当前位置: 仪器信息网 > 行业主题 > >

飞秒倍频器

仪器信息网飞秒倍频器专题为您提供2024年最新飞秒倍频器价格报价、厂家品牌的相关信息, 包括飞秒倍频器参数、型号等,不管是国产,还是进口品牌的飞秒倍频器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合飞秒倍频器相关的耗材配件、试剂标物,还有飞秒倍频器相关的最新资讯、资料,以及飞秒倍频器相关的解决方案。

飞秒倍频器相关的资讯

  • 微电子所成功研制太赫兹倍频器核心元件
    近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。   太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一 此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。   由四室主任金智研究员领导的太赫兹器件与电路研究组针对太赫兹电路的关键技术开展研究,对器件外延材料生长的进行了设计与优化,突破了低电阻欧姆接触合金、肖特基微孔刻蚀和空气桥腐蚀技术等关键制作工艺,有效地降低了器件的串联电阻和寄生电容,实现了可在太赫兹频段应用的肖特基二极管,并开发了多种肖特基二极管的集成方式(见图1),太赫兹肖特基二极管(见图2)器件的最高截止频率达到3.37THz,可广泛应用于太赫兹波的检测、倍频和混频。   为了解决太赫兹频段下外围电路损耗高的问题,研究人员开发出器件与电路衬底背面减薄技术,并采用低介电常数石英材料实现了太赫兹电路,研制出厚度小于50um,可应用于太赫兹频段核心电路(见图3),极大地减小了在太赫兹频段的损耗,提高了电路模块的效率。   课题组与中电集团第41研究所联合开展了太赫兹倍频器的验证工作,采用自主研制的太赫兹肖特基二极管器件实现了倍频器在太赫兹频段的工作,在170~220 GHz的倍频效率为3.6%,220~325 GHz的倍频效率达到1.0%(见图4),可实现宽频带倍频,其输出功率和倍频效率与国外VDI同类产品相当,该倍频器可用于构建宽频带太赫兹源,在太赫兹成像、太赫兹通信和卫星遥感方面有着广阔的应用前景。对于太赫兹系统的核心器件(主要是肖特基二极管)的国产化具有重要意义,为国内的太赫兹技术的发展提供良好的器件和工艺支撑。
  • 微立体光刻3D打印125GHz倍频器的波导腔体
    太赫兹波是指频率在0.1THz~10THz内的电磁波,它的波长介于30~3000μm,在频谱中的位置处于微波和可见光之间,长波段部分与毫米波重合,短波段部分与红外线重合,在电磁波频谱中占据非常特殊的位置,具有很多特殊的性质:宽带性、互补性、瞬态性、相干性、低能性、投射性。相对于毫米波而言,太赫兹波的频率更高、波长更短,因此具有更高的分辨率、更强的方向性和更大的信息容量,同时器件可以更小;相对于光波而言,太赫兹波具有更强的穿透性,适合于云雾、硝烟等极端恶劣环境。太赫兹频率源是太赫兹技术发展的关键,其性能指标影响着整个太赫兹系统的性能,所以太赫兹频率源的获得至关重要。通过倍频的方式获得的信号源具有高频稳定性好、设备的主振动频率低、工作频段宽的优点,是目前获取太赫兹频率源广泛采取的方案。基于GaAs肖特基二极管的太赫兹倍频器因其高效率、低能量消耗和室温下可适用性,已广泛用于外差接收器中局部振荡器(LO)的可靠信号源。太赫兹倍频器具有广泛的实际应用,包括大气遥感、医学成像甚至高速通信。目前,用于封装太赫兹倍频器的波导腔体通常采用计算机数控(CNC)加工制造,该工艺成熟,可实现高精确度、高精密度和良好表面光洁度,能满足电子元件与波导腔体间严格的尺寸公差要求。近年来,3D打印凭借其小批量快速加工的能力,逐渐被用于加工被动微波器件。但是,兼具大的打印幅面以及高公差控制的打印设备较少,因此鲜少有3D打印制备超过100GHz频段的器件报道。3D打印的倍频器更是未见报道。图1. 125GHz倍频器的剖面图:(a)波导腔体的布局 (b)MMIC的特写图2. 微纳3D打印的波导腔体(左)和放置MMIC的波导通道(右)近日,英国伯明翰大学的Talal Skaik和Yi Wang等首次采用面投影微立体光刻(PμSL)3D打印工艺制备太赫兹倍频器的波导腔体。研究团队使用摩方精密科技有限公司(BMF)的nanoArch S140系统3D打印了波导腔体,打印材料为耐高温树脂(HTL),如图2所示,外形尺寸为30.4 mm×25.5 mm×19.1 mm,打印层厚为20μm以及光学精度为10μm。打印后在异丙醇中清洗,并进行30分钟的紫外线固化,最后在60°C下进行30分钟的热固化。制备的波导腔体通过光学系统检测并未发现缺陷,与MMIC(单片微波集成电路)配合的波导通道测量值为609μm,优于设计的630μm;同时超高光学精度打印保证了严格的尺寸公差,确保波导腔体的两部分能精确配合,避免MMIC电路的损坏。图3. 电镀后波导腔体的表面光洁度图4. 装配后的太赫兹倍频器为促进信号的传递以及减小外界干扰,在波导腔体表面镀上4μm厚的铜和0.1μm厚的金,平均表面光洁度约为1.4μm,如图3和图4所示,电磁仿真结果表明该粗糙度对变频损耗的影响可以忽略不计。图5. 3D打印与传统CNC加工的太赫兹倍频器的性能参数对比实验测试发现,3D打印制备的太赫兹倍频器与传统CNC制备的倍频器性能非常接近,相关性能参数如图5所示。3D打印的太赫兹倍频器在输出频率为126GHz下达到33mW的最大输出功率,在80mW~110mW的输入功率下转换效率约为32%,与传统CNC加工的倍频器具有相近的最大输出功率和转换功率。此研究成果以题为“125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography”发表在会议期刊《IEEE Transactions on Terahertz Science and Technology 》上。
  • 朱永元课题组在无规铁电畴结构倍频成像研究方面取得进展
    p   最近,南京大学物理学院朱永元教授课题组和现代工程与应用科学学院秦亦强教授、张超副教授团队通力合作在非线性光学成像领域取得了进展,提出了一种利用二次谐波直接观测无规铁电畴结构的新型方法,并在理论和实验上得到了验证。该研究工作已被Physical Review Letters接收发表。https://journals.aps.org/prl/accepted /0d078Y9fQbc1326161359af1b887f1ccd67a15544 /p p   铁电材料由于其压电、热电和光电方面的特殊性质而在许多研究领域中有着广泛的应用。微观结构决定宏观功能,因此对铁电畴结构的表征技术逐渐成为一个热点课题。经过几十年的发展,包括电子显微镜、线性光学成像和非线性光学成像等方法,已经广泛地运用于观测畴结构。然而这些方法在实际研究和应用中仍存在一定局限性,比如说线性光学方法由于正负畴的折射率相同,需要先对样品腐蚀来改变畴壁周围的相关特性,这就对会样品造成损伤 再比如基于Talbot和Cherenkov效应的一些非线性光学方法,只适用于周期结构或者是需要配合焦点扫描的手段才能成像,无法直接对一般的无规畴结构进行观测。 /p p   利用铁电畴畴壁在非线性成像过程中的特殊衍射性质,研究人员提出了一种简单的非线性成像方法,能够直接并实时地观测二维无规铁电畴结构。该工作主要分为理论和实验两部分。理论上主要从衍射方程出发,对铁电畴畴壁的二次谐波衍射特性进行了理论分析,给出了一对正负畴的倍频传输场强分布的解析解,发现畴壁处的倍频像始终呈暗场。通过进一步的理论分析,发现畴壁的倍频像线宽在一定区域内与传播距离的平方根成正比,与正常的远场衍射过程(一次方)相比畴壁像的展宽得到了极大的抑制,为直接成像提供了可能性。在此基础上,将单一畴结构推广到复杂的无规则畴结构,进一步通过数值仿真模拟二次谐波成像证实了传输过程中畴界的近似无衍射性质。该工作的实验部分主要以钽酸锂为例,用900nm的飞秒激光打到样品上,在CCD中可以直接收集到450nm的倍频畴结构像,其中畴界显示为暗场。结果表明,可以在百微米范围内连续观测到畴结构的清晰倍频像,其中衍射效应确实得到了很好的抑制。 /p p style=" text-align: center" img style=" width: 450px height: 395px " src=" http://img1.17img.cn/17img/images/201803/insimg/4b6fb467-d658-4138-87df-9c7fb65a66bb.jpg" title=" 1.jpg" height=" 395" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   这种基于二次谐波的观测方法不需要大型的显微镜设备,也不需要焦点扫描,可以用来无损地实时观测不规则畴结构,其成像质量还有望通过计算机后期数据处理进一步提升,为实现铁电畴的高分辨率成像提供了可能,具有很高的潜在应用价值。 /p p   论文第一作者是现代工程与应用科学学院2014级直博生陆蓉儿,张超副教授和秦亦强教授为本文的共同通讯作者。朱永元教授给予本文精细的指导。南京大学是论文唯一署名单位。现代工程与应用科学学院张勇教授、物理学院洪煦昊工程师对实验提供了大力支持。感谢刘冬梅博士、魏敦钊博士生及刘昂博士生的帮助。该研究由国家重点研发计划 (2017YFA0303700)、国家自然科学基金、江苏省科学基金项目资助完成,同时感谢人工微结构科学与技术协同创新中心、江苏省高等教育机构优势学科等平台与项目的大力支持。 /p
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。   王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 我国紫外激光器产业化关键技术取得突破
    清华大学等单位共同承担的“十二五”863计划新材料领域“紫外激光器产业化关键技术及应用”课题取得重要进展,于近日通过技术验收。   课题组解决了厘米级BBSAG晶体生长、非线性晶体超光滑表面加工、工业级应用的全固态激光器整机装配等工艺难点,突破了高光束质量紫外频率变换、非线性光学晶体的寿命及抗损伤、光束指向稳定性等多项关键技术,开发出10-30W不同功率级别的全固态紫外激光器和新型的BBSAG四倍频器件,产品性能达到国外同类产品水平,形成了一套拥有自主知识产权的全固态紫外激光核心技术,并实现了紫外激光器在微加工成套设备上的试用。   课题实施期间,BBSAG晶体生长技术已经转移到福建福晶科技股份有限公司,该公司及下属公司已经实现BBSAG晶体的生产并出口到欧美等发达国家。经过本课题支持,课题组成功研制出最大输出功率达30W的紫外激光器,各项指标均达到甚至超过国际光电子公司紫外高功率激光器指标水平。该课题成果的产业化,将打破国外在紫外激光器市场中的垄断,极大地提升我国激光微加工制造产业的核心竞争力。
  • 上海屹持光电技术有限公司与德国PROTEMICS GmbH正式达成合作协议
    近日德国PROTEMICS公司与上海屹持光电技术有限公司正式签订合作协议, 授权屹持光电作为其中国区指定总代理,全面负责PROTEMICS公司太赫兹近场探测相关产品在中国市场的销售和技术支持。PROTEMICS GmbH是一家衍生于德国半导体电子学研究所(RWTH)的私人创新型公司,具有二十多年太赫兹技术研究背景。公司融合了太赫兹技术、半导体加工、光电系统和软件设计、应用工程和业务开发等领域的跨学科专家团队。PROTEMICS的产品和服务基于超快光导太赫兹微探针领域先进技术,主要应用于无损检测。PROTEMICS拥有面积达400m2的室内超净间,用于半导体器件制造和分析检测,其光学实验室还可提供太赫兹测量服务、系统和产品试验等。PROTEMICS借助强大的研发能力来不断提高自己的产品, 并始终和客户在一起。公司理念:提供最具创新和最强有力的太赫兹探针技术测量解决方案 相关产品: 太赫兹近场探针 无偏压太赫兹光电导天线 (宽光谱,高功率) 高效率倍频器(1560nm转换至780nm) 太赫兹近场探针夹持装置等配件 太赫兹近场扫描成像系统 上海屹持光电技术有限公司地址:上海市闵行区元江路3599号福克斯创新园3号楼302电话:021-62209657,021-54843093传真:021-54843093邮箱:sales@eachwave.com 网站:www.eachwave.com
  • 试用、应用已开展,关键部件超越欧美!——“毫米波太赫兹安检产业发展论坛”暨首届 “蓝海杯”评奖活动圆满成功
    安检作为维护国防、机场、车站、港口等大型活动场所安全的重要环节,一直备受重视。目前广泛使用的“金属门加手检”的安检方式,虽然能维护公共安全,但存在一定局限性。首先,“金属门加手检”无法检测爆炸物、陶瓷刀、液体等非金属危险品;另一方面,这种方式需要触碰旅客身体,且精度低、检查时间长、舒适性差,因此需要发展新安检技术。随着我国安全检查技术的不断发展,“安检智慧化”也被逐渐提上日程。使用更加高科技的手段保障社会公共安全也成为大众的共识。为应对社会的发展需求,近年来,毫米波太赫兹安检技术应运而生并日益成熟。目前,已在地铁、机场、医院、会展等应用领域及场景中开展了试用和应用。毫米波太赫兹安检技术产业化发展也将迎来快速的增长。此外,毫米波太赫兹作为新兴技术在国内发展迅速,在某些方面已赶超发达国家。毫米波太赫兹安检仪器的国产化已达到很高的程度,几乎可以达到“自给自足”,部分关键部件性能甚至超过发达国家生产的部件。毫米波太赫兹安检技术或有望成为中国领先世界的领域。为了加强技术交流,分享科学成果,促进企业产品推广,进一步焕发市场活力,毫米波太赫兹产业发展联盟特联合仪器信息网共同举办“毫米波太赫兹安检产业发展论坛” 暨首届 “蓝海杯”2020年度毫米波太赫兹安检仪器产品评奖活动。共同推荐毫米波太赫兹安检技术产业化进程。致辞刘海瑞,博士、中国信息通信研究院高级工程师。博士毕业于北京邮电大学,物理电子学专业。博士期间,前往英国卢瑟福阿普尔顿实验室交流访问一年。博士毕业后,进入北京邮电大学信息与通信工程学院博士后流动站工作。出站后进入中国信息通信研究院泰尔终端实验室工作。刘海瑞博士主要从事毫米波、太赫兹固态电子电路的研究。进入中国信通院后,依托研究院的行业优势,主要从事新技术、新领域的平台建设。毫米波太赫兹产业联盟的秘书处工作。报告题目:被动太赫兹成像探测中的统计无线电技术(点击回放)邱景辉,博士,哈尔滨工业大学教授,博导,电磁场与微波技术学科带头人、微波与天线技术研究所所长,乌克兰技术科学院外籍院士,获得国家科技进步二等奖、国防科技进步一等奖,省部级二等奖、三等奖,111引智基地负责人,自然科学基金重点项目群重点项目负责人,以及多项国防和民用项目负责人,筹划组织了4届中乌科技论坛,并担任中乌科技论坛大会执行主席,发表论文150余篇,专利30余项。报告题目:毫米波太赫兹安检成像探测技术进展及展望(点击回放)赵自然,博士,清华大学研究员,男,1977年生,现任危爆物品扫描探测技术国家工程实验室副主任,粒子技术与辐射成像教育部重点实验室副主任、警务物联网应用技术公安部重点实验室副主任。近年来,围绕探测与成像技术,开展成像信号探测、信息处理、系统构建研究。针对近场毫米波全息成像的精度和成本问题,改进了成像物理模型,提出基于标量衍射理论的精确重建算法和基于相位解卷绕的距离向分辨率增强方法,首次实现平面扫描的高精度重建,并将成果转化为机场海关应用的毫米波人身安检仪。为发展太赫兹安检成像,揭示了太赫兹激发光热电效应的科学机理和物理特性,提出太赫兹光热电探测技术,研制出自供电高灵敏原型器件,获得超宽频谱响应。近5年,通讯作者发表SCI论文18篇;第一发明人发明专利授权16项,国际发明专利授权18件。作为团队核心成员获国际发明展览会金奖、中国体视学学会科学技术奖一等奖、国家科技进步奖创新团队奖等;作为第一完成人获得2019年北京市科技进步一等奖、第二十一届中国专利优秀奖;入选科技部创新人才推进计划、国家万人计划科技创新领军人才;2019年被评为清华大学先进工作者。报告题目:近场雷达目标特性与人体安检成像(点击回放)胡伟东,北京理工大学毫米波与太赫兹技术北京市重点实验室博士生导师,首都师范大学太赫兹光电子学教育部重点实验室外聘教授,主要研究领域是毫米波/太赫兹空间探测与遥感技术。承担国家自然科学基金重大科学仪器项目和民用航天太赫兹成像重大项目,目前已有三项成果通过部级鉴定。学术兼职方面担任工信部无线电频率规划专家组成员、中国通信学会天线与射频技术专委会委员,毫米波太赫兹产业联盟副理事长,多次担任国际会议 Session Chair,担任IEEE Transaction on Antenna and Propagation和《电子学报》审稿专家。报告题目:太赫兹固态信号发生、接收与前端组件集成技术邓建钦,博士,研究员级高工,工作于中电科思仪科技股份有限公司,长期从事毫米波及太赫兹测试技术研究和测试仪器研制工作,主持完成重大专项、预研、型号等多项国家项目,成功开发系列毫米波及太赫兹测试仪器,解决了国内毫米波与太赫兹技术研究和应用开发等测试问题;开发了系列毫米波与太赫兹应用前端组件,满足了成像、探测等应用开发需求。成果获国家科技进步奖1项,省部级奖项6项,发表学术论文20余篇,申请国家发明专利30余项。报告题目:毫米波PIN二极管开关芯片及其在毫米波安检成像中的应用(点击回放)高一强,博士毕业于中科院上海微系统与信息技术研究所,2019年加入上海微系统所工作至今。主要研究兴趣为基于化合物半导体的毫米波集成电路设计,微波、毫米波组件及其在探测和传感中的应用。曾参与重大仪器专项、自然基金重点、中科院STS等项目。成功研制Ka波段毫米波成像的整套前端芯片(低噪放、功放、混频器、倍频器等),W波段毫米波成像用的四通道发射与接收SOC芯片。关于首届 “蓝海杯”2020年度毫米波太赫兹安检仪器产品评奖活动本次大赛的主题是“毫米波太赫兹技术赋能、人体安检行业来到新时代”,旨在向全社会各行各业广泛征集毫米波太赫兹技术在安检安防领域的新产品、新应用和新技术,发挥行业的需求引领作用,发掘企业及个人的创新设计,集思广益,力争孵化一批新产品新应用,为毫米波太赫兹安检产品的产业化商用奠定基础。本次大赛设置特等奖、最佳人气奖、最佳设计奖、最佳商业价值奖、最佳社会效益奖、入围奖(优秀产品奖)等特色奖项。联盟与组委会将积极推动参赛项目与项目孵化单位的合作,进行产业化孵化。下午 :首届“蓝海杯”毫米波太赫兹安检仪产品评奖活动专题报告会汇报厂家:1、 江苏亨通太赫兹技术有限公司2、 欧必冀太赫兹科技(北京)有限公司3、 博微太赫兹信息科技有限公司4、 北京航天易联科技发展有限公司5、 中国电子科技集团公司第十四研究所6、 同方威视技术股份有限公司结果近期即将揭晓,敬请期待!特别放送:报告题目:新型人体安检产品的应用浅析(点击回放)王璞,男,毕业于浙江大学,现就职于同方威视技术股份有限公司,常年从事以“人”为中心的成像式新型人体安检设备研发,产品化,基于特定行业的解决方案开发等工作,涉及的主要技术产品包含:主动式毫米波人体、被动式太赫兹人体、背散射人体、X射线透视人体安检仪等。曾负责公司人体安检产品在欧洲及中国民航的认证工作,并参与撰写毫米波仪器设备国标和国际标准草案,具有丰富的全球人体安检领域实践经验,熟悉不同国家和地区、不同用户群体的“人检”需求和应用模式,主导公司人体安检类仪器设备在美加澳新等国公检法领域的使用模式设计及应用;主导仪器设备在欧洲、中东、亚洲、非洲各国机场和海关的部署和应用实践工作。
