当前位置: 仪器信息网 > 行业主题 > >

工业吸湿器

仪器信息网工业吸湿器专题为您提供2024年最新工业吸湿器价格报价、厂家品牌的相关信息, 包括工业吸湿器参数、型号等,不管是国产,还是进口品牌的工业吸湿器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工业吸湿器相关的耗材配件、试剂标物,还有工业吸湿器相关的最新资讯、资料,以及工业吸湿器相关的解决方案。

工业吸湿器相关的论坛

  • 【原创大赛】水质中色度的测定-仪器法和稀释倍数法

    【原创大赛】水质中色度的测定-仪器法和稀释倍数法

    水质中色度的测定-仪器法和稀释倍数法摘要 色度是衡量工业废水是否达标排放的重要指标之一,污染较严重的地面水和工业废水色度使用稀释倍数法测定,为提高检验效率、实现检验自动化,也可采用仪器法测定。本实验为仪器法和稀释倍数法的比较。关键词 色度;稀释倍数法;仪器测定法;铂钴比色法。引言 纯水为无色透明水体。清洁水在水层浅时应为无色,深层为浅蓝绿色。天然水中存在腐殖质、泥土、浮游生物、铁和锰等金属离子,均可使水体着色。 水的颜色定义为“改变透射可见光光谱组成的光学性质”,可区分为“表观颜色”和“真实颜色”。“真实颜色”是指去除浊度后水的颜色。测定真色时,如水样浑浊,应放置澄清后,取上清液或用孔径为 0.45μm 滤膜过滤,也可经离心后再测定。没有去除悬浮物的水所具有的颜色,包括了溶解性物质及不溶解的悬浮物所产生的颜色,称为“表观颜色”,测定未经过滤或离心的原始水样的颜色即为“表观颜色”。对于清洁的或浊度很低的水,这两种颜色相近。对着色很深的工业废水,其颜色主要由于胶体和悬浮物所造成,故可根据需要测定“真实颜色”或“表观颜色”。 水的色度单位是度,即在每升溶液中含有 2mg 六水合氯化钴(Ⅱ)(相当于 O.5mg 钴)和1mg 铂(以六氯铂(Ⅳ)酸的形式)时产生的颜色为 1 度。一、仪器、器具、试剂1、250ml 量筒 1 只;2、250ml 容量瓶 10 只;3、1000ml 容量瓶 1 只;4、50ml 具塞比色管 5 只;5、10ml 刻度吸管 1 只;6、25ml 大肚吸液管 1 只;7、洗耳球 1 只8、罗维朋色度计;9、色度标准储备液,相当于 500 度:将 1.245±0.001g 六氯铂(Ⅳ)酸钾(K2PtC16)及 1.000±0.001g 六水氯化钴(Ⅳ)(CoCl2·6H2O)溶于约 500mL 水中,加 100±1mL 盐酸(ρ=1.18g/mL)并在 1000mL 的容量瓶内用水稀释下标线。将溶液放在密封的玻璃瓶中,存放在暗处,温度不能超过 30℃。该溶液至少能稳定 6 个月。二、色度的检验1、样品来源:我公司北厂区清下水2、检验步骤:1)稀释倍数法(水样间接稀释)a.准确吸取 25ml 水样于 50ml 具塞比色管中,纯水稀释至刻度,样品即稀释 2 倍,将稀释后样品与纯水进行目视化比色; b.从 a 稀释水样中准确吸取 25ml 于 50ml 具塞比色管中,纯水稀释至刻度,样品即稀释 4 倍,将稀释后样品与纯水进行目视化比色; c. 按步骤 b 将水样稀释至 8 倍,分别与纯水进行目视化比色,结果发现稀释 8倍的水样,用肉眼看与纯水相比刚好看不见颜色,初步确定 8 倍为最终结果。D.按步骤 c 将水样稀释至 16 倍,结果发现与稀释 8 倍的水样结果无差异,肉眼看与纯水相比看不见颜色,即确定 8 倍为最终结果。 2)稀释倍数法(水样直接稀释) a.准确吸取原样 6ml 于 50ml 具塞比色管中纯水稀释至刻度,样品即稀释 8.3 倍,将稀释后样品与纯水进行目视化比色,色度无差异。 3)仪器法用罗维朋色度计 PFX-I Series 对原样进行比色,结果为 64.6APHA。4)仪器法和稀释倍数法测试a. 色度标准溶液准备:在一组 250ml 容量瓶中,用移液管分别加入 5.00, 10.00,15.00, 20.00,25.00,30.00,35.00,40.00,45.00 及 100.00mL 色度标准储备液(1.8),并用纯水稀释至标线。溶液色度分别为:10,20,30,40,50,60,70,80,90 和 200 度。 b.用罗维朋色度计和稀释倍数法分别将上述 10 种色度标准溶液进行比色,结果如下:http://ng1.17img.cn/bbsfiles/images/2016/07/201607281604_602386_2984502_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607281604_602387_2984502_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607281604_602388_2984502_3.png三、结论 http://ng1.17img.cn/bbsfiles/images/2016/07/201607281606_602396_2984502_3.png

