当前位置: 仪器信息网 > 行业主题 > >

工作显微镜

仪器信息网工作显微镜专题为您提供2024年最新工作显微镜价格报价、厂家品牌的相关信息, 包括工作显微镜参数、型号等,不管是国产,还是进口品牌的工作显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工作显微镜相关的耗材配件、试剂标物,还有工作显微镜相关的最新资讯、资料,以及工作显微镜相关的解决方案。

工作显微镜相关的资讯

  • 如何使用显微镜进行远程工作
    好不容易即将守得云开见月明,但是全球愈演愈烈的疫情却让我们再一次紧张了起来… … 疫情尚未终止,我们还需警惕。疫情期间,安全有效的远程协作显得尤为重要。在不影响员工、供应商或客户安全的情况下继续工作,是大多数企业及个人面临的重要问题。为帮助您从Vision Engineering的产品中得到最大获益,为您介绍可适用于远程工作的观测产品,帮助您在更安全的环境中进行工作。DRV-Z1,Lynx EVO 及Mantis 系列,其独特的无目镜专利设计令使用者可进行更安全的操作:无需佩戴3D眼镜,不必担心接触3D眼镜或头戴式设备带来的风险。同时使用者也可佩戴自己的护目镜等以增强防护可佩带手套操作DRV-Z1,Lynx EVO,EVO Cam II 及Mantis系列 。Vision Engineering设计的产品系统具有良好的触觉反馈,使用者可佩戴手套进行轻松安全的操作。这将进一步减少接触风险,尤其是在公共工作环境中。DRV-Z1:全球独家真正全高清裸眼3D变倍观测系统,可在多个地理位置之间进行实时远程协作。实时传输可在DRV-Z1系统与另一台DRV-Z1或与其他非DRV的2D屏幕之间进行。可记录3D立体视频及静态图像,具有高清详实的细节及动态信息。与其他Vision Engineering产品类似,DRV-Z1的设置参数可在一台设备上建立,在不同设备间共享,利于不同地点的多用户间保持设备一致性,更有助于远程协作。EVO Cam II: 利用HDMI及USB3.0,EVO Cam II 可轻松通过任何网络摄像头进行实时影像直播。在任何Windows 10专业操作系统下,各类通讯软件可自动识别EVO Cam II,即插即用。同样也可在不同地点的用户之间轻松分享实时影像,生成静态图像及视频,便于网络传递。与DRV-Z1相同,设置参数可在一台EVO Cam II上生成,并分享给其他设备用户。利于不同地点的多用户间保持设备一致性,更有助于远程协作。Lynx EVO(配备SmartCam 或SmartCam5)及 Mantis Elite Cam HD:通过所提供的ViCapture软件可简单直接地从这些出色的无目镜体视显微镜系统中获取图像。无论是捕捉静态图像还是视频,ViCapture软件拥有一系列工具可对其进行注解,利于高效快速地在不用地点之间进行分享沟通协作。如需进行实时连接共享,可在系统中设置允许通过软件程序进行影像直播分享。远程工作的更多益处: 减少暴露在不确定环境中的风险 无需亲自参与或亲自动手,即可快速校验或处理部件 更快速发现问题,更快速解决问题 减少差旅时间及成本 减少个人通勤成本 减少出行需求,降低对社会环境的影响 轻松记录及调取静态图像及视频 无需离开工作台即可高效沟通协作小心谨慎做好预防措施,才能将病毒拒之门外Vision Engineering与您共同抗疫!关注我们公众号ID:vision1958www.visioneng.com.cn021-5036 7556
  • 703万!北京师范大学计划采购光片荧光显微镜、活细胞工作站显微镜
    一、项目基本情况项目编号:ZSLTC-2022-S107项目名称:北京师范大学珠海校区理工实验平台光片荧光显微镜、活细胞工作站显微镜采购项目预算金额:703.0000000 万元(人民币)最高限价(如有):703.0000000 万元(人民币)采购需求:序号简要规格描述或项目基本概况介绍数量单项预算金额/单项最高限价(万元)是否接受进口产品1光片荧光显微镜,具体内容详见采购需求1(台)558是2活细胞工作站显微镜,具体内容详见采购需求1(台)145是合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。交货时间:进口产品:免表办理完成后120天内交货。国产产品:签订合同后120天内交货。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不专门面向中小企业预留采购份额3.本项目的特定资格要求:(1)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本项目;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目;(3)通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)和国家企业信用信息公示系统(www.gsxt.gov.cn)查询信用记录(截止时间点为投标截止时间),被列入失信被执行人、重大税收违法案件当事人名单或政府采购严重违法失信行为记录名单的供应商,没有资格参加本项目的采购活动。三、获取招标文件时间:2022年11月18日 至 2022年11月25日,每天上午9:00至12:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:北京市海淀区紫竹院路81号院北方地产大厦612室(非现场售卖)方式:为减少人员聚集,本项目采购文件暂停现场发售,请电汇支付费用。非常时期如有不便,敬请谅解。将报名信息(招标文件购买记录)、汇款底单、法人授权书原件及被授权人身份证复印件加盖公章扫描件发送到(rw@zsltc.com)并电话告知(任经理010-88956517转801)。文件售后不退。未从采购代理机构获取招标文件并登记在案的潜在投标人均无资格参加投标。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月09日 09点00分(北京时间)开标时间:2022年12月09日 09点00分(北京时间)地点:北京市海淀区板井路69号西四环四季青桥东北角北京世纪金源大饭店二层第六会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本公告在中国政府采购网(http://www.ccgp.gov.cn)上发布。2、采购项目需要落实的政府采购政策:节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱企业发展、促进残疾人就业、完善中央高校科研仪器设备采购管理等。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京师范大学地址:北京市海淀区新街口外大街19号联系方式:滕老师 zfcg@bnu.edu.cn2.采购代理机构信息名 称:中盛隆国际招标(北京)有限公司地 址:北京市海淀区紫竹院路81号院北方地产大厦612室联系方式:吴熙尧、张赞伟、谢菲、王超、李莉 010-88956517-2163.项目联系方式项目联系人:吴熙尧、张赞伟、谢菲、王超、李莉电 话:010-88956517-216
  • 通过SXZ 10体式显微镜提高检测质量,保证团队的工作效率
    SOPREMA是一家全球性公司,提供种类齐全的屋顶和屋面建筑围护结构系列产品。SOPREMA公司的解决方案专注于学校、制造工厂和数据中心等结构内的低坡度应用,包括改性沥青膜、聚合物液体应用膜和合成单层PVC膜。在美国的所有制造工厂中,SOPREMA都非常重视员工的安全,并致力于做出更大的贡献,在提供优质产品的同时最小化对环境产生的负面影响。SOPREMA公司已通过ISO 9001、14001和45001认证。质量保证(QA)是实现这一目标的关键因素。使用体式显微镜进行质量保证检测为了改进他们团队的质量保证(QA)检测流程,质量保证经理Amandine Tragus和研发经理Julie Shoemaker在SOPREMA公司的一个生产车间安装了一台奥林巴斯SZX10体式显微镜。在购买这台显微镜之前,SOPREMA公司的QA团队要么是在没有显微镜的情况下对材料进行目测(这种方式很慢,而且不精确),要么将材料送到第三方实验室进行验证(这种方式成本很高)。在过去的五、六年里,他们已经节省了1200多个工时,节省了大量的成本,为团队赢得了宝贵的时间。SOPREMA公司的质量保证实验室技术员Bethany Perronne使用奥林巴斯SZX10显微镜对产品进行检测更迅速、更精确地完成质量保证工作Amandine和她团队的三名技术人员对接收的每批原材料进行质量检测,而且在将成品发送给客户之前,也要使用SZX10体式显微镜进行检测,他们每周检测的成品批次多达10批。Julie强调了这台显微镜的宝贵价值,“我们SOPREMA公司非常重视产品质量,对所有来料(原材料)进行评估,对整批成品进行全面检测。对于现场出现的任何潜在问题,我们都会进行彻底分析。体式显微镜是我们成功完成每个工作流程不可缺少的工具。”SOPREMA公司的质量保证工作确保了其生产的所有成品都符合公司的特定要求,并超出客户的期望。SOPREMA公司设在密西西比州Gulfport的制造厂例如,在SOPREMA公司位于密西西比州Gulfport的工厂里,生产的主要产品之一是SG颗粒表面膜。这些产品的高反光表面必须满足美国严格的反射率要求(标题24、FBC、IECC)。使用SZX10显微镜,QA团队可以快速确认颗粒的适当分散和覆盖是否符合产品标准。以前,Amandine的团队需要花费一个小时或更长时间完成的目视检测工作,如今使用SZX10工业显微镜,只需大约5分钟就能完成。SOPREMA公司可以迅速确保将高质量产品投放到市场,而且还可使产品持续满足行业标准。SXZ10显微镜带来了意想不到的好处事实证明,使用体式显微镜捕获高质量图像,并将图像显示在屏幕上供整个团队观看,促进了团队的互助合作。团队沟通和教学培训得到了改善,而且SOPREMA公司的研发团队和质量保证团队发现他们能够更快、更准确地对需求做出反应。在与客户或其他内部部门沟通时,他们可以使用体式显微镜拍摄的图像,弥补在技术和术语表达方面的不足。正如Amandine所说,“一张图片胜过千言万语。”Julie表示认同,“如果出现问题,使用体式显微镜收集图像和证据的能力,有助于我们查明根本原因,并与我们的供应商或客户进行有效沟通。能够快速有效地诊断、沟通和解决问题至关重要。”为什么选择奥林巴斯产品?体式显微镜已经存在了几十年,而且市场上有很多型号的产品在使用。当被问及SOPREMA公司为什么决定与奥林巴斯合作时,Amandine提到了我们的客户服务。在生产车间中,时间非常宝贵,因此对于SOPREMA公司来说,一个经验丰富、以客户为导向的直销代表,以及公司所提供的售前、售后、培训和实施服务,是奥林巴斯显微镜的最终卖点。当被问及她是否仍然对自己购买的产品感到满意时,Amandine回答说:“非常满意! 在使用这个强大且好用的工具时,我们从未遇到过任何问题。”Julie补充道:“质量成本对我们来说极其重要。我们的品牌(Olympus和SOPREMA)是高品质的代名词,因此拥有这种质量可靠的成像工具,对于我们的团队来说非常棒。”
  • 新一代蔡司紧凑型显微镜简化数字教学与日常实验工作
    1月24日是国际教育日,蔡司选在这一天,全球发布了Primostar 3,这是一款面向数字教学和常规实验的新一代紧凑型显微镜。适用于教学和实验室的日常工作,用于组织学、细胞生物学、植物学、食品微生物学等领域样品的显微观察和成像。蔡司Primostar 3简单易用、坚固耐用、即插即用,让学生和实验室工作人员可以花更多的时间去探索微观世界或专注于实验研究。 为您的应用和工作量身定制 蔡司Primostar 3 有固定配置的多个套装,您可以选择现成的配置组合,满足不同的教学和实验需求。比如,全科勒版套装包含了一系列巧妙和实用的功能,配备双光源,您可以在色彩丰富的30w的卤素灯和色温恒定、照明均匀的长寿命LED光源之间轻松切换,以适应不同的显微成像要求。另外,如果您再增加一个荧光模块,就可以将蔡司Primostar 3升级成一台LED荧光显微镜。植物榛子明场 放大倍数40x更丰富的数字化方案 蔡司Primostar 3可提供内置800万像素超清数码相机或其它外置数字化成像接口。通过成像应用程序蔡司 Labscope,可以轻松地将教室中的显微镜连接到同一个局域网内,让学生们一起讨论学习,并让高清拍摄、共享显微图像变得更方便快捷。蔡司Labscope教师管理软件模块有助于教师高效地管理和组织整个显微数码教室进行互动教学。凭借其出色的数字化功能,蔡司Primostar 3将为现代数字教学和远程教学定义新标准。 蔡司Primostar 3 HD组合套装占用空间小,易于储存 蔡司Primostar 3 人性化设计细致入微,其设计紧凑,占用空间小,更易于存储;机身背部设计了绕线架,当您使用完显微镜,可以将电缆整齐地缠绕在机身背部;还专门设计了搬运手柄,方便您移动、收纳显微镜;另外,蔡司Primostar 3选用坚固耐用的材质,即使经过长时间连续使用,所有的组件也能正常工作。所以,我们为这款显微镜提供长达5年的保修期。 免费索取《显微技术探秘》欢迎免费订阅Wiley系列特别版图书—《显微技术探秘》(共99页),数量有限,先到先得。识别二维码,免费索取图书
  • 北京大学第三医院340.40万元采购超净工作台,立体显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 北京大学第三医院设备购置项目C-IVF公开招标公告 北京市-朝阳区 状态:公告 更新时间: 2024-01-08 北京大学第三医院设备购置项目C-IVF公开招标公告 2024年01月08日 17:31 公告概要: 公告信息: 采购项目名称 北京大学第三医院设备购置项目C-IVF 品目 货物/设备/医疗设备/其他医疗设备 采购单位 北京大学第三医院 行政区域 北京市 公告时间 2024年01月08日 17:31 获取招标文件时间 2024年01月08日至2024年01月15日每日上午:9:00 至 11:00 下午:13:30 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 北京市朝阳区新源南路六号京城大厦A座7层704 开标时间 2024年01月29日 09:30 开标地点 北京市朝阳区新源南路6号京城大厦A座7层第十一会议室 预算金额 ¥340.400000万元(人民币) 联系人及联系方式: 项目联系人 李思哲、和学娟、刘莎 项目联系电话 010-84865055-559、131 采购单位 北京大学第三医院 采购单位地址 北京市海淀区花园北路49号 采购单位联系方式 陈老师,010-82266699 代理机构名称 中信国际招标有限公司 代理机构地址 北京市朝阳区新源南路六号京城大厦A座7层704室 代理机构联系方式 李思哲、和学娟、刘莎,010-84865055-559、131 项目概况 北京大学第三医院设备购置项目C-IVF 招标项目的潜在投标人应在北京市朝阳区新源南路六号京城大厦A座7层704获取招标文件,并于2024年01月29日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0733-23113049 项目名称:北京大学第三医院设备购置项目C-IVF 预算金额:340.400000 万元(人民币) 采购需求: 招标产品的名称,数量、简要技术要求及相关内容 品目 产品名称 数量 品目设备预算 (人民币:万元)简要技术要求 1 IVF-ICSI工作站 3套 74.4 用于辅助生殖体外受精单人观察,可双人操作。其它要求详见招标文件。 2 IVF工作站(双人位) 3套 78 用于辅助生殖体外受精双人观察,双人操作。其它要求详见招标文件。 3 单人体外受精超净工作台/工作站 1套 23 用于辅助生殖体外受精单人观察,单人操作。其它要求详见招标文件。 4 倒置显微镜 3套 63 观察培养皿中的细胞结构形态、大小和排列,要求配置不少于四个物镜,机身端口具备4种分光模式,具备霍夫曼观察功能,使未染色的细胞和细节呈现轻微的立体感。配玻璃恒温台。用于研究生物活细胞的生长、分裂和运动。其它要求详见招标文件。 5 显微操作系统 3套 57 用于倒置显微镜下的细胞注射操作,要求手动微调控制移动范围可达10mm。其它要求详见招标文件。 6 体视显微镜 3套 45 三目,双目观察的同时外接相机,可快速变焦,切换观察所有区域,并配玻璃恒温热台,满足细胞培养冷冻和解冻期间的双眼立体视觉、细胞等级确认等工作要求,其它要求详见招标文件。 评标方法和标准:综合评分法 采购用途:自用。 资金来源:财政性资金,且资金已落实。项目总预算为人民币340.4万元。投标报价中单品目报价超过对应品目设备预算的投标,均按无效投标处理。且每套产品单价不可为无限循环小数。 投标人资格条件: 1. 符合中华人民共和国政府采购法第二十二条的规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2. 近三年内被 信用中国 网站列入失信被执行人和税收违法黑名单的、被 中国政府采购网 网站列入政府采购严重违法失信行为信息记录名单的(处罚期限尚未届满的),不得参与本项目的政府采购活动。 3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。除单一来源采购项目外,为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。 