  • “重大科学仪器设备开发专项”2018年度申报指南征求意见(全文)
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   2017年5月23日,科技部高新司发布《关于对国家重点研发计划高新领域煤炭清洁高效利用和新型节能技术等9个重点专项2018年度项目申报指南建议征求意见的通知》,对煤炭清洁高效利用和新型节能技术、智能电网技术与装备、新能源汽车、先进轨道交通、地球观测与导航、增材制造与激光制造、重大科学仪器设备开发、材料基因工程关键技术与支撑平台、战略性先进电子材料9个专项公开征求意见,时间为2017年5月24日至6月7日。 /span /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong “重大科学仪器设备开发”重点专项2018年度项目申报指南建议 /strong /span /p p   为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》、《中国制造2025》和《关于加快推进生态文明建设的意见》等提出的任务,国家重点研发计划启动实施“重大科学仪器设备开发”重点专项。根据本重点专项实施方案的部署,现提出2018年度项目指南建议。 /p p   本重点专项总目标:紧扣我国科技创新、经济社会发展对科学仪器设备的重大需求,充分考虑我国现有基础和能力,在继承和发展“十二五”国家重大科学仪器设备开发专项成果的基础上,坚持政府引导、企业主导,立足当前、着眼长远,整体推进、重点突破的原则,以关键核心技术和部件的自主研发为突破口,聚焦高端通用科学仪器设备和专业重大科学仪器设备的仪器开发、应用开发、工程化开发和产业化开发,带动科学仪器系统集成创新,有效提升我国科学仪器设备行业整体创新水平与自我装备能力。通过本专项的实施,构建“仪器原理验证→关键技术研发(软硬件)→系统集成→应用示范→产业化”的国家科学仪器开发链条,完善产学研用融合、协同创新发展的成果转化与合作模式,激发行业、企业活力和创造力。强化技术创新和产品可靠性、稳定性实验,引入重要用户应用示范、拓展产品应用领域,大幅提升我国科学仪器行业可持续发展能力和核心竞争力。 /p p   本专项充分利用国家科技计划(专项、基金)或其他渠道,已取得的相关检测原理、方法、技术或科研装置,开展系统集成、应用开发和工程化开发,形成具有自主知识产权、“皮实耐用”和功能丰富的重大科学仪器设备产品,并服务科学研究和经济社会发展。本专项按照全链条部署、一体化实施的原则,共设置了关键核心部件、高端通用科学仪器和专业重大科学仪器3个任务方向。专项实施周期为5年(2016-2020年)。 /p p    span style=" color: rgb(255, 0, 0) " strong 1.核心关键部件开发与应用 /strong /span /p p   共性考核指标:目标产品应通过可靠性测试和第三方异地测试,技术就绪度达到9级 至少应用于2类仪器 明确发明专利、标准和软件著作权等知识产权数量 形成批量生产能力,明确项目验收时销售数量和销售额。 /p p    strong 1.1 X射线菲涅耳透镜 /strong /p p   研究目标:开发X射线菲涅耳透镜,突破纳米尺度微结构的高深宽比加工技术难题,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在同步辐射、显微CT、软X射线成像等仪器中的应用。 /p p   考核指标:最外环宽度≤25nm@500eV,环高≥200nm@500eV 最外环宽度≤40nm@9keV,环高≥700nm@9keV,衍射效率≥1%@9keV X射线聚焦≤60nm 平均故障间隔时间≥5000小时。 /p p    strong 1.2 S波段高功率速调管 /strong /p p   研究目标:开发S波段高功率速调管,突破高压电子枪、高功率容量输出窗口技术,解决速调管工作稳定性难题,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在高能对撞机、同步辐射光源、自由电子激光装置、辐射成像装置、辐照加速器等仪器装置中的应用。 /p p   考核指标:中心频率2998MHz,带宽2MHz,最大输出功率≥50MW,脉冲宽度2μs,脉冲重复频率≥50Hz,效率≥45%,增益≥50dB 平均故障间隔时间≥5000小时。 /p p    strong 1.3 太赫兹倍频器 /strong /p p   研究目标:开发太赫兹倍频器,突破太赫兹倍频电路设计与精密制造技术,采用国产倍频芯片,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在太赫兹信号发生器、太赫兹矢量网络分析仪、太赫兹安全检测仪、太赫兹成像仪等仪器中的应用。 /p p   考核指标:3倍频输出频率范围0.325THz~0.5THz,最大输出功率≥-10dBm,倍频损耗≤20dB 4倍频输出频率范围0.5THz~0.75THz,最大输出功率≥-20dBm,倍频损耗≤25dB 4倍频输出频率范围0.75THz~1.1THz,最大输出功率≥-30dBm,倍频损耗≤30dB 平均故障间隔时间≥5000小时。 /p p    strong 1.4 通用高精度匀场超导磁体 /strong /p p   研究目标:开发通用高精度匀场超导磁体,突破大口径超导强磁体加工和高精度匀场设计等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在量子振荡检测仪、核磁谱仪、磁致冷和强磁场材料处理装置等仪器中的应用。 /p p   考核指标:磁场强度≥18T,孔径≥60mm,磁场相对不均匀度≤10-4@直径10mm内 磁场不稳定度≤10-5/h 平均故障间隔时间≥5000小时。 /p p    strong 1.5 双曲面线性离子阱 /strong /p p   研究内容:开发双曲面线性离子阱,突破双曲线形电极加工和四电极高精度平行绝缘装配等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在离子阱质谱仪、大型离子反应仪等仪器中的应用。 /p p   考核指标:电极长度≥100mm,双曲面电极表面粗糙度Ra≤0.1μm,双曲面线轮廓度≤0.4μm,离子阱综合几何精度≤5μm,质量范围50amu~4000amu,相对质量分辨率≤0.5amu 平均故障间隔时间≥5000小时。 /p p    strong 1.6 宽光谱高灵敏电子倍增CCD成像探测器 /strong /p p   研究内容:开发宽光谱高灵敏电子倍增CCD成像探测器,突破高灵敏光生电荷采集结构制备关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在高灵敏度显微镜、微光探测仪、光谱分析仪等仪器中的应用。 /p p   考核指标:波长范围260nm~1000nm,像元数目≥1024× 1024,像元尺寸≤13µ m × 13µ m,倍增增益≥1000,最高信噪比≥45dB,峰值量子效率≥80%,暗电荷≤350e/pixel/s(常温),最高输出帧频≥10fps 平均故障间隔时间≥5000小时。 /p p    strong 1.7 太赫兹混频器 /strong /p p   研究目标:开发太赫兹混频器,突破太赫兹混频电路设计与精密制造等关键技术,采用国产混频芯片,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在太赫兹矢量网络分析仪、太赫兹频谱分析仪、太赫兹安全检测仪、太赫兹成像仪等仪器中的应用。 /p p   考核指标:2次谐波混频频率范围0.325THz~0.5THz,中频频率范围20MHz~300MHz,变频损耗≤17dB 4次谐波混频频率范围0.5THz~0.75THz,中频频率范围20MHz~300MHz,变频损耗≤30dB 4次谐波混频频率范围0.75THz~1.1THz,中频频率范围20MHz~300MHz,变频损耗≤35dB 平均故障间隔时间≥5000小时。 /p p    strong 1.8 InGaAs探测器 /strong /p p   研究目标:开发InGaAs探测器,突破单光子信号探测芯片设计制造关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在近红外光谱分析仪、近红外成像仪、光纤光谱分析仪等仪器中的应用。 /p p   考核指标:光谱范围0.9μm ~1.7μm,平均光子探测效率≥20%,暗计数≤3kcps,暗电流≤0.3nA@击穿电压,时间分辨率≤2ns 平均故障间隔时间≥5000小时。 /p p    strong 1.9 大面积低剂量X射线平板探测器 /strong /p p   研究目标:开发大面积低剂量X射线平板探测器,突破高速帧率采集、高填充系数大面积探测、高效率低剂量探测等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在工业检测X射线成像仪、医学X射线成像仪等仪器中的应用。 /p p   考核指标:有效探测面积≥30cm× 30cm,像素尺寸≤150µ m,最高帧频120fps,最低成像剂量≤5nGy,量子检测效率≥75% @20µ Gy,极限分辨率≥3.3Lp/mm 平均故障间隔时间≥5000小时。 /p p    strong 1.10 高分辨耐辐照硅探测器 /strong /p p   研究目标:开发高分辨率耐辐照硅探测器,突破离子注入与表面钝化等关键技术,开展工程化开发、应用示范与产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在X射线衍射仪、高能粒子谱仪和X射线成像谱仪等仪器中的应用。 /p p   考核指标:探测面积≥5cm× 5cm,位置分辨率≤100μm,漏电流密度≤2nA/cm2@耗尽电压,探测器工作电压≥600V,抗辐照指标≥1× 1015nep/cm2 平均故障间隔时间≥5000小时。 /p p    strong 1.11 高精度高空多参数监测传感器 /strong /p p   研究目标:开发高精度高空温度、湿度、气压和风速监测传感器,突破温度漂移抑制和高空环境适应性等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在探空仪、灾害天气预警系统等仪器中的应用。 /p p   考核指标:温度测量范围-90° C~+50° C,温度测量误差≤0.3° C 相对湿度测量范围0~100%RH,相对湿度测量误差≤5% 气压测量范围5hPa~1060hPa,气压测量误差≤1hPa 风速测量范围3m/s~30m/s,风速测量误差≤1m/s 功耗≤100mW,传感器响应时间≤140s 平均故障间隔次数≥50次。 /p p    strong 1.12 小型化高精度姿态传感器 /strong /p p   研究目标:开发小型化高精度姿态传感器,突破微型化传感器芯片及制造工艺一致性等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在工业机器人导航仪、无人装置姿态性能检测仪和姿态实时校准仪等仪器中的应用。 /p p   考核指标:姿态角测量范围0-360° ,航向姿态精度≤0.07° @60s,俯仰与横滚姿态精度≤0.03° @1σ,传感器体积≤100cm3,重量≤150g,功耗≤1W 平均故障间隔时间≥10000小时。 /p p    strong 1.13 飞行安全数据记录器 /strong /p p   研究目标:开发飞行安全数据记录器,突破多通道快速记录、抗恶劣环境、小型化集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在机载航电测试系统、极端恶劣环境下飞行器动态参数测试设备等仪器上的应用。 /p p   考核指标:采集通道数≥1000,最高存储速度≥500MB/s,存储容量≥256GB,耐高温烧蚀1200℃@60min 抗冲击强度≥10000g,持续时间5ms 耐海水浸泡≥30天,耐深海压力≥6000m@24h 体积≤2500cm3,重量≤3.5kg 具有视频记录、链路记录、授时、文件索引管理等功能,符合适航认证标准 平均故障间隔时间≥50000小时。 /p p    strong 1.14 高分辨率多功能原子探针 /strong /p p   研究目标:开发高分辨率多功能原子探针,突破高耐磨材料制备和纳米尺度结构制备工艺的难题,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在原子力显微镜、磁力显微镜等仪器中的应用。 /p p   考核指标:普通探针尖端曲率半径范围5nm~1μm,深宽比≥5,弹性常数范围0.01N/m~40N/m,加工误差≤± 10% 高分辨探针尖端曲率半径≤5nm,深宽比≥3 磁性探针曲率半径≤30nm 电性探针曲率半径≤30nm 成品率≥90% 使用寿命≥1000幅扫描成像。 /p p    strong 1.15 高精度微型压力传感器 /strong /p p   研究目标:开发高精度微型压力传感器,突破多参量协同敏感和低残余应力封装等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在工业流程监控仪、大气数据采集仪、高精度压力控制仪等仪器中的应用。 /p p   考核指标:压力测量范围0~1MPa,测量误差≤0.03%FS,测量分辨率≤0.02%FS,长期稳定性≤± 0.05%FS/年,尺寸≤5mm× 5mm× 5mm,工作温度-40℃~+85℃,过载能力≥2倍FS,抗加速度冲击≤0.05kPa/g 平均故障间隔时间≥5000小时。 /p p   strong  1.16 高精度加速度传感器 /strong /p p   研究目标:开发高精度微型加速度传感器,突破温度漂移抑制和工艺一致性等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在航空仪表、微惯性测量单元等领域仪器中的应用。 /p p   考核指标:量程± 50g,分辨率≤5µ g,综合精度≤10µ g,输入轴失准角≤12µ rad,重复性≤4.5× 10-4/年,功耗≤5mW,封装体积≤φ20mm× 12mm,工作温度范围-45° C~+85° C,抗冲击≥250g 平均故障间隔时间≥5000小时。 /p p    strong 1.17 阵列式微型超声换能器 /strong /p p   研究目标:开发阵列式微型超声换能器,突破大幅面阵列阵元制备关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在超声成像、流量检测、指纹识别等仪器中的应用。 /p p   考核指标:阵列尺寸≤40mm× 40mm,阵元数量≥64× 64,工作频率范围100kHz~2MHz,空气中声压级≥75dB(20µ Pa/V@1m),波束宽度≤30° ,机械品质因数≥30 平均故障间隔时间≥5000小时。 /p p    strong 1.18 微型风速风向传感器 /strong /p p   研究目标:开发高性能微型风速风向传感器,突破闭环控制和温度漂移抑制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在风电厂风场检测仪、野外便携式气象检测仪、环境检测仪等仪器中的应用。 /p p   考核指标:风速测量范围0~60m/s,启动风速v≤0.2m/s,风速测量误差± (0.3+0.03v)m/s 风向测量范围0~360° ,风向测量误差± 2° 功耗≤200mW,封装体积≤φ50mm× 50mm 平均故障间隔时间≥5000小时。 /p p    strong 1.19 高稳定宽量程电流传感器 /strong /p p   研究目标:开发高稳定宽量程电流传感器,突破大电流高精度检测关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品。实现在核磁共振成像仪、电流标准装置、高精度电能计量装置等仪器中的应用。 /p p   考核指标:电流测量范围0~10000A 100mA量程指标:电流分辨率≤1μAT,线性度≤100ppm,准确度≤200ppm 600A量程指标:电流分辨率≤10μAT,线性度≤1ppm,温度系数≤0.1ppm/K,准确度≤1ppm 10000A量程指标:电流分辨率≤50μAT,线性度≤1ppm,温度系数≤0.1ppm/K,准确度≤2ppm 平均故障间隔时间≥10000小时。 /p p    strong 1.20 微型电场传感器 /strong /p p   研究目标:开发高性能微型电场传感器,突破工艺一致性和温度漂移抑制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在探空仪、静电监测与安全防护系统、雷电预警系统等仪器中的应用。 /p p   考核指标:测量范围± 120kV/m,分辨力≤0.05kV/m,准确度≤5%,功耗≤600mW,封装体积≤φ50mm× 80mm,实现直流、交流电场测量 平均故障间隔时间≥5000小时。 /p p    strong 1.21 高精度多通道数据采集器 /strong /p p   研究目标:开发高精度多通道数据采集器,突破高速共享缓存矩阵设计和快速实时信号同步处理等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在质谱仪、噪声分析仪、磁场测试仪、低温物理参数测试仪等仪器中的应用。 /p p   考核指标:通道数≥64(可扩展),最大采样率≥204.8kHz,非杂散动态范围≥120dB,采样位数≥24bit,最大电压范围± 10V,灵敏度50nV,串扰抑制≥110dB 平均故障间隔时间≥5000小时。 /p p   strong  1.22 高速高精度二维扫描微镜 /strong /p p   研究目标:开发高速高精度二维扫描微镜,突破低应力薄膜加工、片上角度检测等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在共聚焦显微镜、3D激光扫描仪、微型激光雷达等仪器中的应用。 /p p   考核指标:工作波段800nm~2500nm,绕快轴扫描角度≥40° ,扫描谐振频率≥25kHz 绕慢轴扫描角度≥60° ,扫描谐振频率≥600Hz,指向性扫描时光线扫描角度≥30° ,指向性偏转步进精度≤2µ rad 抗冲击≥1200g,实现对转角的实时检测 平均故障间隔时间≥10000小时。 /p p    strong 1.23 紫外凸面光栅 /strong /p p   研究目标:开发紫外波段闪耀凸面光栅,突破光栅槽形精密刻划关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在紫外超光谱成像仪、紫外多光谱成像仪等仪器中的应用。 /p p   考核指标:工作波长范围250nm~400nm,凸面光栅口径≥55mm,线密度范围500~700线/mm,曲率半径≤150mm,光栅衍射效率≥60% 平均故障间隔时间≥5000小时。 /p p    strong 1.24 宽谱段高分辨单色器 /strong /p p   研究目标:开发宽谱段高分辨单色器,突破二维色散自动定位校正关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权,质量稳定可靠的产品,实现在等离子体发射光谱仪、原子吸收光谱仪、拉曼光谱仪、原子荧光光谱仪等仪器上的应用。 /p p   考核指标:波长范围160nm~1000nm,波长误差≤± 0.03nm,波长重复性≤0.005nm,最小光谱带宽≤0.009nm@257.610nm 平均故障间隔时间≥5000小时。 /p p    strong 1.25 微型集成扫描光栅微镜 /strong /p p   研究目标:开发微型集成扫描光栅微镜,突破微型扫描光栅设计制造、光学准直与集成等关键技术,开展工程化开发、应用示范与产业化推广,形成具有完全自主知识产权、质量稳定可靠的产品,实现在近红外光谱仪、荧光光谱仪、共聚焦显微镜等仪器中的应用。 /p p   考核指标:波长范围800nm~2500nm,镜面面积≥6mm× 6mm,衍射效率≥40%,最高扫描频率≥700Hz,最大扫描角度≥± 7° ,驱动电压≤1.5V 平均故障间隔时间≥10000小时。 /p p    strong 1.26 高精度微量加液器 /strong /p p   研究内容:开发高精度微量加液器,突破高精度旋转阀制造、高精度位移及温度控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在流动注射分析仪、液相色谱仪、质谱仪、电位滴定仪、固相萃取仪等仪器中的应用。 /p p   考核指标:流量范围2nL/s~5mL/s,准确度≤0.3%,重复精度≤0.2%,最小加液体积≤5nL,加液管容积10µ L~100mL,满足定时加液、定量加液、变流量加液、超微量加液等多种加液需求,满足强酸强碱及多种有机溶剂的使用要求 平均故障间隔时间≥10000小时。 /p p    strong 1.27 快速反应分析转化器 /strong /p p   研究目标:开发快速反应分析转化器,突破秒级反应原位驱动与快速捕捉等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现与质谱检测器、红外检测器、热导检测器等的联用。 /p p   考核指标:最高加热温度≥1400℃,温度控制精度≤0.3%,最高反应压力≥5MPa,在线热启动时间≤0.5s,适用的最快反应时间≤1s 平均故障间隔时间≥10000小时。 /p p    strong 1.28 长行程精密运动平台 /strong /p p   研究目标:开发长行程精密运动平台,突破高精度复合直线运动机构和超快直线驱动等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在高通量基因测序仪、超分辨显微成像仪、工业快速检测仪等仪器中的应用。 /p p   考核指标:X-Y行程≥150mm,移动速度≥1m/s,Z向跳动幅度≤± 0.4µ m,闭环分辨率≤5nm Z向行程≥20mm,移动速度≥1m/s,X-Y向跳动幅度≤± 0.2µ m,闭环分辨率≤5nm 非线性度≤0.03%,最大负载能力≥10kg 平均故障间隔时间≥5000小时。 /p p    strong 1.29 宽频带同轴步进衰减器 /strong /p p   研究目标:开发宽频带同轴步进衰减器,突破弹性件热处理与表面处理工艺、精密微组装、电磁控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的产品,实现在矢量网络分析仪、信号源、频谱分析仪等仪器中的应用。 /p p   考核指标:频率范围DC~26.5GHz:最大衰减量90dB,步进量10dB,驻波比≤1.5,插入损耗≤1.8dB,寿命≥500万次 频率范围DC~50GHz:最大衰减量60dB,步进量10dB,驻波比≤1.6,插入损耗≤2.5dB,寿命≥200万次 频率范围DC~67GHz:最大衰减量50dB,步进量10dB,驻波比≤1.7,插入损耗≤3.0dB,寿命≥100万次。 /p p    span style=" color: rgb(255, 0, 0) " strong 2. 高端通用仪器工程化及应用开发 /strong /span /p p   共性考核指标:目标产品应通过可靠性测试和第三方异地测试,技术就绪度不低于8级 至少应用于2个领域或行业 明确发明专利、标准和软件著作权等知识产权数量 形成批量生产能力,明确项目验收时销售数量和销售额。 /p p    strong 2.1 高精度光热电位分析仪 /strong /p p   研究目标:针对石化、材料、能源、食品、药品、环保等行业化学成分分析需求,突破光度法、热分析法与电位法综合分析和高精度高通量滴定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高精度光热电位分析仪,开发相关软件和数据库,实现对物质中离子或基团的含量检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:光度分析:光谱范围≥400nm~700nm,波长准确度≤± 1nm,吸光度精度≤0.001Abs 热分析:温度范围-10℃~60℃,分辨率≤10-4℃,准确度≤10-3℃,响应速度≤0.3s 电位分析:测量范围± 2400mV,稳定性± 0.03mV,分辨率≤0.01mV 滴定通道数≥4,馈液精度≤1/80000滴定管体积 平均故障间隔时间≥5000小时。 /p p   strong  2.2 气相分子吸收光谱仪 /strong /p p   研究目标:针对食品、环保等行业多种形态氮和硫的检测需求,突破高效连续反应气化分离、高信噪比检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的气相分子吸收光谱仪,开发相关软件和数据库,实现多种形态氮和硫的自动高效检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:波长范围190nm~400nm,波长重复性≤± 0.2nm,基线稳定性≤± 0.0002Abs/30min,单个样品气化和测量时间≤3min,测量精度≤3% 平均故障间隔时间≥3000小时。 /p p    strong 2.3 高精度光声光谱检测仪 /strong /p p   研究目标:针对电力、核能、石油化工等行业化学成分检测需求,突破光声光谱分析、微弱信号提取与识别等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高精度光声光谱检测仪,开发相关软件和数据库,实现电力设备、石油化工设备等行业气体化学成分的在线监测和离线检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:光声光谱范围3μm~14μm,光声光谱带宽≤150nm,光功率≥10W,声探测灵敏度≥15mV/Pa CO、CO2、CH4、C2H4、C2H6的检测限≤0.1μL/L,C2H2检测限≤0.05μL/L,H2检测限≤2μL/L,SO2F2和CF4检测限≤1.0μL/L,SO2、H2S、COS检测限≤10.0μL/L,上述气体最高检测浓度≥2000μL/L 平均故障间隔时间≥5000小时。 /p p    strong 2.4 高灵敏紫外成像仪 /strong /p p   研究目标:针对电力和铁路等行业安全运行的电晕放电检测需求,突破高灵敏紫外探测、精准图像融合处理、图像补偿与校正等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏紫外成像仪,开发相关软件和数据库,实现日盲条件下高压设备放电位置定位和强度检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:紫外波长范围240nm~280nm,灵敏度≤3× 10-18W/cm2,电晕探测灵敏度≤2PC@8m 可见光波长范围400nm~780nm,灵敏度≤1Lux 具备自动聚焦及增益功能,聚焦范围2m~无穷远 平均故障间隔时间≥5000小时。 /p p    strong 2.5 高速激光共聚焦拉曼光谱成像仪 /strong /p p   研究目标:针对物理化学、生物医学、材料工程等领域微区物质化学结构空间分布探测与分析的需求,突破低波数、高分辨、高速光谱成像关键技术,开发具有自主知识产权、质量稳定可靠、关键部件国产化的高速激光共聚焦拉曼光谱成像仪,实现激光拉曼光谱远场扫描探测与光谱成像。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:探测光谱范围200nm~1000nm,激发波长覆盖紫外到近红外三个以上波段,拉曼光谱探测分辨率≤0.7cm-1,低波数≤50cm-1 图像横向分辨率≤200nm,轴向分辨率≤500nm,样品轴向定焦分辨率≤10nm,成像时间≤10min@1024× 1024 平均故障间隔时间≥3000小时。 /p p    strong 2.6 磁共振脑图谱测量仪 /strong /p p   研究目标:针对脑活动无创高精度测量的需求,突破高磁场能量密度下脑图谱精细绘制等关键技术,研制具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振脑图谱测量仪,开发相关软件和数据库,实现脑功能图像获取、建模和频谱分析。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:主磁体磁场强度≥3T,孔径≤50cm,最低冷头温度≤20K,磁体最短长度≤1.4m,梯度切换率≥200mT/(m· ms-1) 脑图谱重建速度≥8000帧/s,脑图谱视野范围≥120° ,触觉脑图谱绘制分辨率≤1mm,可绘制视觉脑功能区≥15个,触觉脑功能区≥10个 稳定度≤10ppm@连续工作10小时 平均故障间隔时间≥10000小时。 /p p    strong 2.7 有机物主元素分析仪 /strong /p p   研究目标:针对食品、农业、石油化工、地矿等行业对有机化合物中碳、氢、氮、硫、氧元素分析的需求,突破有机物快速分解、高精度检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的有机物主元素分析仪,开发相关软件和数据库,实现对有机物的碳、氢、氮、硫、氧元素高精度定量分析。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:C、H、N、S元素检测限≤30ppm,C、H、N、S元素测量重复性≤0.4% O元素检测限≤2ppm,O元素测量重复性≤0.2% 系统进样量0.05mg~1g 具有全自动进样功能 平均故障间隔时间≥5000小时。 /p p    strong 2.8 高速网络协议与安全检测仪 /strong /p p   研究目标:针对高速数据通信及数据中心网络设备研发与运行监测需求,突破高速数字传输速率全线速测试、全协议多参数跨层分析、攻击特征提取及攻击库构建等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高速网络协议与安全测试仪,开发相关软件和数据库,实现高速通信网络及设备2~7层协议与安全威胁检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:测量端口线速覆盖100Mbps~100Gbps 发送流数据量≥1024个,接收流数据量≥2048个 单卡新建TCP连接数≥80万个/s,在线TCP连接数≥1600万个/s 攻击检测2000种 具有路由协议、接入协议、交换协议、城域网协议、数据中心协议以及应用层协议仿真测试能力 具备应用层回放、定时及时间同步、网络安全威胁检测、RFC2544测试等功能 平均故障间隔时间≥5000小时。 /p p    strong 2.9 材料高温高频力学性能原位测试仪 /strong /p p   研究目标:针对航空、航天和核工业等领域材料在高温高频载荷作用下性能测试需求,突破高温高频复杂载荷下材料力学性能测试、微观力学性能表征等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的材料高温高频力学性能原位测试仪,开发相关软件和数据库,实现高温环境复杂载荷作用下材料拉伸、弯曲、高频疲劳等静态和动态力学性能原位测量。