当前位置: 仪器信息网 > 行业主题 > >

高温显微镜

仪器信息网高温显微镜专题为您提供2024年最新高温显微镜价格报价、厂家品牌的相关信息, 包括高温显微镜参数、型号等,不管是国产,还是进口品牌的高温显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温显微镜相关的耗材配件、试剂标物,还有高温显微镜相关的最新资讯、资料,以及高温显微镜相关的解决方案。

高温显微镜相关的资讯

  • 高校与日立、牛津仪器等开发新型显微镜:可极端高温高压环境工作
    p & nbsp & nbsp 【据北卡罗来纳州立大学2018年7月9日报道】一种新的显微镜技术可让研究人员实时跟踪材料的微观结构变化,即使材料在极端高温和高压的服役环境中也能实现。最近,研究人员发现了一种名为“合金709”的不锈钢合金具有在如核反应堆结构等更高温度服役环境下应用的潜力。 br/ /p p   此项发明论文的作者、北卡罗来纳州立大学机械和航空航天工程系的教授Afsaneh Rabiei表示,合金709具有极高的强度,并且在长时间在高温环境下工作时能够抵抗损坏,这使其成为可用于下一代核电站的潜在材料。 /p p   但是,合金709是一种全新材料,其在高温和高压下的性能人们还尚未全面了解。要想使用这种合金,美国能源部需要更好地了解其热机械性能和结构特性,以确定其在核反应堆中的可行性。 /p p   为了解决美国能源部的问题,Rabiei找到了一种全新的解决方案。她与三家公司——日立、牛津仪器和Kammrath& amp Weiss GmbH ——开展合作,开发了一种新技术,使她实验室具有对材料试样施加极高的热量和载荷的情况下能够实时使用扫描电子显微镜(SEM)的能力。 /p p   “这意味着我们可以在热机械测试过程中观察到材料的裂纹扩展、损伤成核和微观结构变化,这些变化与所有主体材料有关——不仅仅是合金709。”Rabiei表示,“这种显微镜可以帮助我们了解材料在从室温到1000摄氏度,以及从0到2千兆帕的应力等各类条件下失效的位置和原因。” /p p   Rabiei的团队与英国伯明翰大学合作,评估合金709在高温和高载荷条件下的机械和微观结构特性。 /p p   研究人员将厚度为1毫米的合金709样品放置在高达950摄氏度的温度下,直到材料“失效”,这意味着材料主体结构已经损毁。 /p p   “合金709的性能优于316不锈钢,而316不锈钢是目前在核反应堆中主要使用的。”Rabiei表示,“研究表明,合金709的强度在所有温度下均高于316不锈钢,这意味着合金709在失效前,可比316不锈钢承受更大的压力。例如,合金709可以在950℃的服役环境下承受尽可能多的载荷,而316不锈钢只能在538℃的条件下实现相同的效果。 /p p   Rabiei表示,最新的显微镜技术可以使人们能够在整个温度和压力变化过程中,监测材料的孔洞成核和裂纹扩展以及微观结构的所有变化。 /p p   这是一项很有前景的发现,但目前仍有很多工作需要完成。Rabiei表示,该工作的下一步是研究合金709在高温环境下,施加周期性载荷或重复应力时如何发挥作用。” /p p   相关论文“不同温度下合金709的拉伸性能研究”目前已发表在“材料科学与工程”杂志中。该论文的第一作者是前北卡罗来纳州立大学研究生Swathi Upadhayay。该论文由伯明翰大学的Hangyue Li和Paul Bowen共同撰写。这项工作得到了能源部的资助,编号为2015-1877/DE-NE0008451,英国研究与创新奖项号为EP/N016351/1。(中国航空工业发展研究中心 陈济桁) /p
  • 1361万!北京航空航天大学材料科学与工程学院高温光谱发射率测试系统、光学共聚焦显微镜等采购项目
    一、项目基本情况1.项目编号:2441STC72672(BUAAZB20240072)项目名称:北京航空航天大学材料科学与工程学院高温光谱发射率测试系统预算金额:650.000000 万元(人民币)最高限价(如有):650.000000 万元(人民币)采购需求:包号标的名称数量简要技术需求或服务要求01高温光谱发射率测试系统1套一、50~1500℃精密辐射源子系统1.温度范围覆盖:50~1500 ℃;2.加热系统分段实现,保证高的温控稳定性和表面温度精度。其中50-1000℃基于陶瓷加热、进口高温合金热沉均温,3.温度控制稳定性优于0.5℃/10min。4.1000-1500℃的样品加热基于积分黑体加热技术,温度控制稳定性优于0.5℃/10min。二、恒背景仓同步型红外光谱探测子系统1.扩展光谱波长范围覆盖3-14μm;2.红外光谱发射率连续三次测试重复性不高于0.005;3.对于国际计量比对中采用的同类传递标准样品,标准不确定度≤0.05等。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后12个月内完成供货、安装及调试并达到验收条件。本项目( 不接受 )联合体投标。2.项目编号:2441STC72461(BUAAZB20240065)项目名称:北京航空航天大学材料科学与工程学院光学共聚焦显微镜预算金额:131.000000 万元(人民币)最高限价(如有):131.000000 万元(人民币)采购需求:包号标的名称数量简要技术需求或服务要求01光学共聚焦显微镜1套1、摄像头:采用高分辨率彩色动态CMOS摄像头,摄像头靶面尺寸不小于2/3英寸,不少于500万有效动态像素,帧速率不小于50f/s;2、采用LED照明光源,色温5700º K,使用时间不小于30,000小时;3、对于观察到的图像可以通过图片和录像方式进行存储,静态图片分辨率不低于8000万像素,动态录像分辨率不低于1900×1600等。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后45天内完成供货、安装及调试并达到验收条件。本项目( 不接受 )联合体投标。3.项目编号:2441STC72462(BUAAZB20240062)项目名称:北京航空航天大学材料科学与工程学院高温原位SEM采购项目预算金额:580.000000 万元(人民币)最高限价(如有):580.000000 万元(人民币)采购需求:包号标的名称数量简要技术需求或服务要求01高温原位SEM1套1、电子枪:场发射灯丝,自动聚焦,需具有倾斜校正功能;2、分辨率:二次电子分辨率≤0.7nm@15kV(无样品台减速下测试);3、需配置双向拉伸电机设计原位高温力学试验台等。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后10个月内完成供货、安装及调试并达到验收条件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年08月19日 至 2024年08月26日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:中钢招标有限责任公司官网(http://tendering.sinosteel.com)方式:(1)注册登录:请投标人在中钢招标有限责任公司官网(http://tendering.sinosteel.com)“投标人登录”栏目办理手续。未注册的投标人请先免费注册,电子平台将协助对注册信息进行一致性复核。投标人注册时填写的“申报人姓名、申报人手机号码”,应是本项目的联系人,在需要通知有关项目信息时,招标公司将依据投标人注册时填写的上述联系方式与投标人取得联系。投标人参与不同项目的经办人可在平台注册多个不同账户。(2)文件获取:请投标人凭注册的手机号码、密码登录,获取并下载电子文件(供应商如计划参与多个采购包,应按采购包分别获取并下载电子文件)。投标人应充分考虑平台注册、资料上传、平台复核、网上支付等流程所需的时间,务必在获取文件截止时间前完成所有手续,否则将无法保证获取招标文件。(3)纸质文件可与本项目联系人确定领取方式。(4)投标人注册、文件获取等系统操作问题可咨询010-86397110。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京航空航天大学材料科学与工程学院     地址:北京市海淀区学院路37号        联系方式:尚老师,010-82317116,采购人业务监督联系人:陈老师,朱老师,联系方式:010-82314673,010-82314680      2.采购代理机构信息名 称:中钢招标有限责任公司            地 址:北京市海淀区海淀大街8号中钢国际广场16层            联系方式:010-62688251            3.项目联系方式项目联系人:马娟娟、刘健、聂娅琼电 话:  010-62688223(购买文件、发票咨询)、010-62686386(项目问询)、liujian5@sstc20.com(项目问询)
  • 电子显微镜新型电子源在日本问世
    近日,日本物质材料研究机构的研究人员开发出一种新型电子源,有望使电子显微镜的识别和测定能力得到飞跃式提高。   据介绍,开发出这种新型电子源的是日本物质材料机构的两名华人科学家,一次元材料组组长唐捷和研究员张涵(音译)。为了大幅度提高电子显微镜的性能,他们重点进行了新型电子源的开发,同时在电子放射方法方面也进行了创新。   目前,电子显微镜普遍使用金属元素钨作为电子源,而化合物六硼化镧(LaB6)作为电子源虽然在性能上超过钨,但其硬度超过钨一倍以上,如果没有合适的加工方法很难实现应用。此次研究人员使用了一种叫化学气相堆积法的方法,首先制成了单结晶的六硼化镧纳米线,然后使用电界蒸发的方式除去了纳米线表面的不纯物质,从而成功开发出了新型电子源。与以往通过高温加热热源,使之放射出热电子的方式相比,新型电子源采用的是以极高的亮度放射出超细电子束的电界放射方式。   在电子显微镜技术领域,日本过去一直领先世界,透过式电子显微镜和扫描式电子显微镜也一直是日本重要的技术出口产品,但目前在该领域日本已经被美国和德国超越。研究人员称,前段时间日本已经开发出新型高性能镜头,如果配上此次开发成功的六硼化镧单结晶纳米线电界放射型电子源,将有望使日本重新夺回透过式电子显微镜世界领先地位。
  • 日程公布!iCEM 2024之扫描电镜/聚焦离子束显微镜技术与应用专场预告
    2024年6月25-28日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(对外)(www.china-em.cn)将联合主办“第十届电子显微学网络会议(iCEM 2024)”。会议结合目前电子显微学主要仪器技术及应用热点,邀请业界知名电子显微学专家、电子显微学仪器技术专家、电子显微学应用专家等,重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。iCEM 2024恰逢电子显微学网络会议创立十周年,会议专场将增设“十周年”主题内容,围绕过去十年我国电子显微学重要进展、未来展望等进行分享。第十届电子显微学网络会议(iCEM 2024)将设置八个分会场:1) 原位/环境电子显微学与应用;2)先进电子显微学与应用;3)扫描电镜/聚焦离子束显微镜技术与应用;4)电子能量损失谱/电镜光谱分析技术;5)低温电子显微学与应用;6)生物医学电镜技术与应用;7)电镜实验操作技术及经验分享;8)电镜开放共享平台及自主保障体系建设。诚邀业界人士线上报名参会。主办单位:仪器信息网,中国电子显微镜学会(对外)参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2024/或扫描二维码报名“扫描电镜/聚焦离子束显微镜技术与应用”专场预告(注:最终日程以会议官网为准)专场三:扫描电镜/聚焦离子束显微镜技术与应用(6月26日上午)专场主持暨召集人:王晋 浙江大学材料学院高温合金研究所 副研究员 报告时间报告题目演讲嘉宾8:30-9:00【十周年主题报告】:纳米分辨可视化方法在变形高温合金热制造中的应用研究王晋(浙江大学材料学院高温合金研究所 副研究员)9:00-9:30赛默飞双束电镜在生命科学研究的应用介绍及选型推荐程路(赛默飞世尔科技 电镜业务拓展经理)9:30-10:00钛合金双相组织变形机制的原位SEM/EBSD研究王柯(重庆大学 教授)10:00-10:30TESCAN 电镜在材料领域的最新应用李景(泰思肯(中国)有限公司 资深应用工程师)10:30-11:00新品发布:飞纳台式扫描电镜的技术突破及全新智能型离子研磨制样平台介绍张传杰(复纳科学仪器(上海)有限公司 产品、应用专家)11:00-11:30ECCI结合HR-EBSD研究增材制造金属结构材料变形机理及稳定性研究安大勇(上海交通大学 助理教授)11:30-12:00锂电池材料表界面改性与工况条件下失效机制的原位扫描电镜研究程晓鹏(北京工业大学 助理研究员)嘉宾简介及报告摘要(按分享顺序)专场主持暨召集人:王晋 浙江大学材料学院高温合金研究所 副研究员【个人简介】主要从事电子显微镜原位测试表征仪器的开发、高温合金材料微观结构与力学性能、变形断裂机理等研究,并致力于国内自主科学仪器的转化与应用。先后参与国家自然科学基金委科学仪器设备专项,科技部国家重大科学仪器设备开发专项,国家863计划重大项目,国家自然科学基金基础科学中心项目等。在国内外SCI期刊发表论文22余篇,授权国家专利20余项,完成发明专利职务科技成果转化3项。报告题目:纳米分辨可视化方法在变形高温合金热制造中的应用研究【摘要】热锻造、热处理是金属材料加工制造领域的传统基础工艺,但是由于金属材料加工工艺烦琐,精确过程控制难度大等问题,目前我国高端金属热加工工艺优化和过程精确控制的智能化基础理论与关键工艺技术研究开发显著落后。我国制造业面临严峻挑战,只有深入发展智能化设计和加工制造基础理论与关键工艺技术,并借力于自主开发新的热加工工艺设计与表征方法,才能更为高效、经济、全面的一体化研究该合金热锻造工艺-微观组织-锻造工艺性能之间关系,缩短合金性能优化研制时间,降低研发成本,提高生产合格率,解决热加工制造领域的共性难题。程路 赛默飞世尔科技 电镜业务拓展经理【个人简介】硕士毕业于北京科技大学之后进入电镜行业,曾多次前往日本、奥地利和德国学习电镜操作和电镜制样技术,从事电镜和电镜制样应用工程师工作超过15年时间,积累了丰富的电镜应用技术经验。2022年入职赛默飞生物电镜部门,现负责赛默飞双束电镜、常温透射电镜和扫描电镜在生物应用领域的售前技术支持和业务拓展。报告题目:赛默飞双束电镜在生命科学研究的应用介绍及选型推荐【摘要】双束电镜结合了聚焦离子束(FIB/PFIB)的精确样品修饰和扫描电镜(SEM)的高分辨率成像功能,广泛应用于获取生物样品的超微结构,包括拍摄常温2D图像、获取高分辨率体电子显微3D图像,和为CryoET制备Lamella等,其分析尺度范围可以从亚纳米级到毫米级。报告将从介绍多种类型的生物样品应用案例出发,结合丰富类型的赛默飞双束电镜,推荐对应的最适合型号。王柯 重庆大学 教授【个人简介】王柯,博士,重庆大学教授,博士生导师,长期从事钛合金热加工工艺与组织性能调控研究,重点关注钛合金高温变形和热处理一体化工艺设计、组织遗传性机制、组织性能关系、强韧性协同优化调控技术等。主讲课程包括:《材料力学性能》、《材料热力学与动力学》、《轻质耐高温航空结构材料:钛合金》等。主持国家自然科学基金面上/青年项目,重点研发计划项目子课题、企业横向等项目10余项,以第一/通讯作者发表学术论文 50 余篇,授权发明专利 6 项。参编《锻压手册》第四版高温合金部分。2022年获评重庆市创新创业导师。获陕西省自然科学一等奖1项。报告题目:钛合金双相组织变形机制的原位SEM/EBSD研究【摘要】对于大多数近α和α+β钛合金,滑移是主要的变形机制。本报告主要汇报内容包括:(1)α相和β相之间滑移启动的先后顺序;(2)微观组织对滑移启动和传递、以及裂纹形核的影响;(3)基于微观变形机制分析了组织对力学性能的影响机制;(4)基于组织性能关系研究,研制出一种多尺度组织,实现了钛合金强塑性协同提升。李景 泰思肯(中国)有限公司 应用工程师【个人简介】李景是TESCAN中国公司的高级应用工程师、首席应用专家,2015年毕业于北京科技大学材料科学与工程专业。