4. 本项目不接受联合体投标,不允许转包,不允许将部分项目分包 合同履行期限:合同签订后30天内到货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: \ 3.本项目的特定资格要求:医疗器械注册证、医疗器械生产许可证或医疗器械经营许可证或备案凭证,其它具体要求详见投标人须知前附表2.1。 三、获取招标文件 时间:2024年01月08日 至 2024年01月15日,每天上午9:00至11:00,下午13:30至16:00。(北京时间,法定节假日除外) 地点:北京市朝阳区新源南路六号京城大厦A座7层704 方式:线上报名、线下领取招标文件。1、线上报名:中招联合招标采购平台线上报名,网址www.365trade.com.cn。(1)凡有意参加的潜在投标人,请前往中招联合招标采购平台免费注册,技术支持电话:010-86397110。注册成功后,方可登录报名 (报名时需在平台上传加盖公章的单位介绍信扫描件,格式自拟)。(2)潜在投标人应充分考虑平台注册、信息检查、资料上传、报名资料确认等流程所需的时间,报名务必在招标文件发售截止时间半个工作日前完成,否则将无法保证成功报名。 2、线下领取招标文件地点:北京市朝阳区新源南路六号京城大厦A座7层704。(需要携带加盖公章的单位介绍信扫描件)招标文件售后不退,可免费提供电子版招标文件。未成功报名及缴费购买招标文件的潜在投标人均无资格参加投标。 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月29日 09点30分(北京时间) 开标时间:2024年01月29日 09点30分(北京时间) 地点:北京市朝阳区新源南路6号京城大厦A座7层第十一会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1采购代理机构信息: 项目联系人:李思哲、和学娟、刘莎 联系方式:010-84865055-559、131 传真:010-84865255 Email:lisz@biddingcitic.com或hexj@biddingcitic.com 联系地址:北京市朝阳区新源南路六号京城大厦A座7层704室 2招标公告期限:本公告发布之日起5个工作日。 3项目需要落实的政府采购政策: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于财库〔2019〕19号公布的节能产品政府采购品目清单中的产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购属于财库〔2019〕18号公布的环境标志产品政府采购品目清单中的产品。 (3)扶持中小企业政策:若投标人符合《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)的规定属小型、微型企业的,并依据财库〔2022〕19号的规定,评审时其投标报价享受10%的价格折扣。符合《财政部 民政部 中国残疾人联合会关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定属于残疾人福利性单位的;或符合《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库(2014)68号)属于监狱企业的,均视同小型、微型企业,不重复享受政策。 (4)扶持不发达地区和少数民族地区政策。 4 采购代理机构账户信息: 账号:7110210182600030709 开户行:中信银行北京京城大厦支行 开户名称:中信国际招标有限公司 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京大学第三医院 地址:北京市海淀区花园北路49号 联系方式:陈老师,010-82266699 2.采购代理机构信息 名 称:中信国际招标有限公司 地 址:北京市朝阳区新源南路六号京城大厦A座7层704室 联系方式:李思哲、和学娟、刘莎,010-84865055-559、131 3.项目联系方式 项目联系人:李思哲、和学娟、刘莎 电 话: 010-84865055-559、131 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:超净工作台,立体显微镜 开标时间:2024-01-29 09:30 预算金额:340.40万元 采购单位:北京大学第三医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中信国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北京大学第三医院设备购置项目C-IVF公开招标公告 北京市-朝阳区 状态:公告 更新时间: 2024-01-08 北京大学第三医院设备购置项目C-IVF公开招标公告 2024年01月08日 17:31 公告概要: 公告信息: 采购项目名称 北京大学第三医院设备购置项目C-IVF 品目 货物/设备/医疗设备/其他医疗设备 采购单位 北京大学第三医院 行政区域 北京市 公告时间 2024年01月08日 17:31 获取招标文件时间 2024年01月08日至2024年01月15日每日上午:9:00 至 11:00 下午:13:30 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 北京市朝阳区新源南路六号京城大厦A座7层704 开标时间 2024年01月29日 09:30 开标地点 北京市朝阳区新源南路6号京城大厦A座7层第十一会议室 预算金额 ¥340.400000万元(人民币) 联系人及联系方式: 项目联系人 李思哲、和学娟、刘莎 项目联系电话 010-84865055-559、131 采购单位 北京大学第三医院 采购单位地址 北京市海淀区花园北路49号 采购单位联系方式 陈老师,010-82266699 代理机构名称 中信国际招标有限公司 代理机构地址 北京市朝阳区新源南路六号京城大厦A座7层704室 代理机构联系方式 李思哲、和学娟、刘莎,010-84865055-559、131 项目概况 北京大学第三医院设备购置项目C-IVF 招标项目的潜在投标人应在北京市朝阳区新源南路六号京城大厦A座7层704获取招标文件,并于2024年01月29日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0733-23113049 项目名称:北京大学第三医院设备购置项目C-IVF 预算金额:340.400000 万元(人民币) 采购需求: 招标产品的名称,数量、简要技术要求及相关内容 品目 产品名称 数量 品目设备预算 (人民币:万元) 简要技术要求 1 IVF-ICSI工作站 3套 74.4 用于辅助生殖体外受精单人观察,可双人操作。其它要求详见招标文件。 2 IVF工作站(双人位) 3套 78 用于辅助生殖体外受精双人观察,双人操作。其它要求详见招标文件。 3 单人体外受精超净工作台/工作站 1套 23 用于辅助生殖体外受精单人观察,单人操作。其它要求详见招标文件。 4 倒置显微镜 3套 63 观察培养皿中的细胞结构形态、大小和排列,要求配置不少于四个物镜,机身端口具备4种分光模式,具备霍夫曼观察功能,使未染色的细胞和细节呈现轻微的立体感。配玻璃恒温台。用于研究生物活细胞的生长、分裂和运动。其它要求详见招标文件。 5 显微操作系统 3套 57 用于倒置显微镜下的细胞注射操作,要求手动微调控制移动范围可达10mm。其它要求详见招标文件。 6 体视显微镜 3套 45 三目,双目观察的同时外接相机,可快速变焦,切换观察所有区域,并配玻璃恒温热台,满足细胞培养冷冻和解冻期间的双眼立体视觉、细胞等级确认等工作要求,其它要求详见招标文件。 评标方法和标准:综合评分法 采购用途:自用。 资金来源:财政性资金,且资金已落实。项目总预算为人民币340.4万元。投标报价中单品目报价超过对应品目设备预算的投标,均按无效投标处理。且每套产品单价不可为无限循环小数。 投标人资格条件: 1. 符合中华人民共和国政府采购法第二十二条的规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2. 近三年内被 信用中国 网站列入失信被执行人和税收违法黑名单的、被 中国政府采购网 网站列入政府采购严重违法失信行为信息记录名单的(处罚期限尚未届满的),不得参与本项目的政府采购活动。 3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。除单一来源采购项目外,为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。 4. 本项目不接受联合体投标,不允许转包,不允许将部分项目分包 合同履行期限:合同签订后30天内到货 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: \ 3.本项目的特定资格要求:医疗器械注册证、医疗器械生产许可证或医疗器械经营许可证或备案凭证,其它具体要求详见投标人须知前附表2.1。 三、获取招标文件 时间:2024年01月08日 至 2024年01月15日,每天上午9:00至11:00,下午13:30至16:00。(北京时间,法定节假日除外) 地点:北京市朝阳区新源南路六号京城大厦A座7层704 方式:线上报名、线下领取招标文件。1、线上报名:中招联合招标采购平台线上报名,网址www.365trade.com.cn。(1)凡有意参加的潜在投标人,请前往中招联合招标采购平台免费注册,技术支持电话:010-86397110。注册成功后,方可登录报名 (报名时需在平台上传加盖公章的单位介绍信扫描件,格式自拟)。(2)潜在投标人应充分考虑平台注册、信息检查、资料上传、报名资料确认等流程所需的时间,报名务必在招标文件发售截止时间半个工作日前完成,否则将无法保证成功报名。 2、线下领取招标文件地点:北京市朝阳区新源南路六号京城大厦A座7层704。(需要携带加盖公章的单位介绍信扫描件)招标文件售后不退,可免费提供电子版招标文件。未成功报名及缴费购买招标文件的潜在投标人均无资格参加投标。 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月29日 09点30分(北京时间) 开标时间:2024年01月29日 09点30分(北京时间) 地点:北京市朝阳区新源南路6号京城大厦A座7层第十一会议室 五、公告期限自本公告发布之日起5个工作日。 六、其他补充事宜 1采购代理机构信息: 项目联系人:李思哲、和学娟、刘莎 联系方式:010-84865055-559、131 传真:010-84865255 Email:lisz@biddingcitic.com或hexj@biddingcitic.com 联系地址:北京市朝阳区新源南路六号京城大厦A座7层704室 2招标公告期限:本公告发布之日起5个工作日。 3项目需要落实的政府采购政策: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于财库〔2019〕19号公布的节能产品政府采购品目清单中的产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购属于财库〔2019〕18号公布的环境标志产品政府采购品目清单中的产品。 (3)扶持中小企业政策:若投标人符合《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)的规定属小型、微型企业的,并依据财库〔2022〕19号的规定,评审时其投标报价享受10%的价格折扣。符合《财政部 民政部 中国残疾人联合会关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定属于残疾人福利性单位的;或符合《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库(2014)68号)属于监狱企业的,均视同小型、微型企业,不重复享受政策。 (4)扶持不发达地区和少数民族地区政策。 4 采购代理机构账户信息: 账号:7110210182600030709 开户行:中信银行北京京城大厦支行 开户名称:中信国际招标有限公司 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京大学第三医院 地址:北京市海淀区花园北路49号 联系方式:陈老师,010-82266699 2.采购代理机构信息 名 称:中信国际招标有限公司 地 址:北京市朝阳区新源南路六号京城大厦A座7层704室 联系方式:李思哲、和学娟、刘莎,010-84865055-559、131 3.项目联系方式 项目联系人:李思哲、和学娟、刘莎 电 话: 010-84865055-559、131
  • 高校与日立、牛津仪器等开发新型显微镜:可极端高温高压环境工作
    p & nbsp & nbsp 【据北卡罗来纳州立大学2018年7月9日报道】一种新的显微镜技术可让研究人员实时跟踪材料的微观结构变化,即使材料在极端高温和高压的服役环境中也能实现。最近,研究人员发现了一种名为“合金709”的不锈钢合金具有在如核反应堆结构等更高温度服役环境下应用的潜力。 br/ /p p   此项发明论文的作者、北卡罗来纳州立大学机械和航空航天工程系的教授Afsaneh Rabiei表示,合金709具有极高的强度,并且在长时间在高温环境下工作时能够抵抗损坏,这使其成为可用于下一代核电站的潜在材料。 /p p   但是,合金709是一种全新材料,其在高温和高压下的性能人们还尚未全面了解。要想使用这种合金,美国能源部需要更好地了解其热机械性能和结构特性,以确定其在核反应堆中的可行性。 /p p   为了解决美国能源部的问题,Rabiei找到了一种全新的解决方案。她与三家公司——日立、牛津仪器和Kammrath& amp Weiss GmbH ——开展合作,开发了一种新技术,使她实验室具有对材料试样施加极高的热量和载荷的情况下能够实时使用扫描电子显微镜(SEM)的能力。 /p p   “这意味着我们可以在热机械测试过程中观察到材料的裂纹扩展、损伤成核和微观结构变化,这些变化与所有主体材料有关——不仅仅是合金709。”Rabiei表示,“这种显微镜可以帮助我们了解材料在从室温到1000摄氏度,以及从0到2千兆帕的应力等各类条件下失效的位置和原因。” /p p   Rabiei的团队与英国伯明翰大学合作,评估合金709在高温和高载荷条件下的机械和微观结构特性。 /p p   研究人员将厚度为1毫米的合金709样品放置在高达950摄氏度的温度下,直到材料“失效”,这意味着材料主体结构已经损毁。 /p p   “合金709的性能优于316不锈钢,而316不锈钢是目前在核反应堆中主要使用的。”Rabiei表示,“研究表明,合金709的强度在所有温度下均高于316不锈钢,这意味着合金709在失效前,可比316不锈钢承受更大的压力。例如,合金709可以在950℃的服役环境下承受尽可能多的载荷,而316不锈钢只能在538℃的条件下实现相同的效果。 /p p   Rabiei表示,最新的显微镜技术可以使人们能够在整个温度和压力变化过程中,监测材料的孔洞成核和裂纹扩展以及微观结构的所有变化。 /p p   这是一项很有前景的发现,但目前仍有很多工作需要完成。Rabiei表示,该工作的下一步是研究合金709在高温环境下,施加周期性载荷或重复应力时如何发挥作用。” /p p   相关论文“不同温度下合金709的拉伸性能研究”目前已发表在“材料科学与工程”杂志中。该论文的第一作者是前北卡罗来纳州立大学研究生Swathi Upadhayay。该论文由伯明翰大学的Hangyue Li和Paul Bowen共同撰写。这项工作得到了能源部的资助,编号为2015-1877/DE-NE0008451,英国研究与创新奖项号为EP/N016351/1。(中国航空工业发展研究中心 陈济桁) /p
  • 偏振显微镜下的魔法美图:化学工作者艺术赏析
