" 18.jpg" / /p p style=" text-align: center "    strong 报告人:军事医学科学院 周涛 /strong /p p style=" text-align: center " strong   报告题目:高分辨显微技术在细胞周期研究中的应用 /strong /p p   细胞周期异常与疾病密切相关,有丝分裂异常可能导致发育缺陷、心血管疾病、肿瘤等。周涛博士在报告中介绍其在细胞周期研究中应用到的两种显微成像技术,借助传统共聚焦成像技术考察了蛋白质有丝分裂时相中的定位、染色体中期排列状态、微管光强等 而利用超高分辨成像技术,则可以进一步研究微管与着丝粒的连接、着丝粒在微管上的运动状态,以及后期染色体滞后表型。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201703/insimg/870a1693-ef06-471c-86a5-be2958f37169.jpg" title=" 19.jpg" / /p p style=" text-align: center "    strong 报告人:徕卡 王怡净 /strong /p p style=" text-align: center " strong   报告题目:徕卡超高分技术的最新应用 /strong /p p strong & nbsp & nbsp & nbsp /strong 据来自徕卡的王怡净介绍,2014年诺贝尔化学奖获得者Stefan W. Hell与徕卡显微系统的工程师和科学家有长期良好的合作关系,早在2004年双方合作推出了商业化4Pi超高分辨显微镜,2007年, Stefan W. Hell将STED(受激发射损耗)专利技术授权徕卡研发。徕卡激光共聚焦平台——Hyvolution,可以帮助研究人员在140nm的分辨率下研究活细胞的快速动态过程,并同时采集多荧光标记的图像,或捕捉细胞内的细节信息。   /p
  • 北京2016年激光共焦超高分辨显微学学术研讨会召开
    p style=" line-height: 1.75em "    strong 仪器 /strong strong 信息网讯 /strong 2016年3月22日下午,由北京理化分析测试技术学会和北京市电镜学会主办的“北京市2016年度激光共焦超高分辨显微学学术研讨会”在北科大厦举行。会议旨在推动北京市及周边省市激光共焦及超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。本次会议吸引了来自高校、科研院所、仪器厂商等150余人参加,会议现场坐无虚席,甚至有不少听众由于座位不够只能站着听报告。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 333px float: none " title=" 会议现场.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/77f5aa67-764f-4f63-8c4a-6be8e16f0c50.jpg" width=" 500" height=" 333" / /p p style=" text-align: center line-height: 1.75em " strong 会议现场 /strong /p p style=" line-height: 1.75em "   自17世纪“诞生”以来,显微镜一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。2008年“出世”的超高分辨率显微技术,打破了常规光学显微镜的分辨极限(约200nm),实现科学家们对细胞内部结构的观察,使超高分辨率显微镜和激光共聚焦显微镜一起成为生命科学领域最重要的研究手段。2014年诺贝尔化学奖获奖者们利用荧光分子“标记”细胞内的精细结构,使其在显微镜下变得五彩缤纷、清晰可辨,真正帮助科学家们从纳米尺度上来认识细胞内的分子结构、定位以及相互作用。自此,生命科学的研究从微米尺度跨入了纳米尺度。 /p p style=" line-height: 1.75em "   据悉,超分辨显微产品目前在市场上非常受欢迎,伴随着技术的进步,其性价比也在不断提升,预计此类产品未来的应用前景将不断拓宽。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 355px " title=" 陈建国.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/79aa39e8-c8e1-4453-ad35-42dfd4780ad5.jpg" width=" 500" height=" 355" / /p p style=" text-align: center line-height: 1.75em " strong 报告人:北京大学 & nbsp 陈建国 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 北京大学的陈建国利用超高分辨显微技术对中心体蛋白Cep57及其在细胞分裂中的调控功能进行了研究。Cep57,原名translokin,最早被报道参与FGF-2胞质内转运过程细胞膜细胞核的双向运输,而2007年在瓜蟾提取物中的实验表明Cep57有稳定微管与动粒结合的作用。 span style=" line-height: 1.75em " 陈建国通过结合免疫电镜和免疫荧光显微成像的结果说明Cep57是中心粒周围物质常驻蛋白,其中心体定位由N端卷曲螺旋结构域决定。同时,显微成像观察结果还显示,中心体蛋白Cep57作为纺锤体和中间体微管网络结构中的稳定因子在细胞有丝分裂过程中发挥了重要的作用。 /span /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 357px " title=" 王文娟.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/845ef3a3-b325-47e9-8583-9af1de4bfbdc.jpg" width=" 500" height=" 357" / /p p style=" text-align: center line-height: 1.75em " strong 报告人:清华大学 王文娟 /strong /p p style=" line-height: 1.75em "   来自清华大学的王文娟首先对清华大学细胞影像平台及其包含的仪器设备进行了介绍,并分别从空间分辨率、时间分辨率、成像深度和光毒性这几个方面对现有的共聚焦扫描、转盘共聚焦、宽场、结构光照明以及随机光学重构(STORM)等荧光成像技术进行了比较,以作为做生物荧光成像研究时选择相符合仪器设备的参考。另外,王文娟还介绍了激光共聚焦显微镜在生命科学中的几种高级应用,如FRAP(荧光漂白恢复)、FRET(荧光共振能量转移)、FLIM(荧光寿命显微成像)技术等的特点及其在实际应用过程中需要注意的情况。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 382px " title=" 王晋辉.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/7d198b78-3cf5-416d-9536-cfa75417a935.jpg" width=" 500" height=" 382" / /p p style=" text-align: center line-height: 1.75em " strong 报告人:中科院生物物理所 王晋辉 /strong /p p style=" line-height: 1.75em "   中科院生物物理所的王晋辉则以小鼠为动物模型,通过建立小鼠胡须触觉和嗅觉联合刺激训练的条件反射模型以及采用双光子激光共聚焦在活体上记录分析Barrel cortex(体觉皮层)区神经网络中神经元及星形胶质细胞的活动的方法对记忆细胞细胞基础的结构功能进行了研究。实验结果表明,在小鼠条件反射建立的过程中有对侧皮层的参与,非训练侧胡须对于条件刺激也有比较弱的非条件反应的现象。而共聚焦成像的结果也显示,小鼠在受到条件刺激时,Barrel cortex区神经网络中出现对条件刺激有反应的神经元和星形胶质细胞,而且条件反射建立之后,Barrel cortex和Piriform Cortex(梨状皮层)之间确实存在着某种联系。 /p p style=" text-align: center line-height: 1.75em "    img style=" width: 500px height: 368px " title=" 陈良怡.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/671fcafd-e777-400a-b386-6553abf72aba.jpg" width=" 500" height=" 368" / /p p style=" text-align: center line-height: 1.75em " strong 报告人:北京大学 陈良怡 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 随着显微技术在生命科学领域应用的不断深入,对仪器分辨率和采集速度的要求也越来越高,传统的显微技术已经满足不了对于活体生物深层组织的观察,对活体生物成像研究的深入迫切需要更多的技术进步。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 北京大学的陈良怡介绍了由北大牵头研制的大视场、高时空分辨新型双光子光片显微镜——2P3A-DSLM。新研制的光片显微镜具有采样速度快(1毫秒帧频)、光损伤小以及深层组织成像等优点。特别是与国际同类光片显微镜相比,2P3A-DSLM在保持超大视场的同时,具有最薄的光片(亚微米级),使得在活体模式动物组织深处观察亚细胞精细结构和动态过程成为可能。目前该系统已经成功应用于活体胰岛 span style=" color: rgb(51, 51, 51) line-height: 1.54 font-family: arial font-size: medium background-color: rgb(255, 255, 255) " β& nbsp /span span style=" line-height: 1.75em " 细胞的结构功能研究,通过可视化胰岛素分泌过程,在不同的时间和空间尺度上监测β细胞功能和胰岛素分泌来研究糖尿病的形成机制。 /span /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 379px " title=" 李栋.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/d170e613-d5b5-43ca-a1a0-0683a5bea245.jpg" width=" 500" height=" 379" / /p p style=" text-align: center line-height: 1.75em " span style=" line-height: 1.75em " 报告人:中科院生物物理所 李栋   /span /p p style=" line-height: 1.75em "   中科院生物物理所的李栋也在报告中介绍了新的两种生物光学超分辨成像技术之high NA TIRF-SIM(高数值孔径物镜的全内反射结构光成像)和PANL-SIM(非线性激活结构光照明成像),是李栋和他的合作者基于原有的SIM(结构光照明成像)显微镜原理上发展的新的超高分辨率成像技术。 /p p style=" line-height: 1.75em "   科学家团队们利用了已经商业化的高数值孔径物镜将传统SIM的空间分辨率提高到84nm。高数值孔径限制了被光照明的样品范围,从而降低了光对细胞以及荧光蛋白分子的损伤。通过这一方法还可以同时对多个颜色通道进行成像,使得科学家们能够同时跟踪几种不同蛋白质的活动。 而结构光激活非线性SIM不仅分辨率更精细(〈80nm)而且图像采集速度也非常快,可在1/3秒内采集25幅原始图像,并从中重建出一幅高分辨率图像。它的图像采集很高效,只需用较低的照明光强,收集每一个亮态荧光蛋白分子所携带的信息,从而有效地保护了荧光分子,使得显微镜能够进行更长时间的成像,让科学家们可以观测到更多的动态活动,如细胞内蛋白质的运动和相互作用。