她长期专注于扫描电镜在材料领域的研究,并且具有丰富的扫描电镜、FIB-SEM双束电镜及相关联用仪器(TOF-SIMS、Raman、EBL等)的操作与应用经验。李景在TESCAN公司中,不仅专注于技术研究,多年来持续参与各种学术交流和培训活动,包括但不限于客户研究项目技术支持、电镜会议分享、高级应用培训讲座等,获得客户的一致好评与感谢。报告题目:TESCAN 电镜在材料领域的最新应用【摘要】随着科研的深入及学科的交叉,常规扫描电镜系统无法满足科研工作者日益增高的分析需求。借助其它分析系统所得的数据,和电镜系统的数据往往非同时同位。TESCAN提出了All-In-One的综合解决方案,在常规的FIB-SEM系统上,增加Raman Spectrum Image以及TOF-SIMS和AFM等多种表征系统,可以极大的提升扫描电镜系统的原位综合分析能力,做到所见即所得。张传杰复纳科学仪器(上海)有限公司 产品、应用专家【个人简介】飞纳电镜应用专家,长期从事扫描电镜应用拓展,自动化开发等相关工作,相关发明专利授权4篇,参与《2021年度国家药品标准制修订研究课题 2021Y05》,参会与起草《2025 中国药典 -- 扫描电子显微镜法通则》。报告题目:新品发布:飞纳台式扫描电镜的技术突破及全新智能型离子研磨制样平台介绍【摘要】飞纳电镜焕新赋能中国科研。全新发布台式场发射扫描透射一体机—Pharos STEM,扫透模式下分辨率突破 1 nm。 发布 Maps 3 全新软件平台,支持自动化多尺度成像及拼接,关联能谱分析及拼接以及尺度和多模态关联表征功能。发布 Phase Mapping 相分布软件。并将发布TechnoorgLinda 全新智能型离子研磨制样设备!敬请期待!安大勇 上海交通大学 助理教授【个人简介】安大勇,2019年毕业于德国亚琛工业大学/德国马普钢铁所,研究方向聚焦于金属结构材料微观变形机理研究。主持NSFC青年基金、重庆市自然基金等项目10余项,作为骨干参加173项目、国家重点研发计划项目、NSFC航空发动机重点项目、GF基础科研计划项目等7项,获第九届中国科协青年人才托举计划;揭示了增材制造奥氏体不锈钢胞状结构中周期性位错偶极子是其强韧性的关键因素,发现了位错类型决定胞状结构的热稳定性。提出了热力耦合渐进成形工艺,成功制备出晶粒-位错反向梯度高性能复杂薄壁构件,研究成果以第一和通讯作者在Int J Plast、 J Mater Sci Tech、 Mater Res Lett、Mater Charact、J Mater Proc Tech等期刊发表论文10篇,应邀撰写MRS Bulletin综述1篇,发明专利受理10项;报告题目:ECCI结合HR-EBSD研究增材制造金属结构材料变形机理及稳定性研究【摘要】金属增材制造奥氏体不锈钢中常具有亚微米级的胞状结构,该结构中包含高密度位错胞、纳米析出相和元素偏析等,显著影响着材料的机械性能。研究发现,不同胞状结构中的位错的热稳定性不同。本论文利用先进表征技术,对激光粉床熔融技术打印的奥氏体不锈钢胞状结构热稳定性进行了系统性研究,并揭示影响热稳定性的内在机理。程晓鹏 北京工业大学 助理研究员【个人简介】程晓鹏,北京工业大学助理研究员,硕士生导师。2021年博士毕业于北京工业大学材料与制造学部并留校从事教学科研工作,获北京市优秀毕业生。主要从事原位电子显微学表征方法及技术开发、原子层沉积技术与应用、能源材料与先进金属材料微观结构与性能等研究。主持国家自然科学基金青年项目、北京市教委科技项目、中国博士后基金等多个项目,授权国家专利5项,目前在Nature Energy,ACS Energy Letters,Nano Letters,Corrosion Science等发表学术论文30余篇,他引2000多次,担任Journal of Energy Chemistry等多个期刊审稿人。报告题目:锂电池材料表界面改性与工况条件下失效机制的原位扫描电镜研究【摘要】原位扫描电子显微镜(in-situ SEM)拥有较大的内部腔室,可容纳更接近实际的原位电池系统,同时具有足够高的分辨率,能够在实际工作状态下表征电池材料的结构演化机制,进而提出性能优化策略。本报告将介绍利用原位扫描电镜揭示锂电池材料在工况循环过程中的微结构演变机制,以及原子层沉积技术在电池材料表界面改性中的应用研究进展。会议联系1. 会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会(对外)汪老师:13637966635,cems_djw @163.com2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 向“新”而生,EVIDENT工业显微镜亮相中国材料大会
    新材料是传统产业升级和战略性新兴产业发展的基石。近年来,中国新材料产业蓬勃发展,关键材料取得突破、前沿技术不断涌现。7月8日-11日,中国材料大会2024于广州白云国际会议中心举行,大会致力于面向国家重大需求、推动新材料前沿重大突破,Evident携带多款创新工业显微镜产品亮相,与行业同仁一同探索材料的微观世界,为新材料的发展贡献力量。当前,高新产业的发展不断催生对于新材料的需求,进而对材料的微观结构设计和性能优化研究提出了更具前瞻性的要求。作为专业的光学仪器和解决方案提供商,Evident致力于提供材料学领域整体解决方案,其显微镜产品广泛应用于金属、陶瓷、半导体、化学材料等领域的微观形貌观察,助力实现精准的质量分析与控制。OLS5100 3D激光显微镜:亚微米级测量标杆OLS5100激光显微镜以其卓越的测量精度和光学性能,在亚微米级测量方面树立了标杆。在电子材料领域,新材料向更高性能、更小尺寸和更高集成度发展。Evident OLS5100显微镜以其精细的亚微米级三维成像能力,可深入观察半导体材料的微观结构,帮助提高电子元件性能。此外,其专用的LEXT物镜和Smart Lens Advisor(智能镜头顾问)的结合,确保了测量的准确性,为用户提供值得信赖的检测结果。随着全球对可持续能源解决方案的需求不断增长,新能源材料、储能材料和节能材料的研究变得尤为关键。在锂电池电极材料的生产中,为了保障电子在集流体与电极材料之间有效转移,生产中材料表面的粗糙度控制十分重要。作为非接触式工具,OLS5100显微镜在不损失样品的情况下获得精准数据,清晰捕获传统显微镜难以获得的精细图案和缺陷。值得一提的是,OLS5100配备智能实验管理助手,能够简化工作流程并提供高质量数据,让材料检测的流程更加快速、高效。激光显微镜OLS5100可同时获得样品的激光图、真彩色图和高度图DSX1000数码显微镜:多功能、一体化创新工具DSX1000数码显微镜则是Evident在数字化显微技术领域的又一力作。它将光学技术与数字技术有机融合,成为一台集体视镜、工具显微镜、金相显微镜、偏光显微镜等功能于一体的多功能高度自动化的显微系统,集成明场、暗场、偏斜、偏光、MIX、微分干涉等六种观察模式,多款物镜支持23X-8220X放大倍率,为研究人员提供综合性成像和显微镜解决方案。在汽车、航空航天及其他制造领域,轻质材料、高温材料和耐腐蚀材料的需求日益增长。DSX1000显微镜配备的PRECiV软件提供多种选配模块,包括符合行规和国际标准的材料解决方案,如晶粒度、铸铁分析、最恶劣视场、孔隙率、相分析、非金属夹杂物等。此外,DSX1000的远心光学系统有效降低在整个放大范围内的图像失真率,保证了测量的准确度和重复性。其丰富的观察方法和灵活的载物台设计,使得研究人员能够轻松应对各种复杂外形的样品。一键式呈现样品的明场、暗场、斜射、偏振、MIX(明场和暗场)、偏光和微分干涉的图像在同一界面中,即使是初学者也能快速找到合适的观察方式。活动现场,Evident展台吸引了众多行业专家、研究人员及合作伙伴,Evident光学技术的创新应用引发了关注与热议。在制造大国向制造强国迈进的征程上,新材料的突破性进展对于加速产业升级具有重要作用,展望未来,Evident仍将顺应时代发展浪潮,以高质量的解决方案推动产业向“新”发展,为中国制造业的发展筑牢基石。
  • 港城大成为全球首家自行设计及生产电子显微镜的大学
    4月20日,香港城市大学(以下简称“港城大”)“高时空分辨率电子显微镜”全球新闻发布会在港城大及港城大深圳福田研究院同步举行。港城大署理校长陈志豪教授、深圳市福田区委书记黄伟、福田区人民政府副区长欧阳绘宇及深圳市科技创新委员会等出席本次活动。  港城大深圳福田研究院高时空分辨电镜研究部所研发制造的高时空分辨率电子显微镜是我国首台自有知识产权的高时空分辨率电子显微镜,也是世界上第一台同时具备低电压、场发射、扫描透射一体化模式的紧凑型电子显微镜。港城大的研究团队率先研发先进技术,自主设计及生产电子显微镜,是全球首家拥有相关科研实力的大学。团队得到福田区政府支持,是唯一成功制造多个高端电子显微镜的大学研究团队。(左起)城大署理校长陈志豪教授、材料科学及工程学系讲座教授、高时空分辨电子显微中心(TRACE)主任及深圳福田研究院院长陈福荣教授、TRACE研究员薜又俊博士  在港城大材料科学及工程学系材料工程讲座教授、高时空分辨电子显微中心主任及深圳福田研究院院长陈福荣教授带领下,团队研发出的电子显微镜系统包括脉冲电子源、超快相机、分段抽气真空系统及像差校正器。团队的最终目标是研发出一款小型高时空分辨「量子」电子显微镜,用以研究光束灵敏材料的原子动态。  由于电子显微镜能以明显高于光学显微镜的分辨率成像,并提供微纳米甚至原子尺度的测量及分析,因此在多个研究行业中广受欢迎,尤其在医学、生命科学、化学、材料学、集成电路和其他研究领域。  不过,目前的电子显微镜未能解决长久以来有关幅射损害及静态图像样本的樽颈问题,窒碍研究微小原子及电子光束灵敏的材料。此外,现行电子显微镜的体积也难以应用于空间有限的环境,例如太空穿梭机、深海及深地研究船及器具。  为克服上述问题,港城大团队设计出可供高时空分辨率电子显微镜使用的脉冲电子源和快速相机。在快速相机上加装偏向器,令成像速度不再受制于成像输出时间,这一概念在高时空分辨率电子显微镜系统上首次得到证实。此外,团队设计的像差校正器更进一步提升成像的解像度。由于团队拥有相关的知识产权,并可自由设计系统,因此未来将可用较低成本生产特定的小型电子显微镜。例如,六硼化镧(LaB6)桌面电子显微镜将可以目前市场同类产品的六成价格出售。  陈教授说:“高端仪器微型化是工业发展无可避免的趋势。”团队现正研发高时空分辨率扫描/透射一体化桌面电子显微镜,将利用脉冲空心圆锥体,在室温及液态状况下观察及重构立体的蛋白质结构。目前要观察蛋白质的结构,只能在极低温度下以冷冻电子显微镜进行,团队的研究将突破这方面的局限。  团队下一步的计划是在大湾区建立一个世界领先的电子光学设计和制造中心,集中研究电子光学技术,并进行技术转移。  陈教授说:“该中心旨在将电子光学的相关技术转移至营运中及新成立的公司。”中心的目标是要在仪器及科学领域上,保持较全球其他电子显微镜设施领先15年的技术。  中心将以创新的电子光学技术,专注研发目前未能在不同外部环境(例如电场、激光、高温、低温)下进行的人工光合作用、量子材料及水科学等相关应用科技,提供一系列高时空分辨电子显微镜服务。  陈教授指出,该中心将在量子器件、未来能源、生命科学及医学等领域作出突破性的研究,并将团队的科研成果转化为应用,造福社会,并促进业界与学界的合作。  港城大深圳福田研究院副院长陈俊铎提到,港城大深圳福田研究院基于河套合作区的独特优势,采用“一院两区”的模式共享深港两地的科创资源,引进香港高层次人才前来福田进行科研工作。作为从高校科研团队产出的科研成果,高时空分辨率电子显微镜的成功研发充分体现了深港科技创新合作区“协同创新”的优良氛围与深港合作的高度融合。  陈俊铎说:“香港城市大学是第一个在河套合作区注册的香港高校,接下来我们将推出福田研究院的二期规划,利用深港两地优势共同推动科研发展,既有世界一流的成果,又能与当地的产业相结合,形成正向的科创生态。”  未来,港城大通过利用本校国际人才、知识与技术创新交汇的地缘优势,结合深圳的产业基础与应用创新优势,将大力推动高时空分辨率电子显微镜产业国产化,建设全球电子显微学创新高地和高端精密仪器装备制造产业基地,支撑电子信息、半导体、生物医药等相关产业高速发展。
  • 中科院成功研制“防震”原子分辨率显微镜
    p style=" text-indent: 2em " 对物质进行原子级别的观测,是很多前沿性科研的基础。然而,在追踪单个原子时,轻微的抖动也会让追踪变得困难,让追踪原子消失在视野中。 /p p style=" text-indent: 2em " 近期,中科院合肥物质科学研究院陆轻铀研究员团队使用新技术,在国际上首次研制出混合磁体极端条件下的原子分辨率扫描隧道显微镜,可在强震动环境中获取高质量的原子分辨率图像。 br/ /p p style=" text-indent: 2em " 强磁场是探索科学前沿的一种极端实验条件,在发现新现象、催生新技术方面具有不可替代的作用,自1913年以来在高温超导、量子材料、生命科学等领域屡有重大发现,已有19项相关成果获得诺贝尔奖。 /p p style=" text-indent: 2em " 2017年我国在合肥建成重大科技基础设施“稳态强磁场实验装置”,该装置拥有3台场强创世界纪录的水冷磁体,以及场强排名全球第二的混合磁体。但由于混合磁体运行过程中产生的强震动干扰,只能用其开展宏观尺度的观测,难以实现微观尺度的观测。 /p p style=" text-indent: 2em " “追踪一个原子,要求观测仪器极其稳定,稍微晃动一下,原子就会在茫茫的微观世界中消失难觅。”陆轻铀说。 /p p style=" text-indent: 2em " 近期,陆轻铀团队基于小尺寸的“蜘蛛马达”,用新方法设计出一种新型原子分辨率扫描隧道显微镜。它采用蓝宝石绝缘材料加工,外径仅8.8毫米,可直接插入到混合磁体的孔径中并真空密封。经测试,他们成功地在混合磁体30特斯拉的超强磁场下,获得了石墨的高品质原子分辨率图像。 /p p style=" text-indent: 2em " 以上技术方案是在真空环境下实现的,难以对活性生物体进行观测。为此,陆轻铀团队进一步深入研究,又成功搭建出一套室温大气环境下的抗恶劣条件扫描隧道显微镜。经测试,可在27.5特斯拉的混合磁体超强磁场下实现原子分辨率成像。 /p p style=" text-indent: 2em " 日前,国际知名学术期刊《超显微术》和《科学仪器评论》分别发表了这两项研究成果。 /p
  • NASA资助研发在火星使用的微型化变压扫描电子显微镜
    微型化变压扫描电子显微镜(MVP-SEM)是由NASA资助的项目,同时希望它能用于国际空间站和月球上  据国外媒体报道,探索火星的一个最重要的目标就是从火星表面带回样本,尤其是那些可以用来检测火星上是否有生命的样本。这样的任务往往耗资巨大,而且在样本送返地球的时候可能被污染。因此,一个选择是在送返地球之前,就地对样本进行分析。火星科学实验室与其他火星车已经在火星上利用大量设备对多种样本的化学成分进行评估分析。然而,只有少数技术能够确定火星上是否存在生命。在地球上,科学家们用来检测生命或生物材料的设备是大气扫描电子显微镜(ASEM)或环境扫描电子显微镜(ESEM)。  ESEM能够显示出比10纳米还小的物体,并且能够辨别样本的组成成分。最近,一个科研团队试图将ESEM微型化,使其能够适用于火星上的就地检测任务。微型化变压扫描电子显微镜(MVP-SEM)是由NASA资助的项目,同时希望它能用于国际空间站和月球上。下一个目标是制造一个类似ESEM的设备,帮助科学家们研究火星地质,寻找火星表面的微生物。该项目首席调查员Jessica Gaskin表示,若火星车或着陆器具有了这项功能,我们不仅能选择更好的样本送回地球,更重要的是,还能拍摄高清图像,在火星上就地研究,不需要冒着被污染的危险送回地球研究。  各种各样的扫描电子显微镜在诸多领域都有所使用。NASA资助研究的这款设备将用来研究地质材料,保持材料的完整性。因为整个过程并不会损坏样本,事后还能用其他设备进行研究,这样能对样本有更全面的认知了解。这个设备将具有高清成像功能,能量色散谱仪(EDS),或者是化学探测器,用以判定化学成分。这些扫描电子显微镜能够分析多种物质,并且不需要做准备工作,这大大简化了工作过程。  Gaskin表示,这项技术的关键部分就是将使用火星的大气作为成像大气。这样我们能观测到火星环境中最原始的样本。天体生物学界饱受诟病的一点就是总是寻找能够在水中大量繁衍的碳基生命。而扩大搜索范围的策略则是在某个区域内寻找某种无法用物理学或化学简单解释的失调现象。例如,如果在某个特定环境中发现了大量硅,那里便可能存在生命。光谱仪能够探测出环境中的失调现象。  MVP-SEM项目科学家Jennifer Edmunson表示,该设备还能拍摄高清图像,用以判别生命信号。例如,寻找微生物中的蛋白质,比如能在沸水中大量存在的耐超高温热棒菌。设备研发的一个目的就是希望它能够区别相似的化合物,例如草酸钙和碳酸钙。地球上能够在极端环境中生存的微生物有时会作为能在火星冰冷、盐度高的水中生存的微生物的理论模型。而且,如果某种生命形式暴露在样本表面,我们的设备就能拍摄下来,以供日后研究。  MVP-SEM将使用二次电子探测器来研究微小的表面特征,以及背散射电子探测器来检测样本本质和成分。EDS探测器也将用来研究样本的化学成分。目前,研究团队正在确定最佳探测条件,在此之后,研究出的原型将在喷气推进实验室中模拟火星环境的实验室中进行测试。太阳系观测进展(PICASSO)项目结束后,该图案度低计划通过NASA太阳系探索仪器成熟计划(MatISSE)继续改进设备。