    p   艺术源于生活,高端艺术之美使人愉悦,而在枯燥的科研工作中,科学家误与艺术灵感碰撞,往往产生的结果会令人惊艳。近日,一位美国化学科研工作者便发生了这样的“碰撞”,他的工作会大量使用显微镜,后来因对显微镜高质量图片的极大兴趣,使得自己的生活发生了很大变化。 /p p   Chris King是美国国立卫生研究院的组织学技术人员,其工作中会大量使用显微镜。最初,亲朋好友询问他的工作内容时,为更形象的描述,便开始用显微镜拍摄一些组织染色和其他事物的照片,让大家更容易理解。接着便进行各种实验,通过多种方式的处理,以使显微镜图片产生引人注目的颜色和形状。后来,在获得家人的支持后,在家里购买了自己的显微镜。还在eBay上购买了其他的二手实验设备。现在他的公寓成了一个小型实验室,包括卧室、厨房、餐厅等都进行了重新设计。“这是我卧室的一部分,然后是厨房的大部分,餐厅基本上都是专门为它设计的。” /p p   之后,Chris King大部分业余时间都花在了显微镜艺术上。通常每周四都会花一整晚的时间来做这件事,且每天要花一两个小时。最终,他的艺术作品改变了他的生活。目前,在一个博物馆里,Chris King的一项设计方法专利正在申请中,他还在全国性的广告活动中担任了主角。对于这些变化,他表示:“没有什么不可能的,这也许就是化学工作者一直以来固有的自信吧”。 /p p    strong 下面欣赏一些Chris King的偏光显微镜图片: /strong /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/5539aa5f-1ca4-41e0-b1e9-ce48e56f005c.jpg" title=" 01.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 硫酸铜和导线之间的置换反应后,用铜涂覆的铁丝起泡(氢气) /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/66d2e0cf-da7f-4d15-9ad1-96704cee5d89.jpg" title=" 02.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 氨基酸β-丙氨酸 和 L-谷氨酰胺的羽毛状组合 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/dfde0f89-e9e2-450d-99cc-01fd659e159b.jpg" title=" 03.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 氨基酸β-丙氨酸 和 L-谷氨酰胺混在一起,呈现不同结晶形式 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/84c333cb-67fd-4a3a-be14-1d9198dd1c86.jpg" title=" 04.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " β-丙氨酸独立结晶,虽然L-谷氨酰胺是氨基酸,但不能形成蛋白质 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/5abdfd0b-5a78-4498-8f3c-f5bd41c41587.jpg" title=" 05.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 在偏振补偿光下100倍的多巴胺晶体。 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/51d627dc-f8a3-4f19-b8c8-063d8fceca0a.jpg" title=" 06.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 酒石酸晶体在偏振补偿暗场光照下(莱茵贝格显微镜反射光混合) /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/4b79eea7-44c8-456f-b80d-b95568e6b7e3.jpg" title=" 07.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 偏振光下100倍的酒石酸图像,并具有全波补偿 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/9e26e613-b6c0-494b-9d45-c7afb12175f3.jpg" title=" 08.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 在莱茵贝格显微镜照射下由利口酒Aperol形成的结晶(Aperol是由苦橙、龙胆、大黄和金鸡纳等成分制成的意大利开胃酒) /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/47c1540b-4333-4f32-bfa8-3253ba46534e.jpg" title=" 09.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 由酱油形成的晶体,可能由于维生素c导致了污染 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/6b877c6e-71bc-49d1-9904-385dab422636.jpg" title=" 010.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 放大40倍的暗场偏振光显微镜下的维生素c晶体 /span /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201806/insimg/a3d12a4c-a1ce-4fe8-9b7e-23da084b1c39.jpg" title=" 011.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 维生素c从丙二醇溶液中重结晶 /span /p
  • 天美公司参加“细胞生物学研究新领域研讨会–电子显微镜工作坊”
    2012年1月4-6日天美公司参加了&ldquo 细胞生物学研究新领域研讨会&ndash 电子显微镜工作坊&rdquo 。感谢香港中文大学生命科学学院的盛情邀请,以及对日立高新技术公司的支持。此次活动是一个回顾电镜技术及其应用的好机会,同时介绍了日立透射电子显微镜。 来自香港和中国大陆的60多个研究人员和学生都参加了我们的展台并进行现场操作。我们真诚地希望这样的沟通有益于参观者。天美将继续支持类似的活动,并提供最优质的仪器和解决方案给我们的客户。
  • 江苏自由贸易试验区南京片区省内首台进口冷冻透射电子显微镜采购工作完成
    近日,江北新区冷冻透射电子显微镜政府采购项目在江北新区公共资源交易分中心顺利完成开评标。本次采购物品为一台300KV冷冻透射电子显微镜,采用公开招标方式组织采购。此项目的顺利开展标志着江苏省内首台进口冷冻透射电子显微镜即将配备到位,该设备将进一步服务于江苏省生物医药科研及生产领域的结构生物学平台。由于生物医药研发需求的快速增加,国内对高端先进设备的需求与日俱增,作为当前结构生物学领域最为前沿的成像技术之一,冷冻透射电子显微镜技术于2017年荣诺贝尔化学奖,这一最新技术使得显微镜的观测等级从纳米级上升到原子级别的生命结构。由于江苏省内尚无公共科研机构或平台能够向科研院所和生物医药企业提供该项服务,且能够满足当前最新科研需求的该类设备在中国境内无法获取,这在一定程度上限制了地区生物医药领域的研发水平,因此购置江苏省第一台高分辨率冷冻电镜的任务提上日程。南京大学人工智能生物医药技术研究院作为采购人主体单位,经前期政府采购进口产品相关行业主管部门批准及专家论证,委托江北新区公共资源交易分中心组织该项采购。因项目性质特殊,涉及大量专业技术参数要求,且采购人为首次接触集中采购业务,因此在提供采购需求和编制采购文件阶段,为合理设置需求、完善文件结构、加快项目进程,江北新区公共资源交易分中心安排专人对接,详细说明采购流程,介绍交易系统功能模块设置和具体操作要求,与此同时针对需求细节讲解政采法规及政策条文规定。经与采购人间的多轮沟通,该项目于2023年5月8日发布采购公告。5月29日,项目如期开标,经过评标委员会紧张有序、全面细致的现场评审,最终捷欧路(北京)科贸有限公司中标,后续其将为采购人提供相应产品及服务,“中心也将持续关注相关标后事宜。”相关工作人员表示。
  • 华中师范大学158.38万元采购高压灭菌器,生物显微镜,数码显微镜,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师 027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:高压灭菌器,生物显微镜,数码显微镜,荧光显微镜 开标时间:null 预算金额:158.38万元 采购单位:华中师范大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中经国际招标集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1 化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx
  • 科学家开发出一种多功能近场显微镜平台,可在高磁场和液氦温度以下工作
    重大的科学突破往往是由新技术和仪器实现的。一种新型的近场光学显微镜,在极端温度和磁场下具有高分辨率成像,可以为量子计算技术和拓扑研究做到这一点。Kim等人提出了一种sub-2开尔文低温磁赫兹散射型扫描近场光学显微镜(cm-THz-sSNOM)。太赫兹sSNOM成像使用照射在小金属尖端上的300微米波长光在纳米尺度上绘制材料,允许以深亚波长,20纳米空间精度测量局部材料特性 - 比所用光的波长小15,000倍。经过几年的努力,研究人员能够展示出一种改进的sSNOM平台,该平台在极端操作条件下具有无与伦比的分辨率能力。“我们在空间,时间和能量方面提高了分辨率,”作者Jigang Wang说。“我们还同时改进了在极低温度和高磁场下的操作。显微镜是通过测量超导体和拓扑半金属来展示的。结果显示了在1特斯拉磁场中9.5开尔文的第一个高分辨率sSNOM图像。显微镜可以帮助开发具有更长相干时间的新量子比特 - 目前受到材料和界面缺陷的限制 - 并提高对拓扑材料基本性质的理解。“重要的是成像到十亿分之一米,千万亿分之一秒和每秒数万亿个光波,以便能够选择更好的材料并指导量子和拓扑电路的制造,”王说。尽管显微镜已经展示了破纪录的测量结果,但研究人员的目标是通过提高灵敏度并使SUV大小的显微镜更加用户友好来进一步改进仪器。相关文章:“A sub-2 kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM),” by R. H. J. Kim, J.-M. Park, S. J. Haeuser, L. Luo, and J. Wang, Review of Scientific Instruments (2023). The article can be accessed at https://doi.org/10.1063/5.0130680.文章展示了研究人员开发的一种多功能近场显微镜平台,可以在高磁场和液氦温度以下工作。研究人员使用该平台演示了极端太赫兹(THz)纳米显微镜的操作,并在低至1.8 K的温度、高达5 T的磁场和0–2 THz的操作下获得了第一个低温磁太赫兹时域纳米光谱/成像。低温磁太赫兹散射型扫描近场光学显微镜(或cm THz-sSNOM)仪器由三个主要设备组成:(i)带有定制插件的5T分对磁低温恒温器,(ii)能够接受超快THz激发的定制sSNOM仪器,以及(iii)MHz重复率,用于宽带太赫兹脉冲产生和灵敏检测的飞秒激光放大器。应用cm THz sSNOM来获得超导体和拓扑半金属的原理测量证明。这些新能力为研究需要极端低温操作环境和/或在纳米空间、飞秒时间和太赫兹能量尺度上施加磁场的量子材料提供了突破。
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 河北石油职业技术大学182.00万元采购偏光显微镜,金相显微镜,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 2023年国家双高计划二(政府采购-货物)项目-4包综合地质技术实验室建设公开招标公告 河北省-石家庄市-新华区 状态:公告 更新时间: 2023-03-13 2023年国家双高计划二(政府采购-货物)项目-4包综合地质技术实验室建设公开招标公告 发布时间: 2023-03-13 一、项目基本情况 项目编号: ZCHX-2023-014-4 项目名称: 2023年国家双高计划二(政府采购-货物)项目 采购方式: 公开招标 预算金额: 1820000.00 最高限价: 1820000 采购需求: 偏光显微镜20台,显微图像采集系统20台,偏光显微镜带摄像系统1台,地质制片设备1套,正置荧光显微镜5台,倒置金相显微镜5台,地质标本1套,定制学生配套桌椅20套,石油油藏开采储运地质模型1套#detail# 合同履行期限: 自合同签订后4个月内 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2023年03月14日至 2023年03月20日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 登录河北省公共资源交易服务平台主体系统(http://ggzy.hebei.gov.cn/hbggfwpt/),自行报名并下载招标文件,并及时查看有无澄清和修改 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2023年04月03日09点00分(北京时间) 地点: 河北省公共资源全流程电子交易系统 四、响应文件提交 截止时间: 2023年04月03日09点00分 五、开启 时间: 2023年04月03日09点00分 地点: 河北省公共资源全流程电子交易系统 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、本次招标公告在中国河北政府采购网、河北省公共资源交易服务平台上发布。 2、供应商报名资格确认:投标人投标报名前,须按照“河北省公共资源交易服务平台”(网址:http://ggzy.hebei.gov.cn/hbggfwpt/)首页“通知公告”中“河北省公共资源交易中心关于招标代理机构及投标人(含政府采购投标人)进行登记注册的通知”的要求办理相关手续,具体事宜可联系 0311-66635531。已在“河北省公共资源交易服务平台”注册并办理 CA 认证的投标人可直接通过河北省公共资源交易服务平台报名并下载招标文件。 3、招标公告发布后,随招标公告发布的招标文件等相关资料,即视为已送达所有潜在投标人,潜在投标人可登录河北省公共资源交易服务平台(http://ggzy.hebei.go v.cn/hbggfwpt/)自主网上报名,下载招标文件及相关资料,并及时查看有无澄清和修改(包括补遗澄清文件、修改文件)及相关资料等,潜在投标人如未及时下载相关文件、资料,或未获取到完整的文件、资料,导致投标被否决或不利于中标的,自行承担一切后果。潜在投标人请及时关注公告发布媒体发布的更正公告。 4、投标文件递交方法:(1).本次招标为电子招投标,投标文件采用数据电子文件,投标人可通过河北省公共资源交易网上开标大厅在线参与开标。(2).投标人应在投标截止时间前完成电子投标文件的递交,在线递交电子投标文件前,投标人应当使用投标客户端及 CA 密钥为投标文件加密。(编制投标文件需使用 CA 密钥,未办理 CA 密钥的投标人,需进行企业 CA 注册并办理 CA 密钥。具体事宜可联系 0311-66635531)。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 河北石油职业技术大学 地址: 承德市开发区学院路 2 号 联系方式: 李万东 0314-2377069 2.采购代理机构信息 名 称: 庄宸和信项目管理有限公司 地 址: 石家庄市新华区北二环西路228号 联系方式: 盖春彦 0311-88089089 3.项目联系方式 项目联系人: 盖春彦 电 话: 0311-88089089 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:偏光显微镜,金相显微镜,荧光显微镜 开标时间:2023-04-03 09:00 预算金额:182.00万元 采购单位:河北石油职业技术大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:庄宸和信项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 2023年国家双高计划二(政府采购-货物)项目-4包综合地质技术实验室建设公开招标公告 河北省-石家庄市-新华区 状态:公告 更新时间: 2023-03-13 2023年国家双高计划二(政府采购-货物)项目-4包综合地质技术实验室建设公开招标公告 发布时间: 2023-03-13 一、项目基本情况 项目编号: ZCHX-2023-014-4 项目名称: 2023年国家双高计划二(政府采购-货物)项目 采购方式: 公开招标 预算金额: 1820000.00 最高限价: 1820000 采购需求: 偏光显微镜20台,显微图像采集系统20台,偏光显微镜带摄像系统1台,地质制片设备1套,正置荧光显微镜5台,倒置金相显微镜5台,地质标本1套,定制学生配套桌椅20套,石油油藏开采储运地质模型1套#detail# 合同履行期限: 自合同签订后4个月内 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2023年03月14日至 2023年03月20日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 登录河北省公共资源交易服务平台主体系统(http://ggzy.hebei.gov.cn/hbggfwpt/),自行报名并下载招标文件,并及时查看有无澄清和修改 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2023年04月03日09点00分(北京时间) 地点: 河北省公共资源全流程电子交易系统 四、响应文件提交 截止时间: 2023年04月03日09点00分 五、开启 时间: 2023年04月03日09点00分 地点: 河北省公共资源全流程电子交易系统 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1、本次招标公告在中国河北政府采购网、河北省公共资源交易服务平台上发布。 2、供应商报名资格确认:投标人投标报名前,须按照“河北省公共资源交易服务平台”(网址:http://ggzy.hebei.gov.cn/hbggfwpt/)首页“通知公告”中“河北省公共资源交易中心关于招标代理机构及投标人(含政府采购投标人)进行登记注册的通知”的要求办理相关手续,具体事宜可联系 0311-66635531。已在“河北省公共资源交易服务平台”注册并办理 CA 认证的投标人可直接通过河北省公共资源交易服务平台报名并下载招标文件。 3、招标公告发布后,随招标公告发布的招标文件等相关资料,即视为已送达所有潜在投标人,潜在投标人可登录河北省公共资源交易服务平台(http://ggzy.hebei.go v.cn/hbggfwpt/)自主网上报名,下载招标文件及相关资料,并及时查看有无澄清和修改(包括补遗澄清文件、修改文件)及相关资料等,潜在投标人如未及时下载相关文件、资料,或未获取到完整的文件、资料,导致投标被否决或不利于中标的,自行承担一切后果。潜在投标人请及时关注公告发布媒体发布的更正公告。 4、投标文件递交方法:(1).本次招标为电子招投标,投标文件采用数据电子文件,投标人可通过河北省公共资源交易网上开标大厅在线参与开标。(2).投标人应在投标截止时间前完成电子投标文件的递交,在线递交电子投标文件前,投标人应当使用投标客户端及 CA 密钥为投标文件加密。(编制投标文件需使用 CA 密钥,未办理 CA 密钥的投标人,需进行企业 CA 注册并办理 CA 密钥。具体事宜可联系 0311-66635531)。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 河北石油职业技术大学 地址: 承德市开发区学院路 2 号 联系方式: 李万东 0314-2377069 2.采购代理机构信息 名 称: 庄宸和信项目管理有限公司 地 址: 石家庄市新华区北二环西路228号 联系方式: 盖春彦 0311-88089089 3.项目联系方式 项目联系人: 盖春彦 电 话: 0311-88089089