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 370px " title=" 徕卡.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/ef2ca0eb-c9e5-41d6-be96-d135527dd11d.jpg" width=" 500" height=" 370" / /p p style=" text-align: center line-height: 1.75em " 报告人:徕卡& nbsp 王怡净 /p p style=" line-height: 1.75em "   显微成像技术的不断发展也促使着各大仪器厂商们不断地提升相应产品的质量和性能。徕卡的王怡净给参会嘉宾们带来了题为《激光共聚焦及超高分辨技术应用新进展》的报告。她在报告中指出,当前激光共聚焦及超高分辨技术面临的挑战依然是更高的分辨率、更深的穿透深度以及超高分辨率下的多色成像和更快速度。基于此,徕卡推出了新的激光共聚焦平台——Hyvolution,可以帮助研究人员在140nm的分辨率下研究活细胞的快速动态过程,并同时采集多荧光标记的图像,或捕捉细胞内的细节信息。而全新的Leica TCS SP8 STED 3X则分别在三维超高分辨、多色成像和活细胞成像这三个关键领域实现突破性创新。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 357px " title=" 蔡司.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/a8a82aac-9b26-4341-a31b-bec28e190acc.jpg" width=" 500" height=" 357" / /p p style=" text-align: center line-height: 1.75em " 报告人:蔡司 位鹏 /p p style=" line-height: 1.75em "   来自蔡司的位鹏介绍了蔡司Airyscan技术在生命科学领域的一些新进展。据他介绍,今年在Airyscan技术中新增加了更灵敏的成像模式,通过平衡速度和分辨率来达到想要的实验结果,同时保证更好的分辨率和信噪比,并且通过双光子激发增强了深度性能的提升。他还透露,Airyscan技术的两款产品LSM800和LSM880自去年推出以来市场反响非常好,至今年2月份全国销量已达80台。另外,位鹏透露,今年下半年蔡司还将会推出新的技术。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 362px " title=" 尼康.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/f4b1026c-463c-495e-96a8-768378c28c09.jpg" width=" 500" height=" 362" / /p p style=" text-align: center line-height: 1.75em " 报告人:尼康 李勋& nbsp /p p style=" line-height: 1.75em "   尼康公司的李勋介绍了尼康的超分辨共聚焦显微(ER)、简易版的SIM(SIM-E)和升级版的STORM(STORM4.0)。他特别指出,SIM-E是尼康公司结合中国市场推出的简易版的SIM,机器小巧,1帧/秒的时间分辨率、空间分辨率为传统光学显微镜的2倍,同时可进行多色超分辨率成像,非常适合个人实验室。而STORM4.0的图像采集速度则比前一代STORM提高了近10倍,成像区域是后STORM的4倍,实现了活细胞动态过程的超分辨成像。这款产品目前刚上市,市场表现值得期待。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 370px " title=" 奥林巴斯.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/80f5497c-7dc2-466f-91ca-f60338ad63a3.jpg" width=" 500" height=" 370" / /p p style=" text-align: center line-height: 1.75em " 报告人:奥林巴斯& nbsp 戚少玲 /p p style=" line-height: 1.75em "   奥林巴斯20年来专注于双光子成像,国内用户超过100家。来自奥林巴斯的戚少玲介绍了奥林巴斯新型双光子系统在生命科学领域的应用,如在体小鼠肺部的研究、在体小鼠神经记忆功能追踪的研究和免疫细胞的迁移以及斑马鱼血管再生研究等。奥林巴斯高速、深层活体成像的最佳方案——FVMPE-RS实现了1300μ span style=" color: rgb(51, 51, 51) line-height: 1.54 font-family: arial font-size: medium background-color: rgb(255, 255, 255) " /span span style=" line-height: 1.75em " m的深层小鼠活体成像,能够有效收集动态影像,如被标记的细胞在血液中“缓缓”流动,斑马鱼的心脏“慢慢”起伏等。另外,基于近几年发展非常快的透明化技术,奥林巴斯还推出了一些特制的非商业化的专用物镜帮助生物学家们在活体成像研究达到“更深”的层次。 /span /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 391px " title=" Andor.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/6e64a67a-0c49-467e-84b6-98400155e2f1.jpg" width=" 500" height=" 391" / /p p style=" text-align: center line-height: 1.75em " 报告人:Andor 王刚 /p p style=" line-height: 1.75em "   英国安道尔(Andor)科技有限公司位于英国北爱尔兰贝尔法斯特,现隶属于牛津仪器有限公司,专注于低光照快速成像。来自安道尔公司的王刚介绍了安道尔转盘共聚焦产品的关键技术点,包括安道尔专利的borealis激光照明技术、细胞环境控制、自动光照明定点漂白、损伤和激活技术等,使听众对转盘共聚焦有了一个大致的了解。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 379px " title=" TIMWINTER.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/89dcb9c2-b1d1-40ac-9c92-8ea6322c43d6.jpg" width=" 500" height=" 379" / /p p style=" text-align: center line-height: 1.75em " 报告人:蒂姆温特 齐东 /p p style=" line-height: 1.75em "   最后是蒂姆温特公司的齐冬带来的题为《Femoto-3D/2D双光子从结构到功能》的报告。齐冬介绍道,成像应用的新趋势是结合新的成像技术超高速地定量测量清醒状态下在体系统内多体系协同作用现象。而全球唯一的声光(AO)驱动双光子扫描能够实现超高速的3D功能成像和超强信噪比对于观察单细胞形态和多细胞同步测量都有很好的效果,真正实现从结构成像到功能成像的跨步。 /p p style=" text-align: center line-height: 1.75em " img style=" width: 500px height: 333px " title=" IMG_5333.JPG" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201603/insimg/2a18e928-09c7-4bc0-b757-415c9dcbc865.jpg" width=" 500" height=" 333" / /p p style=" text-align: center line-height: 1.75em " strong 北京市电镜学会秘书长张德添教授 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 本次研讨会由北京市电镜学会理事长郑维能、秘书长张德添教授、北大医学部何其华、北大医学部第一医院王素霞等多位业内专家主持。专家们的报告精彩纷呈,会议现场气氛十分热烈,与会嘉宾们纷纷在报告间隙提出了自己感兴趣的问题。 /p p style=" line-height: 1.75em " br/ /p p style=" line-height: 1.75em text-align: right " 撰稿人:陈星羽 /p
  • 奥林巴斯全国工业激光共焦显微镜用户交流会 暨OLS4500新品推介会隆重举行
    5月24日,&ldquo 2013奥林巴斯工业激光共焦显微镜用户交流会暨OLS4500新品推介会&rdquo 在大连国际金融会议中心隆重举行。来自全国各地的高校、科研院所及企事业单位的150余名专家学者出席了此次交流会,其中包括清华大学、哈尔滨工业大学、大连理工大学、中科院沈阳金属研究所、一汽大众等20余个奥林巴斯激光显微镜代表用户。 用户交流会现场 会议开始,由奥林巴斯工业机器部部长赵新安致词,赵新安部长对广大用户抽出时间参加奥林巴斯激光显微镜用户交流会暨OLS4500新品推介会表示感谢。赵新安部长首先对奥林巴斯公司进行了介绍,奥林巴斯公司成立于1919年,有着90多年的光学研发历史,在医疗、生命科学、产业、影像相关4大主要领域内开展业务。基于雄厚的技术力量,奥林巴斯公司在工业显微镜领域不断推陈出新,先后推出DSX系列光学数码显微镜,OLS系列激光共焦显微镜以及完美结合激光共焦显微镜和扫描探针显微镜的OLS4500等新产品。赵新安部长希望通过这次用户交流会,使大家能充分体验奥林巴斯激光共焦显微镜产品,为大家的工作创造新的价值。 奥林巴斯(中国)有限公司工业机器部部长赵新安致辞 沈阳元杰光学技术有限公司是奥林巴斯工业显微镜的东三省代理商,也是这次用户交流会的协办单位。马晓冰总经理在交流会中向大家介绍了沈阳元杰光学技术有限公司的到会员工,同时表示奥林巴斯是工业显微镜的领导者之一,一直努力为大家的科研、质检等工作提供有力支持,奥林巴斯的工业显微镜产品在不断发展进步,沈阳元杰光学技术有限公司作为奥林巴斯工业显微镜产品的代理商,一定会一如既往地为广大工业用户提供最优秀的仪器,最专业的服务,以及更完善的显微技术解决方案。 沈阳元杰光学技术有限公司总经理马晓冰致辞 今年年初,&ldquo 大连理工大学-奥林巴斯(中国)有限公司&rdquo 激光共焦显微镜共建实验室正式成立,大连理工大学也成为继清华大学、西安理工大学、北京科技大学后奥林巴斯工业激光共焦显微镜第四家共建实验室单位。奥林巴斯(中国)有限公司工业机器部赵新安部长和大连理工大学材料学院黄明亮副院长作为双方代表,在此次交流会中出席了&ldquo 大连理工大学-奥林巴斯(中国)有限公司&rdquo 激光共焦显微镜共建实验室成立仪式。 &ldquo 大连理工大学-奥林巴斯(中国)有限公司&rdquo 激光共焦显微镜共建实验室成立 交流会还进行了奥林巴斯年度优秀代理商颁奖仪式,沈阳元杰光学技术有限公司在2012-2013年度表现突出,获得了&ldquo 年度优秀代理商&rdquo 称号,沈阳元杰光学技术有限公司马晓冰总经理作为代表从奥林巴斯(中国)有限公司工业机器部赵新安部长手中接过了纪念奖杯并合影留念。 奥林巴斯年度优秀代理商颁奖 随后,奥林巴斯(中国)有限公司工业机器部徐圣救经理、熊伟先生和姚旭明先生分别就奥林巴斯光学显微发展史、奥林巴斯纳米检测显微镜OLS4500新产品以及奥林巴斯DSX系列新一代光学数码显微镜及其应用做了介绍。 徐圣救经理首先介绍了光学显微镜的发展历史和现状、奥林巴斯工业显微镜的发展历程以及光学显微镜未来发展方向,其中3D测量激光共焦显微镜代表了光学显微镜未来发展的方向,激光共焦显微镜采用非接触式,可以提供逼近纳米的高分辨率观察和高精度测量,可以在同一视野内获得亮度信息、高度信息、彩色信息,而且不需要前处理、准备样品、不需要专业人员,谁都可以使用。