太赫兹成像

仪器信息网太赫兹成像专题为您整合太赫兹成像相关的最新文章,在太赫兹成像专题,您不仅可以免费浏览太赫兹成像的资讯, 同时您还可以浏览太赫兹成像的相关资料、解决方案,参与社区太赫兹成像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

太赫兹成像相关的资讯

  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。   看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。   在扫描和成像领域应用潜力大   把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。   该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。   为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。   新研究克服了诸多技术限制   事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。   科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 我国太赫兹探测成像领域取得重大突破
    我国太赫兹探测成像领域取得重大突破   山东科学院自动化所研发出太赫兹探测成像仪   在好莱坞大片中,常常出现特种部队通过特种设备隔墙“看”到搜索目标的情景。日常生活中的很多时候,人们也希望自己的眼睛可以透视,能够“看”到被遮挡的另一侧的物体。如今,这种设想在我国正逐步成为现实。   记者从山东省科学院自动化研究所了解到,该所最近成功研制出一种特殊的仪器设备,能够让我们“看”到障碍物另一侧的状况。这一最新成果的达成,标志着我国超宽带与太赫兹探测成像领域取得重大突破,对于保障公共安全和国民经济发展具有重大意义。反恐防暴和人员救援的“好帮手”   5日,山东省科学院自动化研究所超宽带与太赫兹实验室内,一堵实验墙壁立于一台小巧的仪器和目标物之间。当工作人员打开该仪器时,神奇的一幕出现了仪器的显示屏上显示出该目标物的清晰轮廓和在房间内的相对位置 当物体移动时,显示屏上物体的图像也随之移动 当有人来到实验墙另一侧时,人的图像也会立刻呈现在屏幕上。   该研究所所长成巍告诉导报记者,这种神奇的仪器叫超宽带太赫兹探测成像仪(简称“太赫仪器”),可以透过墙壁“看”到屋内人员的分布和活动,以及混乱环境中的物体,可应用于反恐防暴斗争中犯罪分子的搜寻以及地震、塌方、火灾等灾害现场的人员救援等。   据介绍,太赫兹(即Terahertz,简写为 THz,1THz=1012Hz)泛指频率在0.1Thz至10THz波段内的电磁波,位于红外和微波之间。由于具有频率及空间分辨率很高、脉冲很短、时间分辨率很高、能量小不会对物质产生破坏作用等独特性能,在通信、雷达、无损检测等方面具有深远而重要的影响,因而被美国列为“改变未来世界的十大技术”之一。   在美国,太赫兹电磁波已经少部分用于机场人员的安检,物品安检则仍然使用X 光进行。   在现实生活中,人们熟悉的X光也具有透视功能,它与太赫兹电磁波有何不同呢?“X 光由于波长较短,光子能量较高,因而对人体照射会造成肌体不同程度的损伤,但太赫兹电磁波却不会造成任何损伤。”成巍说,由于光子能量较高,X 光穿透物体后难以反射成像,而太赫兹电磁波却不存在这一短板,因而可以将相关仪器做得更小,即使一个人也可以轻松携带,大大方便了人员使用。煤矿和航空航天安全的“保护神”   正是看到太赫兹技术广阔的应用前景,山东省科学院自动化研究所的研究团队制定了研发蓝图,在太赫兹的多个应用领域展开技术攻关。该团队从前文介绍的超宽带太赫兹探测成像仪起步,正在进一步研究应用于煤矿探测的太赫兹透射成像雷达和碳纤维复合材料无损检测装备等。   “每年我国瓦斯爆炸和突水引起的矿难事故严重威胁着人们的生命和财产安全。如果有一种仪器,能够穿透岩石、土壤和煤层,在煤矿开采时实时地预测到岩层后大量水和瓦斯的存在,将降低事故发生的概率。”成巍说,该研究所的太赫兹透射成像雷达研制成功后,将针对目前煤矿中导水裂隙进行探测,提供清晰图像,为煤矿的危险防治提供技术与设备支撑。   值得一提的是,随着碳纤维复合材料大量应用于飞机、卫星及运载火箭,采用新技术、新装备开展碳纤维复合材料的无损检测,对于保障我国航空航天的安全尤为重要。太赫兹成像技术在检测碳纤维复合材料内部缺陷方面,具有许多其他检测技术不具备的独特优势。通过对比材料的实物照片和相应方法重构的THz透射图像,能清晰地分辨出材料内部的情形,这样就可以提前检测出通过其他手段不易发现的内部缺陷和耗损,这将大大减少安全事故的发生。目前,该项技术已完成了前期调研和技术规划,进入研发阶段。   据了解,《国家“十二五”科学和技术发展规划》已将太赫兹技术列为“需求导向的重大科学问题”研究领域,并加大了资金支持。目前,山东省科学院自动化研究所的相关成果已经达到国际先进水平,必将为我省乃至我国在太赫兹技术领域的研究揭开新的一页。