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。   Stefan Hell打破了物理学界的传统看法   自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。   罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。   早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。   Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。 4Pi显微镜,超高分辨率成像中的一个步骤   时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。   随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。   起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。   Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。   此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。   曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。 由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。   1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。   但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。   1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。   直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。   紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。 果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。   SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。   同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。   科研竞赛   2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。   Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组   2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。   接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。   回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。   Samuel Hess小组   Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。   2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。   接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。   对于同事们的帮助,Hess总是不胜感激。   2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。   庄晓威科研小组   与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。   通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。   其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。   早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。   从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。   2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。   此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。   超高分辨率显微镜的成绩   已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。   Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。   Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。   美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望   自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。   2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。 PALM在哺乳动物细胞内拍摄到的粘附复合物。   由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。   尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。   仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。   Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。   除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。   庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
  • 北海市人民医院1394.88万元采购天平,生物显微镜,超净工作台,培养箱,液氮罐
    详细信息 北海市人民医院设备采购项目需求公示其他 广西壮族自治区-北海市-海城区 状态:预告 更新时间: 2023-08-19 北海市人民医院设备采购项目需求公示其他 2023年08月19日 16:23 公告概要: 公告信息: 采购项目名称 北海市人民医院设备采购项目需求公示 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 北海市人民医院 行政区域 市辖区 公告时间 2023年08月19日 16:23 开标时间 预算金额 ¥1394.880000万元(人民币) 联系人及联系方式: 项目联系人 曾工 项目联系电话 07793219191 采购单位 北海市人民医院 采购单位地址 北海市海城区和平路83号 采购单位联系方式 叶强 13387793455 代理机构名称 广西瑞真工程造价咨询有限责任公司 代理机构地址 北海市重庆路发展大厦A座701室 代理机构联系方式 曾工 0779-3219191 附件: 附件1 北海市人民医院进口设备采购项目需求附件.rar 广西瑞真工程造价咨询有限责任公司受北海市人民医院 委托,根据《中华人民共和国政府采购法》等有关规定,现对北海市人民医院设备采购项目需求公示进行其他招标,欢迎合格的供应商前来投标。 项目名称:北海市人民医院设备采购项目需求公示 项目编号: 项目联系方式: 项目联系人:曾工 项目联系电话:07793219191 采购单位联系方式: 采购单位:北海市人民医院 采购单位地址:北海市海城区和平路83号 采购单位联系方式:叶强 13387793455 代理机构联系方式: 代理机构:广西瑞真工程造价咨询有限责任公司 代理机构联系人:曾工 0779-3219191 代理机构地址: 北海市重庆路发展大厦A座701室 一、采购项目内容 北海市人民医院设备采购项目需求公示 为保证采购工作的公平公正和竞争充分,我单位拟对北海市人民医院设备采购项目需求予以公示、征求各投标人意见,公示期限为2023年08月19日至2023年08月24日。广大投标人可以对需求参数的完整性、合理性、公正性提出具体意见建议,防止出现指向性、排他性问题。请广大投标人予以支持: 一、项目名称:北海市人民医院设备采购 二、需求公示内容: 1.项目预算:预算金额:1394.88万元 2.采购需求: 序号 设备名称 预算单价 (万元) 预算总价(万元) 数量 备注 1 椅旁数字化全瓷修复系统 13.00 13.00 1套 2 MEEK植皮机 45.00 45.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 3 彩色多普勒超声诊断仪 70.00 70.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续 4 负压吸引器 6.00 6.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 5 普通妇检床 1.00 3.00 3台 6 B超检查床(妇检床) 1.00 1.00 1台 7 电动机械手术台 4.90 4.90 1台 8 恒温培养箱 0.80 0.80 1台 9 精子质量分析仪 49.90 49.90 1台 10 生物显微镜 10.30 10.30 1台 11 生物显微镜 6.00 6.00 1台 12 精子记数板 1.00 2.00 2台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 13 医用离心机 2.00 4.00 2台 14 超净工作台 2.55 5.1 2台 15 水浴箱 2.10 4.2 2台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 16 精密移液器 0.26 1.04 4台 17 精密移液器 0.26 0.52 2台 18 电动注液器 0.78 0.78 1台 19 液氮运输罐 0.48 1.44 3台 20 液氮储存罐 4.90 9.80 2台 21 二氧化碳培养箱 9.00 9.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 22 气体浓度检测仪 9.90 9.90 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 23 恒温热板 2.20 2.20 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 24 生殖医学精浆生化半自动分析仪 19.50 19.50 1台 25 电子天平 0.20 0.20 1台 26 彩色打印机 0.40 0.40 1台 27 医用冰箱 2.30 6.90 3台 28 多功能型C型臂 370.00 370.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 29 超高清3D胸腔镜系统 395.00 395.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 30 视觉功能分析仪 80.00 80.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 31 眼底激光治疗仪 130.00 130.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 32 眼前节测量评估系统 85.00 85.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 33 人体成分分析仪 48.00 48.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 3.技术参数要求 详见附件。 四、回复意见的投标人资格、截止时间、格式、方式 1.回复意见的投标人资格:能够提供相关产品(服务)的投标人,投标人资格条件要求详见附件1。 2.回复意见截止时间:2023年08月25日18:00(北京时间) 3.回复意见格式:投标人应按意见反馈表的格式提出对本项目需求参数中倾向性、排他性条款及要求的修改理由和修改建议。投标人提出的意见建议应当详细具体、理由充分、实事求是,不得有意排斥其他潜在投标人。投标人所提意见建议,将作为我院初步论证完善需求参数时参考的依据,是否采纳均不影响投标人参与本项目后续采购活动,我院不做书面回复。 4.回复意见方式:现场提交或邮箱,邮箱为gcrzbh@163.com。 5.回复意见地点:广西瑞真工程造价咨询有限责任公司(重庆路发展大厦A座701) 6.邮件附件:意见反馈表、供应商调查问卷表。 五、联系方式 项目联系人:叶强 项目联系方式:13387793455 招标代理机构:广西瑞真工程造价咨询有限责任公司 联系人及联系方式:曾工0779-3219191/13877959058 北海市人民医院 2023年08月19日 二、开标时间: 三、其它补充事宜 四、预算金额: 预算金额:1394.8800000 万元(人民币) × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:天平,生物显微镜,超净工作台,培养箱,液氮罐 开标时间:null 预算金额:1394.88万元 采购单位:北海市人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广西瑞真工程造价咨询有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北海市人民医院设备采购项目需求公示其他 广西壮族自治区-北海市-海城区 状态:预告 更新时间: 2023-08-19 北海市人民医院设备采购项目需求公示其他 2023年08月19日 16:23 公告概要: 公告信息: 采购项目名称 北海市人民医院设备采购项目需求公示 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 北海市人民医院 行政区域 市辖区 公告时间 2023年08月19日 16:23 开标时间 预算金额 ¥1394.880000万元(人民币) 联系人及联系方式: 项目联系人 曾工 项目联系电话 07793219191 采购单位 北海市人民医院 采购单位地址 北海市海城区和平路83号 采购单位联系方式 叶强 13387793455 代理机构名称 广西瑞真工程造价咨询有限责任公司 代理机构地址 北海市重庆路发展大厦A座701室 代理机构联系方式 曾工 0779-3219191 附件: 附件1 北海市人民医院进口设备采购项目需求附件.rar 广西瑞真工程造价咨询有限责任公司受北海市人民医院 委托,根据《中华人民共和国政府采购法》等有关规定,现对北海市人民医院设备采购项目需求公示进行其他招标,欢迎合格的供应商前来投标。 