奥林巴斯OLS系列激光共焦显微镜具有宽范围的放大倍率、高分辨率、丰富的测量功能、同时保证重复性和准确度、双共焦光路、可进行多幅大尺寸拼图以及操作简便等优点,从1974年问世至今,经过不断发展创新,产品不断更新换代,得到了世界各地用户的支持,为世界各地研究机构作出了贡献。徐圣救经理还就OLS在材料方面的应用以及激光共焦显微镜与常规光学显微镜的对比列举的丰富的实例,还进一步介绍了奥林巴斯激光共焦显微镜大视野观察、表面粗糙度分析,3D形貌观察,全数据信息分析等应用进行了介绍。 奥林巴斯光学显微发展史 奥林巴斯(中国)有限公司工业机器部徐圣救经理 熊伟先生向与会嘉宾介绍了奥林巴斯最新发布的纳米检测显微镜OLS4500,OLS4500结合了SPM(探针扫描显微镜)和LSM(激光扫描显微镜)两种功能,能够轻松实现从毫米到纳米无缝转换测量。还介绍了OLS4500的仪器构成以及OLS4500 SPM具有的不同测量模式:接触模式、动态模式、相位模式、电流模式、表面电位模式和磁力模式。熊伟先生还进一步介绍了探针扫描显微镜的工作原理、特点、分辨率、样品制备方法、应用领域以及不同测量模式下的应用实例,还同时对OLS4500的操作界面、 SPM(探针扫描显微镜)和LSM(激光扫描显微镜)下的不同测量功能、SPM和LSM的功能切换、地图功能、定位功能、向导功能、粗糙度功能进行了介绍。 奥林巴斯纳米检测显微镜OLS4500新产品 奥林巴斯(中国)有限公司工业机器部熊伟先生 姚旭明先生介绍了DSX系列的优异性能,DSX系列包含DSX100、DSX500、DSX500i三款机型,体现了光学技术与数码技术的完美结合,具有无与伦比的操作性能和毫不动摇的可靠性,具有红外触操控系统、高品质光系统、最高品质CCD、高动态和宽动态数据处理技术,具有地图功能,多种观察模式以及不同观察模式之间的组合、多种测量模式。 最后姚旭明先生展示了DSX系列产品在材料、电子、半导体等领域的应用实例,并突出了DSX系列产品面向金相用户的优势。 奥林巴斯DSX系列新一代光学数码显微镜及其应用 奥林巴斯(中国)有限公司工业机器部姚旭明先生 本次交流会还邀请了奥林巴斯激光显微镜产品用户代表中科院沈阳金属研究所袁金才高工和大连交通大学材料学院高飞教授向所有参会人员交流了产品的使用心得。 中科院沈阳金属研究所袁金才高工向所有与会人员沈阳材料科学国家(联合)实验室的基本情况,他表示先进的科研仪器设备在科研工作中的作用十分重要,为他们在科研领域的工作提供了强有力的保障,最后他分享了奥林巴斯激光共聚焦显微镜在他们科研工作中的具体应用,分享了使用激光共焦显微镜观察Cu和Cu&mdash Al合金经过高压扭转(HPT)后中心区域的变形结构,铸状纳米孪晶铜经疲劳后对表面滑移带进行形貌表征,测量分析硬度压痕,分析强度与硬度之关系等应用,这些应用都已在材料领域的高水平论文中发表。 中科院沈阳金属研究所袁金才高工做报告 大连交通大学材料学院高飞教授以&ldquo 铜基粒子摩擦材料(制动材料)&rdquo 做了报告,铜基粒子摩擦材料主要用于高速列车制动领域,他分享了激光共聚焦显微镜在显微观察摩擦磨损机制与第三体、摩擦表面第三体的演化过程、钢摩擦表层的三维形貌等方面的应用,激光共焦显微镜强大的显微观察、形貌表征、测量分析功能给科研工作的进行提供了有力的支持。 大连交通大学材料学院高飞教授做报告 交流会的最后,还举行了现场抽奖活动和样机展示演示活动,奥林巴斯的工程师对与会嘉宾关于产品的有关问题进行了解答,并对用户带来的样品进行了现场测试。大家对于奥林巴斯的产品表现出了浓厚的兴趣,现场交流气氛十分热烈。 现场抽奖活动
  • 1225万!中国科学院超快速超灵敏转盘共聚焦系统、原位电化学反应可视化共焦光学显微镜等采购项目
    一、项目基本情况项目编号:OITC-G240261656-2项目名称:中国科学院2024年仪器设备部门批量集中采购项目预算金额:1225.000000 万元(人民币)最高限价(如有):1225.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)用户单位采购预算(人民币)最高限价(人民币)是否允许采购进口产品17超快速超灵敏转盘共聚焦系统1中国科学院分子植物科学卓越创新中心305万元305万元是包号货物名称数量(台/套)用户单位采购预算(人民币)最高限价(人民币)是否允许采购进口产品18原位电化学反应可视化共焦光学显微镜1中国科学院上海硅酸盐研究所300万元300万元是包号货物名称数量(台/套)用户单位采购预算(人民币)最高限价(人民币)是否允许采购进口产品27聚焦离子束双束微纳加工表征系统1中国科学院赣江创新研究院620万元620万元是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年07月25日 至 2024年08月01日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录“东方招标”平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院赣江创新研究院     地址:江西省赣州市科学院路1号        联系方式:刘老师,0797-2130625,caigou@gia.cas.cn      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:张维 王淑文 耿佳,010-68290549/0513/0515,wzhang@oitc.com.cn            3.项目联系方式项目联系人:张维 王淑文 耿佳电 话:  010-68290549/0513/0515
  • 1100万!湖北汽车工业学院数理与光电工程学院高分辨双束电镜系统及显微共焦拉曼光谱仪采购项目
    一、项目基本情况1、项目编号:ZB0101-202310-ZCHW13022、采购计划备案号:420000-2023-138243、项目名称:湖北汽车工业学院数理与光电工程学院高分辨双束电镜系统及显微共焦拉曼光谱仪采购项目4、采购方式:公开招标5、预算金额:1100(万元)6、最高限价:1100(万元)7、采购需求:本项目总预算金额人民币 1100万元整,本项目分为2个包,其中01包采购预算800万元,02包采购预算300万元。投标人报价不得超过该项目各包预算,否则按无效响应处理。投标人可对本次多个包同时进行投标响应,并进行投标意愿排序,最多只能中标1个包。评审时将以包为单位进行独立评审,根据每包评审得分确定中标候选人。具体采购需求详见“第三章 技术、服务及商务要求”。采购清单详见—附件8、合同履行期限:交货期:01包:合同签订后15个月内完成设备到货至采购人指定地点。02包:合同签订后180个日历日完成备货。安装时间具体以采购人通知的时间为准,接到采购人通知后60个工作日内完成安装验收工作(法定节假日除外)。9、本项目(是/否)接受联合体投标:否10、是否可采购进口产品:是11、本项目(是/否)接受合同分包:否12、本项目(是/否)专门面向中小微企业:否13、符合条件的小微企业价格扣除优惠为:15%二、获取招标文件1、时间:2023年10月18日至2023年10月24日,每天上午08:00至12:00,下午14:00至17:00(北京时间,法定节假日除外)2、地点:阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)3、方式:1.拟参加本项目的投标人须在阳光招采电子交易平台免费注册(网址:https://www.yangguangzhaocai.com ---【新用户注册】,相关操作帮助详见:帮助中心--- 投标人注册操作指南);2.注册完成后,请于2023年10月18日至2023年10月24日17:00时止(北京时间)登录电子交易平台,点击【投标人】,在【公告信息】---【采购公告】栏下载拟投标段采购文件(拟投多标段的,应按标段分别下载),0元/份(包),售后不退。联合体参与响应的,由牵头人注册及下载采购文件。未按规定获取采购文件的,其响应文件将被拒绝;3.本项目非全流程电子标,投标人无须办理CA数字证书;4.在电子交易平台遇到的各类操作问题(登录、注册认证、报名购标、制作及上传标书等问题),请拨打技术支持电话010-21362559(工作日:08:00~18:00;节假日:09:00~12:00,14:00~18:00);5.企业注册信息审核进度问题咨询电话:027-87272708;6.项目具体业务问题请向代理机构联系人咨询(联系方式详见本公告第七条)。4、售价:0(元)二、对本次招标提出询问,请按以下方式联系1、采购人信息名 称:湖北汽车工业学院地 址:十堰市张湾区车城西路167号联系方式:0719-82071562、采购代理机构信息名 称:湖北国华项目管理咨询有限公司地 址:武汉市武昌区中北路109号中铁1818中心10楼联系方式:027-873265133、项目联系方式项目联系人:刘晋钰、张亚然、汪树新、王刚、余轶菲电 话:027-87326513
  • 北京市2023年度激光共焦及超高分辨显微学学术研讨会圆满召开
    仪器信息网讯 2023年4月15日,北京市 2023 年度激光共焦及超高分辨显微学学术研讨会在北京四川龙爪树宾馆成功举办。本次会议由北京理化分析测试技术学会电子显微学专业委员会主办,旨在提高广大相关科技工作者的学术及技术水平、促进生物光学成像技术在生命科学等领域中的应用,为相关科技工作者提供学术及技术交流的平台。会议吸引百余位来自高校、科研院所、仪器企业和仪器代理商等相关领域代表出席。会议现场会议由北京理化分析测试技术学会电子显微学专业委员会荣誉理事长张德添教授等主持,共有14位光学显微成像领域的科研和技术专家分享了报告。报告内容包括结构光超分辨显微技术、单分子超分辨显微技术、光片显微技术、超分辨共聚焦显微技术、双光子显微技术等多种显微成像技术和综合解决方案在神经科学、分子生物学、植物细胞生物学等生命科学研究领域中的应用。从多个报告中可以看到,“智能化”正在成为光学显微镜发展的一大趋势。部分报告主持人李栋 研究员 中国科学院生物物理研究所报告:多模态结构光超分辨显微镜技术开发与应用吕冰洁 卡尔蔡司(上海)管理有限公司报告:3D高分辨和大数据成像的图像处理及可视化解决方案李叶昕 徕卡显微系统(上海)有限公司报告:大道至简——徕卡智能成像新纪元呼新尧 北京纳析光电科技有限公司报告:多模态结构光超分辨智能显微镜潘雷霆 教授 南开大学报告:单分子定位超分辨成像及应用孙慧妙 锘海生物科学仪器(上海)有限公司报告:平铺光片显微技术及其应用魏涛 尼康精机上海有限公司报告:尼康最新超分辨共聚焦AXR及新一代双光子系统AXRMP邓伍兰 研究员 北京大学报告:转录调控中的单分子动态孙文智 研究员 北京脑科学与类脑研究中心报告:Engineering Practice Between Mouse and Microscope in Two-Photon Imaging王莹 宁波力显智能科技有限公司报告:单分子超高分辨率显微成像技术及其在生物医学领域的应用王咏婕 仪景通光学科技(上海)有限公司报告:Evident高分辨成像解决方案费鹏 教授 华中科技大学报告:高通量计算光片显微成像技术及生物医学应用朱慧慧 牛津仪器Andor报告:全新出发——牛津仪器Andor生命科学解决方案李晓娟 教授 北京林业大学报告:多尺度成像技术在植物细胞生物学中的应用会议现场,近二十家国内外光学显微镜厂商展示了自己的产品,并同与会代表充分交流。近几年,该会议的参展厂商中,越来越多的国产共聚焦、超高分辨率显微镜、光片显微镜等高端光学显微镜企业涌现,本次参展的国产光学显微镜厂商超过半数,许多科研成果也已到了开花结果的时候,这让整个高端光学显微镜市场充满活力。参展厂商活动抽奖环节
  • 北京市2024年度激光共焦及超高分辨显微学学术研讨会圆满召开