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:静态拉伸载荷0~25kN,分辨率≤2N,准确度± 1%,变形测量范围0~100mm,分辨率≤10μm,准确度± 2% 静态弯曲载荷0~10kN,分辨率≤1N,准确度± 1%,变形测量范围0~50mm,分辨率≤5μm,准确度± 2% 高频疲劳交变载荷0~10kN,交变载荷频率≥20kHz 温度加载范围-20℃~1100℃,温控误差± 5℃ 成像放大倍数500倍~1000倍,应变测量范围100με~10ε 平均故障间隔时间≥3000小时。 /p p    strong 2.10 微纳结构动态特性测试仪 /strong /p p   研究目标:针对微纳结构与MEMS器件动态特性测试的需求,突破高信噪比时空调制和自动调焦等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的微纳结构动态特性测试仪,开发相关软件和数据库,实现微纳结构与MEMS器件的振动频率、模式模态等特性测量分析以及典型缺陷识别。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:振动频率范围300Hz~24MHz,相对频率分辨率≤0.5%,振动位移分辨率≤1nm,速度分辨率≤1mm/s 平台扫描范围≥5mm× 5mm,分辨率≤1mm 缺陷识别准确率≥90%,具有振动模式模态分析功能 平均故障间隔时间≥3000小时。 /p p    strong 2.11 大型复杂结构件力学性能检测仪 /strong /p p   研究目标:针对大型曲轴锻件、大型齿轮、大型叶片等核心关键部件制造行业的质量控制需求,突破复杂构件力学性能定量无损检测关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的大型结构件力学性能检测仪,开发相关软件和数据库,实现大型复杂结构件多项力学性能检测与扫查成像。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:检测深度0~10mm,检测横向分辨率0.5mm× 0.5mm 屈服强度相对误差± 10%,残余应力误差± 15MPa,硬度及硬化层深度相对误差± 5% 自动化检测参数:最高速度40次/s,重复定位精度0.1mm 平均故障间隔时间≥3000小时。 /p p    strong 2.12 太赫兹三维层析成像仪 /strong /p p   研究目标:针对复合材料三维形貌与内部缺陷检测的需求,突破太赫兹高分辨率成像、大景深自适应聚焦、图像信息融合与解译等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的太赫兹三维层析成像仪,开发相关软件和数据库,实现材料表面形貌以及内部缺陷的三维无损检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:中心频率≥0.5THz,调制时间≤10µ s@90GHz,成像景深≥50cm,成像时间≤5s@50cm× 50cm,穿透深度≥10cm@碳纤维材料,成像分辨率≤0.3mm× 0.3mm× 1.5mm 平均故障间隔时间≥4000小时。 /p p    strong 2.13 差分高能电子衍射仪 /strong /p p   研究目标:针对薄膜、异质结、超晶格人工结构制备工艺过程中的测试需求,突破宽气压高能衍射电子枪和衍射电子气体散射干扰抑制等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的差分高能电子衍射仪,开发相关软件和数据库,实现宽气压范围晶体取向和原子位置等原位实时测试。开展工程化开发、应用示范和产业化应用。 /p p   考核指标:能量范围15keV~35keV,束流50μA~100μA,束斑直径50μm~80μm,纹波系数0.05%,束流稳定度系数0.15%/℃,工作气压范围1× 10-8Pa-100Pa,一次实验采集图像≥50幅,自动焦距调整响应时间≤5秒,观测强度震荡≥50个周期 平均故障间隔时间≥3000小时。 /p p    strong 2.14 固态量子材料自旋信息测量仪 /strong /p p   研究目标:针对量子计算、量子传感器件所用核心关键材料量子自旋信息测量及表征需求,突破量子探针制备、量子自旋态空间形貌表征、自旋态时空信息解耦等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的固态量子材料自旋信息测量仪,开发相关软件和数据库,实现室温环境下固态量子材料自旋信息的高精度测量。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:样品尺寸1nm~20μm,自旋保持时间≥100µ s,时间分辨率≤50ps 自旋空间测量范围0.1nm~2μm 自旋空间横向分辨率≤0.1nm,纵向分辨率≤0.01nm 自旋间力测量范围0.2nN~5nN,分辨率≤0.2nN 平均故障间隔时间≥3000小时。 /p p    strong 2.15 低场量子电阻测量仪 /strong /p p   研究目标:针对电阻高准确度校准的需要,突破低场量子电阻测量和计量传递等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的低场量子电阻测量仪,开发相关软件和数据库,实现低磁场、无需补充液氦低温条件下可移动和不间断运行的高准确度电阻测量。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:测量范围1Ω~10kΩ,低磁场量子电阻不确定度≤1× 10-8,高准确度电阻传递装置不确定度≤1× 10-8,可移动式基准级低场量子电阻测量系统的整体不确定度≤2× 10-8,所需超导磁体磁感应强度≤6T,低温装置温度范围4.2K~10K 平均故障间隔时间≥3000小时。 /p p    strong 2.16 高精度三维螺纹综合测量仪 /strong /p p   研究目标:针对先进制造领域螺纹几何参数的综合性检测需求,突破内外螺纹三维扫描高精度测头和三维参数高效重构关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高精度三维螺纹综合测量仪,开发相关软件和数据库,实现螺纹全参数的三维自动扫描检测。开展工程化开发、应用示范和实现产业化。 /p p   考核指标:三维旋转扫描测量范围:外螺纹1mm~400mm,内螺纹3mm~400mm,分辨率≤0.01μm,径测量精度± (4.0+L/200)μm,螺距测量精度± (0.9+L/200)μm,牙侧角测量精度± 0.03° ,空间坐标测量精度± (1.5+L/200)μm 具有表面缺陷自动识别、三维模拟装配功能,数据库覆盖国内外螺纹量规标准和紧固件标准140份以上,溯源校准仪器的计量标准器1套,平均故障间隔时间≥3000小时。 /p p    span style=" color: rgb(255, 0, 0) " strong 3. 专业重大科学仪器开发及应用示范 /strong /span /p p   共性考核指标:目标产品应通过可靠性测试和第三方异地测试,技术就绪度不低于8级 至少应用于2个领域或行业 明确发明专利、标准和软件著作权等知识产权数量 形成批量生产能力,明确项目验收时销售数量和销售额。 /p p    strong 3.1 钢材超声在线自动探伤仪 /strong /p p   研究目标:针对钢质板材、管材和棒材制备过程中在线自动检测与探伤需求,突破多通道非接触式超声在线自动检测及高本底噪声下信号有效获取等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的钢材超声在线自动探伤仪,开发相关软件和数据库,实现钢材缺陷的自动检测与报警。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:钢板检测厚度6mm~100mm,钢板检测宽度1m~6m,钢板检测精度φ3mm平底孔和0.5mm× 10mm纵向裂纹,钢板检测线速度≥60m/min,钢板检测误报率≤2%,钢板检测漏报率≤1% 管材检测精度20mm× 1mm× 5%壁厚的内外刻槽,管材检测线速度≥50m/min 棒材检测精度φ2.0mm平底孔@距表面225mm以内,棒材检测线速度≥30m/min 平均故障间隔时间≥3000小时。 /p p    strong 3.2 水下综合无损检测仪 /strong /p p   研究内容:针对核电、海洋资源开采、船舶等水环境下关键部件的无损检测需求,突破水下零重力综合无损检测及缺陷定量评估等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的水下综合无损检测仪,实现水环境下关键部件损伤的超声、射线和涡流综合检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:超声检测:通道数≥32,工作频率范围0.2MHz~25MHz,检测厚度≥65mm,灵敏度≤10mm× 0.2mm× 3mm裂纹 射线检测:检测厚度≥65mm,灵敏度≤φ1.25mm体积性缺陷 涡流检测:通道数≥640,灵敏度≤5mm× 0.2mm× 1mm裂纹 水下重复定位精度≤2mm 平均故障间隔时间≥3000小时。 /p p    strong 3.3 机载地下矿产与水资源探测仪 /strong /p p   研究目标:针对地下矿产与水资源等快速探查需求,突破地下矿产和水资源非接触大范围快速探测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的机载地下矿产与水资源探测仪,开发相关数据处理与反演解释软件,实现陆地地下资源和人工目标体的高效大范围探测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:最大探地深度≥500m 横向分辨率≤10m 探测深度分辨率≤10m(100m深度以内) 可探测异常体时间常数≤50μs(可探测金属矿、地下水、地热等资源分布) 可探测地质断裂和构造的空间分布和走向 软件具备三维电性结构成像、地质断层和构造分布实时成像与显示功能 平均故障间隔时间≥3000小时。 /p p    strong 3.4 自组网海洋环境多参数测量仪 /strong /p p   研究目标:针对近远海区域海底地形地貌全时域测绘需求,突破测绘航行智能同步控制、自主避障航行、多艇协同管理等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的自组网多参数海洋环境地形测量仪,开发相关软件和数据库,实现海底地形地貌和海流剖面高精度动态检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:海底地形测量:工作频率≥170Hz时,斜距量程≥500m,斜距量程分辨率≤2cm 海流剖面测量:工作频率≥600kHz,量程≥70m,水流速度测量准确度≤水流速度0.3%± 0.3cm/s,流速测量分辨率≤0.1cm/s 实现超视距无人自主航行测量功能,远程作业和控制距离≥30km 具备测绘和导航同步控制、测绘数据实时自动三维拼接、自组网等功能 平均故障间隔时间≥3000小时。 /p p    strong 3.5 深地地质结构成像探测仪 /strong /p p   研究目标:针对深部矿产和油气资源探查、重大地质灾害监测等需求,突破勘探深度有限、检测灵敏度低、背景干扰复杂、异常信号识别和提取难等关键问题,开发具有自主知识产权、质量稳定可靠、核心部件国产化的深地地质结构成像探测仪,开发相关数据处理与反演解释软件,实现地下深部资源探测与地质灾害监测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:最大探地深度≥3000m,地面横向分辨率≤10m 探测目标X-Y方向尺寸误差≤5m@1km× 1km× 1km,Z方向尺寸误差≤10m@1km× 1km× 1km,位置定位误差≤1m 自组织网络数据质量监控,联合定性及定量反演 平均故障间隔时间≥3000小时。 /p p    strong 3.6 材料高温环境电磁特性测试仪 /strong /p p   研究目标:针对航空和航天设备高温环境条件下材料电磁特性测试评估,以及电子设备材料电磁参数的测试需求,突破宽频宽温测试夹具设计制造与校准标定、超宽带激励信号发生与响应信号分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的材料高温环境电磁特性测试仪,开发相关软件和数据库,实现常温和高温环境电磁材料的复介电常数和复磁导率等参量的高精度测试。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:频率范围:100kHz~110GHz 动态范围:120dB(40GHz以内)、110dB(50GHz以内)、90dB(110GHz以内) 工作温度范围:20℃~1000℃ 相对介电常数测试范围1~100,测试准确度± 5% 相对磁导率测试范围0.6~10,测试准确度± 5% 测量方法:同轴传输线法、波导传输线法、谐振腔法、自由空间法、探头法等 可测材料形态:块状、薄膜、粉末、液体等 平均故障间隔时间≥3000小时。 /p p    strong 3.7 空间电离层环境层析成像测量仪 /strong /p p   研究目标:针对空间天气监测预警、地震前兆预警、空间科学研究对空间电离层大范围、不间断、高精度测量需求,突破空间电离层反射、折射和闪烁效应检测、电离层参数实时监测与成像反演等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的空间电离层环境层析成像测量仪,开发相关软件和数据库,实现对电离层总电子含量和电子密度、电离层闪烁等参数的精确测量。开展工程化开发,应用示范和产业化推广。 /p p   考核指标:绝对总电子含量:测量范围0~300TECU,测量精度≤3TECU 相对总电子含量:测量范围0~300TECU,测量精度≤0.03TECU 电子密度:测量范围106个电子/m3~1013个电子/m3,相对测量误差≤15% 闪烁指数:测量范围0~1.5 测量误差≤0.1 测量高度范围60km~1000km 具备电离层不均匀体参数反演功能 平均故障间隔时间≥3000小时。 /p p    strong 3.8 气液两相流参数测量仪 /strong /p p   研究目标:针对能源、化工等领域对气液两相流的分析测量需求,突破探测器设计制备、高压防水密封、多相流层析成像等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的气液两相流参数测量仪,开发相关软件和数据库,实现多相混合物的体积流量、质量流量的连续实时检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:含气率测量范围0~100%,气相测量最大流量≥1万m3/h,气相测量精度≤± 2%Rel 液相最大流量≥200m3/h,液相测量精度≤5%FS 最大工作压强≥100MPa,空间分辨率≤2mm 平均故障间隔时间≥10000小时。 /p p    strong 3.9 全自动核酸单分子检测分析仪 /strong /p p   研究目标:针对低丰度核酸样本定量检测、稀有突变检测和核酸标准物质标定的需求,突破生物样本低丰度核酸富集、大规模微液滴生成、原位痕量核酸并行扩增、高速荧光检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的全自动核酸单分子检测分析仪,开发相关软件和数据库,实现靶基因单分子检测和变异分析。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:光谱范围420nm~740nm,图像动态范围≥10bit,动态范围≥5log,检测误差≤5%,突变检测灵敏度≤0.001%,微液滴数量≥5万,多重靶基因检测数量≥6 全自动检测通量48/96可选 平均故障间隔时间≥3000小时。 /p p    strong 3.10 海洋物性参数监测仪 /strong /p p   研究目标:针对深海探测与海洋气候多物理参数检测需求,突破海洋多参数测量、补偿解算、多参量数据融合等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的海洋物性参数监测仪,开发相关软件和数据库,实现温度、压力、湿度、风场、雨量和太阳辐射等参量的高精度检测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:深海测量:深度测量范围0~1000m,精度≤± 2% FS 电导率测量范围0.2~65 mS/cm,精度≤± 0.05 mS/cm 水温测量精度≤± 0.05℃ 流速分辨力≤1.5cm/s。