当前位置: 仪器信息网 > 行业主题 > >

多成像系统

仪器信息网多成像系统专题为您提供2024年最新多成像系统价格报价、厂家品牌的相关信息, 包括多成像系统参数、型号等,不管是国产,还是进口品牌的多成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多成像系统相关的耗材配件、试剂标物,还有多成像系统相关的最新资讯、资料,以及多成像系统相关的解决方案。

多成像系统相关的资讯

  • Kodak多模式活体成像系统连续中标
    Kodak多模式活体成像系统,集多种成像模式于一身,性能卓越,受到了国内越来越多活体研究用户的青睐,近日又连续中标两台。   1)吉林大学生科院:设有分子生物学系、生物药学系、生物大分子研究室、考古DNA实验室、Edmond H.Fischer细胞信号传导实验室等单位及校直属科研单位分子酶学教育部重点实验室,现有PI近40人。为满足该院多方向的活体成像研究,该院中心实验室公开招标活体成像仪器。Kodak多模式活体成像系统凭借先进的产品理念和出色的性能,成功中标,并签署合同。   2)中国医科大学附属第一医院:创院有有百年历史,现有中国工程院院士1人,副教授和教授级460人,拥有多个国家重点科室。该院中心实验室公开招标活体成像仪器,构建活体成像研究平台。Kodak多模式活体成像系统凭借先进的产品理念和出色的性能,成功中标,并签署合同。   欲了解Kodak多模式活体成像系统更多信息,请访问东胜创新网站:www.eastwin.com.cn   或拨打技术专家咨询热线:15010 596317
  • 320万!山东大学多谱线高速实时四维动态成像系统采购项目
    项目编号:SDJDHF20220606-Z371项目名称:山东大学多谱线高速实时四维动态成像系统采购项目预算金额:320.0000000 万元(人民币)最高限价(如有):320.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1多谱线高速实时四维动态成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学多谱线高速实时四维动态成像系统采购项目公开招标公告.pdf
  • 博鹭腾· 多模式动物活体成像系统AniView100隆重上市
    AniView100多模式动物活体成像系统是广州博鹭腾仪器仪表有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机具有极高的检测灵敏度,而经过特殊设计的暗箱能够有效避免外界光线及宇宙射线对成像的影响。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶级的光谱转换能力和滤光片组合,极大地提高了荧光信号的特异性,并大大缩短曝光时间,减少实验对小鼠的影响。 AniView100多模式动物活体成像系统包含专业化的软件,简洁的全中文软件操作界面,可预设多种实验方案,一键快速成像,具备成像和多图层定量分析功能,符合GLP原始数据、操作记录规定,可直接输出实验报告。产品特点1.超灵敏 全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView100可以检测到小鼠体内、多种可自由组合的滤光片、全局照射和万向鹅颈管点状荧光照射装置,配合顶级的光谱转换能力以及荧光自发光干扰扣除功能,完全满足荧光成像实验“低背景”的要求。3.超大视野 AniView100的广角镜头和硬件结构的完美结合造就了超大的成像视野,最大可实现6只小鼠或1只兔子同时成像。并且软件预设实验方案,可根据样品尺寸自动调整视野大小,自动对焦,实现一键成像。4.人性化 人性化的软件可自动控制仪器载物台升降、温度及各种光源;多种荧光强度表达方式可选,量化分析功能,直接输出实验报告,简化仪器操作,节约您的时间。5.简便化 内置动物温控床、X-ray动物结构成像系统、气体麻醉模块,可根据实验需求,快速选用相应系统。6.多样化 仪器内部还配备多个法兰接口及电源插口,可连接显微镜、上转换荧光UCNPs检测系统等,实验方法更加多样,功能更加强大。应用范围癌症与抗癌药物研究,免疫学与干细胞研究,细胞凋亡,病理机制及病毒研究,基因表达和蛋白质之间相互作用,转基因动物模型构建,药效评估,药物甄选与预临床检验,药物配方与剂量管理,肿瘤学应用,生物光子学检测等。 肿瘤学应用AniView100可以直接快速地测量各种癌症模型中肿瘤的生长和转移,能够无创伤定量检测原位瘤、转移瘤及自发瘤。可以在早期就能区别正常的癌细胞与凋亡的癌细胞,能够方便的观察肿瘤转移与复发的情况。 Luciferase标记肿瘤转移模型 动物基因功能研究AniView100能够直接反映细胞或基因表达的空间和时间分布,从而了解体内的特异性基因的功能和相互作用、胚胎发育等生物学过程。 GFP转基因小鼠 进口品质,国产价格。AniView100多模式动物活体成像系统绝对是您研究动物在体实验的最佳选择。