  • 《岛津扫描探针显微镜用户论文集》推出
    扫描探针显微镜SPM (Scanning Probe Microscope)是各种新型探针显微镜的统称,如扫描隧道显微镜 STM(Scannning Tunneling Microscope),原子力显微镜 AFM(Atomic Force Microscope), 磁力显微镜 MFM (Magnetic Force Microscope),摩擦力显微镜LFM (Lateral Force Microscope)及开尔文探针力显微镜 KPFM (Kelvin Probe Force Microscope)等等。 SPM 作为一项表面分析技术,不仅可以在纳米甚至原子级别分析样品表面三维形貌(横向分辨率 0.1 nm,纵向分辨率 0.01 nm),还可以表征多种物理性质,如粘弹性,摩擦力,电学及磁学性质等等。除了卓越的形貌分辨率及多功能化外,SPM 还可以在多样的环境中表征,如真空环境,大气环境,液态环境甚至低温,常温及高温环境下,均可运行。因此,SPM 被广泛应用于物理,化学,材料,微电子,生物及医药等等科学领域的研究。岛津公司作为世界著名的分析仪器厂商,在 SPM 研究开发领域,不断精益求精,锐意进取。从 SPM9500,SPM9600,SPM9700 到 SPM-8100FM,取得了极大的突破。最新的 SPM-8000FM 采用反馈更迅速的调频模式,极大地提高了SPM 在大气环境和液体环境的分辨率。为了更好地服务于岛津扫描探针显微镜 SPM 客户,我们汇总了各个学科领域的研究应用,以供阅读。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 电子显微镜在制药行业的应用
    电子显微镜助力药品检测药品作为具有预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应症或者功能主治、用法和用量的物质,区别于其他商品,具有一定的特殊性。一方面,良药能治疗疾病、减轻人们的痛苦甚至拯救人类的生命;另一方面,药物质量控制不好时,使用粗制滥造的不良产品或“假药“,可能会带来不可预知的其他疾病,不得不承受其副作用的伤害,甚至对人的生命安全造成一定威胁。电子显微镜作为一种常规的微观形貌分析工具,在制药行业发挥了重要作用,对于药物及其周边产品生产过程的品质控制、质量监督、问题追溯都能起到立竿见影的效果,涵盖了原料药、辅料、药物制剂(片剂、丸剂、悬浊液)、保健品、药包材和医疗器械等产品。2021年7月2日,由国家药品监督管理局药品评审中心组织制订的《化学药品吸入液体制剂药学研究技术要求(征求意见稿)》(以下简称“意见稿”)正式向社会公布并征求意见。其中提到,吸入液体制剂的生产工艺“应关注微粉化后原料药的相关属性,如粒度和粒度分布、晶型/无定型含量、外源性粒子等”。 “对于用于吸入混悬液的原料药,一般还应对其晶型/粒子形态、粒度和粒度分布等加以研究及控制”。“对于吸入混悬液,还应在效期末进行药物粒子的晶型、粒度和粒度分布检查,并且建议采用显微镜等分析手段观察药物粒子的形态变化、团聚等情况。如果制剂处方中含有抗氧剂等辅料,应考察这些辅料在稳定性研究过程中的含量变化“。传统的光学显微镜由于分辨率和景深的限制因素,对于5微米以下的更小粉体,难以观察到清晰形貌,需要借助于电子显微镜。原料药和辅料的晶型、粒度调控原料药和辅料本身都存在多晶型现象,而且他们在制剂工艺和存储过程中可能会发生晶型变化。例如,甘露醇常见的是α、β、δ无水晶型,乳糖为一水合物晶型和无水晶型,蔗糖有16种晶型,二氧化钛有锐钛矿、金红石和板钛矿三种晶型,羟甲基淀粉钠吸湿后晶型发生变化,硬脂酸镁在高温下不稳定、压力条件下会发生晶型改变。晶型一旦发生改变,原料药会影响药物疗效,辅料会影响制剂内部微粒的结合状态,最终也会造成不可控因素增加,影响药物的一致性评价。 三种不同晶型、粒度的原料药药物晶型的定性定量分析一般主要通过XRD(X射线粉末衍射)来进行。SEM(扫描电子显微镜)作为一种补充分析手段,能够将晶型和形貌结合起来,同时能够表征粉体粒度、掺杂、团聚情况等XRD难以直观反映的信息,从而受到广大研究人员的青睐。图1就是典型的三种原料药SEM图。肉眼看来,同为白色粉末,在电镜下的晶型差别一目了然,粒度大小也能通过测量功能精准测量。药物辅料:甘露醇、硬脂酸镁、低取代羟丙纤维素图中显示了常见辅料甘露醇、硬脂酸镁和低取代羟丙纤维素的SEM图。甘露醇在医药上是良好的利尿剂,降低颅内压、眼内压及治疗肾药、脱水剂、食糖代用品、也用作药片的赋形剂及固体、液体的稀释剂。硬脂酸镁主要用作润滑剂、抗粘剂、助流剂,低取代羟丙纤维素(L-HPC)主要作片剂崩解剂和粘合剂。原料药粒度越小,流动性越差,物料黏着性增加,混料时原料药不易混匀,从而影响到制剂外观及含量均匀度。另外,需结合药物自身特性,如刺激性药物,粒径越小,刺激性越大;稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在肠道内,易于吸收,生物利用度高,但也并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。因此,粒度、粒度分布柱状图、D10、D50、D90等数据对于仿制药体外研究具有重大价值。 扫描电镜图像法统计颗粒尺寸和粒径分布相较于传统的激光散射法测试粒度,扫描电镜图像法在粒径统计方面具有其独特的优势。例如,很多原料药和辅料很容易吸湿团聚或者分解,当粒度足够小时,单一粉粒表面能变大,分子间作用力急剧加强,导致团聚严重,而且一般的分散方法很难将其分散开来。这样一来,激光散射法给出的结果往往是团聚后二次颗粒的尺寸,并不一定能反映真实的一次颗粒尺寸信息。图3所示的扫描电子显微镜图像法则可以通过对拍得的SEM图像进行分析,得到最直观、真实的颗粒尺寸和粒径分布统计信息。即便有一些重叠或团聚颗粒,也可以通过现有的APP小程序实现特定形状颗粒的AI智能图像识别。 药物载体载药状态药物载体是指能改变药物的存在形式,控制药物的释放速度并使药物更准确地到达靶向器官,同时各种药物在载体的协助下,能够减少药物降解和流失,降低毒副作用,提高作用效力。药物主要是以治疗、预防和诊断为目的,一般药物被口服或注射后, 进入血液系统作用于全身,同时也会被机体迅速代谢后排泄出体外,此过程机体对药物的利用率低并且产生的毒副作用大,而药物载体能够提高药物的作用效率,降低药物的毒副作用,以较小的剂量达到治疗疾病的目的,所以药物载体受到了广泛关注。药物载体的种类包括多肽、凝胶、纳米微粒、多孔微粉等多种类型。 药物载体——MOFMOF(金属有机框架材料)是近十年来发展迅速的一种配位聚合物,具有三维的孔结构,一般以金属离子为连接点,有机配位体支撑构成空间3D延伸,是沸石和碳纳米管之外的又一类重要的新型多孔材料,在催化、储能和分离中都有广泛应用。图中显示了作为药物载体的MOF颗粒,在载药后表面形貌发生了变化,空白载体平滑的颗粒表面上负载了药物之后变得粗糙了,充满颗粒感,说明药物负载比较成功。 透明质酸水凝胶的SEM图片水凝胶是具有三维网状空间结构的聚合物,它含水量高,生物相容性好,是最具应用前景的可注射生物材料之一,近年来广泛应用于药物释放和组织工程领域。它作为药物载体,能够改变药物的送药方式,减少送药次数,降低药物不良反应,提高药物的生物利用度。水凝胶大量吸水之后与机体组织极其相似,柔软湿润的表面以及与组织的亲和性大大减少了刺激性,而且与疏水聚合物相比,在低PH环境里,水凝胶可以保护蛋白质不受损害,延长水凝胶中生物分子活性时间。上图是借助冷冻样品台,在低温低真空条件下日立电镜拍摄的水凝胶样品图片。纳米药物载体TEM(透射电子显微镜)形貌纳米级药物载体是一种属于纳米级微观范畴的亚微粒药物载体输送系统。将药物包封于亚微粒中,可以调节释药的速度,增加生物膜的透过性、改变在体内的分布、提高生物利用度等。它具有广泛的应用前景,例如可以解决易水解药物的给药途径,口服胰岛素、抗生素,而无需注射;延长药物的体内半衰期,无需多次给药;可实现更精准的靶向定位给药,减少药物的不良反应;消除生物屏障对药物作用的限制,直达治疗部位。如图所示,一般此类纳米药物载体尺寸在10~100nm之间,需要用TEM才能达到如此高的分辨率,图中的单个纳米胶囊的尺寸在20~50nm左右。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 物理所公开1-9月仪器采购意向:预算1亿,电镜/原子力显微镜等
    仪器信息网讯 1月29日,中国科学院物理研究所公开2021年1至9月政府采购意向,本次意向共涉及采购意向37项,涉及低温透射电子显微镜、原子力显微镜、光谱仪、X-射线衍射仪、稀释制冷机、冷冻超薄切片机、原子层沉积系统、无液氦扫描隧道显微镜系统、低温恒温器、空间分辨光电子显微镜等品类仪器设备,总采购预算1亿元,预计采购日期分布在2021年1至9月。(详见文末表2)拓展:2021年1月份以来,多个高校院所陆续公开2021年仪器采购意向,目前公开信息如下表1:表1 近期高校院所公开2021年仪器采购意向动向表公布时间单位名称项目数量预算总金额(亿元)预计采购日期清单链接1月16日西北工业大学270.8853至4月链接1月20日中国科学院微电子研究所482.073至12月链接1月21日中国科学院金属研究所240.85162至12月链接1月22日中国科学院大学753.283至12月链接1月27日上海应用物理所511.352至10月链接1月28日中国科学院上海高等研究院392.41至9月链接1月29日中国科学院物理研究所371.021至9月链接物理所采购意向信息表如下表2:表2 中国科学院物理研究所2021年1至9月政府采购意向信息表序号采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1高精度多轴X-射线衍射仪A02062002-电气物理设备详见项目详情1602021年4月2低温强磁场输运测量系统A02062002-电气物理设备详见项目详情1802021年4月3原子力显微镜A02062002-电气物理设备详见项目详情1102021年4月4稀释制冷机A0206180199-其他制冷电器详见项目详情3402021年4月5矢量网络分析仪A02100404-光学式分析仪器详见项目详情1102021年4月6大阵面X射线成像探测器A02100303-物理光学仪器详见项目详情2602021年4月7高动态范围条纹相机A0202050104-专用照相机详见项目详情2732021年4月8X射线时间分辨成像探测器A02100303-物理光学仪器详见项目详情3802021年4月9冷冻超薄切片机A02062002-电气物理设备详见项目详情1152021年4月10低温透射电子显微镜A02100301-显微镜详见项目详情20002021年4月11高速成像相机A0202050105-特殊照相机详见项目详情1602021年4月12原子层沉积系统A02100699-其他试验仪器及装置详见项目详情3002021年4月13无液氦扫描隧道显微镜系统A02100301-显微镜详见项目详情4502021年4月14Attocube 2100干式低温恒温器A0206180199-其他制冷电器详见项目详情4002021年8月15Oxford TeslatronPT干式低温恒温器A0206180199-其他制冷电器详见项目详情2502021年4月16超高真空分子束外延系统A02062002-电气物理设备详见项目详情3302021年4月17稀释制冷机A0206180199-其他制冷电器详见项目详情3802021年4月18超导量子计算室温操控系统A02100699-其他试验仪器及装置详见项目详情2602021年4月19精密慢走丝线切割机A02062002-电气物理设备详见项目详情1902021年1月20双主轴车削中心A02100699-其他试验仪器及装置详见项目详情1602021年1月21飞秒脉冲激光系统A02100303-物理光学仪器详见项目详情230.52021年1月22全波段飞秒瞬态吸收光谱仪A02100303-物理光学仪器详见项目详情1602021年3月23条纹相机超快时间分辨荧光光谱仪A02100304-光学测试仪器详见项目详情1672021年4月24透射电镜原位高温力学测量系统A02100699-其他试验仪器及装置详见项目详情1402021年3月25空间分辨光电子显微镜A02100301-显微镜详见项目详情5002021年2月26超导磁体低温恒温器A0206180199-其他制冷电器详见项目详情1502021年4月27显微共焦高分辨超低波数光谱系统A02100404-光学式分析仪器详见项目详情1582021年4月28超导磁体低温恒温器A0206180199-其他制冷电器详见项目详情1502021年4月29低液氦损耗超导强磁体及氦三制冷系统A0206180199-其他制冷电器详见项目详情2852021年4月30低温恒温器A0206180199-其他制冷电器详见项目详情1502021年4月31真空室A02052401-真空获得设备详见项目详情1002021年5月32超快电子枪及真空腔体A02052404-真空系统附件详见项目详情1002021年4月33超高真空多腔室电子束镀膜系统A021099-其他仪器仪表详见项目详情5362021年3月34真空泵组A02051907-真空泵详见项目详情2502021年5月35光谱仪A02100304-光学测试仪器详见项目详情1602021年9月36数字万用表 、数字源表等A021099-其他仪器仪表详见项目详情1002021年5月37气液分离器A02052299-其他气体分离及液化设备详见项目详情1502021年6月
  • 光学显微镜、电镜用于地震灾区石棉粉尘检测