  • 关于BOD5的稀释倍数问题

    公司接到一个工业废水样品,原样颜色呈黑褐色,半透明,原水样加酸进去就会有白色悬浮物。用仪器测原水样的溶解氧只有2左右,COD做出来有200000左右,就是BOD 的稀释倍数如何确定。还有这种工业废水在不知道COD的情况下如何确定稀释倍数。

  • 自动进样器自动稀释结果和手动稀释结果相差大,什么原因?

    各位专家和版友,我用的是海光AFS-230E的自动进样器,在样品测得的结果超过标准曲线两倍的时候会出现是否要自动稀释的提示,然后选择自动稀释,输入稀释的倍数,自动进样器会根据输入的倍数的大小调节蠕动泵的快慢进行稀释,但是我发现稀释后的结果和我自己去手动稀释测出的结果相差挺大的,大的时候有2倍,都是自动稀释的大于手动稀释的,不知道原因在哪里?希望各位帮助小弟寻找一下原因,谢谢了!

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

  • HMI与AMS的稀释气

    稀释气设计的目的为了在线对样品溶液进行稀释,没有一种溶剂比纯净的氩气更干净,用氩气在雾化室后面引入系统,去稀释雾化的气溶胶,实现对样品的稀释是一个特别好的创新。使用这种技术,开发方法也更为简便,可以通过减小雾化气流速,增大稀释气的办法去改变进入仪器的样品浓度,还能避免稀释过程的污染。另外,用ICP火焰的燃料氩气去稀释,相对于溶剂稀释,待测元素强度降低得更少一些,对于Be这种难电离元素更是这样,在一定稀释倍数内强度甚至不降反升。 但是,因为引入了这一路气会带来一些其他影响。且有好有坏。两点好处:首先是空白的本底会变得更低一些,这就意味着信噪比因为稀释气的引入而有所增大,这一点是特别好的结果。其次,稀释气的稀释作用,会降低气溶胶的酸度,进而起到了保护锥的作用。 一点坏处:对于I,Au,Hg,B等容易残留的元素,因为稀释气的引入,会使气溶胶更干,减小了冲洗进样系统的作用,加重了残留效应。要根据实际情况去设置一个合理的稀释气流速,这个流速一定是根据实际情况去优化的,比较通用的流速肯定是比较低的(小于0.4ml/min)。比如做碘的时候,稀释气最好就设置为0;在Hg,Au等冲洗效果特别不好的时候,可以考虑把雾化气流速设置得高一些并且关掉稀释气。 稀释气还有提升气溶胶的作用,所以优化AMS气体时和优化雾化气流速类似,而并不是单纯的稀释作用。