太赫兹成像相关的方案

太赫兹成像相关的论坛

  • 集成太赫兹收发器问世

    美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。

  • 2000万美元的太赫兹光谱市场到底在哪里?

    2000万美元的太赫兹光谱市场到底在哪里?

    太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。http://ng1.17img.cn/bbsfiles/images/2013/10/201310142026_470848_2063536_3.png

太赫兹成像相关的资料

太赫兹成像相关的仪器

  • 太赫兹相机-太赫兹成像相机THz camera 描述:Tera-256太赫兹相机是基于TeraSense公司开发的新一代太赫兹成像半导体探测器阵列技术研制而成的。该探测器在室温下工作,阵列可按像素的数量进行拓展。与其他工作在太赫兹范围(50GHz-0.7THz)的现有探测器相比,Terasense提供的探测器具有良好的响应性,但相比之下,它们成本低,具有均匀的像素对像素的灵敏度(像素对像素的偏差响应度小于20%),并且可以很容易地以二维阵列的形式大量生产,这得益于TeraSense技术与大规模半导体生产线的兼容性。这使得这些探测器适用于我们的太赫兹成像相机。 与其他品牌的太赫兹产品相比,Terasense太赫兹相机在其工作的波段范围内有高的稳定性和更均匀像素敏感性。与传统检测手段(X射线)相比,太赫兹检测系统有更低的辐射能量。不容易对生物和化学制剂的分子结构造成破坏,且对人体没有辐射危害。因此在无损检测和安全检查方面有巨大的应用潜力。目前,Terasense正在继续致力于为科学和工业开发灵活的太赫兹成像解决方案。 Terasense太赫兹相机是主动探测设备,需要外部太赫兹源。我们提供基于IMPATT技术的亚太赫兹波源。所有的TERA系列太赫兹成像相机都采用相同类型的探测器,具有相同的能力和空间分辨率。不同型号的太赫兹相机之间的区别在于它们的传感器阵列中的像素数量和它们的有效成像区域。除了标准太赫兹相机型号,我们提供定制的解决方案,以满足不同的配置和几何要求。工作原理: 探测器是Terasense使用传统光学光刻技术,在标准半导体周期内采用GaAs高迁移率异质结构制造成的。成像传感器是在单个晶片上制造的。这个过程确保了等离子探测器参数的高度同质性和再现性(像素到像素的偏差响应率在20%范围内)。每个探测器单元具有高达50kv/W的室温响应率,读出电路和噪声等效功率为1 nW/√HZ,频率范围为10GHz-1THz。探测机制是基于二维电子系统中等离子体振荡的激发和随后的整流。整流是在电子系统中产生的特殊缺陷上进行的。 产品特点:l 高达50KV/W的响应率l 对人体无害l 低辐射能量,实现无损检测l 支持视频模式l 可穿透大多数非金属材料l 友好的软件界面,快速上手l 可搭配原厂太赫兹源,安装简单l 结构紧凑,成本低l 配备专业的软件:Terasense Viewer ® 和 SDK 应用范围:l 安检系统l 医学成像l 食品/农产品检测l 非金属材料(塑料、陶瓷、木材等)检测l 艺术品/文物无损检测 技术参数: 总像素数:256像素(16*16)像素尺寸:1.5mm噪声等效功率:1nW工作频率:50 GHz - 0.7 THz视频帧率:50fps产品尺寸:11.5 x 11.5 x 4.2 cm
    留言咨询