    2013年4月20日上午八时零二分,四川省雅安市芦山县地区发生7.0级地震,地震造成重大人员伤亡和财产损失。地震发生后,科技部紧急研究部署四川雅安地震抗震救灾科技工作,并在科技部门户网站发布抗震救灾实用技术手册,供地震灾区选用。在抗震救灾实用技术手册中,发布了地震灾区石棉粉尘检测技术。具体信息如下:   灾后各灾区的损坏建筑的清理、拆除、重建工作非常繁重,在这个过程中,粉尘的污染是个十分重要的问题,特别是很多建筑使用了或多或少的石棉材料,由此产生的石棉粉尘会对人体健康造成危害。本手册内容为针对石棉粉尘的分析监测技术和使用了石棉材料的建筑物的拆解及石棉废弃物的安全处理处置操作技术,以备地震灾区在工作中参照采用。   地震灾区使用了石棉材料的建筑物的安全拆解及石棉废弃物的处理处置应遵循专人按章操作,严密防护,安全、妥善贮存运送,指定地点集中处置,在整个过程中均设立明显示警标志,确保在拆解、处理处置过程及处置后的环境安全的原则。在工作过程中,要针对工作现场及周边进行石棉纤维污染的监测,防止造成污染,确保人体健康。   石棉纤维的检测方法有多种,主要有光学显微镜法、电镜法、X-射线衍射法等。其中光学显微镜法原理简单、所使用光学显微镜较为常见。而电镜法则准确度比较高,可以检测出较为细小的石棉纤维颗粒。   一.固体样品的检测   可参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》的分析方法。主要方法如下:   1.样品的采集   固体材料中石棉检测工作的样品采集方法如下。   在材料的不同部位取下样品若干块,取样量约50-200克左右。   2.样品的预处理   1)被测样品中有机物质的去除。采用高温烘烤方法,在马弗炉中在400-500℃的温度下加热2小时左右,除去被测样品中的有机物质。   2)块状样品的粉碎。采用机械手段进行破碎和研墨至粉末状。(若使用破碎机,粉碎时间不要太长。不然会造成石棉纤维成为细小颗粒,无法辨别)   3)纤维束状和絮状样品。用剪子剪碎后,可用研钵稍做研磨,以使缠绕成团的纤维和过粗的纤维束可以分离舒展。或用镊子等工具从边缘剥离少许。   4)将粉碎或研磨好的样品进行充分的混匀待用。   3.样品的分析   采用光学显微镜法分析参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》。   采用扫描电镜检测参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。   二.空气样品中石棉纤维的检测   1.光学显微镜法   样品采集就是将含石棉尘的空气抽取通过采样滤膜,石棉尘于滤膜上透明固定后,在相衬显微镜下计数,根据所采气体体积计算出每立方厘米气体中的石棉尘的根数。   采样及测定方法参照HJ/T41-1999《固定污染源排气中石棉尘的测定-镜检法》。   2.扫描电镜法   样品采集及测定可参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。   样品采集时可使用适用于扫描电镜观测的0.2微米或者0.4微米孔径的核孔膜。采样流量5-10L/min.。采样时间根据粉尘污染情况确定,以不造成颗粒物重叠为宜。   参照ISO 14966-2002 标准,在2000倍下进行观察和计数,计数规则参照上述标准。   技术来源   单位名称: 国家环境分析测试中心   联系地址: 北京朝阳区育慧南路1号 邮编:100029   联系人: 董树屏   联系电话:13601358418   e-mail: yrhuang@cneac.com   石棉的定义及可能含有石棉材料的建筑材料   石棉定义:石棉主要有两类,一类指属于蛇纹岩类的纤维状矿物硅酸盐,即温石棉(白石棉) 另一类是指闪石类纤维状矿物硅酸盐,即阳起石、铁石棉(棕石棉、镁铁闪石-铁闪石)、直闪石、青石棉(蓝石棉)、和透闪石。   石棉粉尘是指环境中悬浮在空中的石棉微粒。直径小于3微米,长度与直径之比大于3,纤维测量长度大于5微米的石棉纤维对人体的危害最大。   我国建筑材料中使用的主要是温石棉。可能含有石棉材料的建筑材料包括:石棉水泥瓦,钢丝网石棉水泥波瓦,石棉水泥平板,TR建筑平板,石棉硅酸钙板,石棉水泥管,石棉纱、线,石棉绳,石棉布,石棉带,热绝缘石棉纸,衬垫石棉纸、板,保温石棉板,泡沫石棉,石棉衣著,石棉被等。在这些材料中水泥制品比较坚固稳定,而保温石棉板、绝缘材料、泡沫石棉的材料较为松散易碎,更易于进入空气中造成污染。
  • 西电芜湖研究院预算595万购买高倍显微镜等三套仪器
    3月28日,西电芜湖研究院公开招标,购买高倍显微镜、回流焊炉等设备,预算595万元。  项目编号:WH01CG2021HW0070(任务书编号:G2021-0111)  项目名称:西电芜湖研究院AEC-Q100/101二期器件制备与测试系统(本项目投标文件须为电子文件,仅支持物理CA锁加解密。)  采购需求:回流焊炉 1套、高温度工作寿命试验系统 1套、高倍显微镜 1套,具体详见附件。  合同履行期限:6个月。  本项目不接受联合体投标。  开标时间:2021年4月13日9点15分(北京时间
  • 205.9万!宁夏大学材料性能表征实验室显微镜等设备采购项目
    采购计划编号: 2022NCZ000614项目编号: YQ-NCZ-2022011项目名称: 宁夏大学材料性能表征实验室建设设备采购项目预算金额(元): 2059000.00最高限价(如有): 2059000.00元采购需求:采购标段标的名称数量简要规格描述或项目基本概况预算金额(元)备注宁夏大学材料性能表征实验室建设设备采购项目其他仪器仪表1显微镜、激光共聚焦显微镜、高温差热-热重测试仪、阻温测试系统等设备2059000.00数量合计:1预算合计:2059000.00合同履行期限:合同签订后60日内。本项目(是/否)接受联合体投标: 是 否
  • 热议中国电镜技术进展!ACAIC 2023 “电子显微镜创新论坛”成功召开
    仪器信息网讯 2023年11月29-30日,第八届中国分析仪器学术大会(ACAIC 2023)在浙江杭州成功举办。本届大会由中国仪器仪表学会分析仪器分会主办,吸引了全国500余位科技管理人员、专家学者和和仪器企业相关人员齐聚杭州,并组织了11个分论坛,聚焦分析仪器、生命科学仪器、电镜、半导体,以及核心零部件、临床诊断等主题。论坛现场从仪器技术难度来看,电子显微镜处于仪器行业的金字塔尖,2017年其细分领域冷冻电镜的三位科学家共同获得了诺贝尔奖。当前,国内电子显微镜研制及应用现状如何,有哪些新的突破和进展?国内冷冻电镜平台建设和管理有哪些创新之处?围绕这些问题,11月30日下午,由北京大学冷冻电镜平台组织的“电子显微镜创新论坛”成功召开。北京大学冷冻电镜平台副主任/高级工程师 郭振玺 主持会议本次会议由北京大学冷冻电镜平台副主任/高级工程师郭振玺主持,邀请了9位致力于电子显微学技术研究的科研院所和企业代表分享报告。报告人:浙江大学教授 张跃飞报告题目:纳米分辨可视化原位显微结构与性能一体化测试仪器开发与应用调控微观组织结构是先进性能优化的主要手段,长期以来材料微观结构与性能关系研究主要依靠离位表征,缺乏材料加工或服役条件下微观结构演变和与之相应的性能调控的全时空纳米分辨可视化过程信息。纳米分辨可视化原位扫描电镜的开发,实现了从纳米到宏观尺度可视化研究材料在高温受力条件下微观结构演变与力学性能间定量化关系,是优化材料制备工艺、质量检测、服役寿命评估、安全性评价重要科学手段。报告介绍了纳米分辨可视原位仪器最新进展、原位表征方法发展及其在合金研究中应用的最新成果。报告人:北京大学冷冻电镜平台副主任/高级工程师 郭振玺报告题目:冷冻电镜平台建设管理及自主创新经验交流大科学平台是支撑基础研究和科技创新的公共平台。北京大学冷冻电镜平台是学校公共平台建设重点项目,于2015年下半年论证建设,2017年开始运行。平台致力于打造国际一流的高端科研平台,为全校生命科学及相关学科提供全面的冷冻电镜技术服务,促进学科深度交叉融合,助力学校双一流建设。报告结合了郭振玺多年的工作经验,介绍了前沿冷冻电镜平台的规划建设,承担的重大建设任务,冷冻电子断层成像技术(Cryo-ET)流程等。报告人:莱腾仕精密机电(上海)有限公司中国区销售经理 靳路山报告题目:荷兰NTS集团-助力扫描电镜(SEM)高端制造和装配扫描电镜 (SEM) 是国之重器,也是精密仪器高端制造的典型代表设备,涉及到光学,电子光学,超高精密加工制造,超高精度机械装配等跨专业,跨领域专业知识。据介绍,NTS集团作为荷兰-埃因霍温高端制造工业的典型企业,历经80年的悠久历史,长期为国际巨头如ASML、赛默飞等企业提供超高精密零部件,超高精密运动模组,也着重助力中国本土扫描电镜迈向高端化,智能化,模组化。报告人:浙江工业大学副教授 李永合报告题目:先进扫描电子显微方法功能化进展扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,SEM-FIB重构进一步实现材料形貌的三维重构可视化,超低温冷冻平台科研实现电子束敏感材料无损制备,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,报告着重介绍了发展的STEM-in-SEM方法和SEM-FIB三维重构在弱衬度材料表征应用,以及循环条件下,全固态电池失效行为的原位研究等工作。报告人:中国科学院上海药物研究所上海市高峰电镜中心执行主任 袁青宁报告题目:不同型号Titan Krios冷冻透射电子显微镜性能探索随着2017年诺贝尔化学奖授予冷冻电镜领域3位科学家,冷冻电镜逐步的进入大众的视野。冷冻电镜的出现也填补了电子显微技术解析电子束敏感样品这一领域的空白。随着近几年冷冻电镜相关的硬件和软件的发展,冷冻电镜也逐步出现不同的选择,性能也褒贬不一。目前市场上的冷冻电镜主要分为热场和冷场,相机主要分为Gatan的K3和赛默飞的Falcon4i。袁青宁通过研究不同型号Titan Krios冷冻透射电子显微镜性能发现,Stage shift和AFIS数据收集方式对于数据质量影响不大;即使可以后期校准,coma会影响数据的质量;Selectris X+Falcon4i可以和Biocontinuum+K3相机平分秋色;Selectris中slit的稳定性好于Biocontinuum。报告人:国仪量子(合肥) 技术有限公司高级应用工程师 刘怡童报告题目:国仪量子电镜技术最新进展及应用报告介绍了国仪量子电镜的最新产品和技术进展,包括国产聚焦离子束电子束双束电镜和超高分辨扫描电镜。结合国仪可搭载的不同探测器,刘怡童介绍了在不同行业积累的应用案例,并表示国仪是一家可实现高度研发,生产制造可控的国产电镜厂商,国产电镜进入全新时代。报告人:浙江大学工程师 郭建胜报告题目:体电子显微成像技术在生物样品超微结构分析中的应用体电子显微成像技术(volume electron microscopy)可以在大三维空间中对样品进行纳米分辨率三维结构分析,获取样品内部结构的三维模型和各结构之间的位置关系、体积比例等信息,更加全面的反映样品超微结构与功能的关系。该技术已在神经生物学中成功解析了神经元的链接方式,目前正在快速的向细胞生物学、临床医学、植物学等多个学科发展。报告人:常州隆斯克普电子科技有限公司总经理 刘晓斌报告题目:电镜制样新进展样品制备对电镜成像效果至关重要。常州隆斯克普研发的电镜样品冷冻升华断裂综合实验仓,为样品提供 10-4Pa 等级的真空保护:样品台中心点位的温度可以在-150°C到+105°C间进行精准调控,实现低温保护和升华;配备预冷断裂刀;并可以选配离子枪溅射镀膜套件,含高功率离子枪和专利四靶材靶材托。此外,还可以根据用户既有设备选配或定制专用样品仓,实现和电镜或其他设备的无缝连接。报告人:南方科技大学技术主管/高级工程师 马晓旻报告题目:南方科技大学冷冻电镜中心建设与管理马晓旻在报告中总结了南方科技大学冷冻电镜中心大型仪器设备的状况、大型仪器设备平台开放共享管理系统及运行模式。从管理框架、开放共享等方面,探讨了南方科技大学冷冻电镜中心的管理及运行机制,并介绍了这方面的建设效果。电子显微镜是人类探知微观世界最有力的工具之一,它能够提供比光学显微镜更高分辨率的图像,从而让我们能够更深入地了解微观世界。本次“电子显微镜创新论坛”的召开将促进电子显微学技术交流及相关仪器产业发展、探索国产电镜相关仪器在前沿研究中的应用前景,激发创新思维,促进合作共赢,为电子显微学注入新的动力。
  • 1470万!兰州理工大学聚焦离子束电子显微镜等采购项目
    一、项目基本情况项目编号:2022zfcg04514项目名称:兰州理工大学聚焦离子束电子显微镜项目预算金额:600.0(万元)最高限价:600(万元)采购需求:聚焦离子束电子显微镜一套。本项目共一个包,具体参数要求详见招标文件。合同履行期限:自签订合同之日起300日内安装并调试完成本项目(是/否)接受联合体投标:否项目编号:2022zfcg04516项目名称:兰州理工大学高温真空超纳米压痕仪项目预算金额:450.0(万元)最高限价:450(万元)采购需求:高温真空超纳米压痕仪1套,具体参数详见招标文件。合同履行期限:合同签订之日起8个月内交货并安装调试完毕。本项目(是/否)接受联合体投标:否项目编号:2022zfcg04509项目名称:兰州理工大学热力耦合疲劳试验机项目预算金额:420.0(万元)最高限价:420(万元)采购需求:热力耦合疲劳试验机1台合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否二、获取招标文件时间:2023-04-13至2023-04-19,每天上午00:00至12:00,下午12:00至23:59地点:甘肃海联公共资源交易网(www.gsebidding.com)在线免费获得方式:为了规范交易平台的业务流程以及给用户提供方便快捷的服务,凡是拟参与甘肃省公共资源交易活动的投标人需依照甘肃海联公共资源交易平台首页窗口“CA锁办理指南”的相关程序先在甘肃海联公共资源交易平台网上注册,并办理获取CA数字证书。用已办理获取的CA数字证书登录,登记拟参与项目进行投标,免费下载招标文件。 甘肃海联公共资源交易平台 联系电话:0931-8230753 0931-8230762 0931-8511237 联系地址:甘肃省兰州市城关区雁滩高新开发区雁南路西脉大厦四层 请投标人随时关注“甘肃海联公共资源交易网”关于本项目相关书面变更及通知,如因未主动登录网站而未获取相关信息,对其产生不利因素由投标人自行承担 甘肃海联公共资源交易平台 联系电话:0931-8230753 0931-8230762 0931-8511237 联系地址:甘肃省兰州市城关区雁滩高新开发区雁南路西脉大厦四层 请投标人随时关注“甘肃海联公共资源交易网”关于本项目相关书面变更及通知,如因未主动登录网站而未获取相关信息,对其产生不利因素由投标人自行承担。售价:0(元)三、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:兰州理工大学地 址:甘肃省兰州市七里河区兰工坪路287号联系方式:138934050812.采购代理机构信息名 称:甘肃磐石昊业项目管理咨询有限公司地 址:甘肃省兰州市七里河区硷沟沿272号(大唐宫A座27层2709)联系方式:181539952173.项目联系方式项目联系人:石瀚文电 话:18153995217
  • 中国电子显微镜运行管理开放共享平台分会场顺利召开