  • 【原创大赛】仪器自稀释与人工稀释之比较测试

    【原创大赛】仪器自稀释与人工稀释之比较测试

    [align=center]前言[/align]自从用上了带有自动进样器的机子,感觉自己终于脱离了苦海。想当初,手持[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]往那小小的石墨管进样孔里面打样品溶液,啥也看不见,就象闭着眼睛一样,一下一下约摸着把那几微升样品溶液打进去!单说每天进几百枪的辛苦,能向谁述说?何况进样时擦碰刮蹭,导致测出来的数据昏天黑地,简直就是一场噩梦。现在有了它,一切便有了一个改观。而且,用上了自动进样器以后,我的测试数据也一天天地好了起来,而且连配制标液做标曲也可由它代劳了,于是对自动进样器这一神器感觉有点膜拜了。后来在论坛上看到安老师淡然谈到时说手动进样比自动进样更准确,我当时很不服气。然而,常言道:上的山多终遇虎。在一个偶然的情况下,我发现仪器自稀释与人工手动稀释有所差异,这才不再迷信盲从,于是有了下面的实验。1 方法与过程1.1 见图1.人工手动配制铅标准溶液系列:10ug/L、20ug/L、30ug/L、40ug/L、50ug/L,上机做校准曲线。标准物质GSB-6(菠菜)微波消解、赶酸定容后,再人工稀释4倍,上机测定。图1中红色方框内GSB-6的测定均值为10.16mg/kg,稍低(GSB-6的标值范围为11.1mg/kg±0.9mg/kg)。[align=center][img=,690,462]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021502561314_1930_2076515_3.jpg!w690x462.jpg[/img][/align][align=center]图1[/align][align=left]1.2 见图2 仪器自稀释配制铅标准溶液系列:12.5、25.0、37.5、50.0ug/L,做校准曲线。标准物质GSB-6(菠菜)与上述图1中所用为同一样品,即经微波消解后,再赶酸、定容,然后人工稀释4倍后,上机测定。图2中红色方框内GSB-6的测定均值为9.80mg/kg,明显低于图1中GSB-6的测定值。GSB-6(菠菜)的标值范围:11.1mg/kg±0.9mg/kg。[/align][align=center][img=,690,462]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021503378227_7192_2076515_3.jpg!w690x462.jpg[/img][/align][align=center]图2[/align][align=left] [/align][align=left]1.3 见图3 仪器自稀释配制铅标准溶液系列,12.5、25.0、37.5、50.0ug/L,做校准曲线。标准物质GSB-6(菠菜)经微波消解、赶酸定容后,再经仪器自稀释4倍后测定。图3中红色方框内GSB-6的测定值为12.31mg/kg,明显超过了标值上限。GSB-6(菠菜)的标值范围:11.1mg/kg±0.9mg/kg。[/align][align=center][img=,690,462]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021504049511_5133_2076515_3.jpg!w690x462.jpg[/img][/align][align=center]图3[/align][align=left]2 分析与讨论[/align][align=left]2.1 通过对比1.1与1.2可以看出,由仪器自稀释配制标液做标曲测出同一个样品GSB-6的铅含量低于人工配制标液做标曲的测定值。这表明这两种配制标液的方式不尽相同,仪器自稀释与人工手动稀释之间存在较大差异。[/align][align=left]图1中蓝色方框内为1.2中红色方框内GSB-6的测试数据代入1.1中校准方程进行计算,结果为10.21mg/kg,进入GSB-6的标值范围。[/align][align=left]图2中蓝色方框内为1.1中红色方框内GSB-6 的测试数据代入1.2中校准方程进行计算,结果为9.75mg/kg,明显低于GSB-6的标值下限。[/align][align=left]2.2 通过对比1.2与1.3可以看出,人工手动稀释GSB-6后的测定值显著低于仪器自稀释GSB-6后的测定值。由此可知仪器自稀释的取液量比人工手动偏大,将导致校准曲线的信号值偏高,而使测定值偏低,这一点从1.1与1.2的对比中得到印证。[/align][align=left]3 结论[/align][align=left]结论似乎就是一句话:仪器的自稀释不可靠啊!但是这样讲,未免太过武断。没有经过大量重复性的验证试验,没有看到大量重现性的验证结果,就这样简单地否定广大仪器公司殚精竭虑为我们制造出来的自动进样器不仅厂家不答应,广大自动进样器的忠实拥趸们也是不会答应的。实际上,就连本人也不愿意看到这样的结果。但是,这些数据毕竟是真实存在的现实。在这里,我只想提醒我们的同行,对此要留一个心眼。如果有不服的版友采用实验数据驳倒了我的结论,哪怕是把我体无完肤了,我心亦热。因为我真的很喜欢自动进样器![/align][align=left]谨以此文向安老师致意![/align][align=left] [/align]