  • 35*35cm大型版多光谱荧光成像系统在南京农大投入使用
    日前,南京农大农学院通过我公司引进的FluorCam大型版多光谱荧光成像系统投入了科研应用,将用于小麦栽培中各种胁迫方面的研究。南京农业大学农学院是我国创立最早的农学系科之一,在110年的办学历史中,一大批农业科技的奠基人和开拓者在该院从事教学与科研,很多学科的科研水平处于全国前列,其中麦类生理生态是传统优势学科,在当前科研背景下,传统优势学科尤其需要国际先进技术的支持,于是该学科从北京易科泰公司购买了代表当前光合生理研究最先进技术的FluorCam大型版多光谱荧光成像系统,用于小麦栽培中各种胁迫方面的研究。FluorCam大型版多光谱荧光成像系统为叶绿素荧光成像技术的高端扩展产品,成像面积20x20cm或35x35cm可选;既可用于叶绿素荧光动态成像分析,又可用于长波段UV紫外光(320nm-400nm)对植物叶片等组织激发产生的多光谱荧光成像测量分析,还可选配绿色荧光蛋白GFP、黄色荧光蛋白YFP等稳态荧光成像。广泛应用于植物光合生理生态、植物逆境胁迫生理与易感性、气孔功能、植物环境如土壤重金属污染响应与生物检测、植物抗性、作物育种、Phenotyping、转基因、稳态荧光成像测量等研究,是“数字化植物”的重要利器!成像面积达35x35cm,可对整盆植株进行成像分析 理论知识介绍 实际操作演示
  • Bio-Rad ChemiDoc MP多色荧光成像系统耀世登场
    全能型成像分析系统ChemiDoc MP可以进行普通成像、化学发光成像、多通道荧光成像,是一台大而全的新系统。ChemiDoc MP是一个高端实验室的明智之选。它同时提供出色的灵敏度和广泛的适应性。使用ChemiDoc MP成像系统,可以为您带来以下优点:   快速获得实验结果,无需培训 — 使用ImageLab 4.0中文软件可以方便的进行程序设置、图像获取和结果分析。   应用范围广 — 从多通道荧光检测、化学发光检测到普通凝胶成像,ChemiDoc MP可以解决从凝胶检测到膜检测的多种不同应用。   取代film用于膜检测 — 由于采用了最高端的CCD,ChemiDoc MP在化学发光和多通道荧光检测方面都有最好的实验效果,同时在检测的线性动态范围上要比film高出很多(4 O.D. vs 1.8 O.D.),也节省了很多film所必须的暗室、冲片机等设备。   直接产生可供发表的高质量图像 — 自动产生可供发表的高质量图像,最大分辨率可达1200dpi。   对实验结果建立高度自信 — 为western blotting的流程添加新的应用,ChemiDoc MP系统与Stain-Free免染技术兼容,研究人员可以在Western的不同阶段检测实验结果,同时可以方便的进行更准确的Western定量。   敬请登陆www.bio-rad.com/ad/MP获取更多信息。
  • 330万!山东大学高分辨多模态近场纳米光学原子力成像系统采购项目
    项目编号:SDDX-SDLC-GK-2022025项目名称:山东大学高分辨多模态近场纳米光学原子力成像系统项目预算金额:330.0000000 万元(人民币)最高限价(如有):330.0000000 万元(人民币)采购需求:高分辨多模态近场纳米光学原子力成像系统,亟需购置。具体内容详见招标文件。标段划分:划分为1包。合同履行期限:质保期国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。5、(进口)20221226-025-山东大学高分辨多模态近场纳米光学原子力成像系统(发售稿).pdf
  • 330万!山东大学高分辨多模态近场纳米光学原子力成像系统采购项目