    p style=" text-align: justify text-indent: 2em " strong 中国电子显微镜学会、仪器信息网联合报导: /strong 11月22日,2020年全国电子显微学学术年会在成都召开。今年,对于全世界的人们都是特殊的一年,新冠疫情从新春肆虐至今未除,给我们的生产、生活带来了极大的影响。今年,对于学会而言则是成立四十周年值得纪念的重要时刻。因此,今年的年会主题为“显微学激发新希望”,会议期间大家回顾历史,憧憬未来,大会报告格外精彩。与此同时,十个分会场的报告同样精彩纷呈,盛况空前。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202012/pic/2a9f525f-7228-46d0-9833-f2b925748ca6.jpg" style=" text-align: center text-indent: 0em max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 大会现场 /span /p p style=" text-align: justify text-indent: 2em " 第十分会场“全国电子显微镜运行管理开放共享实验平台分会场”(以下简称:共享实验平台分会场)上午的分会报告,在分会主席韩玉刚(中国科学院生物物流研究所)研究员,郭振玺、张文娟等老师以及秘书处的共同努力下,得到了众多教授、专家、同行的支持,会议顺利召开。会议期间大家围绕“平台建设、运行管理、开放共享、自主创新”等主题展开了热烈的讨论,获得良好的效果。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202012/pic/eb6790ea-9d48-4bf7-aa2e-1020ce3882ef.jpg" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 第十分会场现场 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(227, 108, 9) " strong br/ /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(227, 108, 9) " strong 公共平台的建设与开放共享 /strong /span /p p style=" text-align: justify text-indent: 2em " 23号早上8点30分,平台分会座无虚席,大家迎来了分会首个报告《显微镜开放共享与查重评议工作介绍》,报告人是来自国家科技部平台中心徐振国研究员。 /p p style=" text-align: justify text-indent: 2em " 以《国务院关于国家重大科研基础设施和大型仪器向社会开放的意见》(国发{2014}70号文)出发,徐振国研究员详细的讲解了科研设施与仪器开放共享具体要求、政策制度等,并具体分析了目前国家显微镜开放共享的现状与不足。随着国家的大力支持,近年来科研大型仪器设备与平台建设无论是速度、力度与规模都逐步增长。在此背景下,公共平台的共享开发与大型设备的查重评议显得尤为重要。基于《中央级新购大型仪器设备查重评议管理办法》,徐振国研究员详细介绍了查重评议流程和显微镜采购的查重评议情况与成效。据统计,截止2020年10月,今年中央级单位计划申请采购仪器总台(套)数为54757台(套),经查重评议减少的仪器采购数量减少14614台(套),直接节约经费266.73亿,这充分展现了查重评议工作的重要性。最后,徐振国研究员还对显微镜采购的查重评议工作进行了肯定,也对显微镜开放共享提出来希望和要求。 /p p style=" text-align: justify text-indent: 2em " 在接下来两天的会议中,西安交通大学、兰州大学、中南大学、天津理工大学、重庆大学等单位纷纷汇报了各自的开放共享情况、举措、成效与问题等。 /p p style=" text-align: justify text-indent: 2em " 西安交通大学孟令杰教授的报告题为《西安交通大学共享平台规划建设和运行成效》。报告中,孟令杰教授首先简要介绍了西交大分析测试中心的运行与共享情况,完美的体现了以少量的设备服务于众多的学科、取得了显著的成效;中心设备平均年共享机时约2300小时,远超校内设备年均1490小时;为各平台的开放共享提供了大量宝贵的经验。西安交通大学设立了不同等级的公共共享平台,包括12个专业平台、22个院级平台以及8个校级平台。近年来,西安交通大学的发展与创新港的建设备受关注,为此,孟令杰教授也细致的讲解了创新港校级平台的建设工作,并从中心建设、共享系统、管理机制等方面进行剖析与经验分享。最后,他提出了设备建设需合理规划、分类管理与考核、加强技术队伍与人才梯队建设、健全管理制度与激励机制。 /p p style=" text-align: justify text-indent: 2em " 来自于上海交通大学分析测试中心的何琳研究员以《大型电镜共享平台的安全管理》为题,简要介绍了上海交通大学分析测试中心基本情况与设备运行管理、共享开放的情况。开放共享是目标,而安全则是前提。实验室安全工作责任重大,也是实验室良好运行的基础。据何琳研究员介绍,为做好实验室安全工作,其中心开展了一系列的举措,包括建立多级安全责任体系即“中心-平台-机组-实验室”,设立相应的安全员与安全责任人,达到“纵向到底,横向到边,不留死角”的程度;完善安全规章制度;加强安全培训,2019年进行安全培训1300余人次;定期排查安全隐患,及时整改等措施,取得了良好的效果。实验室安全无小事,既关系到实验室人员与用户的安全,更关系到中心与学校的发展,何琳研究员为我们上了一堂生动的安全教育课,其实行的安全管理模式也为其他实验室建设与安全管理提供了宝贵的经验。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(227, 108, 9) " 工欲善其事必先利其器,实验室的建设是基础 /span /strong /p p style=" text-align: justify text-indent: 2em " 先进的设备平台是高质量数据获得的基础,也是打开众多科学问题的钥匙,然而高端精密仪器设备往往对于环境指标提出了严苛的要求。为此,基于多年的环境改造工作经验北京大学郭振玺博士作了《高端电镜环境技术改造要点》的报告,细致的探讨了高端电子显微镜环境改造的意义与技术要点,从温湿度控制到地线设置,从磁场干扰到振动影响,从技术指标到验收要点,系统而详尽的给出了显微室建设的核心问题的解决思路,为高端电镜平台的建设提供重要参考。 /p p style=" text-align: justify text-indent: 2em " 北京理工大学邵瑞文研究员、中国科学院大学时金安博士、重庆大学李经纬博士、北京工业大学陈艳辉研究员等分别分享了球差校正电镜平台的建设与运行宝贵经验,既让我们体会到了平台搭建的不易,更体现了电镜人做事的精益求精的精神,为球差电镜平台的建设提供了有益参考。 /p p style=" text-align: justify text-indent: 2em " 中国科学院上海巴斯德研究所冷冻电镜中心戴阿光教授分享了后疫情时代P2冷冻电镜平台建设的、经验,戴阿光教授从平台建设及要求、设备情况、管理制度、研究方向等方面向大家介绍了P2级电镜室的建设要求,也为大家展示了一个先进的P2冷冻电镜平台。 /p p style=" text-align: justify text-indent: 2em " 而南方科技大学的吴静博士则是以《南方科技大学冷冻电镜中心的运行及优化管理》为题,向大家展示了国内最先进的冷冻电镜平台的建设及运行情况,给大家留下了深刻的印象。从南科大冷冻平台的建设也让大家感受到了国家与地方政府对大型仪器平台以科研工作的高度重视。 /p p style=" text-align: justify text-indent: 2em " 实验室与设备的维护管理,对于设备的长久稳定、高效运行至关重要。北京工业大学闫鹏飞教授以《分享STEM 高分辨模式下图像毛刺问题产生的原由和消除历程》为题,报告了其所负责的球差电镜运行中高倍HAADF成像下存在着强烈的毛刺现象及解决过程。历经多次的场地检测与外围因素探索(包括机械振动、电磁干扰)无果的情况下,锁定罪魁祸首是440HZ的低频信号干扰,而当影响源被确定为是循环水堵塞之后,终于得以解决。闫鹏飞教授现场的经验分享和寻找问题的心路历程引起了听众热烈的反响和支持。 /p p style=" text-align: justify text-indent: 2em " 西安交通大学的任子君老师,强调了日常保养(小保养)以及公司定期的保养(年保/大保养)的重要性,通过定期的保养可有效的维持设备性能指标的稳定,同时也能及时排查与预防设备故障,确保设备高效运行。无论是闫老师“寻根问底”的追凶,还是任老师的提前预防的举措都反映了电镜管理者高度负责任的态度与坚持不懈努力寻求真理的精神,这也激励着我们每一位电镜管理与操作人员。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(227, 108, 9) " 运行制度是开放共享的保障 /span /strong /p p style=" text-align: justify text-indent: 2em " 电子显微镜测试与研究工作,因其巨大的需求量、特殊的工作性质(需要的大量的人为操作)与数据分析的专业性,一方面导致了电镜开放运行机时普遍高于其他设备,另一方面也增加了管理人员的工作压力与健康问题。 /p p style=" text-align: justify text-indent: 2em " 正如中南大学颜宁博士等人提出的,目前电镜公共平台普遍存在以下几个问题: 1)测试需求量大,如何更快的满足用户(老师和学生)的科研/检测需求已是当务之急。2)测试费用难于收取,设备维护费用高昂,难以为继。3)透射电镜对样品的要求极高,常需反复尝试,工作人员投入了大量的精力却常难被理解。4)晋升通道难以畅通,各单位实验室工作老师或多或少面临着不同层度的考核和晋升的尴尬与难题。 /p p style=" text-align: justify text-indent: 2em " 在两天的会议中,兰州大学(张宏)、中南大学(颜宁)、天津理工大学(习卫)、上海交通大学(何琳、赵晓然)、重庆大学(张斌)、中国科学院上海生化细胞所(边玮教授级高级工程师、俞珺璟副研究员)等人纷纷就以上相关问题,分享了各自所在(电镜)平台的运行、管理过程中的成功经验与不足。 /p p style=" text-align: justify text-indent: 2em " 张宏博士指出,兰州大学在国内率先实行了保修制度,有效的解决了操作人员与管理人员的后顾之忧,极大的方便了设备的开放共享。习卫博士担忧地提到,因为学生自主的操作给仪器带来了极大的损伤(性能指标大幅下降),无耐之下只能只得放弃自主培训,但这确实在一定程度上影响了设备的运行效率。严格培训、持证上岗、加强管理与责任划分或许是一条行之有效的路径。颜宁博士详细介绍了其中心在学生培训工作中的经验与问题,根据学生需求的不同开展分级制的培训方案,具有不同操作等级的操作人员可以预约使用不同时间的机时,既缓解了测试人员的工作量,同时也解决了长时间排队的难题。兰州大学、重庆大学等进一步通过会员制度,在非工作时间的利用率,共享开放等方面得到了大幅的提升,有效的改善了设备机时紧张的问题,同时降低用户的测试成本,取得了良好的效果与声誉。此外,轮岗制度、激励制度等对于平台的高效运转与人员积极性也起到了有益的作用。高效的运行机制与高度的开放共享,所带来的众多的高水平科研成果的产出,充分发挥了大型公共平台在助力学科建设、促进交叉融合方面的重大作用。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(227, 108, 9) " 勇于开拓,自主创新,实现关键技术的突破与设备的研发 /span /strong /p p style=" text-align: justify text-indent: 2em " 自主创新,作为本分会的另一个重要主题,于24日上午进行了集中的讨论。首先,北京大学的徐军教授以《北京大学电镜室在仪器研发道路上的探索》为题,分别介绍了其所在团队在场发射电子源、阴极荧光系统、电子束曝光机等核心部件与仪器的研制方面的经验与突破。徐老师生动的讲述了设备研制过程中所面临的问题与关键技术难题的解决过程,以及设备实验效果与前景。场发射电子源的研制不但有望突破仪器厂商的“垄断”限制,同时也有望实现自主产权的高质量电子源;电子束曝光机的研制更是向“卡脖子”关键核心技术发起挑战。 /p p style=" text-align: justify text-indent: 2em " 随后,北京工作大学张跃飞教授分享了扫描电镜原位功能自主开发与运行经验(《扫描电镜中集中原位分析测试功能开发与应用》),介绍了其课题组多年来在扫描电镜自主研发工作上的历程与贡献。系统讲解了原位SEM/AFM联用系统、原位SEM电化学功能、原位SEM高温拉伸成像系统等开发与应用。特别的,由张老师团队开发的扫描电镜原位力学-高温实验技术方案与相应产品以处于国际领先地位。报告中张老师向大家展示了原位高温实验、原位EBSD和原位-高温EBSD实验结果,异常精彩。 /p p style=" text-align: justify text-indent: 2em " 前面我们已领略了徐军与张跃飞两位资深教授及团队在仪器开发方面做出的巨大努力与丰硕的成果,来自北京工业大学的张晴博士与中国科学院地质与地球物理研究所的唐旭工程师则让我们目睹了年轻一代人在自主创新与仪器开发方面的潜力与努力。 /p p style=" text-align: justify text-indent: 2em " 张晴博士汇报了透射电镜原位原子尺度多场耦合实验平台开发及应用工作,为未来优质的、具有自主知识产权的透射电镜原位样品台的商品化奠定了基础。而唐旭老师则自主研发了“透射电镜样品等离子清洗和样品杆存储集成装置”,同时具备样品等离子清洗,样品杆真空存储和TEM,3D APT样品真空存储三大功能,该设备技术指标与同类进口产品相近,设计理念和实用性更优,打破了国外相关的技术垄断。以上的设备研发工作对推动电子显微镜领域配套装置的国产化和自主创新意义非凡,得到了同行的一致肯定和支持。 /p p style=" text-align: justify text-indent: 2em " 此外,福建中医药大学陈文列教授、西安交通大学大学的陈明霞(教授级高级工程师)、温州医科大学验视光学院张军老师(教授)、河南中医药大学中医药科学院电镜中心孙宁老师等人就样品的制备技术进行了细致的分享,让与会的同仁收获良多。中国石化石油化工科学研究院郑爱国研究员、中科院地质与地球物理研究所刘家龙老师、郑州大学张洋老师等分别分享了电镜在各自工作中的重要作用与创新研究结果。 /p p style=" text-align: justify text-indent: 2em " 经过一天的大会报告,两天的分会报告,与会人员交流充分、讨论积极,不但收获了丰富的管理与工作经验,更建立了良好的友谊,为后续工作的开展与合作奠定了良好的基础。纷纷表示期待明年电镜年会再相会。 /p p br/ /p
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 9642万元预算!2022年扫描电镜、透射电镜、原子力显微镜采购意向盘点(4-12月)