气候监测:气压测量误差≤± 0.2%FS 湿度测量范围0~100%RH,精度≤± 2% 风速测量范围0~70m/s,精度≤0.5m/s 风向测量范围0~360° ,精度≤± 3° 雨量测量范围0~15mm/min,精度≤0.5mm/min 太阳辐射测量范围0~2500W/m2,精度≤1.5%FS 气温测量精度≤0.1℃。平均故障间隔时间≥3000小时。 /p p    strong 3.11 大型设施挠度非接触测量仪 /strong /p p   研究目标:针对桥梁、高塔、隧道、起重机械等大型设施健康监测、安全性评估及寿命预测的需求,突破三维图像获取、低质量图像高分辨分析、快速自标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的大型设施挠度非接触测量仪,开发相关软件和数据库,实现多点动静态三维挠度实时非接触测量及安全性评估分析。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:测量区域范围(FOV)0.1m~500m,挠度测量分辨率(1/100000)FOV,工作距离1m~500m,挠度测量精度≤± 0.02mm (≤10m)、≤± 1mm (≤100m)、≤± 10mm (≤500m),挠度测量采样频率≥300Hz 具备自动标定、实时输出、超限预警和安全评估等功能 平均故障间隔时间≥3000小时。 /p p    strong 3.12 宽频带高性能电磁信息安全测试仪 /strong /p p   研究目标:针对电磁空间安全测试、重大活动和核心要害部位电磁信息安全测评、电子信息设备电磁泄漏信号测试等领域的测试需求,突破电磁泄露信息高灵敏探测、异常信号跟踪监测与特征提取、信息还原与安全评估等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带高性能电磁信息安全测试仪,开发相关软件和数据库,实现电磁信息安全评估、电磁信息泄漏检测和窃听装置探测。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:频率范围9kHz~67GHz,分析带宽≥500MHz,测试灵敏度≤-165dBm,扫描速度≥10GHz/s,相位噪声≤-127dBc/Hz@(载波1GHz,频偏10kHz),镜频抑制≥70dB 具备全景、频率、存储扫描等测试模式 平均故障间隔时间≥5000小时。 /p p   电子邮箱: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/defaf678-513f-46e8-9016-4d015dc68946.jpg" title=" 2017-05-23_215114.jpg" / /p p   附件: /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/1f860970-1c1f-4655-836c-ddd1ce17a8d3.doc" 附件1:“煤炭清洁高效利用和新型节能技术”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/925915a0-7a22-40ec-8a1a-c81f5719fdee.doc" 附件2:“智能电网技术与装备”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/1ce02cbb-2f21-46e8-be60-532e30dd39e6.doc" 附件3:“新能源汽车”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/c556e0e1-1b8f-4e92-adc8-d1295bc0c419.doc" 附件4:“先进轨道交通”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/4caa0d20-67fb-4b63-90ed-290210b65352.doc" 附件5:“地球观测与导航”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/494d991d-b86a-4e71-8517-f829db4120ee.doc" 附件6:“增材制造与激光制造”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/f7227514-6f2f-4928-87e2-4acd6ef44370.doc" 附件7:“重大科学仪器设备开发”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/7442a189-2f51-4a85-b489-00c4f3bf02d5.doc" 附件8:“材料基因工程关键技术与支撑平台”重点专项2018年度项目申报指南建议.doc /a /p p style=" line-height: 16px "    a href=" http://img1.17img.cn/17img/files/201705/ueattachment/19a7e427-b389-4cf6-bea3-d1eb788bccec.doc" 附件9:“战略性先进电子材料”重点专项2018年度项目申报指南建议.doc /a /p p br/ /p
  • 河北:培育10家测量仪器设备品牌企业
    近日,省市场监管局、省科技厅、省工信厅、省国资委四部门联合制定《河北省加强现代先进测量体系建设实施方案》,提出以全省重大需求为导向,建立以政府为引导、企业为主体、市场为驱动的现代先进测量体系共建机制。实施方案提出,到2035年,每年新建改造提升社会公用计量标准50项以上,研制成功一批国产测量仪器设备,力争建设1至2家国家先进测量实验室,培育10家测量仪器设备品牌企业,形成5项核心测量技术或能力。实施方案确定了我省加强现代先进测量体系建设要开展的11项重点工作。构建先进量传溯源体系。开展量子电压溯源平台、量子电流标准装置研究和应用、基于超感技术的无源传感设备远距离供能和通讯研究。推动量值溯源扁平化发展,加强数字计量基础设施建设,建立计量科技创新基地,打造突破型、引领型、平台型国家先进测量实验室。强化计量标准支撑能力。优化以社会公用计量标准、部门(行业)计量标准、企事业计量标准为主体的计量标准基础设施网络。改造升级现有社会公用计量标准,拓展测量范围,提高准确度等级,强化动态量、复杂量、极端量检定校准能力。加强先进测量技术研究。重点研究新材料、新能源、先进制造和新一代信息技术等领域精密测量技术,力争在复杂环境、实时工况、多参数、极端量、动态在线远程、快速综合校准等准确测量难题上有所突破。开展先进测量仪器设备研发和应用。推动量子芯片、物联网、区块链、人工智能等新技术在测量仪器设备中的应用,积极推进测量仪器设备智能化、网络化。此外,实施方案还就提升企业测量能力和水平、创建企业测量需求服务平台、开展测量数据共享技术研究和应用、完善先进测量技术规范、优化先进测量技术服务、发挥质量基础设施协同推动作用、培养先进测量人才队伍等重点工作作出部署。
  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产 成果简介: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。 2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。 在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。 课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 应用前景: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 洁盟集团推出高端仪器设备品牌——深那仪器
    最近,洁盟集团旗下广东洁盟超声实业有限公司重磅推出的高端设备品牌——“深那仪器”,可谓一石激起千层浪。对于有超声波清洗需求的科研机构和企业来说,深那仪器的出现,不亚于在科研圈投下了一枚重磅炸弹,其蕴含的高技术含量、创新产品设计以及高质量产品品质,引发了众多科研工作者的强烈反响。能够获得如此肯定与青睐,不仅因为深那仪器是洁盟超声多年来在超声清洗领域深耕细作的心血结晶,更是因为品牌的上市为行业带来了新的发展动能,为科研机构客户带来了全新的利器。开天辟地——开启历史新篇章作为洁盟集团旗下高端超声清洗设备品牌,深那仪器的上市对行业具有深远的意义。立足于高端实验室仪器设备,深那仪器为生物制药、化学、食品、农业等多个领域的实验室提供了更富科技含量的产品与服务,包括器械零部件清洗器、产品特性改质等离子、样品细胞处理仪器等不同领域。依托精度高、性能稳定、使用方便等优点,深那仪器的产品将广泛应用于不同领域的科研机构,服务于不同科研应用场景。在助力科研机构更加高效、精确完成科研的同时,深那仪器更推动了超声清洗领域的产业变革,甚至以此为基点辐射众多相关科研领域,推动更多行业与领域实现变革与创新。厚积薄发——以历史为积淀深那仪器的成功推出,是多年来众多“洁盟人”在超声仪器领域坚持不懈的“量变”带来的“质变”,是洁盟集团十几年如一日对超声仪器先进技术、产品品质、客户体验持续追求的最佳证明。当前,国产化浪潮正如火如荼推进,身处历史洪流的洁盟集团,既怀揣着多年来在行业深耕的深厚积累,也看到了国家期望、行业发展的时代背景。未来的广阔天地,深那仪器大有可为,这不仅是“洁盟人”呕心沥血的心血凝聚,更是洁盟集团对国家、对民族的一片赤诚之心。星辰大海——肩负历史重任深那仪器的上市,还有着推动国民经济发展的重要战略意义。“十四五”期间,国民经济发展支柱产业机械制造业举足轻重,为制造业提供精密环保清洗服务的超声波清洗设备,同样肩负着发展国民经济、振兴民族工业的历史重任。深那仪器的上市,在提升国内超声清洗领域的技术水平的同时,更推动着“中国制造”向“中国智造”转化,为机械制造业摆脱国际仪器类产品依赖,实现国产化替代提供了完美方案与最佳实践。方兴未艾的深那仪器品牌,正站在历史的十字路,肩负着振兴民族工业的重任,怀揣着对超声清洁行业产业变革的热忱,背靠着国家和人民对科技强国的希望,以最先进的技术、最优质的服务、最高质量的产品,迎接更多合作伙伴,携手并进,共创辉煌。
  • 上海光机所在高重频飞秒光学频率梳光源方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在高重频飞秒光学频率梳光源方向取得重要进展。该团队首次报道了一种基于腔内谐振滤波技术的GHz低噪声九字腔掺铒光频梳。相关研究成果以GHz figure-9 Er-doped optical frequency comb based on nested fiber ring resonators为题,发表在《激光与光子学评论》(Laser Photonics Reviews)上。   九字腔光纤光频梳是目前技术成熟度最高的光频梳技术之一,广泛应用于车载、星载、外场等非实验室环境,推动了光频梳相关应用的发展。重复频率近GHz的光频梳在双梳测距、光谱检测以及天文频标等领域有着重要应用。然而,目前九字腔光纤光频梳的重频一般小于250MHz,其重频的提升仍然面临技术挑战。由于非线性放大环镜(NALM)锁模技术需要一定长度的光纤来积累足够的非线性相移差以启动锁模,传统的短谐振腔方案难以适用于九字腔的结构。   针对上述问题,该团队采用嵌套腔结构(图1),由两个光纤耦合器熔接构成的Fabry–Pérot(F-P)腔对外部NALM谐振腔进行模式滤波。当内、外腔的自由光谱范围精确匹配时,可将九字腔光纤光频梳的重频倍增至GHz。实验结果表明,该激光器具备优异的脉冲自启动性能和长期稳定性(图2)。区别于高次谐波锁模,嵌套腔方案可通过合理的内腔参数设计,配合增益竞争机制,来有效抑制超模噪声,实现高相干、低噪声的GHz重频光频梳。实验通过对该光频梳的载波包络相位偏移频率的测量,验证了其频率梳齿分量间的高相干性(图3)。该GHz重频九字腔光纤光频梳在激光雷达、双梳测距、光谱检测等领域颇具应用前景。   研究工作得到中国科学院青年创新促进会、国家自然科学基金和上海市自然科学基金的支持。图1. 基于嵌套光纤环形谐振腔的9字腔光频梳装置图图2. 单孤子状态连续运行90分钟的稳定性:(a)测量光谱的时间演变,色条表示光功率谱密度;(b)重复频率的变化;(c)典型光谱和(d)80分钟时的射频频谱;(e)输出脉冲的典型自相关信号。图3. (a)基于f-to-2f的载波包络偏移频率检测;(b)在10 kHz RBW下自由运行ceo拍频信号。
  • 哈希上榜“2018-2019年度最具价值环保装备品牌”
    2019(第十一届)上海水业热点论坛颁发了2018-2019年“最具价值环保装备品牌”奖项,哈希荣获“最具价值监测检测装备品牌”荣誉。“最具价值环保装备品牌” 颁奖典礼现场在生态文明治国的背景推动下,中国水网组织的环保装备品牌评选再次拉开帷幕,结合市场业绩、产品质量、品牌知名度、商业模式创新四大维度进行综合评定,最终甄选出“2018-2019年度最具价值环保装备品牌”上榜企业。哈希作为水质在线监测领域标杆企业荣登榜单,该奖项肯定了2018年度哈希在水质检测领域的成果和口碑,将以此为激励继续努力提升行业发展水平。哈希荣获“最具价值监测检测装备品牌”荣誉近一年来,哈希针对中国市场推出了多款明星新品,如Amtax NA8000氨氮在线分析仪以及MS6100多参数水质在线分析仪。在保持一贯高品质高精度的基础上,新品专注中国市场监测需求,针对中国水质精准研发,贯彻“本土化”发展方向,力求更好的服务于中国客户。
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 仪器选型|一文纵览十七大实验室常用设备品牌
    为了更好地帮助仪器用户进行实验室常用设备采购选型,仪器信息网2022年联合多家优质仪器厂商上线了专门的仪器展示专题,提升用户选购仪器的效率,并将海尔生物医疗、沃特世、屹尧、语瓶、北京祥鹄、莱伯泰科、艾本德、睿科、天美、上海勤翔、广州得泰、电科思仪、乐枫、贝克曼、得泰仪器、岩征、广州智达十七大厂商产品选型视频加以整理,帮助实验室常用设备用户更方便地进行仪器选型。海尔生物智慧实验室 助力高校科研选型沃特世-Andrew+ Robot自动移液机器人的应用屹尧-微波化学&样品前处理 助力高校科研装备更新语瓶-实验室洗瓶机选型及器皿清洗解决方案介绍北京祥鹄-功能全面的合成制备、分离提取设备莱伯泰科助力高校有机前处理选型莱伯泰科-实验室必不可少仪器设备用专业+专心服务科学研究 Eppendorf实验室设备介绍睿科集团智慧实验室解决方案 助力高校科研选型天美生命科学全面解决方案——政府贴息教育/科研更新改造项目上海勤翔-生物成像产品介绍实验分离萃取费时费力?得泰仪器推出更智能,更高效解决方案!电科思仪天线/材料/集成电路测试解决方案实验室纯水机如何选型?乐枫生物助您一臂之力!贝克曼库尔特离心机产品选型介绍得泰仪器-Easy选型:高校实验室常用设备选型专场——纯化富集专题岩征仪器助力高校科技创新体系建设工程智达全自动样品前处理及进样平台交流推荐阅读仪器选型|一文纵览十二大色谱品牌仪器选型|一文纵览十二大质谱品牌 仪器选型|一文纵览十大物性测试类仪器品牌仪器选型|一文纵览十一大光学仪器品牌 仪器选型|一文纵览十四大光谱仪器品牌 仪器选型|一文纵览五大X射线仪器品牌 仪器选型|一文纵览十七大实验室常用设备品牌仪器选型|一文纵览六大生命科学类仪器品牌仪器选型专题介绍国务院总理李克强于2022年9月13日主持召开国务院常务会议,确定专项再贷款与财政贴息配套支持部分领域设备更新改造,扩市场需求、增发展后劲。会议指出,推进经济社会发展薄弱领域设备更新改造,有利于扩大制造业需求,推动消费恢复成为经济主拉动力。会议决定,对制造业、社会服务领域和中小微企业、个体工商户等第四季度更新改造设备,支持银行以不高于3.2%利率投放中长期贷款。人民银行按贷款本金的100%予以专项再贷款。再贷款额度2000亿元,期限1年、可展期两次。落实已定中央财政贴息2.5%政策,今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7%。财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年。人民银行提供2000亿元的再贷款规模,利率1.75%。银行以不高于3.2%的利率投放中长期贷款,对市场主体具有强大的吸引力。为了更好地帮助仪器用户通过此次财政贴息贷款选购适合的仪器设备,仪器信息网联合多家优质仪器厂商上线了专门的仪器展示专题,提升用户选购仪器的效率;同时面向广大仪器厂商和仪器用户发起征稿活动,征稿要求详见《“2022财政贴息设备更新改造贷款之仪器选型”专题稿件征集活动》通知,稿件一经采用将发布在仪器信息网上并收录到相关专题中。专题链接:https://www.instrument.com.cn/topic/txdk2022.html