项目名称:北海市人民医院设备采购项目需求公示 项目编号: 项目联系方式: 项目联系人:曾工 项目联系电话:07793219191 采购单位联系方式: 采购单位:北海市人民医院 采购单位地址:北海市海城区和平路83号 采购单位联系方式:叶强 13387793455 代理机构联系方式: 代理机构:广西瑞真工程造价咨询有限责任公司 代理机构联系人:曾工 0779-3219191 代理机构地址: 北海市重庆路发展大厦A座701室 一、采购项目内容 北海市人民医院设备采购项目需求公示 为保证采购工作的公平公正和竞争充分,我单位拟对北海市人民医院设备采购项目需求予以公示、征求各投标人意见,公示期限为2023年08月19日至2023年08月24日。广大投标人可以对需求参数的完整性、合理性、公正性提出具体意见建议,防止出现指向性、排他性问题。请广大投标人予以支持: 一、项目名称:北海市人民医院设备采购 二、需求公示内容: 1.项目预算:预算金额:1394.88万元 2.采购需求: 序号 设备名称 预算单价 (万元) 预算总价(万元) 数量 备注 1 椅旁数字化全瓷修复系统 13.00 13.00 1套 2 MEEK植皮机 45.00 45.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 3 彩色多普勒超声诊断仪 70.00 70.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续 4 负压吸引器 6.00 6.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 5 普通妇检床 1.00 3.00 3台 6 B超检查床(妇检床) 1.00 1.00 1台 7 电动机械手术台 4.90 4.90 1台 8 恒温培养箱 0.80 0.80 1台 9 精子质量分析仪 49.90 49.90 1台 10 生物显微镜 10.30 10.30 1台 11 生物显微镜 6.00 6.00 1台 12 精子记数板 1.00 2.00 2台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 13 医用离心机 2.00 4.00 2台 14 超净工作台 2.55 5.1 2台 15 水浴箱 2.10 4.2 2台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 16 精密移液器 0.26 1.04 4台 17 精密移液器 0.26 0.52 2台 18 电动注液器 0.78 0.78 1台 19 液氮运输罐 0.48 1.44 3台 20 液氮储存罐 4.90 9.80 2台 21 二氧化碳培养箱 9.00 9.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 22 气体浓度检测仪 9.90 9.90 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 23 恒温热板 2.20 2.20 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 24 生殖医学精浆生化半自动分析仪 19.50 19.50 1台 25 电子天平 0.20 0.20 1台 26 彩色打印机 0.40 0.40 1台 27 医用冰箱 2.30 6.90 3台 28 多功能型C型臂 370.00 370.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 29 超高清3D胸腔镜系统 395.00 395.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 30 视觉功能分析仪 80.00 80.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 31 眼底激光治疗仪 130.00 130.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 32 眼前节测量评估系统 85.00 85.00 1套 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 33 人体成分分析仪 48.00 48.00 1台 产品采购需求已按规定进行专家论证,并已履行备案手续,接受进口产品 3.技术参数要求 详见附件。 四、回复意见的投标人资格、截止时间、格式、方式 1.回复意见的投标人资格:能够提供相关产品(服务)的投标人,投标人资格条件要求详见附件1。 2.回复意见截止时间:2023年08月25日18:00(北京时间) 3.回复意见格式:投标人应按意见反馈表的格式提出对本项目需求参数中倾向性、排他性条款及要求的修改理由和修改建议。投标人提出的意见建议应当详细具体、理由充分、实事求是,不得有意排斥其他潜在投标人。投标人所提意见建议,将作为我院初步论证完善需求参数时参考的依据,是否采纳均不影响投标人参与本项目后续采购活动,我院不做书面回复。 4.回复意见方式:现场提交或邮箱,邮箱为gcrzbh@163.com。 5.回复意见地点:广西瑞真工程造价咨询有限责任公司(重庆路发展大厦A座701) 6.邮件附件:意见反馈表、供应商调查问卷表。 五、联系方式 项目联系人:叶强 项目联系方式:13387793455 招标代理机构:广西瑞真工程造价咨询有限责任公司 联系人及联系方式:曾工0779-3219191/13877959058 北海市人民医院 2023年08月19日 二、开标时间: 三、其它补充事宜 四、预算金额: 预算金额:1394.8800000 万元(人民币)
  • 如何选择一台适合自己的显微镜——总有一款ECHO显微镜适合你
    导读经过前面的几期学习,相信大家对显微镜的基础知识已经有了足够的了解,自信心提的满满的吆!接下来就可以根据实际需求来选择对应的显微镜了。让我们一起走进ECHO显微镜的世界,挑选一台属于你的显微镜吧。荧光电动显微镜—RevolveECHO显微镜颠覆了大家对显微镜的认知,是对传统显微镜设计的重新思考,是真正意义上的设计一体化和操控显示一体化,易学易用,使枯燥的实验变得简单有趣。高分辨率3D成像,获得最佳成像效果Revolve显微镜采用实时反卷积(DHR),增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率。自动Z轴配合实时反卷积(DHR)功能,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现3D高分辨成像。正倒置一体,一机两用Revolve显微镜既可以正置观察,也可以倒置观察,在正置和倒置之间自由转换。使用户不再因为样品的不同而分别购置正置和倒置两类显微镜,一机实现切片、培养皿、培养瓶和多孔板等多种样本类型的观察需求。在降低设备成本的同时,也节约了空间。试问:我还需要纠结选择买正置还是倒置吗,当然是都要喽。智能化操作,高效便捷Revolve显微镜采用自动荧光的方式,可以快速捕捉荧光信号,避免荧光淬灭。自动双相机系统保证了明场和荧光条件下都可以获得最好的观察效果。智能化的软件使操作变得更加简单。明场显微镜—Rebel随着Revolve的问世,ECHO显微镜的设计理念深受用户的喜欢,但是对于没有荧光需求的用户,一款正倒置兼备的Rebel足矣。自动细胞计数软件,无需特殊耗材Rebel为满足更多的用户需求,特别开发了自动细胞计数软件。区别于市场上的细胞自动计数仪,Rebel兼具显微镜与计数功能于一身。不再需要特殊的观察耗材,可使用玻片、培养皿、培养瓶等耗材进行细胞自动计数。高效便捷的网络共享方式Rebel还具有非常高效便捷的网络共享方式,通过WIFI、Internet等多种通讯方式,可以实现实时实验教学、病例分享和多人会诊。全电动显微镜—Revolution针对更高级别用户需求,ECHO又推出了Revolve进阶版Revolution,正倒置一体化设计,带来更多应用场景;双相机系统保证了确保效果最优;实时反卷积功能配合高速Z-stacking功能,提高荧光检测的分辨率。独特的触屏控制XY自动载物台功能,便于观察样品的定位;对于大样品扫描成像,电动载物台和Hyperscan功能结合,使扫描速度提升了一倍。对于活细胞的观察,活细胞工作站和多功能智能化联动,保证了活细胞长时间的观察。最后,我们一起来看一下ECHO显微镜下的微观世界吧。看到这样一台成像质量好,操作简单,适用范围广的显微镜,有没有心动呀,想不想体验一下操作极简,体验极佳的显微镜呀,想不想让我们珍贵的实验样本也有一个如此美轮美奂的瞬间,那就赶紧联系我们,申请试用吧,三款产品,总有一个适合你的吆!
  • 超分辨显微镜/共聚焦显微镜等在生命科学领域的前沿应用
    1873年,德国物理学家恩斯特阿贝(Ernst Abbe)提出光学显微镜存在分辨率极限,约为200nm。2014年的诺贝尔化学奖同时授予了三位科学家,他们在突破了“阿贝极限”,在超分辨荧光成像技术领域做出重要成绩,将光学显微技术带入到纳米尺度。近些年来,超分辨显微技术得到了快速发展,当前主要的超分辨技术有结构光照明(SIM)、受激发射损耗(STED)、光激活定位显微(PALM)、随机光学重构(STORM),相关技术陆续实现商业化,并且产品在不断完善。我国在超分辨显微镜的发展上也紧跟步伐,不仅传统光学显微镜厂商开始转向这一领域(永新光学今年已经发布超分辨显微镜),许多科研单位在相关技术上不断取得突破,并且落地成果,成立企业将相关技术产业化,如超视计、纳析光电、艾锐科技等。12月20-22日,仪器信息网将举办第四届先进生物显微技术及前沿应用网络会议(点击报名),21日上午,超视计、纳析光电、艾锐科技的创始人,同时也分别是北京大学和中科院生物物理所的PI,将分享相关技术和产业化进展。同一会场,清华大学蛋白质研究技术中心细胞影像平台和尼康生物影像中心平台主管王文娟博士将分享共聚焦显微镜在生命科学领域的高级应用,中科院细胞科学卓越创新中心的单琳博士(陈玲玲研究员课题组)讲分享她在科研工作中多种超高分辨率成像技术的应用;显微镜“四大家”之一徕卡的童昕老师将分享徕卡多模式智能显微技术在生命科学领域的应用。点击图片也可免费报名
  • 高端显微镜的国产路
    p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/ac8312f3-7576-4030-9e53-535bb0a1b2a7.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 科研人员正利用双光子-STED显微镜观察样品 /span br/ /p p   “现在做生物的,都盯着《科学》《自然》,仪器只要求用最好的,眼里没有国产进口之分 做医生的,更是绝对不希望因为仪器而延误病人的诊治。可大家传统观念里都觉得,国产仪器不好用。国产要真正替代进口,面临着很大压力,这怎么破?” /p p   浙江大学教授王平抛出的这个问题,中国科学院苏州生物医学工程技术研究所(以下简称苏州医工所)想要给出答案。12月26日,苏州医工所承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”通过验收, strong 标志着我国具备了高端超分辨光学显微镜的研制能力。 /strong /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 白天不懂夜的黑 /span /strong /p p   在当今生物学和基础医学研究中,高/超分辨光学显微镜的作用是至关重要的,尤其是10~100纳米尺度的超分辨显微光学成像,更是取得原创性研究成果的重要手段。 /p p   例如,在微生物学研究中,科学家通过对微生物活体动态进行超微观测,能够揭示许多重要的生命现象 在神经生物学领域,科学家需要动态观察神经突触的形成和变化,以揭示高级神经活动及神经病变的亚细胞结构功能 而在医学领域,更需要依赖超分辨光学显微镜去观察病毒入侵细胞的机制等。 /p p   然而,光学专家和生物学家之间,却似乎一直有一条看不见的鸿沟。 /p p   这种割裂,苏州医工所所长唐玉国有着切身体会。在来苏州之前,他在中科院长春光学精密机械与物理研究所工作多年。他坦言,“ strong 以前我们做光学的就是埋头做自己的,并不懂生物学家对高端显微镜有多么渴求 /strong 。” /p p   苏州医工所是中科院唯一一家以生物医学仪器、试剂和生物材料为主要研发方向的研究所,在与大量生物领域专家接触后,唐玉国意识到,我国对光学显微镜特别是高端光学显微镜的需求极其旺盛。 /p p   但现状是, strong 我国虽然是显微镜消费大国,但自己只能生产中低端产品,高端仪器基本依赖于进口,这已经严重制约了我国生物学和基础医学等相关前沿领域的创新研究 /strong 。 /p p    strong span style=" color: rgb(0, 112, 192) " 鱼与熊掌如何兼得? /span /strong /p p   历时5年攻关,苏州医工所科研人员全面突破大数值孔径物镜、特种光源、新型纳米荧光增强试剂、系统集成与检测等关键技术,已经申请90余项国家发明专利,其中获得授权30余项,并 strong 研制出了激光扫描共聚焦显微镜、双光子显微镜、受激发射损耗(STED)超分辨显微镜、双光子-STED显微镜等高端光学显微镜整机 /strong 。 /p p   以双光子-STED显微镜为例,它将双光子显微技术和STED显微技术有机融合在一起,不仅能对较厚的样品进行深层成像,还能对感兴趣的区域进行超高分辨成像。 /p p   “双光子和STED两种显微镜市场上都已经有仪器销售了,但它们都有着自己的优缺点,双光子显微镜能看到样本中深层结构,但看不了尺度100纳米以内的细节结构 而STED显微镜成像分辨率能达到50纳米,但成像深度很浅。”苏州医工所研究员张运海说。 /p p   张运海告诉《中国科学报》,在一些脑科学研究中,经常需要看一些比较厚的脑切片结构,如果用两台显微镜分别观察深层结构和100纳米以内的细节结构,需把样品从一台显微镜挪动到另一台显微镜,就找不到原来观察的位置了。“通过这台双光子-STED显微镜,科学家就可以方便地观察深层结构和表层感兴趣区域的精细结构。” /p p   此外,研究所还通过该项目,建成了高端显微光学加工、装调、检测以及显微镜整机技术集成工程化平台,有望为用户提供定制化的显微镜设备,为我国高端光学显微镜的发展提供了系统解决方案。 /p p    strong span style=" color: rgb(0, 112, 192) " 从进口到出口 /span /strong /p p   中科院院士柴之芳对这几台高端显微镜的诞生感到很欣慰,他希望这些仪器能够尽快实现产业化,不仅助力科学研究,最终还能在临床上得到应用,在一定程度上替代国外的产品。 /p p   实际上,项目所研制的超分辨显微镜或核心部件已在国内外多家研究机构使用,并已取得了部分成果。 /p p   比如,中科院动物研究所利用高端光学显微镜观察发育生物学中的基本现象,研究潜在调控机制。中科院上海药物研究所应用高端光学显微镜观察药物胞内靶向定位和输送,加速创新性新药研发。美国斯坦福大学、日本东京大学、我国陆军军医大学等专业实验室利用双光子显微成像技术进行了信息识别、行为控制等脑科学核心问题的研究以及动物在体成像实验,获得了高分辨实时神经元活动成像数据。 /p p   此外,显微镜和关键部件已有部分成果实现了出口销售。如双光子显微镜已销往德国、以色列、美国等多家国外研究机构。 /p p   验收专家组认为,项目组完成的四类高端光学显微镜,以及大数值孔径显微物镜、特种光源等核心部件,所有技术指标均达到实施方案规定的考核指标要求,四类超分辨显微成像系统均已达到实用化水平、完成了总体目标,同意通过验收。 /p p   但唐玉国直言, strong 高端显微镜的国产化道路并不是一蹴而就的 /strong 。他透露, strong 研究所下一步还将结合工程化及成果转化创新模式,实现科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接 /strong ,通过系列化、组合化的产品布局,实现显微镜系统和核心部件的工程化、产业化。“接下来我们要把显微镜的性能再提高几个百分点,一点点地把失去的阵地拿回来。” /p