  • 太赫兹成像 新势力光电供应太赫兹成像,适用于实验室太赫兹光谱和太赫兹图像的分析。该系列太赫兹成像系统包含:延迟线、太赫兹发生器、太赫兹探测器、光学元件、电子部件,可与任何通讯波段的飞秒激光器进行联用。 SpecificationsTeraKit-DTeraKit-OTeraKit-DSTHz generatorDASTOH1DSTMSFrequency range0.3-11THz0.1-3THz0.1-11THzBest phase matchable wavelength1300-1600nm1200-1460nm1300-1700nmRequirementexternal femtosecond laser souceOptionsTHz imaging with a scanning range of 100mm× 100mmTeraIMAGE including pump laser source (70fs or 80fs)相关商品太赫兹发生器/探测器 太赫兹光源 太赫兹光谱 太赫兹系统
    留言咨询
  • 高速太赫兹扫描成像仪高速(5000帧/秒)、高分辨率(1.5mm)太赫兹成像扫描系统基于先进技术研制出一套高速(5000帧/秒)、高分辨率(1.5 mm)太赫兹成像扫描系统,主要用于工业检测领域应用。该系统主要包含线性太赫兹高速相机和太赫兹源(100GHz)设备,二者可同步协调工作成像速度高达5000帧每秒,紧凑的体积设计适于集成便于工业应用的需求。除此之外,该系统满足于绝大多数传送带的要求,扫描速度高达15m/s。系统里集成的超快线性传感传感器满足了大多数工业无损检测和质量控制等应用的需求。关键词:太赫兹高速相机,太赫兹源,太赫兹成像系统,高速太赫兹成像系统,太赫兹扫描系统u 该套设备的主要特点如下:成像速度高达5KHz扫描速度高达15m/s成像频率为100 GHz像素:256 x 1专用软件(TeraFast)可提供定制化方案u 该套系统涵盖的产品主要如下:A. 太赫兹高速相机(基于先进技术研制的半导体阵列芯片)参数如下:Number of pixels: 256 (256 x 1)Image acquisition rate: 5000 fps (5KHz)Piel size: 1.5 x 3 mm2Responsivity: 8000 v/wImaging area: 384 x 3 mm2Min detectable power/pixel: 100nw (at 5000 fps) 45nw (at 1000 fps) 14nw (at 100 fps) Dimensions of device: 450 x 160 x 44 mm3Sync out : TTL (+5 V)Included software: TeraFast ViewerInterface: mini-USBPower supply: 24V/20W太赫兹源(基于IMPATT 技术)参数信息:Type IType ⅡFrequency100 GHz100 GHzPower per pixel20 uw140 uwImaging system dynamic range24 d B30 d BOptical systemPTFE opticsReflection opticsTechnologyIMPATTSuper-Hero IMPATT 详情请见如下链接:Type I / Type II THz wave sources for High Speed Linear scanneru 该套高性价比的太赫兹成像扫描系统,应用领域广泛,主要覆盖药学、化妆品、木材加工、食品、快速消费品包装、建筑材料、汽车工业、农业、安检等众多领域。
    留言咨询