  • 构建现代先进测量体系 我国将培育百家测量仪器设备品牌企业
    近期,市场监管总局联合科技部、国资委等有关单位印发了《关于加强国家现代先进测量体系建设的指导意见》(以下简称《指导意见》),将逐步推进有关工作。1月13日,市场监管总局以“构建国家现代先进测量体系 服务高质量发展”为主题召开专题新闻发布会,就相关情况进行了介绍。据介绍,我国已经基本建立了相对完善的计量体系,具备了较好的测量基础;同时,建立了相对完善的量值传递溯源体系,建成185项国家计量基准和6.2万余项社会公用计量标准。但是,与主要发达国家相比,我国的测量基础还比较薄弱,测量理论和测量技术研究相对滞后,测量方法缺乏统一管理,高端测量仪器长期依赖国外,测量数据未能在科技、工业和社会治理层面得到有效应用。对此,《指导意见》提出,到2035年,计量基准的准确度和稳定性得到大幅提升,数字化量传溯源应用领域不断扩大。部分重点领域测量技术取得重要突破,研制成功一大批国产测量仪器设备,新建计量基准、计量标准核心测量仪器设备基本实现自主可控。建设50家国家先进测量实验室,培育100家测量仪器设备品牌企业,形成200项核心测量技术或能力。市场监管总局计量司一级巡视员张益群表示,《指导意见》主要内容可概括为“一个出发点、十一项重点任务、六项保障措施”。其中,“一个出发点”是指,鼓励和引导社会各方资源和力量,构建国家现代先进测量体系,提升国家整体测量能力和水平,服务经济社会高质量发展。“十一项重点任务”主要包括:建立先进量传溯源体系;优化计量基准标准和标准物质建设;加快先进测量技术研究;推动先进测量仪器设备的研发和应用;建设国家先进测量实验室;提升企业测量能力和水平;推进测量数据积累和应用;完善先进测量技术规范;优化先进测量技术服务;发挥质量基础设施协同推动作用;培养先进测量人才队伍等内容。“六项保障措施”主要包括:加强组织领导、完善制度保障、加大财政支持、强化知识产权战略、普及先进测量理念、加强国际测量合作等六项具体措施。市场监管总局计量司副司长朱美娜表示,构建国家现代先进测量体系,是一项长期性、系统性、复杂性工程,需要集中各方面资源和力量,持之以恒去推进。关键要把握以下四点:一是要强调“多元性”,积极发挥各方力量。二是要增强“创新性”,强化科研攻关。三是要突出“保障性”,夯实测量基础。四是要坚持“可持续性”,强化人才培养。科技部基础司副司长郑健表示,测量是人类认识世界和改造世界的重要技术手段,是突破科学前沿、解决经济社会发展重大问题的重要基础,是国家核心竞争力的重要标志。在当前,面临世界百年未有之大变局和建设世界科技强国的大背景下,科技部门将以《指导意见》发布实施为契机,会同市场监管总局等部门,深入贯彻落实创新驱动发展战略,瞄准国家急需的计量基准建设发展任务,优化测量科技发展战略布局,建立多方参与的科技攻关机制,协调推动测量科技基础研究和应用研究,积极提升国家先进测量基础能力,并与相关领域科学技术进步良性互动,为高水平科技自立自强提供有力支撑。国资委科技创新和社会责任局副局长方磊表示,下一步,国资委将认真贯彻新发展理念,与有关部门和地方政府进一步加强协同合作,共同推动中央企业强化技术创新、夯实质量基础,不断提升核心竞争力。一是加强技术研发布局。加大测量领域研发投入,前瞻布局一批关键核心技术攻关任务,努力承建更多国家先进测量实验室等高水平研发平台,推动产学研深度融合,打造先进测量原创技术“策源地”。二是强化成果应用推广。鼓励中央企业积极应用央企内部和全社会先进测量技术成果,以用促研,加速自主产品国产化替代和迭代升级。面向行业发展,加强重大技术装备、基础工业软件等方面测试验证平台建设,强化测量数据治理,促进先进测量技术、设备和数据共享。三是着力培育一流企业。发挥中央企业在市场资源、科技创新、供应链等方面优势,强化创新协同,在测量领域打造一批具有核心竞争力的科技领军企业、“专精特新”企业和单项冠军企业,培育更多测量仪器设备品牌企业,构建创新链产业链深度融合的产业发展新生态。
  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • 飞秒激光烧蚀制备大面积均匀纳米结构进展
    最近,在中国科学院院士徐至展领导下,中山大学光电材料与技术国家重点实验室与中国科学院上海光机所强场激光物理国家重点实验室展开合作研究,在飞秒激光烧蚀制备大面积均匀纳米结构方面取得重要进展,相关成果发表在《光学快报》(Optics Express) (2008, 16, 19354-19365))。纳米科技领域国际著名期刊Small (2008, 4, No. 12, 2099)在News from the micro-nano world栏目以“大面积均匀纳米结构”(Large-area Uniform Nanostructures)为题专门报道了这项研究成果,并将它与美国科学家近期实现的“大面积组装单壁碳纳米管三维结构”并列为微纳结构合成制备新方法 另外,自然中国网站于2008年12月10日在Research Highlights栏目中也专栏推荐并重点介绍了该成果。   飞秒激光烧蚀具有低的破坏阈值及小的热扩散区的特点,可实现对材料的“非热”微加工,从而大大减小传统长脉冲激光加工中热效应带来的负面影响,显著提高加工精度,在光电器件微加工领域具有广阔的应用前景。但是由于传统激光直写方法的效率较低,目前飞秒激光烧蚀制备微纳结构在实际应用中尚不具备高的经济性。因此,探索如何直接用飞秒激光烧蚀高效地制备大面积均匀纳米结构是当前飞秒激光微加工领域的一个研究热点。   博士生黄敏及其导师徐至展等采用飞秒激光辐照自诱导亚波长纳米结构的途径,通过调控飞秒激光脉冲的波长、能量、偏振等条件并采用新颖的快速非相干调制技术,成功地在氧化锌、硒化锌等宽带隙材料及石墨表面实现了纳米光栅、纳米颗粒及纳米方块结构的大面积制备。这种利用飞秒激光烧蚀直接制备纳米结构的方法具有均匀性好,效率高,热效应小,通用性高,环保等优点,并克服了以往飞秒激光烧蚀制备纳米结构过程中的二度污染问题。更为重要的是,经过这种方法处理后,材料表面的光电特性发生了显著的改变,并可随纳米结构的改变而呈现不同的光谱特征。这种方法在新型光电器件等方面具有重要的潜在应用价值,有望提高LED照明器件的发光效率和增加太阳能电池的吸收效率。(来源:中科院上海分院)   (《光学快报》(Optics Express ),Vol. 16, Issue 23, pp. 19354-19365,Min Huang,Zhizhan Xu)
  • 中国环保设备品牌评选 哈希榜上有名
    中国环保行业品牌时代已经来临,环保设备制造业是支撑环保产业的重要基础。但是,中国环保设备制造业面临创新不足、恶性竞争、标准化程度低等多种困惑,行业需要采取知识产权保护、接通资本市场、打造强势品牌等举措,以实现转型与升级。环保设备企业亟需打造品牌优势、树立品牌标杆、建立以品牌为核心的竞争力,才能成就其重要的支撑作用,并成为环保设备制造业的百年老店。在此环境背景下,E20研究院在上海举办了“中国环保设备品牌评选”活动,该活动从2006年至今已成功举办了九届。该会汇集了环保行业多家企业参与,共有数十家厂商角逐。该评选活动历时1个月,从企业申报到用户评选,专家评审,最终榜单揭晓。哈希成功入选,成为国际资深环保设备品牌标杆。哈希上榜理由:拥有近70 年历史的水质在线监测检测仪器生产商, 其品牌形象契合产品真实性,凭借测试的准确度和可靠性受到用户的广泛好评和信赖,拥有高度的客户知名度。哈希将继续秉承企业使命,做世界水质守护者,以卓越的客户合作,精深的专家团队和值得信赖的便捷产品,一切只为水质分析——更快速、更简便、更环保、更全面。
  • 首台纳秒深紫外激光源样机研制成功
    首台纳秒深紫外固态激光源实用化样机研制成功   日前,全球首台纳秒深紫外固态激光源实用化样机在中科院理化技术所研制成功。3月20日,项目总体部总经理詹文山,项目首席科学家、中国工程院院士许祖彦,理化所所长刘新厚等共同见证了第一台样机出所。3月23日,样机顺利运抵中科院大连化学物理研究所,科研人员将完成深紫外激光拉曼光谱仪的整机组装调试。   据专家介绍,2007年12月,“国家重大科研装备研制项目——深紫外固态激光源前沿装备研制”在财政部及中科院计划局、基础局的大力支持下立项。该项目利用中科院在深紫外非线性光学晶体及激光技术研究领域保持国际领先地位的优势,计划研制7台(套)(第一批)具有自主知识产权的国际首创/领先的深紫外固态激光源重大科研装备,建立深紫外科学仪器研制基地,取得从材料到器件到应用的全面优势,引领DUV(深紫外)前沿重大科研装备的突破,使我国在该领域的科学与技术位居国际领先地位,推动物理、化学、材料、信息、生命、资环等领域创建新的科技前沿。   中国科学院理化技术研究所的科研人员经过一年半的努力,终于成功研制出全球首台ns 脉冲177.3 nm深紫外固态激光源实用化样机。通过优化倍频系统及KBBF先进热管理技术,激光输出功率获重大突破,比2006年提高20倍,稳定输出功率达4 mW,最大输出功率为34.7 mW。
  • 2.3亿元!北京航空航天大学公布2024年仪器采购意向
    北京航空航天大学位于中国首都北京市 ,隶属于中华人民共和国工业和信息化部 ,其为中国第一所航空航天高等学府,具有航空、航天和信息领域的发展比较优势。 是国家重点建设的高校、全国第一批16所重点高校之一、211工程、985工程建设高校、国家“双一流”建设高校。近日,北京航空航天大学围绕大科学装置发布多批政府采购意向,仪器信息网特对其进行梳理,统计出66项仪器设备采购意向,预算总额达2.30亿元,涉及计算机学院空间站数字孪生实验体验与监测系统、低排放燃烧基础研究实验平台光学测量系统、3D测量激光显微镜、原子层沉积系统等,预计采购时间为2024年6~9月。北京航空航天大学2024年6~9月仪器设备采购意向汇总表序号采购项目需求概况预算金额/万元采购时间1集成电路科学与工程学院原子层沉积系统原子层沉积系统最大支持8寸,配备不大于6个源,带清洗程序。3302024年8月2计算机学院虚拟现实与增强现实科教协同平台一、采购设备名称:生理演化仿真系统 二、采购设备数量:1 三、设备主要性能: 用于科研与教学的生理演化仿真系统,该系统包括可编程机械臂,6自由度力反馈演示设备和生化作用机制仿真软件系统。 1、6自由度可编程机械臂,包括工作半径:500 mm / 19.7 ins;有效载荷:3 kg / 6.6lbs;基座尺寸:Ø 128 mm;重量:11.2 kg / 24.7 lbs; 2、6自由度力反馈演示装置,可支持模拟虚拟环境中精细手掌、手指运动的精确力触觉手感与反馈力;6自由度力反馈、最大力度为35N、最大旋转扭矩为3Nm; 3、生化作用机制仿真软件,功能包括基础模块预测蛋白质、大分子团等在动物或人体内吸收过程,考察基于经典房室模型的处置过程;群体模拟与虚拟生物等效性试验;基于生理的动物及人体处置模型;预测血浆与组织中的PK变化;种属内/种属间的PK推导。1022024年8月3电子信息工程学院新航行技术演示验证平台新航行技术演示验证平台可用于机载航电与地面管制空管系统空地协同的新一代航行系统技术的演示验证,主要由新航行技术演示验证平台展示系统、新航行技术应用环、飞行校验模拟机舱、空事演示系统构成,通过三维地理信息系统,演示大屏幕内容调度及高分显示系统,演示验证平台全流程仿真系统为空天地一体通信网、新航行应用服务支撑系统,新型协同测试平台提供三维仿真验证环境。2202024年8月4材料科学与工程学院多气氛高温腐蚀平台①最高温度:1800℃;②温度精度:±1℃;③反应区尺寸:φ80mm;④腐蚀介质:水汽、氧气、CMAS、熔盐等;⑤可一种气氛或多种气氛同时进行。1702024年8月5材料科学与工程学院热力化耦合力学测试平台①样品最高加热温度:1400℃; ②最大载荷:30KN; ③施加载荷:拉伸、压缩、蠕变、持久; ④外加化学环境:高温燃气、CMAS粉尘环境、盐雾等环境; ⑤温度控制精度:±30℃; ⑥燃气最高温度:1800℃、燃气冲击速度:300m/s。2002024年8月6国际前沿交叉科学研究院3D测量激光显微镜3D测量激光显微镜设备,配备激光光源,单次测量时最大测量点数不低于3600X3600像素,最大测量点数量大于3000万像素。1302024年9月7计算机学院空间站数字孪生实验体验与监测系统采购需求 一、采购设备名称:空间站数字孪生实验体验与监测系统 二、采购设备数量:1套。 三、设备主要性能:空间站数字孪生实验体验与监测系统主要部件及其主要性能如下: 1、中国空间站半实物模拟装置1套:包括核心舱大柱段内舱壁及相关设备和通道、舱门;内壁电子监控显示;外壁一侧加装出舱扶手、机械臂模拟设备。硬件性能:处理器:16核24线程,单核睿频5.4GHZ;内存:32G,双通道 DDR5;硬盘:512G SSD + 1T HDD;显卡:RTX 3070。 2、中国空间站舱内操作VR训练分系统1套:根据中国空间站实际构型和舱内布局,以1:1比例还原各舱段主要工作生活设施和空间科学实验装置,用户在舱段间飞行、工作生活设施操作、空间科学实验操作、对地观测等交互式操作中通过VR装置获得中国空间站在轨任务体验,设置交互式操作的视觉提示点和各舱导航地图,并配置语音解说。配备VR头显1套:单眼分辨率不低于1800*1920,FOV大于100度,刷新率90Hz。 3、微重力环境下舱外结构展开实验分系统1套:模拟太空失重环境和航天结构在轨展开的过程,使用虚拟光电传感设备对展开过程中的运动学参数进行测量和动力学分析,支持学生交互操作和实践学习。 4、空间站MR孪生监测子系统1套。对半实物装置进行多路视频图像的实时采集,构建核心舱大柱段内舱壁、平台设备、再生生保设备、锻炼区设备、航天员控制操作区设备、实验载荷安装区设备、空间试验工作区设备及后端通道舱门的数字孪生模型,实现虚实融合的数字孪生全景空间站。1102024年8月8低排放燃烧基础研究实验平台光学测量系统采购标的:低排放燃烧基础研究实验平台光学测量系统; 采购数量:1套; 主要功能需求:光学测量系统用于燃烧室中多种物理场的可视化和定量测量,该系统包括非定常反应流同步测试分系统、超高频燃烧/流动激光照明分系统、多相多燃料喷射雾化测试分系统。非定常反应流同步测试分系统主要包括高频OH PLIF部分和高频PIV部分,可在10kHz的采样频率下实现燃烧组分浓度场和流场的同步测量,通过具有时间分辨率的光学图像来支持燃烧室中的非定常燃烧现象的研究。超高频燃烧/流动激光照明分系统可在最高100kHz的采样频率下进行燃烧组分浓度场或流场的超高频光学激发或照明,实现高温高压条件下强瞬变过程的超高时间分辨率测量。多相多燃料喷射雾化测试分系统用于测量液体燃料喷雾的液态速度信息和瞬态粒径分布,可研究各种燃料在不同相态下的雾化特征,评估燃油雾化装置的性能。 服务与质量要求:具备24小时内对用户服务请求作出反应及72小时内提供必要技术服务的能力;系统安装验收后的6个月内,对用户进行不少于2次关于操作、维护、软硬件故障排除的免费培训。16802024年9月9医学科学与工程学院骨科植入物电磁式动态力学试验系统位移量程:30mm;动态峰值载荷:6000N;加载频率:0-100Hz;位移精度:0.1μm。1102024年9月10医学科学与工程学院血管移植物顺应性测试系统可测量血管移植物顺应性,样品管直径范围:2-25mm;样管长度范围:96-340mm。1902024年9月11医学科学与工程学院骨形态测量分析系统XY轴行程范围: 120 mm * 110 mm;XY轴分辨率: 22 mm;XY轴有效重复性: 700 nm等。2352024年9月12医学科学与工程学院拉扭复合全电子动静态测试系统双轴作动器轴向/扭向动态加载能力:±20kN /±130Nm;轴向单向加载试验速度范围:0.0001 -1700mm/s;扭转单向加载试验速度范围:0.0001 -1000°/s等。3462024年9月13医学科学与工程学院硬组织切磨系统包括切片机、磨片机和光固化包埋机。3172024年9月14医学科学与工程学院双光子扫描显微镜激光器光源系统:红外超快脉冲激光器,波长范围680-1300nm连续可调;具有光轴自动校正功能; 成像光路波长校正范围:400nm-1600nm。5252024年9月15医学科学与工程学院多功能关节磨损试验系统轴向加载:±3400N,位移/旋转±45mm;具备髋膝关节二合一功能等。1702024年9月16医学科学与工程学院光学相干断层扫描成像设备成像深度:眼前节最大成像深度≥16mm,眼后节最大成像深度≥12mm等;扫描速度≥20 万次/秒。3002024年9月17材料科学与工程学院飞秒激光设备采购能够钻孔/开槽/烧蚀微加工金属和陶瓷微观表面,XYZ 行程范围 450mm×450mm×150mm,XY 定位精度±1um,Z 轴精度:±2um,中心波长 1030nm,功率 20W,重复频率 1Hz~600kHz,脉冲宽度 290fs~10ps可调,单脉冲能量 200uJ二次谐波发生器,输出波长 515nm,三次谐波发生器,输出波长 343nm。