  • 吸湿保守性!

    吸湿保守性:在相同大气条件下,放湿的回潮率-时间曲线和吸湿的回潮率-时间曲线最后不重叠而有滞后性,从放湿得到的平衡回潮率总高于吸湿得到的平衡回潮率。纤维这种性质称为吸湿滞后性或吸湿保守性。

  • DgD 系列 动态稀释配气仪

    DgD 系列 动态稀释配气仪

    [b][font=方正兰亭细黑简体][size=18px]概述:[/size][/font][/b][font=方正兰亭细黑简体][size=11px][/size][/font][size=18px][font=方正兰亭细黑简体]《工业园区挥发性有机物网格化监测技术规范》中要求每季度抽取数不少 于设备总数的 10%,采用移动式动态稀释仪在现场对其进行零气及标准气体 标定。标定时采用动态配气仪对标准气体进行稀释,记录标气温度和湿度。 [/font][font=方正兰亭细黑_GBK]HUMI 2 型加湿配气仪[/font][font=方正兰亭细黑简体]使用流路钝化与超临界汽化技术,可实现多组分 VOCs 在 20%~95% 湿度下的精确配气,支持了异丁烯、丙烷、丙酮、乙酸乙酯、 氯乙烯、丙烯醛等污染源中源解析。[/font][/size][b][font=方正兰亭细黑简体][size=18px]DgD 系列 动态稀释配气仪[/size][/font][/b][font=方正兰亭细黑简体][size=18px]动态配气是一种经典的气体稀释与混合之手段。较之于 静态配气有混合均匀、平衡时间短的优势。 但由于使用器件较多,增加了活性气体可能存在的吸附 衰减以及积分定量误差的风险。 卡佛环境使用创新的硅熔融表面处理技术可以使得电子 元器件拥有灭活石英玻璃同一水平的惰性; 除此以外 DgD 系列动态稀释配气系统还使用了积分流 量控制技术、液面蒸发 - 湿度控制技术、气体分子加速 撞击技术;这些技术的组合使用让用户得到更好的配气 体验,打破了进口垄断。 2019 年该产品作为唯一的国产配气品牌支持了全国生 态环境监测技术大比武,用户获得好成绩。 [/size][/font][b][font=方正兰亭细黑简体][size=18px]硅烷化涂层 [/size][/font][/b][font=方正兰亭细黑简体][size=18px]Si 版本所有气体接触面均使用了硅烷化涂覆,对高活性 污染物无吸附、无残留 [/size][/font][b][font=方正兰亭细黑简体][size=18px]积分流量控制 [/size][/font][/b][font=方正兰亭细黑简体][size=18px]独有的积分积算技术,可每毫秒进行一次流量取值, 进行积分积算;可将质量流量计精确控制到 0.35ml/ min,并在 2%~110% 范围具有良好线性响应。[/size][/font][font=方正兰亭细黑简体][size=18px][size=11px][/size][b]自动恒温 [/b][/size][/font][font=方正兰亭细黑简体][size=18px]在气体动态稀释平衡时间:≤ 7S;工作温度 75% 以上。[img=,320,320]https://ng1.17img.cn/bbsfiles/images/2022/06/202206201725490826_2495_5034170_3.jpg!w320x320.jpg[/img][/size][/font]