    2022年4月,部分高校在中国政府采购网陆续公布了其2022年4-12月的仪器采购意向。仪器信息网将各高校和研究所2022年4-12月扫描电镜、透射电镜、原子力显微镜等采购意向加以整理,涉及共约28台(套)仪器,采购预算总额高达约9642万元。仪器采购单位涉及19个高校及研究所,包括电子科技大学、东北林业大学、南京航空航天大学、天津大学、中国科学技术大学、中南大学、中国科学院半导体研究所、中国科学院大连化学物理研究所、中国科学院电工研究所、中国科学院福建物质结构研究所、中国科学院金属研究所、中国科学院兰州化学物理研究所、中国科学院青海盐湖研究所、中国科学院上海光学精密机械研究所、中国科学院上海硅酸盐研究所、中国科学院上海应用物理研究所、中国科学院生态环境研究中心、中国科学院苏州纳米技术与纳米仿生研究所、中国科学院武汉病毒研究所、中国科学院长春应用化学研究所。从采购时间上看,2022年4月采购7台(套),5月采购8台(套),6月采购4台(套),7-8月各采购1台(套),9-10月各采购2台套。12月采购3台(套)。从采购金额上,扫描电镜最低采购预算为100万,最高采购预算530万元;透射电镜采购预算最低为380万元,最高采购预算金额为980万元;原子力显微镜最低采购预算金额为163万元,最高采购预算金额为300万元。由于部分高校仅集中发布了4-6月的仪器采购意向,后续仍将对各大高校研究机构采购信息进一步跟踪。各高校2022年4-12月扫描电镜、透射电镜、原子力显微镜等采购意向整理序号采购单位采购项目名称采购品目采购需求概况(点击查看)预算金额(万元)预计采购日期1中国科学技术大学透射电镜原位实验系统A033499其他专用仪器仪表详见项目详情6002022年5月2中国科学技术大学原子力显微镜A02100301显微镜详见项目详情3002022年10月3天津大学天津大学机械学院大样品台原子力显微镜A02100301显微镜详见项目详情1632022年5月4电子科技大学扫描电子显微镜A02100305-电子光学及离子光学仪器详见项目详情3902022年5月5中南大学中南大学基础医学院扫描探针显微镜采购项目A02100301 A02100301显微镜详见项目详情1502022年4月6南京航空航天大学快速扫描探针显微镜A02100301-显微镜详见项目详情2002022年4月7南京航空航天大学场发射高分辨透射电子显微镜A02100301-显微镜详见项目详情8202022年4月8东北林业大学多维材料表征平台一期建设项目(透射电子显微镜)A02100301显微镜详见项目详情9802022年5月9中国科学院大连化学物理研究所扫描电子显微镜A02100301详见项目详情1002022年8月10中国科学院大连化学物理研究所电子束-离子束双束显微镜A02100305详见项目详情7502022年6月11中国科学院长春应用化学研究所透射电镜CMOS相机A0202050105详见项目详情*2022年4月12中国科学院上海硅酸盐研究所具有原位拉伸功能的台式扫描电镜A02100301显微镜详见项目详情1312022年6月13中国科学院生态环境研究中心高分辨原子力显微镜A02100301详见项目详情1102022年12月14中国科学院福建物质结构研究所透射电镜A02100301显微镜详见项目详情3802022年5月15中国科学院兰州化学物理研究所原子力显微镜A02100301显微镜详见项目详情2602022年5月16中国科学院青海盐湖研究所扫描电镜A02100304详见项目详情1502022年4月17中国科学院武汉病毒研究所电镜序列断层成像超薄切片机采购项目A02100604生物、医学样品制备设备详见项目详情1202022年4月18中国科学院半导体研究所高分辨场发射透射电子显微镜A033499-其他专用仪器仪表详见项目详情8002022年5月19中国科学院半导体研究所扫描电子显微镜(SEM)A033499-其他专用仪器仪表详见项目详情418.12022年5月20中国科学院半导体研究所高分辨场发射透射电子显微镜A033499-其他专用仪器仪表详见项目详情7002022年9月21中国科学院半导体研究所扫描电子显微镜A033499-其他专用仪器仪表详见项目详情5302022年9月22中国科学院上海光学精密机械研究所EBSD扫描电子显微镜A02100699-其他试验仪器及装置详见项目详情3002022年6月23中国科学院电工研究所高分辨场发射扫描电镜A02100399详见项目详情4002022年10月24中国科学院金属研究所扫描探针显微镜A02100301显微镜详见项目详情1502022年6月25中国科学院苏州纳米技术与纳米仿生研究所原位扫描电子显微镜A02100399-其他光学仪器详见项目详情2802022年12月26中国科学院苏州纳米技术与纳米仿生研究所原位扫描电子显微镜-真空腔体A032199-其他电工、电子专用生产设备详见项目详情1802022年12月27中国科学院青海盐湖研究所扫描电镜A02100304详见项目详情1502022年4月28中国科学院上海应用物理研究所透射电镜原位高温力学测量杆A02100416分析仪器辅助装置详见项目详情1302022年7月
  • 显微镜连接电脑 摄像头连接到显微镜的安装操作
    显微镜连接电脑 摄像头连接到显微镜的安装操作显微镜可通过USB接口连接电脑和摄像头,用户可以在电脑进行拍照和录像等操作。显微镜摄像头通过高分辨率的CMOS/CCD传感器捕捉显微镜下的图像,然后通过控制器将图像传输到电脑或其他存储设备中。显微镜摄像系统可以用于观察、记录和分析细胞、组织、微生物等样本的结构和特征。它也可以用于医学、生物学、农业等领域的研究和实验中。MHS900显微镜摄像头显微镜摄像头连接到电脑的安装操作如下:1. 准备显微镜、摄像头和电脑,确保它们都是关闭状态。2. 使用相应的接口将数码显微镜与电脑连接起来,通常情况下会使用USB线或HDMI线,显微镜的USB2.0/3.0接口直接插入电脑对应的USB2.0/3.0接口即可,操作比较简单,插好后打开视频软件就可以使用了。3. 打开显微镜的电源,调整显微镜的焦距,使其清晰。(可以先放一张白色的纸张,调节好距焦。)4. 打开电脑,找到对应的驱动程序并安装,通常可以在显微镜摄像头的说明书上找到。5. 安装完成后,打开显微镜摄像头的软件,通常会在电脑的右下角或任务栏中显示。6. 在软件中选择“连接”或“导入”选项,然后选择要连接的数码显微镜品牌/型号。7. 等待软件与显微镜建立连接,连接成功后,可以在软件中看到显微镜中的图像。8. 可以使用软件进行拍照、录像、测量等操作,同时也可以将图像导出到电脑中进行进一步处理和分析。显微镜摄像系统界面显微镜摄像系统:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm显微镜摄像头:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm如果您的显微镜需要升级拍照功能和安装,请与我们联系。
  • 近5000万元!中科院2021年电子显微镜类仪器采购结果公示
    近日,中国科学院2021年仪器设备部门集中采购项目(电子显微镜类)成交,总金额近5000万元,以下为详情:中国科学院2021年仪器设备部门集中采购项目第5包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-1(招标文件编号:OITC-G210260981-1)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:捷欧路(北京)科贸有限公司  供应商地址:北京市海淀区中关村南三街6号中科资源大厦南楼二层  中标(成交)金额:545.0676000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 捷欧路(北京)科贸有限公司 第5包 透射电子显微镜 日本电子株式会社 JEM-F200、EM-20145(ZFE20)及S-Tool组成 1套 US$840,000.00   五、评审专家(单一来源采购人员)名单:  蒋秀高(组长)、滕琍敏、高连荣、孙家悦、闫树刚、王东明、李宁(包5用户代表)  六、代理服务收费标准及金额:  本项目代理费收费标准:按招标文件要求执行  本项目代理费总金额:5.0084000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第8包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-1(招标文件编号:OITC-G210260981-1)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:捷欧路(北京)科贸有限公司  供应商地址:北京市海淀区中关村南三街6号中科资源大厦南楼二层  中标(成交)金额:798.9800000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 捷欧路(北京)科贸有限公司 高分辨透射电子显微镜 日本电子株式会社 JEM-F200 1 人民币7989800元   五、评审专家(单一来源采购人员)名单:  蒋秀高、滕琍敏、高连荣、孙家悦、闫树刚、王东明、张晓红  六、代理服务收费标准及金额:  本项目代理费收费标准:[2002]1980号文件  本项目代理费总金额:8.2920000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第11包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-1(招标文件编号:OITC-G210260981-1)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:卡尔蔡司(上海)管理有限公司  供应商地址:中国(上海)自由贸易试验区美约路60号  中标(成交)金额:234.8000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 卡尔蔡司(上海)管理有限公司 场发射扫描电子显微镜 卡尔蔡司 Sigma 300 1 人民币2348000元   五、评审专家(单一来源采购人员)名单:  李文军、王亚平、曹亚萍、郭奋、赵志强、王英滨、麻云凤  六、代理服务收费标准及金额:  本项目代理费收费标准:[2002]1980号文件  本项目代理费总金额:2.9828000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第27包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-2(招标文件编号:OITC-G210260981-2)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:湖南津华仪器有限公司  供应商地址:长沙市雨花区湘府中路117号金典商务中心1、2、3、4栋2001室  中标(成交)金额:288.0000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 湖南津华仪器有限公司 120KV透射电子显微镜 日本高新技术有限公司 HT7800 1套 ¥2,880,000.00   五、评审专家(单一来源采购人员)名单:  崔国辉 温新婴 陈世东 高子萍 薛鹏 焦丽宁 王久荣(用户代表)  六、代理服务收费标准及金额:  本项目代理费收费标准:1980号文  本项目代理费总金额:0.0000000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第36包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-2(招标文件编号:OITC-G210260981-2)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:厦门航空开发股份有限公司  供应商地址:福建省厦门市湖里区高崎南五路222号航空商务广场3号楼10层  中标(成交)金额:268.0000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 厦门航空开发股份有限公司 扫描电子显微镜 捷克赛默飞世尔科技(原FEI) Apreo 2S HiVac 1套 ¥2,680,000.00   五、评审专家(单一来源采购人员)名单:  朱希洪 李玉霞 王璐 张健 邢晓慧 于同泉 周丽花(用户代表)  六、代理服务收费标准及金额:  本项目代理费收费标准:1980号文  本项目代理费总金额:0.0000000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第38包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-2(招标文件编号:OITC-G210260981-2)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:山西巢原科贸有限公司  供应商地址:太原市万柏林区千峰南路69号1幢1102室  中标(成交)金额:299.0000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 山西巢原科贸有限公司 介观尺度高温原位显微结构表征系统 赛默飞世尔科技有限公司 Quattro S 1 ¥2,990,000.00   五、评审专家(单一来源采购人员)名单:  朱希洪 李玉霞王璐 张健 邢晓慧 于同泉 白进(用户代表)  六、代理服务收费标准及金额:  本项目代理费收费标准:1980号文  本项目代理费总金额:0.0000000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第40包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-2(招标文件编号:OITC-G210260981-2)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:捷欧路(北京)科贸有限公司  供应商地址:北京市海淀区中关村南三街6号中科资源大厦南楼二层  中标(成交)金额:1999.5000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 捷欧路(北京)科贸有限公司 原子级分辨率球差校正透射电镜 日本电子株式会社 JEM-ARM300F2 1 ¥19,995,000.00   五、评审专家(单一来源采购人员)名单:  朱希洪 李玉霞 王璐 张健 邢晓慧 于同泉 张庆华(用户代表)  六、代理服务收费标准及金额:  本项目代理费收费标准:1980号文  本项目代理费总金额:0.0000000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。中国科学院2021年仪器设备部门集中采购项目第43包(电子显微镜类)中标公告  一、项目编号:OITC-G210260981-2(招标文件编号:OITC-G210260981-2)  二、项目名称:中国科学院2021年仪器设备部门集中采购项目  三、中标(成交)信息  供应商名称:卡尔蔡司(上海)管理有限公司  供应商地址:陕西省西安市未央区渭滨路西核公司高层小区  中标(成交)金额:500.3019000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 卡尔蔡司(上海)管理有限公司 聚焦离子束扫描电子显微镜 Carl Zeiss/德国 Crossbeam 350 1 US$771,000.00   五、评审专家(单一来源采购人员)名单:  崔国辉、温新婴、陈世东、高子萍、薛鹏、焦丽宁、王志光(用户代表)  六、代理服务收费标准及金额:  本项目代理费收费标准:1980号文  本项目代理费总金额:0.0000000 万元(人民币)  七、公告期限  自本公告发布之日起1个工作日。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 澳科学家利用透射X光显微镜揭秘月球土壤怪异之谜
    澳大利亚土壤学家马莱克-扎比克,利用同步加速器纳米X线体层照相术对土壤样本进行研究   1969年,&ldquo 阿波罗11&rdquo 号宇航员登上月球。在月球尘土层中,他们发现了奇怪的现象。在漫长的岁月变迁中,月球尘土完全处于不受打扰的静止状态,除了偶尔遭到陨石撞击。在遭到扰乱时,月球尘土表现出怪异的行为。月球尘土能够悬浮在地表上方,悬浮时间无法用月球弱引力解释。它们还具有很强的粘性,能够依附在航天服和设备上,就像依附在地表一样。此外,月球尘土也具有抗热特性。在直射阳光照射下,月球地表温度接近水的沸点,但在地下几英尺处,温度则低于水的凝固点。   月球土壤的显微镜照片,纳米颗粒内的气泡清晰可见。这些气泡让月球土壤拥有怪异的特性   一直以来,科学家就未能完全揭开这些与众不同的特性背后的秘密。为了揭开这个谜团,澳大利亚昆士兰科技大学科学与工程学院的土壤学家马莱克-扎比克博士前往台湾,利用纳米显微镜研究月球土壤。在太空竞赛所处的时代,科学家还没有发明这项技术。扎比克表示科学家很久以前就对月球土壤(浮土)的怪异特性进行了研究,但在土壤中发现的纳米和亚微颗粒并没有引起他们的重视,对这些颗粒的来源也没有进行研究。这些颗粒存在于玻璃泡中,玻璃泡是陨石撞击的产物。   扎比克将土壤样本带到台湾,利用一项新技术在不破坏玻璃泡情况下对其进行研究,了解里面的颗粒。这项新技术名为&ldquo 同步加速器纳米X线体层照相术&rdquo ,用于研究纳米材料。纳米X线体层照相术使用透射X光显微镜,能够拍摄纳米颗粒的3D图像。   佩戴3D眼镜时看到的月球土壤中纳米颗粒的3D图像   未佩戴3D眼镜时看到的图像,展示了岩石内的玻璃状颗粒   扎比克说:&ldquo 研究得出的发现让我们感到吃惊。我们原以为会在玻璃泡内发现气体或者蒸汽,就像地球上的玻璃泡那样,月球玻璃泡内存在一个具有高度渗透性的网络,网络由怪异的玻璃状颗粒构成。玻璃泡内的纳米颗粒似乎由陨石撞击月表时形成的熔岩构成。在遭到陨石撞击之后,玻璃泡被毁坏,释放出里面的纳米颗粒。月球表面的岩石也在撞击中遭到破坏并与纳米颗粒混合在一起,形成独特的月球土壤。&rdquo   扎比克指出纳米颗粒的行为遵循与普通物理学原理完全不同的量子物理学原理。因此,含有纳米颗粒的材料会表现出怪异的特征。他说:&ldquo 纳米颗粒体积微小,它们的怪异特征由体积决定,而不是它们的构成。我们对量子物理学了解不多,但根据我们的研究,从玻璃泡中钻出之后,纳米颗粒与其他土壤要素混合在一起,赋予月球土壤与众不同的特性。月球土壤带静电,因此能够悬浮在地表上方。虽然充满化学活性,月球土壤的导热性能很差,地表上的土壤温度可达到160度,地下2米的温度却只有零下40度。此外,月球土壤具有很强的粘性并且易碎,能够磨损金属和玻璃表面。&rdquo   扎比克表示月球并不像地球一样拥有大气层,因此无法降低陨石撞击产生的影响。他说:&ldquo 撞击月表的陨石能够产生非常剧烈的反应,所产生的高温熔化月表岩石。猛烈的撞击导致压力消失,形成真空。气泡在熔化的玻璃岩内形成并发生逃逸,就像软饮料中的气泡一样。我们的研究揭示了这些颗粒如何在这一过程中演化,可能帮助我们找到一种完全不同的纳米材料生产方式。&rdquo 扎比克及其研究小组的研究发现刊登在&ldquo 国际学术研究网络&rdquo 出版社的《天文与天体物理学报》上。