    仪器信息网讯 2024年3月31日,北京市2024年度激光共焦及超高分辨显微学学术研讨会在北京四川龙爪树宾馆成功举办。本次会议由北京理化分析测试技术学会电子显微学专业委员会主办,旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进生物光学成像技术在生命科学等领域中的应用。近200名来自高校、科研院所、仪器企业和仪器代理商等相关领域的代表参加了本次研讨会。会议现场会议由北京理化分析测试技术学会电子显微学专业委员会荣誉理事长张德添、理事长何其华等主持,来自企业、高校和科研院所的15位光学显微成像领域的技术专家和应用专家分享了共聚焦显微镜、超高分辨率显微镜、高内涵系统、扫描光场显微镜等的新技术、新产品和创新应用。报告人:吴嘉敏 清华大学自动化系 副教授报告题目:《扫描光场显微镜》吴嘉敏介绍了荷湖科技的Slim扫描光场显微镜。跨尺度介观活体显微观测一直是生命科学领域的重要目标,传统显微成像技术由于光学像差、光毒性和时空带宽积等物理局限,无法实现长时程大视场高速高分辨活体显微三维成像。通过提出扫描光场成像原理和数字自适应光学架构,结合独创的重建与图像增强算法,Slim扫描光场显微镜实现了亚细胞分辨率下的高速、高信噪比、长时程三维荧光活体成像。此外,他还介绍了Slim扫描光场显微镜在脑科学、免疫学和细胞生物学等领域的应用案例。报告人:董文浩 卡尔蔡司(上海)管理有限公司 应用工程师报告题目:《无损、高清、实时多维成像新体验》董文浩介绍了蔡司的Lattice Lightsheet7晶格层光显微镜,它的光漂白和光毒性极低,能还原细胞真实的生理状态,不会对活细胞造成损失,对长时间对干细胞进行成像至关重要。同时,Lattice Lightsheet7晶格层光显微镜能够实现近各向同性分辨率无变形成像和实时三维成像。董文浩还讲述了Lattice Lightsheet7中性粒细胞成像、疟原虫配子快速运动的纤毛摆动成像等应用案例。报告人:戚少玲 Evident Olympus公司 中国产品技术总监报告题目:《 Olympus/Evident新一代共聚焦显微镜FV4000》戚少玲介绍了Evident最新推出的FV4000激光扫描共聚焦显微镜,这款系统具有多项创新。FV4000采用了开创性的专利技术SilVIR检测器,该检测器将高信噪比、线性的大动态范围和宽光谱的高灵敏度融合于一体。此外,其半导体技术工艺确保了更均匀和稳定的光子探测能力。SilVIR检测器的高效率和高精度优势将完全取代传统的GaAsP-PMT检测器。此外,她还提到FV4000能实现更广泛的400-900nm光谱范围内的成像,系统引入了自动化和智能化功能,应用范围也更广泛。报告人:王瑜 瑞孚迪生物医学(上海)有限公司 细胞影像资深应用专家报告题目:《高内涵—从高通量样本拍摄到大数据分析》王瑜介绍了瑞孚迪公司推出的高内涵显微镜,它的主要特点是可以针对不同组别群体进行差异性数据的采集和分析。该款显微镜可以长时间多组自动成像,具备全自动、高通量、多参数、速度快、操作简便等优势。此外,她举例介绍了该款高内涵显微镜在类器官、脑瘤纤维化的3D筛选、机器学习辅助的明场PDO药物筛选和胚胎发育过程监测等领域中的应用案例。报告人:吴聪颖 北京大学 副教授、研究员报告题目:《细胞骨架对线粒体精细结构的调控及其对癌细胞迁移的影响》吴聪颖的课题组揭示了线粒体定位的肌动蛋白Myo19定位在线粒体嵴连接点处,参与维持线粒体嵴的结构和功能。该研究提出了机械力对细胞器精细结构的调控。并且,她进一步利用3D肿瘤细胞球,探究了Myo19对实体肿瘤内ROS的空间分布及对肿瘤细胞迁移侵袭的影响,创新性地提出了H2O2梯度诱导的肿瘤细胞趋化迁移,为肿瘤细胞侵袭转移的机制研究提供了新的理论基础。报告人:林雨 横河电机(中国)有限公司 高级技术经理报告题目:《横河生命科学高内涵成像分析与单细胞解决方案》林雨介绍了高内涵成像分析和单细胞解决方案。在横河电机的全线产品里都装载了他们的微透镜双转盘单,它是在单转盘的技术基础上又增加了微凸透镜转盘,这个微凸透镜转盘可以收集更多的激发光,提高光利用率,还能精准聚焦,提高信噪比。细胞解决方案SS2000可以对单个细胞或单个亚细胞的内容物进行取样,能在保留位置信息和形态学条件下取样,具备高分辨率成像和高内涵分析功能。此外,他还介绍了该方案在多核破骨细胞内部转录组学和表观遗传异质性研究上的应用。报告人:周建春 北京艾锐精仪科技有限公司 市场总监报告题目:《从共聚焦到超分辨—艾锐全体系解决方案介绍》周建春讲解了Polar-SIM的硬件特色 、软件特色、算法特色和应用特色。其中,硬件特色主要是应用了SLM,快速条纹旋转及切换,可达1.7KHZ,可根据用户需求定制化升级;软件特色是能呈现高品质大图视野,兼顾无缝拼图;算法核心特色有低信噪比重建,伪影抑制—高保真重构和偏振解析重构。同时,其还具有可视化重构评价体系,可以让用户客观评价重构效果。应用特色体现在四色超分辨同时成像、多模态(多达26种,兼具四台设备)、多维度、长时程和超快速。报告人:唐爱辉 中国科学技术大学 教授报告题目:《单分子超分辨成像在神经生物学中的应用》唐爱辉介绍道,单分子超分辨成像技术(STORM)在所有超分辨显微镜系统中分辨率是最高的一类技术,但是在解析突出蛋白纳米簇内部的分子排布和动态时分辨率仍然不足,因此其课题组应用MINFLUX纳米镜进行了相关研究。MINFLUX纳米镜它可以进行1-3纳米精度单分子定位,可实现真正分子尺度的单分子组织和动态成像,用基于MINFLUX的focus MT方法可以对数小时无衰减的活细胞单分子追踪。此外,唐爱辉还介绍了单分子成像在组学研究中的应用以及团队原创的空间转录组成像方法BASSFISH。报告人:席鹏 北京大学 教授报告题目:《偏振结构光超分辨与多色高速共聚焦》席鹏介绍了Polar-SIM的成像原理和Open-3DSIM开源重建工具,该工具具备自适应参数估计和优化频谱滤波的特点。同时,他还介绍了转盘共聚焦和Multi- resolution analysis高保真提升算法。席鹏还提到艾锐Polar-SIM偏振结构光超分辨显微系统,融合了结构光成像的所有模态,如纺织一般,将光线交织的美映入复杂的活体细胞,揭示生命的奥秘。报告人:南希 徕卡显微系统(上海)贸易有限公司 共聚焦产品经理报告题目:《超高分辨率成像的新维度》南希介绍了徕卡的TauSTED Xtend这一技术创新。她讲到,TauSTED是利用荧光的物理寿命读数来描述STED过程,探测荧光团所经历的能量梯度,并识别来自非相关背景噪声的信号。它与典型的扫描STED采集同时进行。随后她展开介绍了TauSTED Xtend这一项温和的纳米级多色活细胞成像技术,可以在不损失分辨率的情况下进行长时间的脆弱样本观察和更大体积的样本拍摄,避免活性氧的积累、光毒性和细胞内信号的变化,在更低的光剂量下扩展超分辨显微镜的边界。在TauSTED Xtend中,可以通过已知的系统参数和实验寿命读数的组合确定有效的PSF,并且TauSTED Xtend成像分辨率和信号比之前的TauSTED更强。报告人:张毅 北京师范大学 教授报告题目:《纤维素合酶分泌的非经典途径》张毅分享了他的团队通过长时程活细胞成像,发现了一条将纤维素合酶转运出高尔基体的非经典途径:高尔基体局部形变产生管状结构,管状结构延伸、断裂、产生一类称为SmaCCs/MASCs的囊泡,从而将纤维素合酶转运出高尔基体。此工作揭示了一种新的囊泡生成途径及其促进纤维素合酶胞内转运的机制,为研究囊泡生成和物质运输机制提供了新的视角和突破口。报告人:王丽丽 尼康精机(上海)有限公司 应用工程师报告题目:《尼康新品Eclipse Ji 多模态成像解决方案》王丽丽介绍了尼康新品Eclipse Ji的产品特色。Eclipse Ji是一体化设计,环境稳定,无需暗室和防震台。它利用人工智能工具强化了导航和检测能力,AI工具会找寻样本、设置适当波长、曝光和照明功率以定位目标区域。Eclipse Ji应用了智能检测模块,从图像采集到分析和图形创建,可以完全自动执行。此外,它的软件/硬件可以灵活扩展。报告人:施可彬 北京大学 教授报告题目:《高时空分辨光学成像技术探讨》施可彬分享了全景、活细胞、长时程的高时空分辨光学成像技术。这项技术可以做到大视野(160μmx160μmx40μm)、高速(1FPS@3D)、超分辨(横向150nm,轴向400nm)、无标记(无需染色,无光毒性、光漂泊)定量折射率成像(折射率精度>0.0015)和超长时间连续(>20h)成像。此外,他还介绍了该技术在多类别、非侵入活细胞成像,活细胞死亡机制研究和活细胞生命活动跟踪分析等领域中的应用。报告人:赵瑚 北京脑科学与类脑研究所 高级研究员报告题目:《透明化包埋技术与外周和大脑神经投射图谱成像》赵瑚分享了他们研发的TESOS透明化技术和PEGASOS透明化技术的原理及应用价值。他的透明化技术无需设备,一个试剂盒就能使软组织、硬组织这些结构透明化,里面含有能长久保护组织且高折射率的透明夜,溶液无毒性,兼容多种染色方法。同时,赵瑚还给大家以3D动画的形式展示了他们对完整小鼠的成像成果。报告人:Igor Lyuboshenko PhaseView Ceo报告题目:《phaseview先进光片显微镜》Igor介绍了Phaseview先进光片显微镜Alpha3的功能和特点。Alpha3可以实现大尺寸样本、无需切片、快速扫描、深度成像和高分辨率3D动态图像输出,能应用在模式动物整体3D成像、胚胎成像和神经生物学研究等多领域。会上大家积极提问交流会议现场除了有嘉宾们分享精彩的报告,还有十余家国内外光学显微镜厂商展示了自己的产品,并同参会者们热情友好地交流互动。参展厂商
  • 关于举办“北京市2017年度激光共焦超高分辨显微学学术研讨会”的通 知
    p style=" text-align: center "   关 于 举 办 /p p style=" text-align: center "   “北京市2017年度激光共焦超高分辨显微学学术研讨会”的 /p p style=" text-align: center "   通 知 /p p   为推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用,北京理化分析测试技术学会和北京市电镜学会共同决定于2017年3月21日(星期二),北京理工大学国际教育交流大厦二层多功能厅,举办“北京市2017年度激光共焦及超高分辨显微学学术研讨会”。会期一天。届时将邀请国内专家学者和青年科技工作者作相关学科的发展前沿学术报告。同时还邀请相关的主要厂商和公司到会宣讲及展示其最新产品、仪器及其最新功能。 /p p   具体事项通知如下: (学术报告时间安排表附后) /p p   一、会议及报到时间: /p p   会议时间:2017年3月21日(星期二),08:00-16:30 /p p   报到时间:2017年3月21日(星期二),07:30-08:30 /p p   二、会议地点:北京市海淀区北三环西路甲66-1,北京理工大学北门,国际教育交流大厦二层多功能厅。 /p p   三、乘车路线:可乘26,运通201,425,699,特8内,运通101,323,361,365,355,79,651到三义庙站下车。即到。本次会议不提供免费停车,建议各位老师乘坐公交前往。 /p p   四、会议免费参加,将根据实际报名情况,准备好相关资料和礼品,并提供午餐并提供午餐及饮料等。特邀请您及您的老师、同事、学生参加。并将回执务必于2017年3月14日前,发至 bjlhxh88@126.com邮箱。 /p p   五、会议负责人的具体联系地址、联系电话、邮箱如下: /p p   1、北京理化分析测试技术学会,王晨:18101083321,010-68731259 lhxh88@126.com /p p   2、北京大学医学部,何其华,hqh@bjmu.edu.cn,13501058133。 /p p   3、军事医学科学院,张德添,Zhangdetian2008@126.com,13366267269。 /p p   4、北京市首都师范大学,郑维能,Cnu_zhengweineng@163.com,13671116332。 /p p   北京理化分析测试技术学会 /p p   北京市电镜学会 /p p   2017年2月21日 /p p   回执请于3月14日前发至 a href=" mailto:bjlhxh88@126.com" bjlhxh88@126.com /a 邮箱 /p table style=" border-collapse: collapse " tbody tr class=" firstRow" td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 姓名 /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 工作单位 /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " & nbsp & nbsp & nbsp & nbsp & nbsp 个人邮箱 /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " & nbsp & nbsp & nbsp & nbsp & nbsp 电话/手机 /td /tr tr td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td /tr tr td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td /tr tr td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td td width=" 146" valign=" top" style=" border: 1px solid rgb(204, 204, 204) " /td /tr /tbody /table p style=" text-align: center "   北京市2017年度激光共焦及超高分辨显微学学术研讨会 /p p style=" text-align: center "   学术报告时间安排表 /p p style=" text-align: center "   (2017年3月21日 星期二、北京国家教育交流大厦 ) /p p style=" text-align: center " & nbsp img title=" 13.png" src=" http://img1.17img.cn/17img/images/201703/insimg/9aea0d0b-6487-48ab-98a5-ec8fdc1f2aed.jpg" / /p p   说明:以上所有报告时间为18分钟。提问时间2分钟。 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p style=" text-align: right "   北京市电镜学会 /p p style=" text-align: right "   2017年2月21日 /p p & nbsp /p