  • 【讨论】AAS的进样自动稀释器

    我们单位那台AAS没有自动稀释器,配标液很累,一次好多元素,每个配很多,而且测试时经常样品会OVER,感觉很不方便.请问大家,可以另外装个自动稀释的进样系统嘛,用自动稀释的测试准确度和自己配标液测试比,哪个更准

  • 【“仪”起享奥运】+吸湿速干性能的重要性?

    吸湿速干作为服装产品的一个重要性能,对运动服来说有着至关重要的作用,对人员的舒适性有很大的影响,其面料和组织也是设计人员值得注意的地方。下图体现了不同产品的性能质量。国产服装质量有待提高啊。[img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408061140019779_5233_1954597_3.png[/img]

  • 非甲烷总烃稀释气问题

    非甲烷总烃氮气作为稀释气,如果氮气不合格,是否可以把氮气按比例用高纯氧气稀释,之后作为稀释气使用

  • 【“仪”起享奥运】知道 COD 含量,如何确定 BOD 稀释倍数?

    问题描述:求助两个水样,一个 COD 含量 1472.84 来源切片废水原液;第二个,COD 含量 248.66 来源,总排放池出水,请问在测定两水样 BOD5 时需要稀释么?如果需要应该稀释多少倍呢?还有就是用不用接种微生物?国标的那两个表没看明白。解答:根据经验推算:a、COD 含量 1473mg/L 的 BOD5 约 500-700mg/L,建议分别稀释 110 倍、100 倍和 85 倍;COD 含量 249mg/L 的 BOD5 约 70-130mg/L,建议分别稀释 20 倍、17 倍和 14 倍。b、COD400 以上步骤1)根据 COD 值进行稀释,令稀释后水样的 COD 在 400 以下(200--400),记录稀释倍数值 A;2)释后水样的 COD 来确定稀释倍数 ;3)可以稀释水样 COD*0.1 为基准倍数 ;4)一般水样可由基准稀释倍数 每递增 5,做 3 个稀释倍数。例如基准稀释倍数是 20,则做 20 ,25, 30 三个稀释倍数;5)如果是工业废水、香精厂废水,可由基准稀释倍数递减 2 个至 3 个梯度 例如可取 5,10,15,20,25 这 5 个倍数;6)当对此类水有经验后可精简稀释倍数;7)这样测得稀释后水样的 BOD;8)原水 BOD=A*稀释后水样的 BOD;c、如果是生活污水,COD 值一般是 BOD 的三倍d、一般地表水:当高锰酸盐指数小于 10 时,BOD 小于高锰酸盐指数,当高锰酸盐指;数大于 10 时 BOD 大于高锰酸盐指数,BOD 为 COD 的 40%-60%。e、可生化性= BOD5/ COD,一般应<1,几乎≠ 1;(造纸废水约 0.2,纺印废水约 0.3,餐饮废水约 0.5,发酵废水约 0.60,城镇生活废水为 0.3~0.5)。f、八种废水中各自的 BOD5(y)与 CODCr(x)线性关系密切 ,其直线回归方程分别为 :1)机械废水 : y=-0.2732x+1.80 2)冷却废水 :y=0.1285x+0.11 3)制药废水 :y=0.3922x+131.21 4)纺织印染废水 :y=0.4208x-2.49 5)食品加工废水 :y=0.6126x+13.70 6)饮食废水 :y=0.5992x+17.51 7)医院废水 :y=0.3439x-0.41 8)生活污水 :y=0.486x+17.02

  • 『请教』自动进样器自动稀释功能准么?