  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p    strong 腐蚀形貌常用表征方法 /strong /p p   在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。 /p p    strong 激光共聚焦扫描显微镜 /strong /p p   激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。 /p p   该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。 /p p    strong 试验材料 /strong /p p   试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。 /p p    strong 试验仪器 /strong /p p   红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。 /p p    strong 腐蚀试验 /strong /p p    span style=" color: rgb(0, 176, 240) " (1)全面腐蚀 /span /p p   将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。 /p p   依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。 /p p   试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N& #39 -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    span style=" color: rgb(0, 176, 240) " (2)沟槽腐蚀 /span /p p   将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。 /p p   依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。 /p p   试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。 /p p   试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    strong 结果与讨论 /strong /p p    span style=" color: rgb(0, 176, 240) " 1 全面腐蚀 /span /p p   全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title=" 图1 全面腐蚀试验后试样的宏观照片.jpg" alt=" 图1 全面腐蚀试验后试样的宏观照片.jpg" / br/ br/ /strong strong 图1 全面腐蚀试验后试样的宏观照片 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" width=" 378" height=" 406" border=" 0" vspace=" 0" style=" width: 378px height: 406px " / /strong /p p style=" text-align: center " strong 图2 全面腐蚀试验后试样的扫描电镜图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width=" 400" height=" 271" border=" 0" vspace=" 0" style=" width: 400px height: 271px " / /strong /p p style=" text-align: center " strong 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图 /strong /p p    span style=" color: rgb(0, 176, 240) " 2 沟槽腐蚀 /span /p p   由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title=" 式(1).png" alt=" 式(1).png" / /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" / /strong /p p style=" text-align: center " strong 图4 沟槽腐蚀试验后试样的宏观照片 /strong /p p   式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α& lt 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title=" 图5 沟槽腐蚀试验参数测定.png" alt=" 图5 沟槽腐蚀试验参数测定.png" / /strong /p p style=" text-align: center " strong 图5 沟槽腐蚀试验参数测定 /strong br/ /p p   沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title=" 图6 沟槽腐蚀试验后试样的金相图.jpg" alt=" 图6 沟槽腐蚀试验后试样的金相图.jpg" / /strong /p p style=" text-align: center " strong 图6 沟槽腐蚀试验后试样的金相图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" / /strong /p p style=" text-align: center " strong 图7 沟槽腐蚀试验后试样的LSCM图 /strong /p p style=" text-align: center " strong 表1 不同方法得到的沟槽腐蚀敏感系数 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" alt=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" / /strong /p p   采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。 br/ /p p    strong 结论 /strong /p p   (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。 /p p   (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。 /p
  • 郭可信先生与中国电子显微镜学会|2023年全国电子显微学学术年会大会报告(下篇)
    中国电子显微镜学会、仪器信息网联合报道 2023年10月27日,2023年全国电子显微学学术年会在东莞市会展国际大酒店龙泉厅盛大开幕。大会由电镜学会电子显微学报编辑部主办,南方科技大学、松山湖材料实验室、大湾区显微科学与技术研究中心共同承办,仪器信息网作为独家合作媒体参会报道。大会为期三天,参会人数再创新高,吸引来自高校院所、企事业单位、仪器技术企业等电子显微学领域专家学者2000余人出席参会。大会现场2023年是中国电子显微学开拓者之一郭可信先生诞辰一百周年,本届年会大会为专题纪念专场,怀念郭可信先生生前对中国电子显微学发展付出的心血与作出的巨大贡献。本届年会的主题是:显微鸿鹄志,世界一片天——怀念郭可信先生。大会开幕式由大会秘书长、北京大学教授高宁主持,大会主席、中国科学院院士 张泽,大会承办单位南方科技大学副校长、中国科学院院士贾金锋,大会组委会主席、电镜学会理事长韩晓东分别致辞。大会分为大会报告和13个分会场报告。开幕式后进入大会报告环节,大会报共分为五个阶段,依次由北京工业大学/南方科技大学教授韩晓东,中国科学院物理研究所研究员马秀良,中国科学院院士张泽,东南大学教授孙立涛,中国科学院院士叶恒强分别主持,十二位著名学者、相关仪器设备厂商专家代表依次为大家分享了精彩报告。以下为大会报告下半场七位大会报告内容摘要,以飨读者。大会报告下半场,由中国科学院院士张泽(左),东南大学教授孙立涛(中),中国科学院院士叶恒强(右)共同主持大会特邀报告:中国科学院院士、季华实验室教授 叶恒强报告题目:郭可信先生与中国电子显微镜学会在郭可信先生诞辰一百周年,叶恒强院士回顾了郭先生与中国电子显微学事业发展的渊源,郭先生生前对中国电子显微学发展付出的心血与作出的巨大贡献,以怀念郭可信先生。从1949年全国解放时中国拥有的第一台电子显微镜——英国Metropolitan-Vickers制造的EM/1M型透射电子显微镜;到1956年,在东京召开的第一届亚太地区会议,中国电子显微学论文第一次登上国际舞台;到中国电子显微学研究的先驱们,郭可信先生、李方华先生、黄兰友先生等。结合珍贵资料,叶恒强院士首先回顾了中国电子显微学事业的开端背景。接着回顾了中国电子显微镜学会成立的曲折历程。上世纪70年代,中国电子显微学界,错失了在衍射衬度电子显微学领域与国际同步进展的机缘。在国际高分辨电子显微学进展的冲击下,中国代表团于1979年参加了纪念日本电镜学会成立30周年的学术会议,在此启发下,1980年11月,中国电子显微镜学会在成都正式成立。随后,一批人才从国际一流电镜实验室学成归来的,中国电子显微学的春天。在郭可信先生等先辈的据理力争下,在国际友人的协助下,1986年9月,在国际显微学大会上,中国电子显微镜学会正式成为国际电子显微学联合会(IFSEM)成员,IFSEM接纳中国两个学会会员,称谓分别是:“Chinese Electron Microscope Society(对大陆),Electron Microscope Society, Taibei, China (对台湾)”。接着,叶恒强院士通过郭可信先生在振兴中国电子显微学事业过程中的点点滴滴事迹,回顾了郭可信先生的操劳。最后表示,有一些科学家,他们既有冲击世界前沿的能力,又能有很好的科研管理的才干,郭可信先生就是这样的科学家,是他代领着中国准晶研究团队走在世界前列。有句俗话叫做“大树底下好乘凉”,如今,更觉得清凉的可贵。同时,也借纪念郭先生这样的机会,祝中国电子显微镜学会走向新的辉煌。大会特邀报告:中国科学院院士、清华大学教授 隋森芳报告题目:冷冻电镜迈入新时代: 原位+近原子分辨隋森芳院士表示,郭可信先生不仅在物理材料领域对我国及国际的电子显微学做出了贡献,在生命科学电镜研究方面,也发挥了诸多非常具有先导性的作用。并分享了一些案例,包括上世纪九十年代,在国内刚开始发展时,郭先生就亲自主持了一项蛋白质电子晶体学的国家项目,这或许是国内最早的相关项目;上世纪九十年代中期,郭先生在北京推动第一台配置冷台的电镜,并吸引一批学者开展相关工作等等。接着,分享了生命科学冷冻电镜技术的最新发展进展。冷冻电镜技术是当今生命科学的前沿热点技术之一,近年来在Cell,Science,Nature的年度十大科学突破评选中,冷冻电镜因把生命科学推进到原子水平而连续当选。冷冻电镜主流技术包括单颗粒冷冻电镜技术(cryo-EM SPA)和冷冻电子断层成像技术 (cryo-ET),冷冻电镜结构生物学面临的挑战包括颗粒尽可能的小、颗粒尽可能大、颗粒的不均一、时间分辨等。最后,围绕近一年cryo-ET高分辨结构统计情况,分析了原位电镜技术的系列进展,一些代表性进展包括藻类光合系统的进化研究、激发态能量如何从藻胆体传递给光反应中心(PSII/PSI)相关研究等。大会特邀报告:中国科学院院士、清华大学教授 朱静报告题目:量子材料序参量和电子显微学作为我国材料电子显微学领域的前辈,六十余年来,朱静院士始终坚守在电子显微学研究第一线,在诸多材料领域,对于如何进一步利用电子显微镜中电子和物质的交互作用产生的各种信号,有着深刻地认识。近十年来,朱静院士主要聚焦在两种电子显微学方法。一是针对功能材料的量子材料序参量和电子显微学,一是针对结构材料,高通量多尺度(豪微米-亚埃尺度)应用于结构材料研究(飞机发动机单晶叶片和涡轮盘)。此次报告中,朱静院士主要分享了开展第一个工作的研究进展。据介绍,上世纪六七十年代对凝聚态物质研究的主要思路是从对称性出发,来寻找体系中可测量的序参量;而到了八十年代,则出现了两大里程碑式的进展:其一是以拓扑绝缘体和分数霍尔效应为代表的一系列跳出了朗道-金茨堡理论的体系和现象,其二是高温超导的出现引出了所谓强关联电子体系。朱静院士团队在2013年完成了定量EMCD 的研究,利用电子显微学方法定量的测定材料中原子磁矩。有可能利用电子显微学方法测量“点阵、电荷、自旋、轨道、拓扑”序参量。同年,启动了题目为“铁性序参量的亚原子尺度协同测量及耦合机制”的973课题。近十年来,围绕测量方法、关联性、科学问题开展研究。代表作品包括徐坤博士的磁光材料研究(博士学位论文- 2021,文章/PNAS)、王泽朝博士的超导材料机制研究(博士学位论文- 2023,文章/Nature,Science) 等得到国际学术界的关注和认可。2023年,由朱静院士著作的《量子材料序参量和电子显微学》也将由科学出版社于2023年12月出版等。最后,结合实例,详细介绍了点阵序参量、轨道序参量、电荷序参量、自旋序参量、拓扑序参量等方面的最新研究进展。公司特邀报告人:赛默飞Dr. Eric van Cappellen报告题目:The latest trends in (scanning) transmission electron microscopy赛默飞首席专家Eric Van Cappellen首先追忆了与郭可信先生的渊源。郭可信先生和Severin Amelinckx教授都是电子显微学届的权威,两位也是多年的好友,而Eric的博士阶段便是在Severin Amelinckx教授课题组度过。随后,Eric介绍了在当前生命科学领域,随着对细胞和组织研究的进一步深入,体电子显微镜再次成为趋势,但传统体扫描电子显微镜并不能满足前沿研究的需求。而具有4种可切换离子源(Xe, Ar, N, O)的Hydra Bio Plasma-FIB,有效解决了传统体扫描电子显微镜Z与X-Y方向分辨率不同以及机械变形的问题,可用于冷冻或树脂包埋生物样品更精确的体积成像及冷冻透射电镜三维重构样品的制备。