  • 盘点|40亿共聚焦显微镜市场 国产仅1台
    1957年,美国科学家Marvin Minsky提出了共聚焦显微镜的基本概念,并将共聚焦技术注册为专利。但直至1980年代末专用激光器的发展相对成熟时,共聚焦技术才成为标准技术。如今,共聚焦显微镜已成为生物学和医学研究最重要的仪器之一,在材料研究和工业检测领域也有着广泛应用。本文对“重大科研基础设施和大型科研仪器国家网络管理平台”上的共聚焦显微镜数据进行了盘点分析,全国共有502个平台登记了共聚焦显微镜,单位性质主要包括高校和科研院所。根据仪器信息网稍早前调研,共聚焦显微镜货值在100万元以上的占比为93.3%,200万元以上占比为66.6%,300万元以上占比约为35%。共聚焦显微镜价格平均值为260万元左右,根据配置不同,价格也不一样。本次统计该平台共有共聚焦显微镜近1500套,估算总价值近四十亿。那么科研市场上,这些共聚焦显微镜启用时间、地域、应用学科和主要品牌分布如何呢?图1 科研市场共聚焦显微镜价格分布(数据来源于仪器信息网的中标统计)从地域来看,共聚焦显微镜分布区域覆盖全国30个省级行政区,数量前五的省市分别是北京市、上海市、江苏省、广东省和浙江省,前五省共聚焦显微镜共享数量之和超过总数的五成。图2 共享共聚焦显微镜地域分布从仪器启用时间来看,1999年-2013年这15年间各大科研平台的共聚焦显微镜呈指数增长,2016年共享数量达到最高,最近五年数量呈现下降趋势。这里需要指出的是,“重大科研基础设施和大型科研仪器国家网络管理平台”正是在2016年初步建成并进行试运行,2016年启用数量最多或许与该年份大规模数据采集有一定关系。图3 共享共聚焦显微镜启用时间分布共聚焦显微镜在生物学/医学领域的应用最为普遍,甚至在许多文献中表述共聚焦显微镜为“生物医学成像仪器”或“细胞生物学分析仪器”,有数据显示,现如今全球范围内有2500多个细胞生物学实验室使用共聚焦显微镜辅助研究。材料领域是共聚焦显微镜的另一大应用领域,在半导体、芯片、金属等材料科学研究及生产检测领域应用较多。除了上述两个研究领域的应用,共聚焦显微镜也应用于石油地质学、植物学、食品研究等领域。本次共享平台数据中,从学科来看,共聚焦显微镜分布如图4,73.6%的仪器主要用于生物和医学研究中,材料研究占比为23%,农学/食品科学占比为3.1%。图4 共聚焦显微镜应用学科分布目前中国科研市场,高端光学显微镜仍是进口品牌的天下。共聚焦显微镜的主流品牌有蔡司、徕卡、奥林巴斯、尼康、安道尔等。本次统计中,徕卡26.74%,蔡司26.25%,奥林巴斯22.08%,尼康12.12%。“四大家”的品牌占比之和为87.18%。此外,牛津仪器旗下的安道尔品牌占比第五,为2.51%。全部共享仪器中,只有1台国产仪器,为苏州医工所研制。图5 共享平台共聚焦显微镜品牌分布从应用领域来看,虽然仍然是“四大家”品牌占据绝对优势,但不同应用领域各个品牌的占比也有所不同。生物学/医学领域,前六分别是徕卡、蔡司、奥林巴斯、尼康、安道尔、珀金埃尔默、GE医疗;材料科学领域,前六分别是奥林巴斯、蔡司、徕卡、尼康、YONEKURA、基恩士。根据仪器信息网调研,2019年共聚焦显微镜市场规模约为11亿,近年来,需求仍十分旺盛,增长率超过20%。我国共聚焦显微镜的发展起步较晚,除了上文中提到的苏州医工所,近一年,共聚焦显微镜的玩家增多,永新光学于2020年年底正式发布共聚焦显微镜新产品,而去年年初,北京世纪桑尼也发布了共聚焦模块,并计划与合作伙伴共同推出共聚焦显微镜。今年9月,一家名为熵智科技的创业公司发布了一款超分辨及共聚焦显微镜新品 。由此看来,我国已经加快了共聚焦显微镜追赶国际的步伐,未来,在国产仪器相关支持政策的加持下,科研共享平台必将有更多国产共聚焦显微镜的身影。
  • 共“圳”光学显微未来丨第一届大湾区前沿光学显微成像技术讲习班今日启幕
    fMOST骆清铭院士和龚辉教授带领MOST团队发明的显微光学切片断层成像系列技术(MOST/fMOST)作为介观尺度最精准的三维完整器官成像技术,已在神经机制、脑疾病、心脑血管疾病以及药理毒理等科学前沿领域研究中发挥重要作用,并带动了相关标记技术和大数据处理和解析技术的发展。——————为促进光学显微成像技术的共享与交流,深圳湾实验室生物影像平台将于2023年11月27日-12月3日举办首届大湾区前沿生物显微成像技术讲习班。此次讲习内容包括专家讲座授课及上机培训两部分;讲座授课部分,清华大学、北京大学、中国科学院等单位相关领域的知名专家以及仪器厂家技术负责人提供27个前沿技术报告,沃亿生物副总经理郑廷博士受邀于12月3日下午2点在现场做《荧光显微光学切片断层成像(fMOST)系列技术及其应用》主题演讲;上机培训部分,将以专题的形式进行显微镜基础、共聚焦成像技术、双光子技术、超高分辨技术以及fMOST三维高分辨成像技术等操作培训。 第一届大湾区前沿光学显微成像技术讲习班沃亿生物诚邀您届时莅临参会指导时间:2023年11月27日-2023年12月3日地点 :深圳湾实验室(深圳市光明区光侨路高科创新中心)讲习班内容-技术讲座讲授前沿光学显微成像技术理论知识沃亿演讲 时间:12月2日 14:00-14:30主题:荧光显微光学切片断层成像(fMOST)系列技术及其应用主讲人:沃亿生物副总经理 郑廷博士 讲习班内容-上机操作根据讲座内容开展上机操作,培训以及演示12月2日下午将开展fMOST三维高分辨成像技术操作培训日程安排沃亿生物受邀参与本次研习班并设立展位,将为您详细介绍跨尺度三维成像解决方案,围绕MOST、fMOST等技术的核心产品及实际应用案例。 我们诚挚邀请您亲临现场,共同探讨光学显微成像领域的未来发展趋势和新技术应用方向! 深圳湾实验室生物影像平台深圳湾实验室生物影像平台是深圳湾实验室的核心技术支撑平台,也是大湾区显微成像及其制样仪器种类最齐全的技术中心。平台现拥有大型显微成像设备以及制样相关设备44套,包括:超高分辨点扫描共聚焦显微镜、超高分辨转盘共聚焦显微镜、高速转盘共聚焦显微镜等设备。现已建成平台的成像分辨率跨越亚纳米—纳米—微米—毫米等多个尺度,成像模态涵盖光学、电子两个模态,样本适用范围包括:生物大分子、亚细胞器、细胞、类器官、组织、小型模式动物等。
  • 1460万!深圳医学科学院超高分辨共聚焦显微镜和快速高分辨共聚焦显微镜采购项目
    一、项目基本情况: 1.项目编号:SZCG2024001054 项目名称:深圳医学科学院超高分辨共聚焦显微镜采购项目 预算金额(单位:元):9700000.00 最高限价(如有):无 采购需求:标的名称数量单位简要技术需求(服务需求)备注深圳医学科学院超高分辨共聚焦显微镜采购项目1套详见招标文件 合同履行期限:详见招标文件用户需求书。 本项目不接受联合体投标,详见“申请人的资格要求”。2.项目编号:SZCG2024001055 项目名称:深圳医学科学院快速高分辨共聚焦显微镜采购项目 预算金额(单位:元):4900000.00 最高限价(如有):无 采购需求:标的名称数量单位简要技术需求(服务需求)备注深圳医学科学院快速高分辨共聚焦显微镜采购项目1套详见招标文件合同履行期限:详见招标文件用户需求书。 本项目不接受联合体投标,详见“申请人的资格要求”。二、获取招标文件 时间:2024年08月31日至2024年09月11日(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可于2024年08月31日至2024年09月11日13:30 期间登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的采购文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)的供应商,请先办理密钥(请点击),并前往深圳市南山区沙河西路3185号南山智谷A座(深圳交易集团总部大楼)3楼前台(咨询电话:0755-83948165、0755-83938966、4008301330)绑定深圳政府采购智慧平台用户,再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。三、对本次招标提出询问,请按以下方式联系 1.采购人信息 名称:深圳医学科学院 地址:广东省深圳市光明区新湖街道光明生命科学园A栋17层 联系方式:0755-66650028 2.政府集中采购机构 名称:深圳公共资源交易中心,具体由深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)组织实施 地址:深圳市南山区沙河西路3185号南山智谷A座(深圳交易集团总部大楼)27楼 联系方式:0755-86580001、0755-86580002 3.项目联系方式 项目联系人:龚工 电话:0755-86580002
  • 共聚焦和光片显微镜将继续成为光学显微技术基石——牛津仪器ANDOR谈高端光镜
    光学显微镜已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,为了满足蓬勃发展的生命科学领域不断产生的新的需求,光学显微镜在成像速度、成像深度、克服光毒性等许多方面也不断发展出新的技术。仪器信息网特别关注高端光学显微镜的技术发展和在生命科学领域的应用进展,并广泛向国内外高端光学显微镜企业约稿(投稿邮箱:lizk@instrument.com.cn),帮助广大用户了解相关技术与应用进展。本篇为牛津仪器ANDOR供稿,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,在生命科学等领域被广泛应用;2009年,联合推出sCMOS相机,被广泛应用于生命科学、材料科学、物理科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功;近日,ANDOR又推出了BC43台式共聚焦显微镜新产品,操作简便可帮助用户提高工作效率。跟随本文,全面了解这家成立32年的公司,其“一步一个脚印”的发展历程、他们对当前光学显微镜技术和应用现状的解读以及技术未来发展趋势的展望。仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。1989年的一个下午,爱尔兰岛东北部的贝尔法斯特女王大学物理系的Donal Denvir发现当时任何一款相机都无法满足实验检测的需求,他下定决心开始研制一台全真空密封的相机来支持自己的研究应用。新研制的相机经过Andor创始团队不断精心改进,成功应用于各种成像与光谱研究。Andor对显微镜技术的重大贡献是2002年推出了第一台EMCCD(电子倍增电荷耦合器件)相机iXon,这种超灵敏的相机带来了新的契机,能够检测在显微镜下观察的样品中的单分子荧光信号。2005年,ANDOR推出的Revolution活细胞成像系统,iXon与转盘技术的强大组合,大大改善了转盘共聚焦在高对比度活细胞显微成像中的效用,以及对活体样品进行三维成像的能力,赢得了行业用户的广泛关注。2012年,ANDOR将EMCCD现有帧率提升3倍,显著提高了产品性能,并帮助研究人员更多地了解生物样本的快速动态事件。2009年,ANDOR推出sCMOS相机Neo, 此后sCMOS成为使用最广泛的科学相机技术,并且广泛应用于显微镜领域。sCMOS提供了比之前更高的分辨率和更快的帧速率,因此促进了对细胞,特别是细胞内动态和细节的更深入了解。 这种sCMOS技术与EMCCD技术相辅相成,同一台显微镜下可以兼顾灵敏度或者分辨率和速度。