    自动进样器自动稀释功能准么?有时候稀释后的数据和未自动稀释的差距很大不知道那个准些?如果不稀释的话,那被测点就超过范围了,超过范围的曲线一般是弯曲了,所以不稀释的化是不准确的吧?那仪器自己稀释后的数据可信么?请赐教!

  • 【求助】分析稀释后甲醇含量问题(气相色谱)

    我们现在量99%的甲醇(1.5米)与水2米混合,求混合后的甲醇含量,工业甲醇中的含量为100减去杂质含量,但在这里不能用此方法。我们现有条件决定了只能用色谱归一法,条件如下:TCD检测器 填充柱 柱温70 检测器110 汽化100载气0.025检测结果20%左右。与理论上配出来的结果严重不符。请问各位老师问题出在什么地方?应该怎样分析混合稀释甲醇含量?期盼回复。。。。。。。。。[em0812]

  • 纤维的吸湿过程机理,下面这样说法对吗?

    纤维的吸湿过程机理 一般认为纤维吸湿时,水分子先吸附至纤维表面,然后水蒸气向纤维内部扩散,与纤维内大分子上的亲水性基团结合,随后水分子进入纤维的缝隙孔洞,形成毛细水

  • 【原创大赛】逐级稀释和一步稀释的比较

    这样能挣上金币吗?逐级稀释和一步稀释的比较在日常分析中常常需要对溶液进行稀释。我们知道由于稀释的过程中会产生一些随机误差,而且误差随着稀释倍数的增加误差也随之增加,所以有些标准里会有逐级稀释到多少多少浓度,或者是每次稀释倍数不能超过20倍的明确要求。可是在实际操作中,当需要较大的稀释倍数的情况下,逐级稀释显然是费时费事的。那么可不可以进行一步稀释呢?我的同事找我提出了这个问题,当然是想省事了。尤其因为大多水样的矿化度很高,大量稀释的需要是在所难免的。我个人认为在保证质量可靠的情况下是可以一步稀释的。我建议同事做一下比较。同事于是对同一个未知样品分别进行两级稀释和一步稀释作为两个样品,然后对两个稀释样品进行了钙离子和硫酸根离子含量测定。一步稀释方法:用1.00mL移液器吸取1.00mL原液样品定容到100mL。此溶液为A液。两级稀释方法:先用5.00mL移液器吸取100mL原液样品定容到100mL。再用10mL大肚移液管从一级稀释液中吸取10.00mL溶液定容到50mL。此溶液为B液。测定方法:电感耦合等离子发射光谱法测钙离子,离子色谱法测硫酸根。测定结果:A液B液均值相对偏差钙离子mg/L10.3810.4710.420.38%曲线方程y=117800x-1750 r=1.000000硫酸根mg/L10.1510.1210.140.20%曲线方程y= r=结论是显而易见的。我认为在实际操作中可以一步直接稀释100倍。有这个数据作依据,我说你这么做就是了。可这个同事却去找领导,希望领导肯定并支持这样做法。很可惜领导没有同意。所以这个同事不得不仍然重复着大量的稀释和大量的清洗工作。不能理解同事这样做法。除非这组数据是编出来的,要么就是对自己的操作水平没自信,不然为何自讨苦吃?[f

  • 【讨论】气相用标准溶液大比例稀释

    我做过几次“水中卤代烃”的能力验证,每次都是发“甲醇中卤代烃”浓样。作业指导书上建议的稀释方法是:用10uL的微量注射器取浓样5uL,注入10mL水,稀释倍数是2000倍,报结果按稀释后的浓度。能力验证样品可以这样稀释,我们平时稀释标准溶液,需要大比例稀释的时候,能不能采取这种办法呢?毕竟操作比逐级稀释要省事。