  • 兰州大学505.54万元采购荧光显微镜,立体显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-12-25 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 2022年11月25日 23:50 来源:中国政府采购网 项目概况兰州大学显微镜及互动教学系统等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)获取招标文件,并于2022年12月16日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-391-HW-GK 项目名称:兰州大学显微镜及互动教学系统等仪器设备采购项目 预算金额:505.5400000 万元(人民币) 最高限价(如有):505.5400000 万元(人民币) 采购需求: 相关内容详见招标文件第三章 采购项目需求。 标段名称及标段编号 预算金额(万元) 标的名称 计量单位 数量 是否进口 第一标段(标段编号:LZU-2022-391-HW-GK-01) 144 显微数码互动教室 套 3 否 第二标段(标段编号:LZU-2022-391-HW-GK-02) 96 显微数码互动系统 套 1 是 第三标段(标段编号:LZU-2022-391-HW-GK-03) 86.94 数码带屏一体显微镜 台 23 是 相差显微镜 台 1 成像倒置显微镜 台 2 第四标段(标段编号:LZU-2022-391-HW-GK-04) 39.6 倒置荧光显微镜 台 2 否 普通显微镜 台 20 体视显微镜 台 20 第五标段(标段编号:LZU-2022-391-HW-GK-05) 99 实时全景深显微镜 台 1 是 第六标段(标段编号:LZU-2022-391-HW-GK-06) 40 基因编辑与显微注射平台 套 1 是 合同履行期限:第一标段:合同生效后90个日历日内供货。第二标段:合同生效后90个日历日内供货。第三标段:合同生效后90个日历日内供货。第四标段:合同生效后5个日历日内供货。第五标段:合同生效后90个日历日内供货。第六标段:合同生效后180个日历日内供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一、四标段:无第二、三、五、六标段:对提供进口产品的投标人须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。 三、获取招标文件 时间:2022年11月28日 至 2022年12月02日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn) 方式:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学采购管理办公室电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: 1. 确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 2.核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 3. 选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 4. 登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 5. 供应商登记后应及时登陆兰州大学采购管理办公室供应商库查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。同时可以通过“下载采购文件”模块自行免费下载采购文件。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月16日 09点00分(北京时间) 开标时间:2022年12月16日 09点00分(北京时间) 地点:兰州西部投资咨询有限公司开标室(兰州市城关区南关什字世纪广场B座26楼)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标),投标文件通过兰州大学投标程序客户端上传到电子招投标平台。供应商应按招标文件规定的投标截止时间登录 “ 兰州大学采购管理办公室电子招投标系统(供应商)”参加远程开标(不见面开标),并应自开标时间截止前 30 分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件)。 2、未尽事宜详见第二章投标须知前附表。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:兰州西部投资咨询有限公司 地 址:兰州市城关区南关什字世纪广场B座26楼 联系方式:李伟山 17793580008 3014570993@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826012 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:荧光显微镜,立体显微镜 开标时间:2022-12-16 09:00 预算金额:505.54万元 采购单位:兰州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:兰州西部投资咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看详细信息 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-12-25 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 2022年11月25日 23:50 来源:中国政府采购网 项目概况兰州大学显微镜及互动教学系统等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)获取招标文件,并于2022年12月16日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-391-HW-GK 项目名称:兰州大学显微镜及互动教学系统等仪器设备采购项目 预算金额:505.5400000 万元(人民币) 最高限价(如有):505.5400000 万元(人民币) 采购需求: 相关内容详见招标文件第三章 采购项目需求。 标段名称及标段编号 预算金额(万元) 标的名称 计量单位 数量 是否进口 第一标段(标段编号:LZU-2022-391-HW-GK-01) 144 显微数码互动教室 套 3 否 第二标段(标段编号:LZU-2022-391-HW-GK-02) 96 显微数码互动系统 套 1 是 第三标段(标段编号:LZU-2022-391-HW-GK-03) 86.94 数码带屏一体显微镜 台 23 是 相差显微镜 台 1 成像倒置显微镜 台 2 第四标段(标段编号:LZU-2022-391-HW-GK-04) 39.6 倒置荧光显微镜 台 2 否 普通显微镜 台 20 体视显微镜 台 20 第五标段(标段编号:LZU-2022-391-HW-GK-05) 99 实时全景深显微镜 台 1 是 第六标段(标段编号:LZU-2022-391-HW-GK-06) 40 基因编辑与显微注射平台 套 1 是 合同履行期限:第一标段:合同生效后90个日历日内供货。第二标段:合同生效后90个日历日内供货。第三标段:合同生效后90个日历日内供货。第四标段:合同生效后5个日历日内供货。第五标段:合同生效后90个日历日内供货。第六标段:合同生效后180个日历日内供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一、四标段:无第二、三、五、六标段:对提供进口产品的投标人须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。 三、获取招标文件 时间:2022年11月28日 至 2022年12月02日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn) 方式:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学采购管理办公室电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: 1. 确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 2.核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 3. 选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 4. 登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 5. 供应商登记后应及时登陆兰州大学采购管理办公室供应商库查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。同时可以通过“下载采购文件”模块自行免费下载采购文件。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月16日 09点00分(北京时间) 开标时间:2022年12月16日 09点00分(北京时间) 地点:兰州西部投资咨询有限公司开标室(兰州市城关区南关什字世纪广场B座26楼)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标),投标文件通过兰州大学投标程序客户端上传到电子招投标平台。供应商应按招标文件规定的投标截止时间登录 “ 兰州大学采购管理办公室电子招投标系统(供应商)”参加远程开标(不见面开标),并应自开标时间截止前 30 分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件)。 2、未尽事宜详见第二章投标须知前附表。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:兰州西部投资咨询有限公司 地 址:兰州市城关区南关什字世纪广场B座26楼 联系方式:李伟山 17793580008 3014570993@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826012
  • 超30亿预算!10月发布显微镜(含电子显微镜等)采购意向汇总
    近日,科学仪器行业迎来了前所未有的利好消息。2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。 2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7%(加上此前中央财政贴息2.5个百分点)。这两大重磅政策提供极低利息的贷款给消费端提前进行设备购置和更新改造,推动我国仪器市场迎来新一波仪器采购大潮。仪器信息网注意到,10月7日以来,44所高校院所等单位发布的399项采购意向涉及显微镜(包括电子显微镜等),采购预算总额约33亿元。10月份含显微镜(含电子显微镜等)采购意向汇总序号项目名称预算金额(万元)采购单位发布时间预计采购时间查看1分析测试中心冷冻传输系统和冷冻传输样品杆采购项目320北京理工大学10月26日2022年12月意向原文2分析测试中心原位微区气氛系统采购项目290北京理工大学10月26日2022年12月意向原文3真空转移型高分辨场发射扫描电子显微镜560复旦大学10月26日2022年12月意向原文4原位催化型XPS互联高空间分辨表征系统540复旦大学10月26日2022年12月意向原文5高通量介孔储能材料原位电化学聚光镜单球差透射电镜1900复旦大学10月26日2022年12月意向原文6多功能多气氛环境介孔催化剂评价用图像矫正器透射电镜1300复旦大学10月26日2022年12月意向原文7材料加工-原位加热-结构表征双束多功能综合平台360复旦大学10月26日2022年12月意向原文8复杂结构解析及电热功能原位分析高通量-高分辨表征平台580复旦大学10月26日2022年12月意向原文9高分辨热场发射扫描电子显微镜采购242中山大学10月26日2022年11月意向原文10全自动高分辨快速成像系统采购152中山大学10月26日2022年11月意向原文11激光共聚焦显微镜采购260中山大学10月25日2022年11月意向原文12近红外上转化共聚焦显微镜440华中科技大学10月25日2022年11月意向原文13超高分辨激光共聚焦显微镜420华中科技大学10月25日2022年11月意向原文14智能超灵敏活细胞超分辨显微镜450华中科技大学10月25日2022年11月意向原文15西南交通大学高水平公共测试服务平台建设项目采购2900西南交通大学10月25日2022年11月意向原文16(材料型)原子力显微镜150复旦大学10月25日2022年11月意向原文17超高分辨激光共聚焦显微镜520浙江大学10月25日2022年12月意向原文18原位微纳热力分析型聚焦离子束/电子束扫描电镜836上海交通大学10月25日2022年12月意向原文19中国农业科学院蔬菜花卉研究所国家蔬菜种质资源中期库建设项目122中国农业科学院蔬菜花卉研究所10月24日2022年11月意向原文20西南交通大学复杂环境路面材料耐久性能测试系统采购177西南交通大学10月24日2022年11月意向原文21西南交通大学轨道结构材料响应细微观表征分析平台采购120西南交通大学10月24日2022年11月意向原文22西南交通大学扫描电镜能谱一体机采购140西南交通大学10月24日2022年12月意向原文23共聚焦激光扫描显微镜520浙江大学10月24日2022年11月意向原文24多光子共聚焦显微镜350中国科学院宁波材料技术与工程研究所10月24日2022年12月意向原文25双光子显微镜系统300浙江大学10月24日2022年11月意向原文26先进能源学院 场发射扫描电镜200中山大学10月23日2022年11月意向原文27先进能源学院 扫描电化学显微镜130中山大学10月23日2022年11月意向原文28先进能源学院 原子力显微镜100中山大学10月23日2022年11月意向原文29核科学与技术学院+核材料制备装置120兰州大学10月22日2022年12月意向原文30阜外医院医疗设备购置项目20000中国医学科学院阜外医院10月21日2022年11月意向原文31光发射电子显微镜1500南京大学10月21日2022年12月意向原文32冷冻电镜8000南京大学10月21日2022年12月意向原文33球差矫正透射电子显微镜3000南京大学10月21日2022年12月意向原文34场发射高分辨透射电镜800南京大学10月21日2022年12月意向原文35200kV透射电镜350南京大学10月21日2022年12月意向原文36120kV透射电镜600南京大学10月21日2022年12月意向原文37环境扫描电子显微镜420南京大学10月21日2022年12月意向原文38扫描电子显微镜600南京大学10月21日2022年12月意向原文39透射电镜原位纳米力学测试系统190南京大学10月21日2022年12月意向原文40显微镜操作平台250江南大学10月21日2022年12月意向原文41原子力显微镜200南京大学10月20日2022年12月意向原文42高分辨扫描电子显微镜与阴极荧光系统490南京大学10月20日2022年12月意向原文43显微操作系统、倒置显微镜160山东大学10月20日2022年11月意向原文44自动活细胞成像系统180山东大学10月20日2022年11月意向原文45光片显微成像系统580山东大学10月20日2022年11月意向原文46兰州大学现代化工程训练中心项目建设方案(电工电子基础训练及创新中心)——电子产品装配与检测模块68.22兰州大学10月20日2022年11月意向原文47家畜生物学国家重点实验室培育建设项目2098西北农林科技大学10月20日2022年11月意向原文48未来农业研究院平台建设项目1815西北农林科技大学10月20日2022年11月意向原文49超高分辨率活细胞三维长时程成像系统877.5复旦大学10月20日2022年12月意向原文50转盘式激光共聚焦显微镜675复旦大学10月20日2022年12月意向原文51多功能共聚焦显微拉曼成像系统298北京大学10月20日2022年12月意向原文52CSU转盘式扫描高速共聚焦成像380华南理工大学10月20日2022年11月意向原文53粤港澳中枢神经再生研究院科研设备121.5暨南大学10月20日2022年12月意向原文54快速扫描电子显微镜500上海交通大学10月20日2022年11月意向原文55电子探针系统600中山大学10月19日2022年11月意向原文56低能电子成像系统880中山大学10月19日2022年11月意向原文57场发射扫描电镜350中山大学10月19日2022年11月意向原文58场发射透射电镜1000中山大学10月19日2022年11月意向原文59拉曼-原子力显微镜联用系统200中山大学10月19日2022年11月意向原文60光子技术研究院科研设备987.7暨南大学10月19日2022年12月意向原文61基础医学与公共卫生学院科研设备429暨南大学10月19日2022年12月意向原文62场发射透射电子显微镜800湖南大学10月19日2022年11月意向原文63化学本科实验教学分析表征平台仪器设备购置664兰州大学10月19日2022年11月意向原文64药学实验教学中心升级改革——倒置荧光显微镜27浙江大学10月19日2022年12月意向原文65双球差矫正透射电子显微镜、场发射透射电镜2900北京大学10月19日2022年12月意向原文66材料科学与工程教学实验室规划、改造与建设630华北电力大学10月19日2022年11月意向原文67科研设备更新改造专项-场发射透射电子显微镜900中山大学10月19日2022年12月意向原文68中山医学院荧光显微镜(3台)采购105中山大学10月19日2022年11月意向原文69科研设备更新改造专项-聚焦离子束双束电子显微镜790中山大学10月19日2022年12月意向原文70电能转换与智慧用电教育部工程研究中心实验平台建设1889华北电力大学10月19日2022年12月意向原文71新能源电力系统国家重点实验室仪器设备升级更新项目7242华北电力大学10月19日2022年12月意向原文72国家储能技术产教融合创新平台5000华北电力大学10月19日2022年12月意向原文73新能源发电国家工程研究中心平台建设与设备更新4000华北电力大学10月19日2022年12月意向原文74氢能科学与工程学科及高水平科研平台建设5037华北电力大学10月19日2022年12月意向原文75低碳能源系统功能新材料开发与微纳制造平台4992华北电力大学10月19日2022年12月意向原文76清洁高效燃煤发电关键技术与装备集成攻关大平台4272华北电力大学10月19日2022年12月意向原文77新能源高效转换与特性研究4400华北电力大学10月19日2022年12月意向原文78水利工程学科科学研究706.6华北电力大学10月19日2022年12月意向原文79多维度单分子超分辨表征系统125微结构加工与成像系统138浙江大学10月17日2022年10月意向原文126tirf全内返荧光显微镜180江南大学10月17日2023年6月