同年,ANDOR在显微系列产品组合中增加了两个光刺激模块Mosaic和MicroPoint。Mosaic基于DMD方法,可以在亚细胞或更高分辨率下实现多个照明区域的精确定义。这个工具被用来对显微镜下观察的样品进行光活化、转换或漂白。 这些方法是进行亚细胞实验和了解蛋白质、亚细胞分隔和细胞器的时空行为的有力方法,或者在更大的范围内跟踪大群体中的单个细胞。 该技术发明之前,显微镜只是一种被动观察的工具,但现在可以在显微镜下主动研究细胞和系统生物学。 最近有研究显示,Mosaic与光遗传学相结合,可以成为一种特别有用的工具,这种方法可以促进信号和其他通路的特定光控制。 MicroPoint具有类似的优势,但可用于:(a) 炎症、伤口和愈合与发育的消融研究;(b) DNA损伤,创造DNA断裂的模型,这是细胞可能成为癌症的早期触发因素。这个模型被用来理解DNA修复如何在治疗中发挥作用。2010年,ANDOR收购了Bitplane,将高端三维图像可视化和分析软件Imaris纳入显微产品组合。 Imaris提供广泛的工具来分析一些研究领域的三维图像数据,包括细胞和发育生物学、神经科学、癌症研究和组织分析。2016年,ANDOR推出 Dragonfly,这是为研究人员提供的完整的显微成像解决方案。荣获行业大奖的Dragonfly 500通过转盘设计的改进(详见下文),并结合(a)TIRF(全内反射荧光显微镜),这是一种专门用于细胞膜成像的强大技术(如受体周转和囊泡对接);(b)基于激光的宽视场显微镜,用于微弱光的荧光成像;(c)用于超分辨率成像的光学器件(包含3D成像)。 Dragonfly使研究人员有能力在一台显微镜上对细胞进行比以往更详细的研究。Dragonfly在以下几个方面对现有的转盘技术进行了重大改进:(1)引入Borealis专利照明技术,在基于微透镜的转盘共聚焦显微镜中提供交叉视野照明。这使研究人员在更准确的图像分析、更高质量的大面积和样品拼接的蒙太奇成像中受益。(2)更好的信噪比,实现更高的对比度成像:使用价格较低的低功率激光器,或为dSTORM和DNA-PAINT超分辨率成像或基于图像的单细胞原位转录组学等技术提供更多功率。(3)更稳定的照明源,维护费用低。• 实时样品体积渲染,用户能够快速了解他们的实验进展,并对修改方案做出早期决定和结论。• 更低的仪器本底噪音使研究者能检测到更弱的荧光信号,观察到更细致的生物学现象。• 独特的转盘设计,在保持高速采集速度的同时,可以对样品进行更深入的成像(从数百微米到毫米尺度)。这也意味着转盘技术可以对大型固定样品进行成像,因此为组织成像以及斑马鱼和果蝇等大型模式生物的成像提供了一个高产的解决方案。2017年,ANDOR推出了SRRF-Stream+ ,这是一种超分辨率技术,可以轻松地添加到现有的相机中,或与Dragonfly等显微成像解决方案一起使用。这项技术打破了光学显微镜系统的自然分辨率限制,从200纳米下降到50纳米。现在,研究人员可以观察到他们以前看不到的结构,可以从图像中了解更多信息。 此外,SRRF-Stream+ 无需专门的光学设备或方法来执行,并且可以与几种不同的成像技术一起使用,因此,它可以为更多研究团体所用。2021年,岁末当下,ANDOR推出了BC43台式共聚焦显微镜。一个完整的转盘共聚焦解决方案被整合在如此一个不透光的小设备里。BC43操作非常直观和简单,即便是显微镜新手也能轻松掌握。BC43可以放在普通的实验台上,成为高效实验室工作流程的一部分。简单的操作流程和较少的维护需求使这款设备能够给用户带来非常高的工作效率。此外,BC43内含Dragonfly中的Borealis照明和一些新技术包括内置的一个新激光引擎以实现更小的占地面积。仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?我们公司目前推广和之前描述的显微成像产品是• 用于显微镜的灵敏科学相机EMCCD 和 sCMOS• Dragonfly系统• BC43台式转盘共聚焦显微镜• 激光耦合器• 用于显微镜的光刺激设备Mosaic和MicroPoint• 显微镜用的光谱仪和显微制冷机• 三维可视化分析软件Imaris• 超分辨技术SRRF-Stream+ (技术优势参考上述内容)仪器信息网:贵公司高端光学显微镜在生命科学研究中有哪些应用?目前Andor的转盘共聚焦显微镜灵敏度高、成像速度快、分辨率好,可进行3D+动态立体信息探索,在细胞生物学、发育生物学、肿瘤生物学、疾病与免疫学、微生物学、神经生物学、生物物理学等不同领域均表现卓越。细胞生物学家们借助Dragonfly探究细胞内精细的亚细胞结构如线粒体成像、细胞膜动态、细胞周期与分裂、微管动力学、胞内运输、囊泡运动。同时,作为研究发育和厚组织的利器,Dragonfly可以观测受精卵及早期胚胎发育、肢体形成、模式生物如(果蝇、线虫、斑马鱼)的完整生物体成像、类器官发育分化、血管及血流变化;在神经生物学和植物学等方向,借助高速特点可以进行单分子和钙成像,对于透明脑、体外培养的活组织及切片,三维成像和活体培养极为关键;肿瘤或疾病免疫方向的固定的大组织切片、石蜡切片、透明化组织、病原宿主的互作、受体循环与定位等;以及蛋白互作、单分子运动、内吞外排、膨胀显微镜、空间转录组多维成像等。仪器信息网:从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?未来光学显微镜的技术发展趋势如何?我们相信,任何有利于更快、更深、高对比度成像的技术都是可以看到需求继续增长的关键领域。 因此,共聚焦和光片显微镜将继续成为受欢迎的显微技术基石。我们将看到越来越多的研究会引入光操纵,从而更好地了解细胞内信号通路,以及细胞群体间(如神经细胞)如何相互沟通。Andor有几十年丰富的基础生物学研究,现在正是将这些知识转化为未来临床和社会经济相关问题解决方案的基础,包括植物生物学和动物生物学。这需要进行重大调整,将细胞层面的基础研究纳入多细胞、器官和整个生物体的范畴。未来显微镜在光学能力和提高生产力方面都需要扩大规模。为了支持对样品进行更深入的成像,特别是自从透明化组织的技术出现后,存在着补偿由于折射率不匹配而产生的光学畸变的挑战,以及其他来自样品的光学限制。这方面的潜在解决方案之一是使用自适应光学技术。目前有一些想法已经发表,但还有很多东西需要开发,并使之成为一个光学上高效和紧凑的解决方案,以获得良好的商业解决方案。此外,显微镜需要从 "专家 "技术转变为科学界更广泛、普适的技术。它可以为特定主题(如癌症)完整研究的一部分提供强大的支持。我们看到,对于越来越多的研究人员而言显微镜的使用是其工作流程和发表论文的关键环节。基于对此理解,我们历时达五年之久设计了一键成像的台式共聚焦BC43,将3D+成像融入到普通实验室的日常工作,减除了复杂操作和仪器放置的种种烦扰和顾虑。我们认为应该对图像采集和分析协同结合有所期待,分析可以用来帮助复杂的显微实验的自动化,使显微镜操作步骤实时适应正在研究的样品中发生的情况。通过Dragonfly及BC43结合Fusion和Imaris可以实现从样品图像采集到分析的无缝衔接,这种捕捉-分析相结合的工作流程将促进易用性,使更多的研究人员能够运用高级的显微成像方法。未来如果对一些典型的生物医药应用案例的参数进行提取优化,结合人机交互和机器学习的先进算法,帮助研究者进行实时获取批量数据特征,在观测过程中及时优化调整。疫情以来,越来越多的研究工作者采用线上办公形式,此外,设备过度占用日常科研本就繁忙用户或管理员的时间,亟需各种长时程高频使用的设备包括显微成像及分析趋向于在线自动化远程监测、控制。智能化的人机交互及不同端口多界面控制、物联网设备的稳定运转及报告反馈的联网尤为重要。利用AR、VR及远程全息投影等方式,也可针对设备使用、培训、考核进行更多方案的优化。Dragonfly作为某些平台中心和课题组的成像利器,常年全日无休稳定运转,也给了我们信心未来可以在无人值守及远程控制上进一步探索。如今,随着采集大量图像数据能力的提高,所有研究机构和公司,都面临的一个至关重要的问题:采集的数据在进行转移、存储和分析方面均存在瓶颈,耗费过多的金钱、时间、人力成本。此外,确保分析软件包能加载导入数据并进行有效地分析是一个需要持续关注的问题,需要开发团队对大数据有深层的理解并不懈改善算法和架构。对于大数据分析而言,存储和算力的高要求,不断优化系统配置可能难以覆盖爆炸式的增长,业内伙伴和用户的共同努力,有望能建立云端强大的数据转移、存储、分析体系,以分配更适合终端需求的相应资源,安全、高效、灵活的解决不同需求。在此过程中,如何更好的促进共享、保护隐私值得关注和讨论。仪器信息网:从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?基于对学术设计及对概念验证的大力投入,高端光学显微技术目前发展迅速,挑战在于如何将其精炼成易于商业化的、强大易用的解决方案,从而有助于探索一系列的科学问题和不同应用。这些解决方案的范围包括现有技术的持续进步,如用于体外实验用到的共聚焦和光片,也有越来越多的人需要使用当下这些技术和其他尚未建立的光学技术,以进一步提升对体内或在体实验模型的成像,后者是药物发现和其他疾病治疗转化医学领域的重要环节,需要实验设计和成像设备选型上在NIRⅠ、Ⅱ区的标记、照明、检测上有更多适配。应用方面,先进的科学研究机构、CRO公司和医学院基于平台和服务商的稳定支持,能够基于现有技术对系统进行改造,可以支撑更复杂的需求,如微流控装置或一些电磁场刺激及重力场变化。未来我们相信,更多涉及人类幸福健康的行业团队包括生命科学、医学、化学、材料学、半导体、农业、太空科学将利用光镜发现、验证自己的理论,并结合先进的技术如精细力学控制、3D打印等对目标物进行观测、改造。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?国产光学显微镜在中低端显微镜市场占领份额较多,如江西凤凰、麦克奥迪、永新光学等品牌,或作为高端品牌的元器件代工厂,厚积薄发,未来一定为国内光镜行业的发展奠定基础。目前主流的高端光镜主要依赖进口,欧美日品牌进入市场较早,占市场主导,国内高端显微镜目前在蓬勃发展,很多高等研究机构如清北、中科院生物物理所、苏州医工所、西安交大等和初创企业(多集中在粤港澳和江浙地区)都在进行研究及转化的突破创新,组建的成像系统多处于实验室技术打磨阶段或迈入市场不久,fMOST、LBS、 HiS-SIM已经开始被市场逐步接受,但其零部件还是进口为主,国产替代之路尚需长期努力和紧密合作。Andor也期望和国内外业内伙伴有更多合作,不论是元器件模块、显微成像系统、数据分析软件都可以多方协作,作为整体解决方案应对市场需求。对于商业化的显微镜而言,稳定、易用的高性能体验及使用场景的匹配是整个行业要不断精益求精的重要方向,自然会有市场越来越多的认可。仪器信息网:您认为,未来几年高端光学显微镜的热点市场需求有哪些?在未来几年,我们认为对高端光学显微镜的最热需求将集中在多维活细胞高速动态成像、超分辨成像、类器官研究、大型组织成像(透明化组织、活体组织体外培养)、单细胞原位空间转录组学领域、动物活体深层成像。基于应用的定制化显微成像系统开发将为学术研究、产业、商业提供绝佳的资源并富有成效进行循环利用。这些需求基于多维时空动态成像,联合先进的流式分析分选、高内涵、质谱成像和单细胞及转录组测序技术对物质代谢、基因和蛋白等的时空表达变化图谱进行同步解析,能够给研究工作带来前所未有的海量信息,透过更多跨领域合作和大数据共享分析,打破认知边界和信息壁垒,服务生命健康。不论是高端光学显微成像或其他高精度检测设备都需要合适的高速高灵敏度的CCD/sCMOS检测器,牛津仪器Andor作为科学相机厂家,已经在生命科学、物理科学的深耕多年,未来一定能够帮助更多的客户及合作伙伴们在光学显微及其他先进成像应用提供高质量的产品和全方位的服务。
  • 深海研究所搭建激光显微共聚焦拉曼光谱仪并投入使用