7002024年6月18生物与医学工程学院磁控溅射镀膜系统加工尺寸:4英寸直径;本底真空5*10-7mbar;射源装置, 三套。1902024年9月19生物与医学工程学院激光直写光刻机曝光波长:385 nm; 数字掩模板分辨率:1920 × 1080,单像素尺寸不超过7.6 µ m; 至少支持两个光刻镜头。1052024年6月20生物与医学工程学院超速离心机预采购超速离心机一台。主要技术需求:1、最高转速:100,000(转/分钟),最大离心力:802,400 ×g,转速控制精度: ± 2 rpm;2、主机具备离心专家软件,可以在离心机本机上模拟整个实验过程;3、主机采用液晶显示屏,触摸式操作。4、最大抗不平衡度:≥±8.9mm液面差。5、面板上可实时显示真空度的数值。1502024年9月21低压化学气相沉积系统预采购低压化学气相沉积系统一台,加工尺寸:4英寸;150毫米的均匀温度区; 2个碳源,氢气 (H2),氩气 (Ar),氮气(N2)。3552024年9月22生物与医学工程学院离子束刻蚀机光束电压:最高1200V; -灯丝电子源中和器; -自对准“光束”离子光学组件; 两个格栅离子光学组件,带16CM直径图案; 束流:1000eV时600mA。3002024年9月23生物与医学工程学院超灵敏纳米流式分析仪预采购超灵敏纳米流式分析仪一台。主要技术需求:1、配有2个激光光源,分别为488nm和405nm激光光源;2、配有3个散射光检测器(前向角,侧向角和中间角度散射光检测器)和四个荧光检测通道;3、散射光灵敏度:≤70nm,可检测颗粒范围为70nm-100um,散射光分辨率:10nm 4、进样体积:50-400ul;5、允许样品浓度上限:109个/ml 样本检测速度>100000 事件/秒;6、可进行绝对计数,无需使用beads作为参照;7、鞘液槽可重复利用,无需购买/配置鞘液;8、开启、清洗和关机全自动;9、所有通道都可以检测峰值信号(高度)和积分信号(面积)。2382024年9月24生物与医学工程学院64通道信号采集分析系统预采购神经电生理多通道在体采集系统,通道数:64记录通道;采样率:40kHz。2302024年9月25生物与医学工程学院台式扫描电镜预采购台式扫描电镜一台,分辨率小于等于6nm,放大倍数80-350000倍,附带能谱仪。1202024年9月26医学科学与工程学院台式小动物超声成像系统预采购超声成像系统一套,探头频率:≥7.5MHz,显示精度≤90um等。1502024年9月27医学科学与工程学院大小鼠饲养设施采购大鼠和小鼠饲养设施独立通风笼具。笼具由4个部分组成:送风系统、排气系统、笼架、鼠盒。风机采用低噪音风机,进风箱、排风箱处提供初、高效两级过滤,高效过滤效率≥99.99%,气量、换气次数、气流速度、空气洁净度、噪声符合行业标准。笼盒包含不锈钢网盖、PPSU上盖、PPSU底盒、PPSU水瓶和全包不锈钢水嘴。2512024年9月28医学科学与工程学院剪切波弹性成像超声机预采购剪切波弹性成像超声机一台,支持实时二维剪切波成像、彩色脉搏波测量等。2702024年9月29医学科学与工程学院表面肌电仪预采购高精度表面肌电仪4台,单台不少于16个肌电通道、传感器延迟时间小于500微秒。1202024年9月30医学科学与工程学院超精密单点金刚石车床预采购超精密单点金刚石车床一台,加工元件表面粗糙度最高可达3nm,口径最大可达到200mm。1502024年9月31医学科学与工程学院眼前节光学相干断层扫描仪预采购眼前节光学相干断层扫描仪一台,波长1310nm,扫描速度大于5万次每秒。1202024年9月32集成电路科学与工程学院12英寸晶圆传输模块部件拟采购用于12英寸晶圆传输模块的关键真空设备零部件一批,设备零部件包含半导体前端模块,真空泵组,定制真空传输腔体,真空密封件,真空计,阀门、晶圆台、校准机构、机械臂、晶圆定位传感器、流量计、客制化软件控制系统以及辅助支撑部件等。6702024年9月33生物与医学工程学院生物摩擦磨损试验机预采购生物摩擦磨损试验机1台,用于高精度测试植介入医疗器械部件之间及与宿主组织之间的摩擦磨损性能。1392024年9月34生物与医学工程学院可降解血管支架微粒脱落测试系统预采购可降解血管支架微粒脱落测试系统1套,用于测试评价心脏及血管支架的疲劳耐久性能以及实时在线监测整个疲劳测试过程中每个支架不溶性微粒脱落的数量和大小情况。2452024年9月35生物与医学工程学院x射线成像系统预采购x射线成像系统1套,用于科学研究中的动物心血管介入及骨科手术的X线成像。4002024年9月36集成电路科学与工程学院多元复杂薄膜处理模块部件拟采购用于多元复杂薄膜处理模块的关键设备零部件一批,设备零部件包含真空泵组,定制真空腔体,真空密封件,真空计,真空阀门、电磁铁模块、真空快速加热装置、多维靶台、多维样品台、电子束蒸发源、膜厚仪、客制化软件控制系统以及辅助部件等。6402024年6月37材料科学与工程学院高温光谱发射率测试系统1.样品加热系统 加热温度范围50-1000℃。在温度范围50-1000℃,可在大气条件下工作。在温度范围1000-1500℃,惰性氛围条件下工作。温度控制稳定性优于0.5℃/10min。 2.参考黑体辐射源 黑体发射率>0.99,黑体覆盖温度范围50-1500℃,温度控制稳定性优于±0.3℃@10min,温度分辨力为0.1℃。黑体辐射源整体溯源至黑体辐射源国家计量标准,并提供校准证书。 3. 红外信号采集 光谱范围覆盖3-14μm。对于传递标准样品,标准不确定度≤0.05,测试重复性≤0.5%。 4.运动控制 通过程序自动控制精密电动平移台实现样品与黑体位置的切换。位移定位精度优于0.1mm;中心负载能力120kg。 5.环境辐射屏蔽仓 测试系统整体内置于环境辐射屏蔽仓内,内避面具有高红外吸收涂层,涂层红外发射率不低于0.9。6502024年8月38材料科学与工程学院高温撞击设备和无接触容器采购高温撞击设备具备利用气悬浮激光加热熔化后的高温液滴,通过喷嘴分离实现自由落体运动的功能;自由落体运动的高温液滴,以不同的温度和速度与基板相撞的功能;自由落体运动的高温液滴与基板相撞的瞬间实现高速相机观察分析的能力。无接触容器具备实现不同保护气氛下的无容器样品制备功能,并配有样品加热系统、气体悬浮系统、观察与控制系统及温度测试系统。2002024年7月39集成电路科学与工程学院干式强磁场综合测试系统可以同时提供极低温(2K)、强磁场(±9T)复合环境,用于表征极低温、强磁场复合极端条件下凝聚态物质的变温电导率、电输运、一级微分电导、霍尔效应等电磁学物性的测试。 主要性能指标如下: 采用二级GM制冷机 变温范围:1.5K-300K 温度稳定性:优于±25mK 磁场强度:±9T 样品管内径:50mm 样品环境:静态交换氦气。2522024年8月40集成电路科学与工程学院二次离子质谱仪(D-SIMS)二次离子质谱仪(D-SIMS):研究材料表面的原子排列和界面结构、表征薄膜、材料表面的清洁程度。纵向分辨率: 2-10nm 离子源: Cs离子及O离子,束斑及能量: 30um及以上,质量比分辨率: 4000,杂质检测限: ppm-ppb级别。6602024年8月41集成电路科学与工程学院反应离子束刻蚀设备反应离子束刻蚀设备,配置离子源,能够实现8寸及以下的小碎片的刻蚀,配置反应气体不少于4种,终点检测可实现1平方厘米以下的开口面积的有效检测,可实现固定样品角度和夹角的刻蚀。7502024年8月42集成电路科学与工程学院太赫兹矢量网络分析系统主要用于放大器、滤波器、混频器、倍频器等芯片幅度、相位、群延时等电性能特性的测试。3552024年8月43集成电路科学与工程学院氧化物沉积PVD系统、金属沉积PVD系统、磁性材料沉积PVD系统1. 氧化物沉积PVD系统: 该设备用于磁存储芯片加工制程中的氧化物PVD溅射工艺,可以实现氧化镁、氧化铝和氧化钌等氧化物的高质量沉积,主要性能指标: 沉积室极限真空1×10-8mbar; 可装载不少于6种靶材; 加热温度不低于800摄氏度; 均匀性优于3%; 配备脉冲和射频电源并且可以实现输入和输出的自动切换。 配备独立进样室并可实现自动传输; 软件可实现镀膜流程的全自动控制。 2. 金属沉积PVD系统: 该设备用于芯片加工制程中的PVD溅射工艺,提供用于芯片的金属化的工艺设备,可溅射Cu、AL、Ti等金属,主要性能指标: 沉积室极限真空1×10-8mbar; 可装载不少于6种靶材; 加热温度不低于800摄氏度; 均匀性优于3%; 配备独立进样室并可实现自动传输; 软件可实现镀膜流程的全自动控制。 3. 磁性材料沉积PVD系统: 该设备用于磁存储芯片加工制程中的磁性材料PVD溅射工艺,设备选用强磁溅射组件,可以实现Fe、Ni、Co及其合金的磁性材料单靶或共溅射,主要性能指标: 沉积室极限真空1×10-8mbar; 可装载不少于6种靶材; 加热温度不低于800摄氏度; 均匀性优于3%; 配备直流和射频电源并且可以实现输入和输出的自动切换。 配备独立进样室并可实现自动传输; 软件可实现镀膜流程的全自动控制。9122024年9月44集成电路科学与工程学院电子透射显微设备电子束透射显微设备,配置热场发射电子枪,加速电压不低于200kV,放大倍数不低于1000000倍。5502024年8月45集成电路科学与工程学院超精准全开放强磁场低温光学研究平台超精准全开放强磁场低温光学研究平台, 样品温区:1.7-350K 温度稳定:±0.2%(T<20K)和±0.02%(T>20K) 磁体降温时间:≤24小时 不更换样品降温至4K:≤2.5小时 最大磁场强度:±7T 磁场均匀度:±0.3%(30mm球形区) 加磁场速度:0-7T,<30分钟 光学窗口:1个顶部窗口,净通光孔径41.5mm;7个侧面窗口,净通光孔径24.5mm 样品空间:直径89mm,高84mm。4452024年8月46集成电路科学与工程学院量子钻石原子力显微镜变温组件量子钻石原子力显微镜变温组件,具备低温超高分辨磁畴表征功能。 1.磁场强度:6T/1T/1T三轴磁体系统,分别对应Z、X、Y轴(Z方向可达6T,其他任意方向可达1T) 2.Z方向磁场均匀度:±0.1%@10mmDSV 3.X方向磁场均匀度:±1.0%@10mmDSV 4.Y方向磁场均匀度:±1.0%@10mmDSV。3322024年8月47集成电路科学与工程学院光刻机采购本次拟采购,支持正面曝光,I-LINE,可实现6寸及以下的破片和整片的曝光,极限分辨率0.8微米的光刻机1台。1902024年9月48集成电路科学与工程学院百GHz超快信号产生与探测系统设备可用于新型器件的研究,如新型MRAM器件、新型光电器件、新型生物芯片器件等。1802024年9月49集成电路科学与工程学院3D轮廓白光干涉扫描仪提供芯片形貌和薄膜质量的测量,如粗糙度、光学膜厚,轮廓形貌。垂直扫描范围:30 μm、100μm、5mm、10mm;垂直扫描分辨率:0.01nm;分辨率:752×480像素(可选1k×1k );侧向分辨率:0.11-8.8 μm;RMS重复精度:1nm;视场范围:8mm×10mm-0.084mm×0.063mm;校正精度:<<0.1%;反射要求:1% -100% 。1682024年9月50集成电路科学与工程学院高频低温磁场二维磁场探针台测试系统高频低温磁场二维磁场探针台测试系统,在高频、低温以及二维磁场环境下探索材料的电学、磁学等特性。配置直流/微波探针、±0.65T水平磁场电磁体、水冷及垂直0.5T磁线圈。样品温度范围8K-420K,温度稳定性±20mK,真空度小于1.2E-3Pa。2362024年9月51集成电路科学与工程学院激光隐形切割设备激光隐形切割设备,激光器最大功率:≥4W,切割速度:≥200 mm/s,可切割8英寸向下兼容晶圆尺寸。4002024年9月52集成电路科学与工程学院低频低温磁场二维磁场探针台测试系统低频低温磁场二维磁场探针台可以提供低温、面内及垂直磁场的环境,探索材料的电学、磁学特性,同时具有开放的电学磁学接口,配备水平方向±0.65T电磁体、垂直方向0.5T磁线圈、电流源与纳伏表各一套及锁相放大器两套,温度范围8-420K,温度稳定性±20mK,真空度小于1.2E-3Pa。4902024年9月53国际前沿交叉科学研究院多通道光电测试系统模块主机显微镜、电路控制、电源、原表 双SMU,可测量三端器件。开关矩阵通道数为96×96。V/I 范围:0.1 fA 至 10 A,100 nV 至 201 V。 双通道。V/I 范围:0.1 fA 至 10 A,100 nV 至 200 V。最小 V/I 脉冲源:100 µ s,0.1% 稳定。最大速度:21k 个读数/秒到缓冲。1182024年8月54国际前沿交叉科学研究院材料验证用电路制造系统电路打印、高精度宽幅3D加工系统、高精度双光子3D微纳加工系统、曲面异型电流体喷印加工系统、3D无掩模加工系统、超声喷涂机 双光子光固化为主 三维最小横向特征尺度:160 nm (一般);200 nm (定义) 二维横向分辨率:400 nm (一般);500 nm (定义) 最佳纵向分辨率:1,000 nm (一般);1,500 nm (定义) 层厚 :variable, 0.1 – 5.0 µ m 普通样品的最大高度:8 mm 最大加工体积:100 × 100 × 8 mm³ 。9882024年8月55国际前沿交叉科学研究院多腔体传输等离子表面处理-ALD-磁控溅射-parylene镀膜-联动系统等离子表面处理: 射频电源0~1000W 13.56MHz 中频电源0-2000W40KHz 内部尺寸:600X600X600mm(宽x高X深) 有效尺寸:472X451mm(宽X深) 可定制(氨气、氧气、氮气、氢气、四氟化碳) ALD: 衬底尺寸:100-200 mm Dia (8 inch)(可定制) 工艺温度:RT~500°C (可定制) 前驱体路数:最大支持6路前驱体气路(可定制),包含固、液态前驱体源瓶 加热系统:RT~150℃ 反应物路数:支持2路反应物气路(可定制) 等离子体系统:支持4路等离子体气体(可定制) 射频功率:0~1000W 本底真空度:5 * 10-3 Torr 传输样品:8英寸 对接模块:最大对接ALD工艺腔体4个 极限真空:5*10-4 Pa 热蒸镀: 极限真空度:2x10-5Pa;工作真空5x10-4Pa;配备无机蒸发源两套,功率3Kw;有机蒸发源6套,调温范围:室温~500摄氏度;配备进口膜厚测试仪(SQM200,双探头1套)等。 磁控溅射: 1. 样品尺寸:5*2英寸、1*4英寸、1*6英寸。2. 基板加热温度: 室温-350℃可调,控温精度1℃。3.配备四台溅射靶枪,其中一个靶枪支持强磁性材料。4. 300W射频电源,2kW 直流脉冲电源,带有等离子清洗功能。5. 蒸发均匀性:2英寸范围内 ±3% ;6英寸范围内±5% parylene镀膜: 腔体尺寸:Φ300 xH400mm 裂解室温度:<1200°C 真空:1-1000Mtorr 冷 阱 : 最低冷凝温度低于-90℃。3242024年8月56电子信息工程学院射频信号源、固态功率放大器用于交付系统电磁环境效应测试系统采购项目,通过我校开发、设计组装成系统电磁环境效应测试系统,用于完成GJB1389B-2022规定的部分试验项,试验方法依据GJB8848-2016规定的试验方法。该系统根据实际试验场地的布局完成集成、安装和调试,包括硬件部署和软件部署两部分。在完成集成正常工作工作条件下,完成系统电磁环境效应测试试验项自动测试、分析、生成报告,设备、标准、数据管理,以及系统内功放最大输出、驻波比保护等功能。 系统主要用于完成系统电磁环境效应测试的:系统安全裕度试验、 外部射频电磁环境敏感性试验、电源线瞬变电压试验、电磁环境试验、天线间隔离度试验、搭接性能试验、 人体静电放电试验、 发射控制试验、 分系统和设备电磁干扰试验。5802024年8月57集成电路科学与工程学院IC设计设备运保系统针对近存、存算、大算力芯片技术用的高性能、超高算力芯片设计及网络安全、随时备份使用的安全维护设备系统。1962024年8月58集成电路科学与工程学院氧化退火管式炉硅片的氧化,材料高温退火。1602024年8月59集成电路科学与工程学院中束流离子注入机中束流离子注入机,剂量设置范围:1E11~1E16 ions/cm2,注入元素B、BF2、P、H、He、N、O、C、Ar、Si、Mg、Al等元素。15502024年8月60集成电路科学与工程学院ATE芯片测试系统及ATE虚拟仿真科研平台面向大算力的芯粒集成编译器研发、高可靠空天近存芯片设计及测试用虚拟仿真教学、科研平台。5402024年8月61集成电路科学与工程学院芯片/PCB微缺陷无损检测用3D X-ray检测系统面向近存、存算、大算力芯片技术研究,通过使用高分辨率3D X射线照射,快速对IC封装结构的微缺陷、PCB和载板的工艺缺陷、所有IC类产品的开/断/短路以及异常连接的无损检测,辅助IC设计人员快速做出故障分析。3862024年8月62计算机学院虚拟现实与增强现实科教协同平台是虚现实与增强现实科教协同平台中6个子平台之—“BH末来战争实验室子平台”的重要组成部分,主要实 “战术想定交互式设计推演”应用功能。1982024年8月63国际前沿交叉科学研究院电导率塞贝克测试系统温度范围:室温-1000℃。1202024年8月64国际前沿交叉科学研究院导热仪导热仪的测温度范围: 室温-1200°C。1302024年8月65国际前沿交叉科学研究院热电转换效率测试系统采购热电转换效率测试系统,要求上下表面能提供500℃的温度梯度。1302024年8月66计算机学院三维立体视听影像和6自由度交互软硬件需采购三维立体视听影像和6自由度交互软硬件 1、激光投影机22台。空间内投影显示尺寸:4米*4米*2.5米(长、宽、高);显示模式:支持DLP技术;光源类型:激光光源;ANSI亮度:1500lm;动态对比度:25000:1;ANSI对比度:500; 2、图形融合服务器1套。主频3.7GHz、10核、20线程;GA102-200、GDDR6X 10GB*2;支持边缘融合多路光学矩阵,空间画面的整体输出需满足超8K的高清分辨率。四周墙面及地面,每面不低于3840*2160; 3、空间定位系统服务器1套。CM246;GA106-300、GDDR6 12GB;支持空间视觉补偿,空间内投射在不同平面(墙与墙、墙与地面)之间的画面,全三维立体效果无畸变; 4、多路RGB-D传感器1套。拼接多路视觉数据,基于头顶视角实时采集及计算,定位人眼位置及识别肢体动作,空间采集尺寸:4米*4米*2米(长、宽、高);采集模式:3D深度相机组;采集分辨率:840*480;采集光源:红外光源;动态感知响应速度33ms; 5、定制工业场景和演示示范不少于20个。1162024年8月