  • 兰州大学238.00万元采购偏光显微镜,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-11-26 招标文件: 附件1 附件2 附件3 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 2022年11月26日 15:46 公告信息: 采购项目名称 兰州大学偏光显微镜等仪器设备采购项目 品目 货物/通用设备/仪器仪表/光学仪器/显微镜 采购单位 兰州大学 行政区域 城关区 公告时间 2022年11月26日 15:46 获取招标文件时间 2022年11月27日至2022年12月02日每日上午:0:00 至 12:00 下午:12:00 至 24:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 开标时间 2022年12月17日 09:30 开标地点 甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层) 投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 预算金额 ¥238.000000万元(人民币) 联系人及联系方式: 项目联系人 彭老师 项目联系电话 13919826212 采购单位 兰州大学 采购单位地址 兰州市天水南路222号 采购单位联系方式 刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 代理机构名称 甘肃西招国际招标有限公司 代理机构地址 兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 代理机构联系方式 杨蕾萍 19993139334 1170086769@qq.com 附件: 附件1 附件2 工信部300号文(1).pdf 附件2 附件1:兰州大学招投标系统供应商使用指南.pdf 附件3 兰州大学偏光显微镜等仪器设备采购项目招标文件.pdf 项目概况 兰州大学偏光显微镜等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏获取招标文件,并于2022年12月17日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-387-HW-GK 项目名称:兰州大学偏光显微镜等仪器设备采购项目 预算金额:238.0000000 万元(人民币) 最高限价(如有):238.0000000 万元(人民币) 采购需求: 标段号 序号 标的名称 所属行业 计量 单位 数量 是否进口 预算金额(万元) 第一标段 1 偏光显微镜 工业 (制造业) 台 1 是 63.5 2 双目镜 工业 (制造业) 台 1 是 第二标段 1 活细胞培养显微动态观察系统 工业 (制造业) 套 1 是 39.9 第三标段 1 倒置荧光相差显微成像系统 工业 (制造业) 套 2 是 88 第四标段 1 倒置荧光显微镜 工业 (制造业) 台 1 是 40 第五标段 1 数码解剖镜 工业 (制造业) 台 3 否 6.6 2 数码显微成像系统 工业 (制造业) 台 1 否 合同履行期限:第一标段:合同生效后90个日历日内完成供货第二标段:合同生效后90个日历日内完成供货。第三标段:合同生效后90个日历日内完成供货。第四标段:合同生效后90个日历日内完成供货。第五标段:合同生效后15个日历日内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一标段、第二标段、第三标段、第四标段:对提供进口产品的供应商须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。第五标段:无。 三、获取招标文件 时间:2022年11月27日 至 2022年12月02日,每天上午0:00至12:00,下午12:00至24:00。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 方式:重要说明:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: (1)确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 (2)核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 (3)选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 (4)登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 (5)供应商登记后应及时登陆兰州大学电子招投标系统(供应商)查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。 (6)采购文件发布后,登记信息审核通过的供应商可登陆系统下载电子版采购文件及有关资料。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月17日 09点30分(北京时间) 开标时间:2022年12月17日 09点30分(北京时间) 地点:甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层)投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标)投标代理人不要求到达开标现场,投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台。供应商应按招标文件的规定的投标截止时间登录 兰州大学电子招投标系统(供应商) 前参加远程开标(不见面开标),并应自开标时间截止前30分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件1)。 2、未尽事宜详见第二章投标须知前附表; 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息名 称:甘肃西招国际招标有限公司 地 址:兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 联系方式:杨蕾萍 19993139334 1170086769@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826212 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() })基本信息 关键内容:偏光显微镜,荧光显微镜 开标时间:2022-12-17 09:30 预算金额:238.00万元 采购单位:兰州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:甘肃西招国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告更新时间: 2022-11-26 招标文件: 附件1 附件2 附件3 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 2022年11月26日 15:46 公告信息: 采购项目名称 兰州大学偏光显微镜等仪器设备采购项目 品目 货物/通用设备/仪器仪表/光学仪器/显微镜 采购单位 兰州大学 行政区域 城关区 公告时间 2022年11月26日 15:46 获取招标文件时间 2022年11月27日至2022年12月02日每日上午:0:00 至 12:00 下午:12:00 至 24:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 开标时间 2022年12月17日 09:30 开标地点 甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层) 投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 预算金额 ¥238.000000万元(人民币) 联系人及联系方式: 项目联系人 彭老师 项目联系电话 13919826212 采购单位 兰州大学 采购单位地址 兰州市天水南路222号 采购单位联系方式 刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 代理机构名称 甘肃西招国际招标有限公司 代理机构地址 兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 代理机构联系方式 杨蕾萍 19993139334 1170086769@qq.com 附件: 附件1 附件2 工信部300号文(1).pdf 附件2 附件1:兰州大学招投标系统供应商使用指南.pdf 附件3 兰州大学偏光显微镜等仪器设备采购项目招标文件.pdf 项目概况 兰州大学偏光显微镜等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏获取招标文件,并于2022年12月17日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-387-HW-GK 项目名称:兰州大学偏光显微镜等仪器设备采购项目 预算金额:238.0000000 万元(人民币) 最高限价(如有):238.0000000 万元(人民币) 采购需求: 标段号 序号 标的名称所属行业 计量 单位 数量 是否进口 预算金额(万元) 第一标段 1 偏光显微镜 工业 (制造业) 台 1 是 63.5 2 双目镜 工业 (制造业) 台 1 是 第二标段 1 活细胞培养显微动态观察系统 工业 (制造业) 套 1 是 39.9 第三标段 1 倒置荧光相差显微成像系统 工业 (制造业) 套 2 是 88 第四标段 1 倒置荧光显微镜 工业 (制造业) 台 1 是 40 第五标段 1 数码解剖镜 工业 (制造业) 台 3 否 6.6 2 数码显微成像系统 工业 (制造业) 台 1 否 合同履行期限:第一标段:合同生效后90个日历日内完成供货第二标段:合同生效后90个日历日内完成供货。第三标段:合同生效后90个日历日内完成供货。第四标段:合同生效后90个日历日内完成供货。第五标段:合同生效后15个日历日内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一标段、第二标段、第三标段、第四标段:对提供进口产品的供应商须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。第五标段:无。 三、获取招标文件 时间:2022年11月27日 至 2022年12月02日,每天上午0:00至12:00,下午12:00至24:00。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 方式:重要说明:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: (1)确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 (2)核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 (3)选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 (4)登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 (5)供应商登记后应及时登陆兰州大学电子招投标系统(供应商)查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。 (6)采购文件发布后,登记信息审核通过的供应商可登陆系统下载电子版采购文件及有关资料。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月17日 09点30分(北京时间) 开标时间:2022年12月17日 09点30分(北京时间) 地点:甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层)投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标)投标代理人不要求到达开标现场,投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台。供应商应按招标文件的规定的投标截止时间登录 兰州大学电子招投标系统(供应商) 前参加远程开标(不见面开标),并应自开标时间截止前30分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件1)。 2、未尽事宜详见第二章投标须知前附表; 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:甘肃西招国际招标有限公司 地 址:兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 联系方式:杨蕾萍 19993139334 1170086769@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826212
  • 高端显微镜又添新玩家!熵智科技发布超分辨及共聚焦显微镜新品