    p   2016年5月底,深海极端环境模拟研究实验室成功搭建了激光显微共聚焦拉曼光谱仪LabRamanHR Evolution,该设备是完全集成型共焦显微拉曼系统,可实现全自动,配备单级光谱仪以达到最好的光通量,包括一个800mm焦长的Czerny-Turner型光谱仪,是目前市场上性能最高的全自动单级拉曼光谱仪。 /p p   激光拉曼光谱分析是一种非破坏性的微区分析手段,气体、液体、及各种固体样品均不需要特殊处理即可用于拉曼光谱的测定。其主要应用是对各种固体、液态、气态物质的分子组成、结构及相对含量等进行分析,实现对物质的鉴别、定性与某些流体的定量分析。 /p p   该实验室的拉曼光谱仪配备有325nm,532nm,633nm,785nm共4个不同波长的激光器,能够满足不同条件下的激光拉曼光谱测定和有机组分荧光光谱测定的需求 此外,本台激光拉曼光谱仪还配有50米长的光纤,可实现在50米以内的区域进行样品的原位拉曼光谱的收集,尤其是在透视高压腔(如金刚石压腔,毛细硅管高压腔)腔体内的样品或在通风橱内具有毒性的样品(如H2S, CO)。 /p p style=" TEXT-ALIGN: center" img title=" 11a.jpg" style=" HEIGHT: 451px WIDTH: 600px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201606/noimg/6a571081-7bfe-4d31-bf41-b991a24ad89c.jpg" width=" 600" height=" 451" / /p p style=" TEXT-ALIGN: center" strong 激光显微共聚焦拉曼光谱仪LabRaman HR Evolution /strong br/ /p
  • 高端显微镜又添新玩家!熵智科技发布超分辨及共聚焦显微镜新品
    生命科学是从微观层面观察和研究生命过程,从而揭示生命的物质基础和基本现象。显微成像是观察微小物体的重要手段,但其分辨能力受光学成像系统的限制(即衍射极限),无法满足现代生命科学研究要求的更高解析度、更准确的成像需求。熵智科技作为中国原创3D视觉创业公司第一梯队,横跨机器视觉与微纳光学两大领域,深刻认识到微纳光学在生命科学研究领域中的巨大价值。9月23日,熵智科技在西安发布自研的超分辨及共聚焦显微成像分析系统。该系统易用、性价比高,相较于国内外显微成像产品,不仅突破了光学成像系统的限制,轻松实现纳米尺度的2D/3D动态图像解析能力,还将共聚焦+超分辨+后处理分析完美融合,软件结合场景模块化。无论新手用户还是专家用户,只需通过一套界面即可获取一流的超高分辨率图像及分析结果。熵智科技超分辨及共聚焦显微成像分析系统工作原理超分辨显微成像分析系统采用结构光照明显微成像术(英文Structured Illumination Microscopy, 简称SIM),突破传统显微镜的阿贝衍射极限,实现生物组织、细胞、神经元等活动样本的快速超分辨率成像,为生命科学、生物工程等领域提供创新的超分辨率成像技术产品,几乎可集成于任何荧光显微镜。共聚焦显微成像分析系统的软硬件均采用模块化设计,硬件集成SIM超分辨模块、软件支持多种后处理功能,从而提供精确的2D/3D成像,以及动态过程的成像。目前,共聚焦和超分辨光路共用了光源准直部分、物镜部分、聚焦成像部分。主要功能超分辨及共聚焦显微成像分析系统视野超10倍扩展,达1mm,拥有精确的多微细胞结构生物显微影像分析功能,实现双光路同时,宽场、共聚焦、超分辨三种模式自由切换。大视野拼图:多种不同的图像获取方式、可实现500um*500um视场上图片进行拼接。图像增强及处理:可对采集到荧光图像进行增益调节、对比度调节、亮度调节以及色阶调节。反卷积处理:在原有采集到图像基础上,对图像数据做实时清晰度优化,达到消除背景噪声,有用信息表达更精准的作用,处理速度10ms以下,速度快;可进一步结合DNN方法,提高应用场景的鲁棒性。特征统计分析:对于识别出的细胞,对其强度、直径、周长等15个属性做数值量化。特征标记分类:可对细胞的特征进行标记和分类。单细胞定量分析:可以准确分割出相互重叠的细胞,精度更高,在专业单细胞识别的基础上,结合深度学习AI算法,可以精确识别互相挤压重叠的细胞核,而且对于细胞轮廓边界识别更加准确。亚细胞结构分析:可以定位某种蛋白或者某个基因表达产物在细胞的具体存在部位,如细胞核,胞浆内,结合AI图像分析方法,以表格和数据统计输出结果。细胞亚群圈选分析:筛选特定的感兴趣细胞亚群,进行了10余种参数分析。特殊细胞/结构识别:提供特殊细胞如脂肪细胞的识别和数量统计。多重荧光染色:实现细胞核、细胞质、细胞膜的各种形态和染色,精确寻找目的细胞及其结构。细胞寻找及跟踪:实现特定细胞的动态识别和跟踪。核心参数激光共聚焦超分辨显微参数配置普通光纤激光器激光405nm、488nm、561nm、640nm扩展HC-PCF激光器920nm探测器 PMT3个;波长:400-750nm,GaAsP最大拍摄速度8fps@512×512像素;2fps@1024×1024像素;4096×4096最高;更多可配置;扫描方式X-Y, X-Y-Z, X-Y-T分辨率250nm in x, y and 550nm in z 共聚焦120 nm in x, y and 320nm in z (488nm wavelength) 超分辨共焦视场Φ18mm-Φ25mm 内接正方形成像深度100μm灵敏度提升4倍相对信噪比 SNR优良级 50dB显微镜电动显微镜奥林巴斯 倒置IX73显微镜,具备明场、微分干涉、荧光等观察方式物镜奥林巴斯或Mitutoyo平场复消色差物镜(防腐蚀陶瓷表面以及红外色差矫正)选型载物台奥林巴斯 电动IX3-SSU 扫描精度优于0.7μm光学放大1.0X;1.5X;3.2X;20X 适配/转换器共聚焦/超分辨率光路切换(电动)、6位电动物镜转换器荧光装置配荧光光阑*相机(lattice)SCMOS,分辨率2048×2048,100fps@全幅面,位深12bit工作站Windows10 Pro 64 bit;硬盘≥1TB;内存16GB软件控制软件:图像采集及2D/3D/4D处理;共聚焦和超分辨配置;*成像分析:细胞自动识别、单细胞定量分析、亚细胞结构分析、细胞亚群圈选分析等防震台频率范围(5~30Hz):≤30μm/s均方根;频率范围(>30Hz): ≤60μm/s均方根增配双光子成像激光生成组件、高速扫描头、前置补偿单元应用场景超分辨及共聚焦显微成像分析系统可应用于基础生物学、临床医学、病毒学、精准药物筛选等领域,为活细胞超分辨率智能成像提供解决方案。基础生物学:皮肤病例研究、类器官培养观察、微生物形态研究、胚胎发育成像、组织结构三维重构。如通过斑马鱼胚胎发育过程的成像,研究血管疾病和血管药物的新兴模型,从而更好解决人类血管疾病;通过光学切片, 确定其复杂的内部结构与组织功能之间的关系。临床医学:细胞形态结构鉴定、病理显微成像、异常细胞跟踪检测、组织形态学观察。利用计算机进行图像处理, 不仅可观察固定的细胞、组织切片, 还可对活细胞的结构、分子等进行实时动态观察和检测。通过它可以直接观测细胞形态学的组织、细胞之间的相互作用、组织微环境、伤口的愈合等成像,有助于了解病理机制,以开发疾病治疗方法从而促进人体健康有重要的意义。病毒学:植物病毒研究、动物病毒研究、医学病毒研究、环境病毒研究、噬菌体研究。采用超分辨技术,可以实现病毒感染细胞及复制、组装、释放等动态过程的研究。药物筛选:药材显微鉴别、载药微粒结构、药物扩散跟踪、制药成型和释药研究、药理药效研究。通过药物筛选确定干预的潜在治疗方法,加速早期药物的研发和确定疾病的模型。利用显微镜观察植(动)物药材内部的细胞、 组织构造,从而达到鉴定药材的目的。选择合适的药物靶分子,针对高分辨率成像的固定样品及活细胞进行分析,从而满足不同实验的需求。关于熵智科技熵智科技是国家级高新技术企业,拥有底层成像系统和算法开发能力,软硬件一体化,致力于通过高性能的成像技术解决机器人柔性化、微纳级检测与测量等问题。熵智科技自2018年成立至今,先后获得字节跳动、拓金资本、松禾资本、远望资本、华控资本等投资。深圳、武汉、西安三地联合办公,目前研发和工程团队70余人,核心技术人员均硕士及以上学历,博士6人。未来,熵智科技将继续深耕微纳光学领域,以更优的产品与服务回馈广大合作伙伴及客户。
  • 牛津仪器ANDOR发布台式共聚焦显微镜新品
    11月2日,牛津仪器官方公众号发布消息,ANDOR发布BC43台式共聚焦显微镜。产品介绍:BC43台式共聚焦显微镜,经济易用,小巧简约,能够帮助研究者轻松将3D图像纳入囊中同时节省时间和成本。自下而上的组件设计都恰到好处地平衡了高性能与易用性。通常来说,显微镜拍摄3D图像成本高昂,操作复杂,并且要求环境配备暗室。毋庸置疑,共聚焦技术唯有如此才能提供高质量的3D图像,尤其是厚样本和临床相关标本。ANDOR将用BC43台式共聚焦显微镜扭转这一局面,2D共聚焦图像以毫秒之速呈现,实时生成3D视图以供审视。紧凑的设计使其节时省地,轻轻松松即可置于普通实验室工作台之上。BC43台式共聚焦显微镜综合了从单细胞水平的亚细胞结构细节到稍大的模式生物与大型组织样本的多种成像体验,包括一些其他显微镜难以应付的厚样品。它同时适合研究新手和经验丰富的显微镜专家,简单到能让用户首次使用设备就在一小时内获得图像,也足够复杂到可以处理从活样品到固定样品等多样化成像需求。借此,越来越多的研究学者能够在日常工作流程中以超乎其他共聚焦多倍的速度获取精彩的图像。ANDOR的BC43产品经理Dr.Geraint Wilde评论道:“真的非常高兴能通过我们的BC43台式共聚焦显微镜可以将常规的高质量三维成像带入普通实验室。这个项目的启动是基于我们理解科学家都很繁忙,争分夺秒想尽可能快地收集到大量有意义的数据。如今科学家可以在同一工作台上制样并使用共聚焦技术,仅需短短几分钟就可以看到结果。我们的客户致力于在各个领域取得突破性进展,我们希望可以支持客户并且也相信BC43将会为客户的努力贡献价值。”来自阿尔加维大学的CBMR小组负责人Prof. Alvaro Tavares,在过去的12个月里他大量使用了BC43台式共聚焦显微镜。“这台共聚焦显微镜性能出色,成像质量卓而不凡。而且其结构紧凑,实验台即可放置,无需暗室。最主要是它操作太简单了,任何学生都可以在一个小时内使用这台共聚焦显微镜并产生高质量的结果。对于我这样的实验室的产出,它真的是一款理想的共聚焦显微镜。”ANDOR是一家市场领先的科学相机、显微镜系统和摄谱仪在开发和制造用于学术、工业和政府应用的高性能科学数码相机、显微镜系统和摄谱仪方面,安和或处于全球领先地位。2014年被牛津仪器以1.76亿英镑“无条件”收购。
  • 2012激光共聚焦扫描显微学研讨会举行
    北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会顺利举行   仪器信息网讯 2012年3月27日,为推动北京市及周边省市激光共焦扫描显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进激光共焦扫描显微学在生命科学等领域中的应用和发展,北京理化分析测试技术学会和北京市电镜学会在北科大厦成功举办了“北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会”。来自高校、科研院所、企业的100余名专家学者参加了本次会议。 会议现场 军事医学科学研究院张德添教授 北京大学医学部生物医学分析中心何其华高工   会议由军事医学科学研究院张德添教授,北京大学医学部生物医学分析中心何其华高工主持。 Cdc42在小鼠卵母细胞减数分裂成熟中的作用 中国科学院动物研究所孙青原研究员   孙青原研究员现任中国科学院动物研究所计划生育生殖生物学国家重点实验室主任,他在报告中介绍了利用Zeiss LSM710激光共聚焦显微镜、珀金埃尔默Ultra VIEW VOX活细胞实时成像系统等仪器研究Cdc42在小鼠卵母细胞减数分裂成熟中的作用,Cdc42作为一种细胞骨架和细胞极化的重要调节物,在减数分裂和卵母细胞成熟过程中有重要的作用。 毫米级多光子显微镜荧光成像 奥林巴斯(中国)有限公司位鹏先生   采集更明亮和更清晰地标本深层图像,对于更好的开展生命科学研究工作来说十分重要。位鹏先生介绍了奥林巴斯在这方面所能提供的解决方案:利用日本理学院Miyawaki博士研发的组织、器官透明液处理小鼠大脑样本,结合奥林巴斯的XLPLN25×SVMP镜头可以观察到深度达4mm处的深层图像。目前奥林巴斯还推出了一款新型的镜头,观察深度可达8mm,不过还未正式推向市场,可接受定制。 超高分辨率显微镜技术 中国显微图像网秦静女士   在生命科学研究中科学家总希望看到更加细微的结构,从细胞到细胞器、再到蛋白质等生物大分子,这些结构的尺度都在纳米量级远远超出了常规的光学显微镜的分辨极限,电子显微镜虽然能提供纳米级的分辨率,但不适合观察活细胞,为了解决这一难题,超高分辨显微镜技术应时而生。在报告中秦静女士详细介绍了四种基于不同原理的超高分辨显微镜:4Pi显微镜、STED(受激发射损耗显微镜)、PALM(光激活定位显微镜)、STORM(随机光学重建显微束),并分析了各类显微镜的性能及优缺点。 多光子技术的新进展 徕卡仪器有限公司王怡净博士   王怡净博士从单分子探测(SMD)、相干反斯托克斯拉曼散射(CARS)、光参量振荡器(OPO)等三个方面介绍了多光子技术的最新进展。王怡净博士介绍说如果想观察分子的运动或分子的识别,采用普通的共聚焦技术就比较困难,所以单分子探测技术就应用而生。