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。   飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。   在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。   该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 360万!合肥工业大学物理基础实验室实验条件改善项目
    项目编号:22AT03017102107项目名称:合肥工业大学物理基础实验室实验条件改善项目预算金额:360.0000000 万元(人民币)最高限价(如有):360.0000000 万元(人民币)采购需求:本次采购共分为4个包次:第一包:主要采购内容为声速测量仪、动态磁滞回线测量仪、超声光栅仪等第二包:主要采购内容为导热系数实验仪、分光计、杨氏模量实验仪等第三包:主要采购内容为晶体声光效应实验套件、晶体电光效应实验套件、红外光谱仪、FROG脉冲测量系统、原子超精细光谱实验套件、溅射靶源、离子溅射仪、真空泵组、可编程线性直流电源、函数发生器等第四包:主要采购内容为单光子探测器、激光扫描共聚焦实验套件、光纤倍频激光器、微尺度测量实验仪等 合同履行期限:国产设备:供货及安装期限:合同签订后45个日历日内完成供货、安装和调试;质保期验收合格之日起 3 年本项目( 不接受 )联合体投标。
  • 飞秒荧光光谱技术在生命科学中的应用
    近年来,随着超快激光技术的发展以及相关光电子设备的升级和更新,尤其是飞秒激光的出现,频率上转换技术的时间分辨率达到了飞秒量级,为生物、化学和医学等领域的研究带来了新的发展契机。荧光光谱学被广泛应用于研究生物大分子的结构及功能,特别是蛋白质与水环境、蛋白质与蛋白质之间相互作用的动力学等等。   华东师范大学精密光谱科学与技术国家重点实验室陶占东等研究人员在汉斯《生物物理学》学术期刊上发表的文章中强调,在生命科学领域,包括生物物理和生物化学,将频率上转换技术应用于时间分辨荧光光谱探测已经成为研究生物大分子的结构、功能及动力学的重要技术手段。   作为一项高时间分辨率的测量技术,非线性光学频率上转换技术日益成熟。事实上,频率上转换荧光光谱技术的原理并不复杂,但所涉及领域甚广,包括激光技术、非线性光学技术、泵浦探测技术、光谱测量与分析技术以及蛋白质样品制备、定点突变技术等等。此外,频率上转换荧光光谱实验系统是庞大而复杂的,只有认真细致地调整和优化系统的各个环节,才能获取良好的探测效果,这往往需要研究者耗费大量的时间和精力。   飞秒频率上转换技术的出现,将时间分辨荧光的探测精度提高到了飞秒量级,引起了生命科学领域研究人员的普遍关注。荧光基团(如色氨酸)在极性溶剂或极性环境中的溶剂弛豫、激发态的能量转移以及其他与荧光发光相关的动力学往往反映了荧光基团所处环境的情况。这些过程大多数都在很短的时间内完成(飞秒至皮秒),对荧光的影响一般只出现在荧光起始端很窄的时域内,超出了一般的时间分辨荧光技术(如TCSPC)的分辨极限。因此,飞秒分辨频率上转换技术常常用于研究超快荧光动力学。   文中表示,色氨酸荧光具有较长的寿命、较强的发射峰值、可观的量子产率和明显的旋转各向异性,同时色氨酸的吸收波段很宽,其荧光发射光谱有明显的斯托克斯位移,因此色氨酸及其衍生物常被用在荧光探究性实验中。水是天然的溶剂,几乎所有的生物大分子,如蛋白质、DNA等,离开水都会失去活性。很多研究小组利用飞秒分辨频率上转换荧光光谱系统分别研究了色氨酸在水溶液中的动力学。飞秒分辨蛋白质荧光方面取得了成果。   其次,利用飞秒频率上转换荧光系统探测蛋白质(带有荧光探针)的时间分辨荧光,可以获取蛋白质不同位点上的环境特征。通过对不同位点或不同状态下的蛋白荧光进行综合比较,可以研究蛋白质的结构和功能。许多国内外实验小组已在飞秒分辨蛋白质荧光方面取得了成果。而且,DNA动力学也可以利用频率上转换荧光光谱技术来探测,尤其是在频率上转换的飞秒时间分辨下,精确地获取DNA的超快动力学特征将有助于更进一步地研究DNA的结构及功能。   总之,随着人类对物质世界认知的不断深入以及各种技术手段的不断发展成熟,目前已经达到飞秒时间分辨的频率上转换荧光光谱技术为生物、化学、医学等领域的研究提供了有力的技术支持和广阔的发展前景。   原文链接:http://www.hanspub.org/Journal/PaperInformation.aspx?paperID=13200   注:本文由龚珊编译,本文版权属于汉斯出版社,转载请注明出处。
  • 国内首台产品级掺镱高功率飞秒振荡器研制成功
    近日,北京量子信息科学研究院(简称“量子院”)全光量子源团队开发完成了国内首台产品级高功率飞秒振荡器——Fermion-007。该产品弥补了国内瓦量级飞秒振荡器的产品空白,在国际上仅有立陶宛Light Conversion等少数几家公司具有相当技术指标的产品。Fermion-007采用了多项创新技术,仅一级振荡器即可输出大于7W、重频80MHz的飞秒脉冲激光,其指标、可靠性均达到国际先进水平。目前,研发团队已接到超快电镜应用领域的商业合作订单。作为产生飞秒脉冲激光的“种子”,超快飞秒振荡器(Ultrafast femtosecond oscillator)具有高重频、高光束质量等优势,但输出功率普遍较低,往往需要对其进行功率放大以满足应用需求。然而,这种“振荡器+放大器”的技术路线会大大增加系统复杂度,导致成本变高、可靠性变差,从而限制了飞秒激光的受众范围。此外,超快电镜、飞秒双光子显微成像等应用对激光重复频率也有较高要求,因此,高功率飞秒振荡器成为相关领域的急需产品。飞秒振荡器主要分为光纤和固体两大类。固体振荡器虽然技术难度较高,但最高输出功率比光纤高3个量级,且具有更高重频和更长的锁模器件寿命,是满足应用需求的最佳技术方案。二者的具体对比见表1。表1 光纤、固体飞秒振荡器参数对比光纤飞秒振荡器固体飞秒振荡器直接输出功率百pW至mW量级几十mW至W量级最高重复频率百MHz几GHz飞秒锁模方式/器件寿命SESAM/3个月1. SESAM/3个月2. 克尔透镜锁模/无寿命问题技术难度技术门槛较低。基于标准化光纤器件、光纤熔接机设计、生产。技术门槛较高。对于腔型设计、调试经验、工程化等均有要求较高。对于产品商业化而言,工程水平的高低起决定作用。定制化程度激光器结构、指标类似,激光表现主要依赖于光纤、熔接仪器等的上游器件的性能。结构灵活性好,适合针对应用定制功率、重频、脉宽、中心波长等指标国内商业化现状5-10家商业化公司目前尚无商业化公司基于上述应用需求和技术路线分析,北京量子院开发了Fermion系列高功率全固态(DPSS)飞秒振荡器。在不需要额外放大的情况下,Fermion-007可直接输出大于7W、80MHz的飞秒脉冲激光,脉冲宽度~120fs,中心波长1035nm。此外,输出激光还具有优异的光束质量和长期稳定性,两维M2小于1.2,12小时连续运转功率均方根值小于0.3%。图1 Fermion-007 光谱及脉冲宽度测量图2 Fermion-007 光束质量及长期稳定性工程化是激光器从实验样机蜕变成可用产品的核心环节。Fermion-007采用了低热阻晶体封装、一体化密封、温湿度负反馈控制等多项工程技术,并对腔体、冷却模组的设计进行了模拟优化,以降低高泵浦热量对激光器运行环境的不利影响。激光器采用克尔透镜锁模(Kerr-lens mode locking)作为飞秒脉冲产生、维持的机制,相比可饱和吸收体(SESAM)具有更长的寿命和更高的器件可靠性。此外,研发团队首次将新型“射频同步技术”应用到Fermion-007中,用以自启动及维持飞秒锁模状态,从根本上克服了克尔透镜锁模飞秒振荡器长期存在的“失锁”问题。图3 Fermion-007 机械热分布及水路的模拟高功率飞秒振荡器在双光子显微成像、光参量泵浦等领域应用广泛。近年来,随着相关技术的发展,超快电镜、超快电子衍射等标准化仪器对此类激光器的市场需求也在迅速提升。超快电子显微镜(Ultrafast electron microscopy(UEM))是由传统电镜升级改造而成的高端分析仪器,“飞秒激光驱动光阴极”系统是其新增的核心模块。升级后的超快电镜除了拥有原子尺度的空间分辨率外,还具有飞秒-皮秒尺度的超高时间分辨率,由此成为研究材料动力学过程的有力工具。图4 Fermion系列产品在超快电镜中的应用研发团队与相关系统商开展了新型超快电镜开发的前沿合作,首次提出利用飞秒振荡器产生高重频的超快电子,以降低激光脉冲对光阴极造成的损伤风险。该方案有望从根本上解决此类仪器长期存在的光阴极可靠性问题,提高超快电镜产品的使用寿命和市场竞争力。据合作系统商的预估,超快电镜未来3年总市场需求量可达到50台/年。研发团队简介高功率飞秒振荡器是量子院全光量子源团队于子蛟助理研究员主导完成的研究项目。全光量子源团队于2020年由鲁巍教授组建,隶属于北京量子院技术产业开发中心。团队致力于打造支撑量子产业相关的关键激光设备,包括超快超强激光装置(TW-PW系统)、激光加速桌面光源及应用、新型高端科研飞秒激光器的前沿技术研究、产品研发及产业化落地。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 飞秒激光直写双刺激协同响应的水凝胶微致动器研究获进展
    在自然界中生物能够对外界刺激做出反应并产生特定的形状变化,这种响应行为对生物体的生存和繁衍至关重要。在众多材料中,水凝胶因其模量适中,刺激响应条件多样以及生物相容性好等因素而引起了广泛关注。随着仿生学以及材料科学的发展,能够感知和响应外部刺激的智能水凝胶致动器在软体机器人、传感和远程操控等领域显示出良好的应用前景。目前,微加工技术已经将响应型水凝胶致动器的尺寸缩小到微米级。然而,如何在微尺度下构建能够对复杂的微环境进行多重响应的水凝胶微致动器仍然是一个挑战。   近日,中国科学院理化技术研究所研究员郑美玲团队在双刺激协同响应的水凝胶微致动器的研究工作中取得进展。团队通过非对称飞秒激光直写加工制备了一种双刺激协同响应的水凝胶微致动器。该水凝胶微结构对pH/温度的双重协同响应是通过添加功能单体2-(二甲基氨基)乙基甲基丙烯酸酯实现的。通过水凝胶微结构的拉曼光谱分析,解释了不同pH和温度下协同响应的产生机制,并且展示了由pH或温度控制的聚苯乙烯微球的捕获。该研究为设计和制造可控的微尺度致动器提供了一种策略,并在微机器人和微流体中具有应用前景。研究成果发表于Small 。   飞秒激光直写加工技术由于具有超高的空间分辨率、三维加工能力和无需实体掩膜等特点,被广泛用于制备各种三维微结构。研究人员利用含有功能单体的光刻胶,通过调整激光功率、扫描速度和扫描策略实现了具有不对称交联密度的双重响应水凝胶微结构的制备(图1)。   进一步地,研究人员制备了含有三个不对称微臂的微致动器来提高对不同环境的刺激响应能力。该微致动器由三个交联密度交替分布的微臂组成。为了更加方便地展示水凝胶微致动器在不同温度及pH条件下的可控性,研究还使用了直径10微米的聚苯乙烯微球作为目标颗粒在不同条件下进行捕获(图2)。   此外,研究人员还描述了一种具有双刺激协同响应特性的微致动器(图3),其具有的更为丰富的形状变化是由温度升高时的氢键断裂与酸性条件下叔胺基的质子化同时作用产生的。该研究提出的双重刺激协同响应特性相较于单一响应刺激赋予了微制动器更大的可操控性,这一特性使其在微操纵和微型软体机器人方面具有潜在应用。图1 双刺激协同响应型水凝胶微致动器的制备与响应机制图2 双重刺激响应型水凝胶微致动器的捕获行为图3 水凝胶微致动器的双重刺激协同响应特性
  • 哈希蝉联“百家污水处理厂满意设备品牌”冠军
    &ldquo 2012-2013年度污水处理厂设备用户满意度调查&rdquo 评选活动由中国水网和国家环境保护技术管理与评估工程技术中心联合举办。在对百余家污水处理厂的满意度调查、统计、分析后,评选结果在6月28日举行的&ldquo 2013(第七届)环境技术论坛&rdquo 上隆重揭晓。此次调查从使用效果、设备故障率、售后服务、性价比、运行成本和维修成本等方面对400多个设备品牌进行用户满意度测评,哈希公司再获殊荣,位居监测检测类设备满意度品牌的榜首,树立了卓越的行业品牌典范。   &ldquo 水业设备用户满意度调查&rdquo 从2006年开始至今持续每年开展,在业内受到了广大用户的重视和好评,&ldquo 水业用户满意设备品牌&rdquo 已成为指引水业设备市场的风向标。哈希公司在连续8届评选中都排名最佳,充分体现了广大水业客户对哈希产品和服务的肯定和认可,这将成为哈希公司不断进取、坚持创新的动力源泉。未来,哈希将以卓越的客户合作,精深的专家团队和值得信赖的便捷产品,去完成&ldquo 世界水质守护者&rdquo 的神圣使命。   &ldquo 2012-2013年度污水处理厂设备用户满意度调查&rdquo 评选活动由中国水网和国家环境保护技术管理与评估工程技术中心联合举办。在对百余家污水处理厂的满意度调查、统计、分析后,评选结果在6月28日举行的&ldquo 2013(第七届)环境技术论坛&rdquo 上隆重揭晓。此次调查从使用效果、设备故障率、售后服务、性价比、运行成本和维修成本等方面对400多个设备品牌进行用户满意度测评,哈希公司再获殊荣,位居监测检测类设备满意度品牌的榜首,树立了卓越的行业品牌典范。   图为&ldquo 2012-2013百家污水处理厂满意设备品牌&rdquo 奖牌   &ldquo 水业设备用户满意度调查&rdquo 从2006年开始至今持续每年开展,在业内受到了广大用户的重视和好评,&ldquo 水业用户满意设备品牌&rdquo 已成为指引水业设备市场的风向标。哈希公司在连续8届评选中都排名最佳,充分体现了广大水业客户对哈希产品和服务的肯定和认可,这将成为哈希公司不断进取、坚持创新的动力源泉。未来,哈希将以卓越的客户合作,精深的专家团队和值得信赖的便捷产品,去完成&ldquo 世界水质守护者&rdquo 的神圣使命。
  • 哈希蝉联“百家污水处理厂满意设备品牌”冠军,用户满意度最高
    &ldquo 2012-2013年度污水处理厂设备用户满意度调查&rdquo 评选活动由中国水网和国家环境保护技术管理与评估工程技术中心联合举办。在对百余家污水处理厂的满意度调查、统计、分析后,评选结果在6月28日举行的&ldquo 2013(第七届)环境技术论坛&rdquo 上隆重揭晓。此次调查从使用效果、设备故障率、售后服务、性价比、运行成本和维修成本等方面对400多个设备品牌进行用户满意度测评,哈希公司再获殊荣,位居监测检测类设备满意度品牌的榜首,树立了卓越的行业品牌典范。 图为&ldquo 2012-2013百家污水处理厂满意设备品牌&rdquo 奖牌 &ldquo 水业设备用户满意度调查&rdquo 从2006年开始至今持续每年开展,在业内受到了广大用户的重视和好评,&ldquo 水业用户满意设备品牌&rdquo 已成为指引水业设备市场的风向标。哈希公司在连续8届评选中都排名最佳,充分体现了广大水业客户对哈希产品和服务的肯定和认可,这将成为哈希公司不断进取、坚持创新的动力源泉。未来,哈希将以卓越的客户合作,精深的专家团队和值得信赖的便捷产品,去完成&ldquo 世界水质守护者&rdquo 的神圣使命。 更多详情请点击
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制