  • 工业吸尘器的吸尘能力我们应对其进行定期的清理及更换

    工业吸尘器是一种用于工业生产过程中收集废弃物、过滤和净化空气、进行环境清扫的清洁设备。产品采用新技术及材料生产具有:结构简单、小巧灵活、吸力强、容积大、安全可靠、净化效率高、用途广泛等特点。工业吸尘器重要部件的内部过滤器起到了工业吸尘使用中过滤灰尘的作用,当它使用一段时间后为保证工业吸尘器的整体性能、保证工业吸尘器的吸尘能力我们应对其进行定期的清理及更换。就目前市场中所销售的工业吸尘器来看其过滤器可分为纸质过滤器及折叠过滤器。1、工业吸尘器过滤器的清理不论是纸质过滤器还是折叠过滤器它的清理方法都较为简单,我们只需关闭工业吸尘器,然后打开外盖取出过滤器进行清理,然后在安装上去即可。2、工业吸尘器纸质过滤器更换①、打开箱锁,提起电机机壳②、从吸入管根部拉下纸制过滤袋③、把新的纸制过滤袋装在设备的根部,并用纸板固定④、放入电机机壳锁好尘箱3、工业吸尘器折叠过滤器更换①、打开工业吸尘器盖锁,掀掉上盖②、取下内部过滤器,通过拍打去除灰尘③、如果需要请在流水下进行冲洗(干燥后方可使用)④、在灰尘有相当的累积并且难以清洗的情况下,请更换⑤、如果过滤器已经损坏,请按照工业吸尘器的型号使用新的过滤器⑥、重新装上盖,并将工业吸尘器盖锁加紧通过上述步骤工作的实施我们就完成了工业吸尘器的清洗及两种不同类型过滤器的更换了,由此可见工业吸尘器过滤器清洗及更换还是比较简单的,所以大家在日后使用工业吸尘器的时候为保证它的吸尘能力,保证工业吸尘器能够在一个正常的阻力范围内正常运行我们要定期对其进行清理更换。

  • 影响纤维吸湿的外因各有哪些,一般影响规律如何?

    影响纤维吸湿的外因各有哪些,一般影响规律如何? 1,相对湿度在一定温度条件下,相对湿度越大,纤维吸湿性越好。 2,温度影响一般情况下,随空气和纤维材料温度的升高,纤维的平衡回潮率将会下降,吸湿性降低。 3,空气流速空气流速快时,纤维的平衡回潮率将会下降,吸湿性下降

  • 关于织物透湿性试验(吸湿法)讨论

    GB/T 12704.1-2009 《纺织品 织物透湿性试验方法 第1部分:吸湿法》标准中,对于透湿杯的密封,标准要求用乙烯胶带粘。本人在实践中用了各种不同的胶带,都无法保证试验全过程都完全粘住,感觉密封效果不理想。听说某些实验室用蜡来密封,本人不怀疑其密封效果,但认为蜡封及其不方便。大家对此有什么好的办法,可以分享交流一下!

  • 瓦里安石墨炉自动进样器自动稀释倍数问题

    请教各位大虾:我用的是瓦里安AA240FS+GTA120,用的PDF120的自动进样器,由于样品浓度超过标准曲线的最高点,自动进样器在线自动稀释,第一次显示DF=2,但稀释后的样品上机仍超过标准曲线;则继续稀释上机,又显示DF=5,还是超标则再次稀释上机;显示DF=10,还是超标,且样品进样体积<1ul,无法再稀释,最终结果显示overed。我的问题是:DF 是什么意思,系统帮助表明为稀释系数,但我还是弄不懂:DF=10D到底是稀释了多少被呢?我的样品进样体积是10ul。

  • [求助]水样,稀释会使分子量分布产生变化吗?示差检测器

    我是水系的GFC,主要做环境水样的分子量分布。流动相是水,样品也是水。用的是示差检测器。我想问的是:常常会有比较脏的样品(比如说过完滤膜的城市污水),因为怕污染柱子,常稀释样品10倍,100倍的,发现稀释前后得到的分子量分布是很不相同的。我很疑惑,是这样的吗?如果稀释完进样不能反应原样品的分子量分布,难道我能把那么脏的水直接进柱子?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制