相干反斯托克斯拉曼散射技术是一种基于分子固有的振动特性的观察方法,样品无需进行荧光标记,避免了荧光漂白等问题,该技术是由华裔科学家谢晓亮发明,徕卡公司购买了该技术并将其产品化。光参量振荡器是一种新型红外激光器,它的激发波长可以达到1300nm,由于激发波长变长,因而散射更小,观测深度更深、对样品损伤更小。 现代荧光显微镜学在生命科学中的应用 蔡司光学仪器(上海)国际贸易有限公司张宁博士   张宁博士介绍了在生命科学研究中,不同的样品分析对于仪器的灵活性、观察深度、扫描速度,以及分辨率等都有不同的需求,蔡司根据不同的需求能够提供相应的仪器:如果对深度要求比较高,可以选择多光子显微镜 如果要进行瞬态分析,可以选择转盘式共聚焦显微镜、纯内反射荧光显微镜等 如果对分辨率要求非常高,可以选择光活化定位系统、结构光学照明系统等。此外,张宁博士还介绍了蔡司最新的780点扫描激光共聚焦系统,以及在2011年7月蔡司将光学显微镜部门和电镜部门进行了整合。 激光共聚焦扫描技术在神经发育中的作用研究 北京大学医学部王韵博士   神经系统是机体最重要、最复杂的系统。王韵博士在报告中介绍了激光共聚焦扫描显微技术在神经细胞增殖和分化中的应用;胚胎电转结合Confocal技术观察神经细胞的迁移;利用Confocal技术研究神经元极性、观察轴突导向;利用双光子Confocal技术观察培养的海马脑片中单个树突棘长时程结构可塑性改变时分子激活的时空变化、观察活体动物皮层神经元树突棘随外界刺激而出现的数目消长等。 Volocity——3D活细胞时代的成像分析软件 珀金埃尔默仪器(上海)有限公司公司焦磊博士   焦磊博士介绍了珀金埃尔默推出的Volocity细胞三维结构分析软件,该软件包括多个功能模块,用户可以在同一软件环境下完成图像获取、分析和数据发表的全过程。Volocity软件的Acquisition模块可以实现多通道、多位点3D图像的精确定位和自动实时采集 Visualization模块可为用户提供多种图像展现方式,用户可以在高分辨率、完全交互的3D模式下实时解决样品构造 Quantitation模块提供了丰富的工具可以在3D模式下对物体进行测量、分析和跟踪描绘 Restoration模块设计用于三维或四维图像的反卷积计算,以提高图像的分辨率。 超高分辨率显微镜的引进与发展态势分析 中科院生物物理所纪伟博士   纪伟博士介绍了目前不同的提高分辨率的成像方法的原理及其分辨能力,以及各种方法对样品制备的要求和在实际应用当中的优劣势。采用光敏定位技术的超分辨率显微镜采用大功率激光器和快速采样EMCCD,可以很好的观察活细胞 利用片层光扫描结合光敏定位成像技术可以观察厚样品 具有更高的分辨率,可以研究百nm尺度的细胞器细节结构。最后纪伟博士总结说,更高的分辨率、更快的分析速度以便观察活细胞、以及与其他技术的融合:如TIRF-STED、PALM-EM、STED-AFM、FCS-STED、STORM-AFM等。   会议中,与会人员同专家及企业人员进行了充分的互动和交流,通过会议大家对于激光共聚焦扫描显微技术的最新进展有了更多的认识和了解。
  • 2608万!武汉大学采购超速分选流式细胞仪、激光共聚焦显微镜等
    项目编号:WHCSIMC2022-1602808ZF(H)项目名称:武汉大学智能水稻种子工厂模块、植物活体检测系统、激光显微切割显微镜、超速分选流式细胞仪、激光共聚焦显微镜、立式高压灭菌锅、PCR、离心机等通用设备采购项目预算金额:2608.0000000 万元(人民币)最高限价(如有):2608.0000000 万元(人民币)采购需求:1.本次公开招标共分10个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。第一包:(1) 项目包名称:智能水稻种子工厂模块(2) 类别:货物(3) 数量:1批(4) 简要技术要求:详见招标文件第三章(5) 采购预算:630万元人民币(6)其他:本项目包接受进口设备投标第二包:(1) 项目包名称:植物活体检测系统(第一部分)(2) 类别:货物(3) 数量:1批(4) 简要技术要求:详见招标文件第三章(5) 采购预算:170万元人民币(6)其他:本项目包不接受进口设备投标第三包:(1) 项目包名称:植物活体检测系统(第二部分)(2) 类别:货物(3) 数量:1套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:196万元人民币(6)其他:本项目包接受进口设备投标第四包:(1) 项目包名称:植物活体检测系统(第三部分)(2) 类别:货物(3) 数量:1批(4) 简要技术要求:详见招标文件第三章(5) 采购预算:308万元人民币(6)其他:本项目包接受进口设备投标第五包:(1) 项目包名称:植物活体检测系统(第四部分)(2) 类别:货物(3) 数量:1批(4) 简要技术要求:详见招标文件第三章(5) 采购预算:64万元人民币(6)其他:本项目包接受进口设备投标第六包:(1) 项目包名称:激光显微切割显微镜(2) 类别:货物(3) 数量:1套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:190万元人民币(6)其他:本项目包接受进口设备投标第七包:(1) 项目包名称:超速分选流式细胞仪(2) 类别:货物(3) 数量:1套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:350万元人民币(6)其他:本项目包接受进口设备投标第八包:(1) 项目包名称:激光共聚焦显微镜(2) 类别:货物(3) 数量:2套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:500万元人民币(6)其他:本项目包接受进口设备投标第九包:(1) 项目包名称:24孔微型高速离心机、24孔微型高速冷冻离心机、台式多功能冷冻离心机、基因扩增仪(2) 类别:货物(3) 数量:1批(4) 简要技术要求:详见招标文件第三章(5) 采购预算:130.8万元人民币(6)其他:本项目包接受进口设备投标第十包:(1) 项目包名称:PCR仪、立式高压灭菌锅(2) 类别:货物(3) 数量:1批(4) 简要技术要求:详见招标文件第三章(5) 采购预算:69.2万元人民币(6)其他:本项目包不接受进口设备投标合同履行期限:第一包:交货期 :合同签订后90日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第二包:交货期 :合同签订后60日内;质保期 :本项目免费质量保证期要求不低于三年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第三包:交货期 :合同签订后6个月以内;质保期:本项目免费质量保证期要求不低于五年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第四包:交货期 :合同签订后90日内 ;质保期 :本项目免费质量保证期要求不低于三年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第五包:交货期 :合同签订后60日内 ;质保期 :本项目免费质量保证期要求不低于三年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第六包:交货期 :合同签订后60日内 ;质保期 :本项目免费质量保证期要求不低于三年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第七包:交货期 :合同签订后60日内 ;质保期:本项目免费质量保证期要求不低于两年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第八包:交货期 :合同签订后60日内 ;质保期 :本项目免费质量保证期要求不低于两年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第九包:交货期 :合同签订后60日内 ;质保期 :本项目免费质量保证期要求不低于五年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。第十包:交货期 :合同签订后60日内 ;质保期:本项目免费质量保证期要求不低于五年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算 。本项目( 不接受 )联合体投标。
  • 爱丁堡发布英国爱丁堡仪器一体化全自动显微共聚焦拉曼光谱仪RM5新品
    产品介绍:RM5是爱丁堡全新推出适用于科研及分析工作的高端显微拉曼光谱仪!这是一款紧凑型全自动显微拉曼光谱仪,可满足高端科研及分析工作的需求。RM5具有市场上独一无二的真共焦设计,能实现超高的光谱分辨率、空间分辨率和灵敏度。产品特点:1. 独特的真共聚焦设计—可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化;2. 集成式窄带宽拉曼激光器—多至三个软件自动控制的激光器,使用方便,稳定性高,占用面积小;3. 5位光栅塔轮—具有无与伦比的光谱分辨率1.4cm-1 (FWHM),可在50cm-1-4000cm-1 的全光谱范围内进行优化;4. 集成式探测器—可同时配置两个探测器,包括高效CCD、EMCCD和InGaAs阵列检测器,用于降低噪声,加快扫描速度、提高灵敏度和拓展光谱范围;5. 内置标准物质和自动校准功能—确保该系统始终可以获得高质量数据6. 4位拉曼滤光片塔轮—全自动陷波滤光片和边缘滤光片,自动匹配不同的拉曼光谱范围和激光波长;7. Ramacle?软件—功能强大的软件包,包含所有的系统控制、数据采集和分析,且易于升级;8. 高性能显微镜—兼容所有最新附件RM5配置灵活,支持包括Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。核心技术参数:1. 光谱分辨率1.4cm-12. 光谱覆盖范围:50cm-1-4000cm-13. 焦长:225cm4. 空间分辨率低至1μm5. 最低波数:<50cm-1应用领域:生命科学化学制药高分子材料纳米材料化妆品半导体艺术文物法医学地质学等创新点:RM5是一款拓展性及灵活性最强的紧凑型显微拉曼光谱仪: -具有独特的真共聚焦设计,可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化;共焦针孔有超过10档以上可供选择, 全电脑控制,使系统针对不同样品具有更高的灵活性 -最多可配置5块不同光谱色散的光栅,用户可以根据样品散射波数范围以及分辨率要求不同,具有更多的光栅选择。 -最多可配置3个激光器,匹配自动切换4位激光滤波器,除了常规低波数斯托克斯拉曼散射测试之外,还可同时配置限波滤光片,进行反斯托克拉曼散射测试。 -最多可配置2个探测器,在标配一个探测器的前提下,RM5预留第二个检测器端口,根据需求灵活选择EMCCD、InGaAs等探测器,实现快速拉曼成像及近红外区拉曼散射测试。 -自动化程度高,所有光学元件均为软件控制切换,无需手动切换。 -使用一体式光学底板设计,可以更好地保证仪器整体的稳定性。 英国爱丁堡仪器一体化全自动显微共聚焦拉曼光谱仪RM5
  • 精微视达完成B轮融资,用于推动共聚焦显微内镜产品发展
    近日,精微视达宣布完成B轮融资,投资方主要包括福建泉州、江苏苏州、湖北武汉、福建晋江、江苏无锡等多地政府基金、产业资本及知名社会资本。公司曾于2022年完成由北极光领投的A轮融资。精微视达将在投资方的全力支持下,进一步推动共聚焦显微内镜产品的临床应用普及,持续围绕早期肿瘤的精准诊断和高效治疗,布局创新医疗器械产品,围绕应用场景布局整体解决方案。在“十三五”国家重点研发计划的支持下,精微视达完成了多项技术难点的攻关和关键生产能力的建设,实现了中国共聚焦显微内窥镜从无到有、从有到国际领先的连续突破。“十四五”期间,精微视达牵头的共聚焦显微内窥镜项目入选“十四五国家重点研发计划”,持续加大对共聚焦显微内窥镜核心零部件国产化的研究力度,协助技术专家和临床专家基于中国的产业链优势和技术优势构建中国标准。本轮融资,是精微视达的又一次阶段式“蓄力”。借助资本加持与企业自身发展,精微视达将持续投入关键技术研发,继续扩大共聚焦量产覆盖面,巩固市场领先地位,为全球共聚焦领域的商业化进程贡献重要力量。近十年来,国内共聚焦成像技术得到了长足发展,在科研领域,国产品牌在共聚焦显微镜市场已经身影渐显,而在当前资本市场相对低迷的情况下,精微视达能够完成B轮融资,也进一步证明了其共聚焦显微内窥技术的实力和广阔前景。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制