接着,Eric从电子光学的灵活性,数据收集的灵敏性,信息获得的有效性三个角度介绍了如何解决材料科学领域的应用难题——减少样品的电子束损伤。通过具体的案例,Eric介绍了赛默飞最新的基于AI的图像减噪,高通量高灵敏度低剂量Ultra-X能谱,适用于电子束敏感材料成像的iDPC等有效减少样品的电子束损伤的最新技术。公司特邀报告人:泰思肯Dr. Daniel Němeček报告题目:Improving phase and orientation mapping at the nanometer scale by precession-assisted 4D-STEM microscopyTESCAN集团STEM专家Daniel Němeček博士为大家分享最近热点的4D-STEM技术进展。近期发展起来的4D-STEM技术是一种基于纳米束衍射的强大分析方法,可以在纳米级的分辨率下解析和表征多晶材料中晶体相位分布和单个晶粒的取向。然而,由于实验设置的复杂性以及样品扫描与束闸、旋进和检测器同步读出的挑战,使得4D-STEM技术的广泛使用受到了限制。Daniel Němeček在报告中展示了一种快速获取和处理4D-STEM数据集的新方法,因为所需硬件组件都与高水平的系统自动化和优化算法完全集成,用户可以简单操作,实时处理数据,在新的多模态分析电子衍射显微镜下获取可视化结果。TESCAN与德国Julich的Ernst Ruska中心密切合作,通过一些开发的应用实例,展示4D-STEM测量的强大功能。此外,通过一个多晶铝箔的例子,展示如何结合同时获取的EDS数据进行多模态分析,从而改善4D-STEM相分析的准确性。该多晶铝箔添加了金纳米颗粒,这些纳米颗粒具有非常相似的晶格参数(98%)。大会特邀报告:纽约州立大学奥巴尼分校医学科学系高级研究员 隋海心 报告题目:初级纤毛的立体电子显微学研究回忆往昔,隋海心高级研究员是郭可信先生1996年毕业的博士生,之后从材料物理领域转到结构生物学领域,研究水通道蛋白,从用X射线晶体学方法转回用冷冻电镜进行解析,做出了一系列突破性成果,以“逆分辨潮流”方式,分辨率越做越低,样品尺度越做越大。纤毛在生物学中非常重要,分为可动和不可动两种。在通常的认知中,可动纤毛外面有9个双管,里面有2个单管,即9+2结构;不可动纤毛只有9个双管,即9+0结构。隋海心高级研究员用多层电子层析方法测定的初级纤毛的全长三维结构则推翻了不可动纤毛的9+0结构模型。隋海心高级研究员在报告中讲述了研究初级纤毛的背景、历程和一些心得。认为,文章不能全盘迷信,别人能做的自己不一定能做,另外,正如郭可信先生经常指导的“科研不要先入为主”,这样往往会误导后续的工作开展。大会特邀报告:东京大学教授 Naoya Shibata报告题目:MARS——New atomic resolution electron microscope for magnetic materials日本东京大学教授Yuichi Ikuhara 视频祝福报告开始,Naoya Shibata 首先播放了国际著名球差电镜专家、日本东京大学Yuichi Ikuhara教授带来的视频祝福,视频中,Ikuhara教授回顾了其1988年第一次访问中国时与郭可信先生的会面,从那时起开始与中国开展系列合作,也看到那时的许多学生成为两边国家高校和研究机构的主力,为中日之间的电子显微学交流做出巨大贡献,郭可信先生等科学家的愿望延续至今,期待能保持下去。接着,Naoya Shibata教授对原子级分辨率无磁场球差校正扫描透射电镜MARS的研发设计做了详细介绍。MARS由Naoya Shibata教授团队与日本电子合作开发,采用一种相反极性的前后反对称透镜设计,配合最新的五阶自动调整新型球差矫正器,使得样品可以处在完全无磁场的环境中,电镜仍然保证原子级的分辨率。此外,还可以搭载如电子全息、差分衬度STEM探测器(SAAF)、叠层衍射成像探测器(4D Canvas)、能量损失谱(EELS)以及大固体角EDS。这种多用途设计,使得该设备拥有巨大的应用前景。MARS对于磁性材料和器件来说是一款功能强大的电子显微镜,它的倾斜扫描可以减少DPC成像中的衍射对比度。接下来,MARS后续还将继续突破无磁场条件下的低温观测的挑战。大会合影留念
  • 清源创新实验室480万元购买原子力显微镜、激光拉曼光谱仪
    7月28日,清源创新实验室公开招标购买原子力显微镜、激光拉曼光谱仪,预算480万元。  项目编号:[350500]FJHDCG[GK]2021001  项目名称:清源创新实验室原子力显微镜、激光拉曼光谱仪设备货物类采购项目  采购方式:公开招标  预算金额:4800000元  包1:  合同包预算金额:1850000元  投标保证金:0元  采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100301-显微镜原子力显微镜1(台)是1 扫描器:▲1.1 XYZ 三轴闭环扫描器:XY方向扫描范围≥90微米;Z方向扫描范围≥9微米;扫描器Z方向实际测试噪声水平:小于0.03 nm (RMS);XY方向实际测试噪声水平:≤0.1nm (RMS)。1.2 具备探针扫描的扫描器,扫描过程中样品为静止状态。1.3 进针方式:智能自动进针方式,采用马达加压电陶瓷自动探测的智能进针模式,以保护探针及样品。▲1.4 具备快速扫描模式,可实现≥50Hz的扫描速度。2 样品台:★2.1 样品台尺寸≥200mm;能放置最大样品高度≥15mm;样品台自动移动XY行程≥160x150mm。要求样品台可真空吸附样品,并且可360度旋转。3 控制器:3.1 控制器内置≥三个锁相放大器3.2 每条扫描线可获得更多的数据点(≥ 16,000)3.3 最少有8通道同时成像;8个通道可同时获得≥5000×5000数据点。4 功能模式▲4.1 提供智能扫描模式:要求采用以正弦波驱动压电陶瓷管做力曲线的皮牛级力作反馈进行表面成像,且力曲线频率≥2000Hz。用户只需要选择扫描范围,系统就能够在扫描过程自动调节“接触力”,“电路增益”,“扫描速度”和“扫描管的量程范围”。 ▲4.2 提供扭转共振模式:要求使用具有双压电陶瓷的探针支架来实现扭矩共振模式,监测悬臂梁扭矩共振扭转幅度或扭矩共振相移信号。4.3 提供压电力显微镜模式:具备形貌,面外和面外压电力信号同时实时扫描成像功能,不需要在单条线扫描两次。可以加载最高电压≥10V。5 其他配件★5.1要求辅助光学显微镜具备缩放功能,视野单边长度可调节范围≥200微米至1200微米。单视野最大范围≥1mm*1.4mm,以便于大范围观察样品并定位到扫描区域。5.2 提供一体式落地式的隔音减震系统。5.3 提供≥150根探针。5.4 提供原子力显微镜专用镊子一套。5.5 提供标准光栅样品一个。5.6提供高性能工作站一个。5.7除现场安装调试培训以外,质保期内提供两个培训名额前往厂家国内实验室参加培训,培训时间≥4天。  合同履行期限: 详见招标文件  本合同包:不接受联合体投标  包2:  合同包预算金额:2950000元  投标保证金:0元  采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)2-1A02100404-光学式分析仪器激光拉曼光谱仪1(台)否1. 总体性能:可以实现深紫外244nm、紫外325nm、可见532nm拉曼的原位表征,可以得到较高的分辨率以及低波数拉曼,同时配置了分子筛合成以及催化反应原位拉曼光谱池。2. 光谱仪:光谱仪采用三联光谱仪,可以自由切换单光栅或者三光栅模式,单光栅具有高灵敏度,三光栅具有较高的分辨率和低波数性能。光谱仪焦距≥500mm,最佳分辨率≤0.005nm,具有电动狭缝和2个检测器接口。3. 光谱范围:整体拉曼光谱范围为50-4000cm-1,其中244nm拉曼低波数可以低至100 cm-1。4. 拉曼光谱光谱分辨率:≤0.21 cm-1(1800 gr/mm, 10 μm slits, at 500 nm)。5. 光谱灵敏度:8 mW 244nm激发时,特氟龙拉曼信号> 10000 counts/s,10 mW 325nm激发时,特氟龙拉曼信号> 8000 counts/s。6. 光谱重复性:≤0.004 nm。7. 光栅:至少应提供9块光栅,刻线为2400、1800、1200 各三块,其闪耀波长为240nm、300nm、500nm,闪耀波长附近的效率均大于70%。8. 探测器:应配备紫外增强科研级探测器,可以制冷至-70℃,200-800 nm区间量子效率大于50%,244 nm处量子效率大于65%;分辨率≥1024×255,像素尺寸为≥26μm×26μm;FVB模式下,最快采集速度为75谱/秒。9. 显微镜:三目系统,目镜为10x,具有视频辅助,用于样品定位、成像,视频为500万像素彩色相机。10. 物镜:配有50x、15x、5x 物镜,其中15x为长工作距离物镜,工作距离大于15 mm,适用于原位表征,且其为深紫外优化设 计的,波长范围190-1100nm,透过率大于80%。11. 显微共聚焦组件:具有共焦组件,可以通过软件切换针孔,针孔具有50um、100um。用以确保收集焦点附近的信号。12. 空间分辨率:使用50x物镜时,XY方向分辨率≤0.5 um,Z方向分辨率≤0.3um。13. 激光器配置:(1)244 nm激光器:最高功率100 mW。偏振比>100:1,光束直径(1/e2)0.6-0.9 mm,发散角0.5 -0.85mrad,相干长度>1m,寿命3000 h以上,功率稳 定 性≤±1.0% (in 0.5 hours);(2)325 nm激光器,最高功率35 mW。TEM00模式,偏振比>500:1,光束直径(1/e2)<1.2mm,发散角<0.5 mrad,寿命2000 h,功率稳 定 性≤±2.0% (@25℃,in 4 hours);(3)532 nm激光器:最高功率150 mW。TEM00模式,线宽<0.01pm,偏振比>100:1,光束直径(1/e2) 0.7±0.05mm,发散角<1.5 mrad,寿命10000 h,功率稳 定性≤±2.0%。14. 电动平台:通过电动平台可以实现样品观察、定位、以及扫描成像功能。(1)X-Y方向上重复定位精度≤±0.7μm,负载能力≥100N,X-Y扫描范围≥114mm×75mm,分辨率≤0.01μm;(2)Z方向重复定位精度≤±0.7μm,负载能力≥140N,分辨率≤0.02μm。15. 原位池:配置四个原位池,可以通过原位拉曼软件控制反应条件以及自动化采集。(1)原位高温高压水热反应原位池:最高温度250℃;(2)高通量原位合成反应模块,可以进行12通道原位合成表征;(3)气固反应高温高压原位池:反应最高温度500℃,最高压力0.6 MPa;(4)原位液固拉曼反应池,可以进行液固相反应条件下的原位拉曼。16. 自动气路:配置四路自动气路,四路气体可以在0-200sccm范围内(或者根据需求更改)通过软件进行任意调节,并且可以进行任意比例混合,同时可以和原位池进行同步温度、流量的控制,预留升级接口和阀门。  合同履行期限: 详见招标文件  本合同包:不接受联合体投标  开标时间:2021-08-24 09:30(北京时间)
  • 华中师范大学158.38万元采购高压灭菌器,生物显微镜,数码显微镜,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师 027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:高压灭菌器,生物显微镜,数码显微镜,荧光显微镜 开标时间:null 预算金额:158.38万元 采购单位:华中师范大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中经国际招标集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1 化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx
  • “超级显微镜”仪器设备拟升级 总投资估算约9896万元
    建在东莞市的中国散裂中子源(CSNS)是中国首台、世界第四台脉冲型散裂中子源,被誉为探索物质材料微观结构“超级显微镜”的大科学装置。东莞市发改部门日前发布了关于《中国散裂中子源仪器设备更新改造项目社会稳定风险分析报告》的公示(以下简称《报告》),拟在2024年至2026年实施CSNS仪器设备更新改造项目,估算总投资约为9896万元。据了解,CSNS由中国科学院和广东省共同建设,于2011年9月动工,2018年8月通过国家验收投入正式运行。《报告》显示,CSNS仪器设备更新改造项目在现状建筑内进行设备更新改造,不涉及土地征用和拆迁。更新改造的项目内容共有七个方面,涉及直线加速器大功率速调管功率源升级及国产化替代,提高重复频率;升级加速器中央控制系统;通用粉末衍射谱仪(GPPD)主探测器增加探测器覆盖面积,使谱仪具备单晶高温合金材料内部应力、应变的高精度测量的能力等。其中,GPPD是CSNS首批建设的三台谱仪之一,主要用于研究物质的晶体结构和磁结构,以满足来自材料科学、纳米科学、凝聚态物理和化学等众多领域的科学研究和工业应用的需求。
  • 引进德国技术,所有显微镜均可升级到三维超景深显微镜
    上海江文国际贸易有限公司公司引进德国技术和组件,结合自主研发的三维超景深显微镜软件,推出三维超景深显微镜升级方案UMS300-3D,可将几乎所有类型的光学显微镜升级为三维超景深显微镜。 UMS300-3D 三维超景深显微镜升级方案是超景深三维显微镜的最新一代产品。UMS300-3D 三维超景深显微镜升级方案三维引进德国进口高性能三维超景深显微镜组件和技术,结合本公司的三维超景深软件,可将显微镜的景深提高几百倍,UMS300-3D 三维超景深显微镜升级方案可获得样品的三维形貌,可进行三维重构和测量。UMS300-3D 三维超景深显微镜升级方案是三维光学数码显微镜的最新代表。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可获得样品的三维形貌,并可进行三维重构和测量,可应用于半导体、微纳米器件、机械制造、材料研究等领域的实验研究;如微芯片三维形貌分析,刻蚀试样三维形貌,封装材料,二元光学器件数据分析,机械、光学、镀膜、热处理等表面精确测量、材料显微压痕的三维测量分析、磨损表面质量评定、薄膜厚度测量、材料断口分析、金属材料和复合材料、生物材料研究等。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,满足材料表面形貌的观察,平面或三维测量,可以用于材料实验室或生产现场观测;用于金属材料断口、裂纹,磨损,腐蚀情况的三维超景深金观测, 青铜器, 陶瓷,织物,木材,纤维,古字画,壁画等方面的研究.。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可大大降低样品制样的要求,多数样品无须制样即可以获得三维超景深的三维观察,三维拍照,三维分析效果。对于颗粒赝品的三维超景深显微图像的颗粒三维分析,粉末三维超景深图像和三维分析都可以获得良好的三维超景深显微镜效果。 UMS300-3D 三维超景深显微镜升级方案还可以大大降低客户购买三维超景深显微镜的成本,使用UMS300-3D 三维超景深显微镜升级方案的成本,大约为新购买进口三维超景深显微镜成本的10%。 UMS300-3D 三维超景深显微镜升级方案还具备以下强大的显微测量功能: 1、 组织成分分析、相含量测量 自动识别组织成分、自动测量相含量、最后得出分析报告。常用于岩石、金相、孔隙分析、夹杂分析等。 例如:成分分析,根据相含量的分布,给出三角统计图形,根据三角形分布判别种类。 2、 全自动颗粒分析与统计 提供功能强大的颗粒分析、统计工具。 自动识别颗粒、自动测量颗粒面积、粒度、圆度、最大卡规直径、形态特征等大量参数。按照参数进行分类统计,给出统计柱状图和报告。 3、 强大的辅助探测工具 提供强大的颗粒探测工具(包括魔术棒和颜色吸管),方便用户进行手动识别颗粒,观察局部特征颗粒等应用。 能根据外形、颜色等特征,识别测量颗粒与组织。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制