太赫兹成像相关的耗材

  • 太赫兹成像
    太赫兹成像筱晓光子供应太赫兹成像,适用于实验室太赫兹光谱和太赫兹图像的分析。该系列太赫兹成像系统包含:延迟线、太赫兹发生器、太赫兹探测器、光学元件、电子部件,可与任何通讯波段的飞秒激光器进行联用。SpecificationsTeraKit-DTeraKit-OTeraKit-DSTHz generatorDASTOH1 DSTMSFrequency range0.3-11THz0.1-3THz0.1-11THzBest phase matchable wavelength1300-1600nm1200-1460nm1300-1700nmRequirementexternal femtosecond laser souceOptionsTHz imaging with a scanning range of 100mm×100mmTeraIMAGE including pump laser source (70fs or 80fs)
  • 太赫兹近场探针
    Eachwave推出的低温砷化镓光电导太赫兹近场探针系列是新一代的高性能光电导型微探针,利用此太赫兹近场探针,样品表面的近场太赫兹电场可被以被空前的分辨率测量,信号质量好,噪声低。这些太赫兹探针可以无缝的与激发波长低于860nm的THz-TDS系统配合使用。THz近场探针提供了一个低成本的解决方案,可将您的THz-TDS升级为高分辨率的近场扫描成像系统。产品特点:— 市场上最小的太赫兹近场探针— 专利设计— 空间分辨率可达3um— 探测频率范围:0-4THz— 适用于所有基于激光的THz系统 — 安装可兼容标准的光机械组建— 集成过载保护电路横向场太赫兹近场探针规格参数TeraSpike TD-800-X-HRHRS最小空间分辨率3um20umPC gap size1.5um2um暗电流 @1V 偏置电压0.5nA0.5nA光电流1uA0.6uA激发波长700..860mW平均激发功率0.1-4mW接头类型SMP纵向场太赫兹近场探针规格参数TeraSpike TD-800-A-500GN最大空间分辨率8 um8 umPC gap size5 um2 um暗电流 @1V 偏置电压0.4 nA0.4 nA光电流0.5 uA0.1 uA激发波长700..860mW平均激发功率0.1-4mW接头类型SMP反射式太赫兹近场探针 反射式太赫兹近场探针是一款收发一体化的太赫兹近场探针产品。探针具有双天线结构,此结构极大的缩短了太赫兹的传输路径,可有效的应用于太赫兹近场时域谱测试以及成像测试系统中。规格参数 型号暗电流@1V偏压光电流激发波长平均激发功率链接头TeraSpike TD-800-TR.5 1.5nA 0.5uA700-860nm0.1-4mW2×SMP适用于1550nm波长的太赫兹近场探针规格参数型号脉冲上升时间带宽激发波长激发功率悬臂材料TeraSpike TD-1550-Y-BF1ps0.01-2.5THz700-1600nm 0.1-4mWInGaAs(n-type)
  • 宽谱高功率太赫兹天线 无偏压太赫兹天线 太赫兹光电导天线
    产品特点 Eachwave推出的新型无偏压高功率宽谱THz发射器是fs激光泵浦的太赫兹源,可以用各种激光器来泵浦(如波长在700-1600nm的低功率振荡器、或者放大器)。它是理想的近场成像THz源,我们同时有太赫兹近场探针可选。当然我们的THz发射器也可以应用于远场光谱的研究以及其他THz应用。我们的THz发射器是基于一个专利技术(德国专利号:DE102012010926 A1),利用双金属光栅结构实现无偏压的光学泵浦THz辐射。THz发射器具有一个很大的可激发面积,激发光的功率可以从5mW高至1W,并不会引起转换效率饱和的现象。主要特点: ——高的转换效率(得益于其先进的纳米级双金属结构设计)——高的辐射功率(得益于其大的可激发面积)——非常适用于TeraSpike微探针的THz源——无与伦比的简单易用——可以被当做点光源来使用,亦或者阵列辐射器——辐射出光具有线偏性——非常的耐用因为没有偏压——没有暗电流辐射特性和工作原理: 近红外或红外的飞秒(建议150fs)脉冲激发TeraBlast太赫兹发射器,发射出的太赫兹脉冲辐射为线性偏振状态。下图是利用我们的太赫兹近场探针(TD-800-X-HRS),通过时域扫描的方法,探测出的太赫兹发射器表面电场。明亮的高频太赫兹振荡部分被局限在几个毫米的的区域,而低频GHz频率则在更广泛的区域被辐射出来。 辐射场的形貌可以根据调节入射激发光束来轻松地改变。太赫兹激发方案: 测试样例 (TeraBlast TD-1550-L-165): 远场自由空间太赫兹时域谱测试,N2环境,探测端为400um厚度的GaP晶体,基于异步采样时域光谱技术详细参数(a) 370mW激发,利用热电探测器测量(Spectrum Detector Inc. SPI-D-62-THz) ; (b) 可根据客户需求定制更大激发面的天线。

太赫兹成像相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制