    生命科学是从微观层面观察和研究生命过程,从而揭示生命的物质基础和基本现象。显微成像是观察微小物体的重要手段,但其分辨能力受光学成像系统的限制(即衍射极限),无法满足现代生命科学研究要求的更高解析度、更准确的成像需求。熵智科技作为中国原创3D视觉创业公司第一梯队,横跨机器视觉与微纳光学两大领域,深刻认识到微纳光学在生命科学研究领域中的巨大价值。9月23日,熵智科技在西安发布自研的超分辨及共聚焦显微成像分析系统。该系统易用、性价比高,相较于国内外显微成像产品,不仅突破了光学成像系统的限制,轻松实现纳米尺度的2D/3D动态图像解析能力,还将共聚焦+超分辨+后处理分析完美融合,软件结合场景模块化。无论新手用户还是专家用户,只需通过一套界面即可获取一流的超高分辨率图像及分析结果。熵智科技超分辨及共聚焦显微成像分析系统工作原理超分辨显微成像分析系统采用结构光照明显微成像术(英文Structured Illumination Microscopy, 简称SIM),突破传统显微镜的阿贝衍射极限,实现生物组织、细胞、神经元等活动样本的快速超分辨率成像,为生命科学、生物工程等领域提供创新的超分辨率成像技术产品,几乎可集成于任何荧光显微镜。共聚焦显微成像分析系统的软硬件均采用模块化设计,硬件集成SIM超分辨模块、软件支持多种后处理功能,从而提供精确的2D/3D成像,以及动态过程的成像。目前,共聚焦和超分辨光路共用了光源准直部分、物镜部分、聚焦成像部分。主要功能超分辨及共聚焦显微成像分析系统视野超10倍扩展,达1mm,拥有精确的多微细胞结构生物显微影像分析功能,实现双光路同时,宽场、共聚焦、超分辨三种模式自由切换。大视野拼图:多种不同的图像获取方式、可实现500um*500um视场上图片进行拼接。图像增强及处理:可对采集到荧光图像进行增益调节、对比度调节、亮度调节以及色阶调节。反卷积处理:在原有采集到图像基础上,对图像数据做实时清晰度优化,达到消除背景噪声,有用信息表达更精准的作用,处理速度10ms以下,速度快;可进一步结合DNN方法,提高应用场景的鲁棒性。特征统计分析:对于识别出的细胞,对其强度、直径、周长等15个属性做数值量化。特征标记分类:可对细胞的特征进行标记和分类。单细胞定量分析:可以准确分割出相互重叠的细胞,精度更高,在专业单细胞识别的基础上,结合深度学习AI算法,可以精确识别互相挤压重叠的细胞核,而且对于细胞轮廓边界识别更加准确。亚细胞结构分析:可以定位某种蛋白或者某个基因表达产物在细胞的具体存在部位,如细胞核,胞浆内,结合AI图像分析方法,以表格和数据统计输出结果。细胞亚群圈选分析:筛选特定的感兴趣细胞亚群,进行了10余种参数分析。特殊细胞/结构识别:提供特殊细胞如脂肪细胞的识别和数量统计。多重荧光染色:实现细胞核、细胞质、细胞膜的各种形态和染色,精确寻找目的细胞及其结构。细胞寻找及跟踪:实现特定细胞的动态识别和跟踪。核心参数激光共聚焦超分辨显微参数配置普通光纤激光器激光405nm、488nm、561nm、640nm扩展HC-PCF激光器920nm探测器 PMT3个;波长:400-750nm,GaAsP最大拍摄速度8fps@512×512像素;2fps@1024×1024像素;4096×4096最高;更多可配置;扫描方式X-Y, X-Y-Z, X-Y-T分辨率250nm in x, y and 550nm in z 共聚焦120 nm in x, y and 320nm in z (488nm wavelength) 超分辨共焦视场Φ18mm-Φ25mm 内接正方形成像深度100μm灵敏度提升4倍相对信噪比 SNR优良级 50dB显微镜电动显微镜奥林巴斯 倒置IX73显微镜,具备明场、微分干涉、荧光等观察方式物镜奥林巴斯或Mitutoyo平场复消色差物镜(防腐蚀陶瓷表面以及红外色差矫正)选型载物台奥林巴斯 电动IX3-SSU 扫描精度优于0.7μm光学放大1.0X;1.5X;3.2X;20X 适配/转换器共聚焦/超分辨率光路切换(电动)、6位电动物镜转换器荧光装置配荧光光阑*相机(lattice)SCMOS,分辨率2048×2048,100fps@全幅面,位深12bit工作站Windows10 Pro 64 bit;硬盘≥1TB;内存16GB软件控制软件:图像采集及2D/3D/4D处理;共聚焦和超分辨配置;*成像分析:细胞自动识别、单细胞定量分析、亚细胞结构分析、细胞亚群圈选分析等防震台频率范围(5~30Hz):≤30μm/s均方根;频率范围(>30Hz): ≤60μm/s均方根增配双光子成像激光生成组件、高速扫描头、前置补偿单元应用场景超分辨及共聚焦显微成像分析系统可应用于基础生物学、临床医学、病毒学、精准药物筛选等领域,为活细胞超分辨率智能成像提供解决方案。基础生物学:皮肤病例研究、类器官培养观察、微生物形态研究、胚胎发育成像、组织结构三维重构。如通过斑马鱼胚胎发育过程的成像,研究血管疾病和血管药物的新兴模型,从而更好解决人类血管疾病;通过光学切片, 确定其复杂的内部结构与组织功能之间的关系。临床医学:细胞形态结构鉴定、病理显微成像、异常细胞跟踪检测、组织形态学观察。利用计算机进行图像处理, 不仅可观察固定的细胞、组织切片, 还可对活细胞的结构、分子等进行实时动态观察和检测。通过它可以直接观测细胞形态学的组织、细胞之间的相互作用、组织微环境、伤口的愈合等成像,有助于了解病理机制,以开发疾病治疗方法从而促进人体健康有重要的意义。病毒学:植物病毒研究、动物病毒研究、医学病毒研究、环境病毒研究、噬菌体研究。采用超分辨技术,可以实现病毒感染细胞及复制、组装、释放等动态过程的研究。药物筛选:药材显微鉴别、载药微粒结构、药物扩散跟踪、制药成型和释药研究、药理药效研究。通过药物筛选确定干预的潜在治疗方法,加速早期药物的研发和确定疾病的模型。利用显微镜观察植(动)物药材内部的细胞、 组织构造,从而达到鉴定药材的目的。选择合适的药物靶分子,针对高分辨率成像的固定样品及活细胞进行分析,从而满足不同实验的需求。关于熵智科技熵智科技是国家级高新技术企业,拥有底层成像系统和算法开发能力,软硬件一体化,致力于通过高性能的成像技术解决机器人柔性化、微纳级检测与测量等问题。熵智科技自2018年成立至今,先后获得字节跳动、拓金资本、松禾资本、远望资本、华控资本等投资。深圳、武汉、西安三地联合办公,目前研发和工程团队70余人,核心技术人员均硕士及以上学历,博士6人。未来,熵智科技将继续深耕微纳光学领域,以更优的产品与服务回馈广大合作伙伴及客户。
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 显微镜连接电脑 摄像头连接到显微镜的安装操作
    显微镜连接电脑 摄像头连接到显微镜的安装操作显微镜可通过USB接口连接电脑和摄像头,用户可以在电脑进行拍照和录像等操作。显微镜摄像头通过高分辨率的CMOS/CCD传感器捕捉显微镜下的图像,然后通过控制器将图像传输到电脑或其他存储设备中。显微镜摄像系统可以用于观察、记录和分析细胞、组织、微生物等样本的结构和特征。它也可以用于医学、生物学、农业等领域的研究和实验中。MHS900显微镜摄像头显微镜摄像头连接到电脑的安装操作如下:1. 准备显微镜、摄像头和电脑,确保它们都是关闭状态。2. 使用相应的接口将数码显微镜与电脑连接起来,通常情况下会使用USB线或HDMI线,显微镜的USB2.0/3.0接口直接插入电脑对应的USB2.0/3.0接口即可,操作比较简单,插好后打开视频软件就可以使用了。3. 打开显微镜的电源,调整显微镜的焦距,使其清晰。(可以先放一张白色的纸张,调节好距焦。)4. 打开电脑,找到对应的驱动程序并安装,通常可以在显微镜摄像头的说明书上找到。5. 安装完成后,打开显微镜摄像头的软件,通常会在电脑的右下角或任务栏中显示。6. 在软件中选择“连接”或“导入”选项,然后选择要连接的数码显微镜品牌/型号。7. 等待软件与显微镜建立连接,连接成功后,可以在软件中看到显微镜中的图像。8. 可以使用软件进行拍照、录像、测量等操作,同时也可以将图像导出到电脑中进行进一步处理和分析。显微镜摄像系统界面显微镜摄像系统:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm显微镜摄像头:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm如果您的显微镜需要升级拍照功能和安装,请与我们联系。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 显微镜应用于生物病理
    生物显微镜在医学领域中具有广泛的应用,尤其是在生物病理学中。作为医院进行病理检验的重要工具,生物显微镜可以帮助医生进行精确的诊断和治疗。同时,它也是医学教育中的重要教具,用于学生观察和学习病理切片成像。生物显微镜是一种高精度的光学仪器,能够将物体放大并呈现出清晰的图像。在生物病理学中,医生可以通过使用生物显微镜观察病理切片,以确定病变的性质、程度和范围。因此,生物显微镜是病理诊断中不可或缺的工具。在病理学中,病理切片是一种非常重要的样本。它是由医生从患者体内切割下来的一小部分组织,经过处理后制成的一种薄片。通过将病理切片放在生物显微镜下观察,医生可以清楚地看到组织的结构和细胞的变化,这对于疾病的诊断和治疗非常重要。除了在病理诊断中的应用外,生物显微镜还可以用于医学教育。学生可以使用它来观察病理切片,学习和识别各种疾病的特征。这对于医学生和医学研究人员来说是非常重要的,因为它有助于提高他们的诊断能力和研究进展。生物显微镜系列产品◆病理研究用显微镜NE900 系列病理学研究已不再仅仅局限于 HE 染色制片,已经发展为以此为基础,加上荧光染色、免疫组织化学、分子生物学、分子遗传学和细胞学等多种生物技术辅助手段为辅的多元学科交叉时代。 NE900系列是病理学研究中使用频率最高的一款显微镜,多种机型可供您选择,其光学品质优异,结构稳定以及优秀的人性化设计,可以满足HE 染色、免疫组化、荧光染色、FISH、组织微阵列等多种病理样品的观察及成像需求。配合电动平台、自动聚焦、电动物镜转换,触摸屏控制器以及功能强大的成像软件;通过各部分之间的精密连接,实现显微镜的观察、图像采集及图像处理等功能,减少重复性操作,减少病理结果因解读能力不同造成的结果偏差。◆NE600系列是病理诊断中使用频率最高的一款显微镜,成像真实,结构稳定,更有良好的人机互动设计,在最舒适的姿势下进行操作,大大提高病理工作者的工作效率。 NE600 采用模块化设计,能够提供明场、暗场、相称、偏光等成像的显微仪器配置方案,可以满足包括 HE 染色、特殊染色、免疫组化、免疫荧光染色等多种病理样本的观察和成像需求。 胃组织切片 肌腱 TUNEL观察细胞凋亡情况生物显微镜在生物病理学和医学教育中扮演着重要的角色,它的应用范围涵盖了病理诊断、医学研究和教育等方面。随着科技的不断发展,相信未来还会有更多创新和应用在生物显微镜领域中出现。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • 宽场显微镜最甜CP
    双十一刚过,肯定有不少小伙伴剁手了吧。双十一不只是电商的购物狂欢节,还是令人心痛的单身日。小编作为单身狗着实羡慕那甜美的爱情。所以我只能化悲愤为力量全身心的投入到工作中去。作为仪器工作者本以为显微镜就是我最好的伙伴,后来发现我还是太年轻了,在这个讲究CP感的时代里,我着实被宽场显微镜里最甜的CP秀了满满一脸。作为报复的手段,我要把他们的故事讲给大家听,宽场显微镜最甜CP-景深扩展与反卷积,接下来我就好好扒一扒它们的前世今生。首先有请我们的男主角闪亮登场。景深扩展又称Z-Stacking,在说他的故事前,我们需要明白什么是景深。当镜头对着处于焦面物体拍摄时,被拍摄物体与其前后的景物有一段清晰的范围,这个范围我们将其称为“景深”。为了让大家更好的理解,我在这里给大家举个例子。图源:网络,侵删就像图中一样,我们在观察与拍照过程中,有时仅可以看清楚花瓣,有时花瓣根茎叶都可以看清楚,这就是因为景深大小不同所致,大景深看清的物体多如左图,小景深看清的物体少如右图,那为什会产生这样的区别呢?一个镜头只有一个焦平面。处于焦平面上的物体经过物镜会在目镜或相机芯片上形成一个点,非焦平面上的点会形成一个模糊圆,这个圆术语叫做弥散圆(circle of confusion),怎么去理解这段话呢?如图所示,黑色线条为焦平面,焦平面上的点经过物镜,在相机芯片或视网膜上形成一个小圆点,两条绿色的线分别是非焦平面,非焦平面点经过目镜会形成一个圆圈,这个圆圈就是弥散圆(circle of confusion)。如果我们远离这张图片,那会发生什么呢?我们中间的这个小点就看不到了,上下的两个圆斑会越来越小,一直小到和这个点一样大的时候,我们这时候就认为它不是斑,而是点了。如果弥散圆小到人眼或芯片无法鉴别看起来就是一个点,那这个弥散圆称为容许弥散圆,可产生容许弥散圆的平面之间的距离称为景深。我们再简单一点,显微镜的景深就是当前镜头,可以看清楚样品的厚度。对于观察者来说,同视野下能看清楚样品的厚度越厚越好,越厚就证明镜头的景深越大。在显微观察中是否可以无限制追求大景深呢?答案是否定的。因为景深与物镜的NA值负相关,而NA值与物镜的分辨率及放大倍数正相关。关系如下图所示:图源:网络,侵删如何在高倍镜下获得大景深的图像呢?这就轮到我们的男主出场了—景深扩展。在宽场显微镜中,增大显微图像景深的通常做法是对样品进行不同厚度位置的扫描,并采集程序列图像,以一定的规则进行融合,通过计算重建一幅大景深图像。图源:网络,侵删目前显微镜实现景深扩展的基础是什么?硬件基础:显微镜景深扩展分为手动景深扩展与自动景深扩展。对应的硬件基础分别为手动准焦螺旋(手动Z轴)与电动准焦螺旋(电动Z轴)。软件基础:Z轴控制与图像处理。如果想把我们男主角的魅力发挥到极致,电动Z轴必不可少。因为与手动景深扩展相比电动的优势有:1、一致性更高 2、步进精度更高 3、可重复性更好 4、操作更为简便。从上文的介绍中大家明白了景深扩展优化了显微镜在竖直方向的成像效果,那与他在一起的反卷积的功能也就呼之欲出了:优化宽场显微镜水平方向的成像效果。接下来有请我们的女主角登场,同样的,在讲她的故事之前,我们要明白宽场显微镜存在分辨率的极限。图源:网络,侵删从分辨率的公式中可以看出分辨率与NA值正相关。还记得上文中提到的景深与其负相关吗?所以说从家庭背景的角度上景深扩展与反卷积就开始彼此纠缠了。书归正文,通过分辨率公式我们可以得出分辨率的极限是200nm,为了纪念公式的提出者—德国的光学物理学家恩斯特阿贝,人们把这个极限值称为阿贝极限。人们为了突破分辨率极限诞生了以共聚焦显微镜为代表的超高分辨率显微镜。它们通过改变照明结构来突破宽场显微镜的分辨率极限,以获取更加清晰的观察结果。今天我们讨论的是宽场显微中的最甜CP,共聚焦显微镜改变了光路结构不在今天的讨论范围内。那除了硬件改变来提高分辨率,可不可以不改变宽场显微镜的光路结构,通过软件来实现分辨率的突破呢?答案是有的,那就是我们的女主角反卷积。图源:网络,侵删我们先看上面的图,如图所示理想的镜头成像时,一个对焦平面上的物点会投影为一个像点,但事实上理想的镜头是不存在的,镜头总是存在一些缺陷会导致一个物点会投影为很多点,一个点经过镜头后成的像由点扩散函数PSF(Point Spread Function)来描述。是不是听起来有些懵?简单给大家做个比喻,有美女或帅哥站在你的面前,理论上你可以清楚地看到他的容貌,但实际过程中你和美女帅哥之间多了一块毛玻璃,这块毛玻璃就是扩散函数,那能不能把这块毛玻璃打碎呢?可以的,这就需要用我们的女主角反卷积了。图源:网络,侵删如图所示,我们会有一个很自然的想法就是,如果我们有实际镜头的成像,另外还知道了镜头的PSF,即我们知道了上式的b和c,是否可以得到更加理想的成像x呢?这个过程称为去卷积Deconvolution。经过上面的介绍,相信大家就会明白为什么我会把景深扩展与反卷积称为宽场显微镜最甜CP了吧。男主角景深扩展充满活力地在Z轴方向上下翻飞,优化显微镜竖直方向的成像效果。女主角反卷积稳重包容在水平方向突破自我。这里我还要提一点特别重要的,很多小伙伴认为反卷积作为一种算法没有硬件的改变是不是随意搭配任何机型都可以实现。其实不然,每一个公司的每一个型号上的每一颗物镜都只有唯一的反卷积公式。最后总结一下,想必大家应该明白我为什么去写这篇文章了。在显微观察过程中存在很多不同的功能,我选择跟成像质量最相关的功能拿出来跟大家说一下,就是希望小伙伴们在学习与工作中更好的去使用显微镜。口说无凭眼见为真嘛,大家可以用自己实验室的显微镜试一下这对CP的魅力,这两个功能虽然在市面上很常见,但是能集二者与一身的显微镜并不多,怎么解决呢?欢迎大家来试用我们的ECHO显微镜吧。Revolve Generation 2正倒置荧光显微镜Revolution正倒置一体智能显微成像系统
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • ECHO显微镜三兄弟在中国
    Lady森and乡亲们,大家好:我们来自ECHO显微镜家族,家中有三个兄弟,我们都属于“R”字辈的,大家都叫我们Revolution、Revolve和Rebel,一看名字,就知道我们肯定与众不同。来中国有些年了,我们的身影遍布各个科研院所,以独一无二的美学设计和强大的功能性受到大家的欢迎,这不,今天举行显微镜比拼大赛,我们都报名参加了,都非常有信心赢得比赛。第一场:眀场显微镜赛场先放个VCR让大家见见我Rebel的本事。★独特的人体工程学设计:让操作人员避免了长时间的固定工作姿势造成的身体疲劳和颈椎损伤,使用我们拍照眼不花,脖子不疼,想怎么拍就怎么拍。★简单易用的软件:易学易用,无需高频培训,使用视网膜触控屏进行操作,带来出乎意料的成像体验,看着就是倍爽。★自动细胞计数:轻松几步,细胞数就出来了,所有的细胞都在我的掌控范围之内,想看哪个,我还能画个圈圈给你展示出来,666。第二场:荧光电动显微镜专场按惯例先上VCR。我呢,是Revolve Generation 2正倒置一体电动荧光显微镜,化繁为简,功能升级,本领更大;当当当——隆重推出DIGITAL HAZE REDUCTION(DHR)实时数字化图像处理功能,增加宽场荧光显微镜图像锐度,抑制噪声,减少模糊,提高荧光检测分辨率;精确Z-Stacking功能帮您全景深观察样品,较厚样品荧光检测效果出众。★独有的实时DHR数字降噪技术,通过数字化图像处理,在镜下实时显示高分辨图像,清晰展现样本细微结构,颠覆传统成像效果。★Z轴高精度自动层扫,配合实时DHR数字降噪技术,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现全景深观察。我拥有最流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字降噪功能有机联合,提升分辨率,告别照片模糊,为您打造全新的成像体验。第三场:全电动显微镜专场这里的比拼异常激烈,到我Revolution上场了。★我是高度集成的一体机:部件高度集成内置,节省空间,避免繁琐调试及维护;触屏式操控观察工作站,界面直观简洁,易于学习,方便使用。★无与伦比的高清体验配备国际顶级的光学部件,结合超高清显示屏及增强型DHR图像处理技术,快速获取超高分辨率、高清晰度图像。★智能化全自动多功能系统:TimeLapse延时摄影、独有的Hyperscan快速成像、Multi-well Point孔板导航成像、MOSAIC大视野成像、Focus Map自定义多点聚焦、Z-Stacking多层扫描大景深成像、DHR智能实时数字化降噪。我在神经领域、癌症研究、类器官观察、脑研究、3D活细胞成像等领域应用非常广泛,在科研人员的研究进展方面提供了巨大的帮助作用。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制