    项目编号:SDDX-SDLC-GK-2022025项目名称:山东大学高分辨多模态近场纳米光学原子力成像系统项目预算金额:330.0000000 万元(人民币)最高限价(如有):330.0000000 万元(人民币)采购需求:高分辨多模态近场纳米光学原子力成像系统,亟需购置。具体内容详见招标文件。标段划分:划分为1包。合同履行期限:质保期国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。5、(进口)20221226-025-山东大学高分辨多模态近场纳米光学原子力成像系统(发售稿).pdf
  • 文献速递|多模式动物活体成像系统在鱼疫苗研发中的应用
    病毒性疾病爆发是水产养殖业最严重的问题,具有传播快、发病快和致死率高等特点,对水产养殖业造成了巨大的经济损失;而疫苗免疫是对其进行防控的最有效措施。在水产动物免疫途径中,注射方式效果较好,但不适合渔业生产;浸浴免疫操作简单,适合在鱼苗和鱼类大规模养殖中推广使用,但是浸浴疫苗的应用需要克服生物屏障等阻碍作用,才能使疫苗发挥出理想的免疫效果。 研究发现,纳米载疫苗靶向递呈技术是解决水产养殖产业实现疫苗高效免疫保护最安全有效的手段之一;单壁碳纳米管(SWCNTs)是一种高效的疫苗载体,具有高穿透性、高承载力、易修饰性和安全性等特性;甘露糖受体(Mannose receptor)是抗原呈递细胞上的标志性受体,能够结合甘露糖修饰的抗原物质,可以作为疫苗的靶点。 近日,西北农林科技大学动物科技学院朱斌教授课题组运用纳米载疫苗靶向递呈技术,构建靶向性碳纳米管载疫苗系统,选择高效的疫苗载体(单壁碳纳米管)来突破生物屏障的限制,并利用合适的佐剂(甘露糖修饰的抗原物质)来增强疫苗的免疫效果,使疫苗充分发挥治疗和免疫保护效果。这些研究成果相继发表在期刊Vaccines和Journal of Nanobiotechnology,可以为其它水产动物纳米载疫苗系统的研究、应用奠定理论基础,对渔业的可持续发展和水产品食品安全生产具有重要意义。文章一 草鱼呼肠孤病毒(GCRV)已被公认为是所有水生病毒物种中最具致病性,VP7作为GCRV的外衣壳蛋白,是一种可以诱导宿主免疫反应的主要抗原。通过构建靶向浸没疫苗递送系统(CNTs-M-VP7),该系统由SWCNTs作为疫苗载体,GCRV VP7蛋白作为抗原,甘露糖作为抗原呈递细胞靶向部分。结果表明CNTs-M-VP7疫苗可通过粘膜组织(皮肤,腮和肠)进入鱼体内,呈现给免疫相关组织,显著诱导的成熟和呈递过程,从而引发强大的免疫反应。a、CNTs-M-VP7纳米疫苗的制备过程;b、巨噬细胞对纳米疫苗的吸收;c、鱼组织中纳米疫苗的摄取;d、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;e、草鱼接种后,用GCRV人工攻击后的相对存活百分比(每组n =100)。文章二 鲤春病毒血症(Spring viremia of carp,SVC)是危害最严重的水产病毒性疾病之一,SVCV作为SVC的病原,其表面糖蛋白(G)被认为是一种主要抗原,可以诱导原发性宿主免疫反应。通过化学修饰的方法将SVCV的抗原蛋白(G)、功能化单壁碳纳米管和功能化甘露糖进行结合,构建了靶向性碳纳米管载疫苗系统(SWCNTs-MG)。结果表明SWCNTs-MG通过提高疫苗进入鱼体的含量,并增强对抗原呈递细胞的靶向呈递作用,进而提高疫苗浸浴免疫的效果。a、SWCNTs-MG纳米疫苗的制备过程;b、纳米疫苗在体内和体外的安全性评估;c、鲤鱼巨噬细胞体外纳米疫苗的摄取;d、鱼组织中纳米疫苗的摄取;e、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;f、在接种的鲤鱼中用SVCV人工攻击后的相对存活百分比。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到参考文献:1、Zhang C , Wang G X , Zhu B . Journal of Nanobiotechnology, 2020, 18(1).2、Zhu B, Zhang C, Zhao Z, Wang GX. Vaccines(Basel). 2020 8(1):87. 3、张晨.[D]. 西北农林科技大学,2019.
  • 迅数发布迅数HD5000 多谱超分辨菌落成像系统新品
    HD5000 多谱超分辨菌落成像系统HD5000多谱超分辨菌落成像系统是迅数科技2020出品、软硬件顶级配置的旗舰机型,符合人体工学的全金属机箱设计,精致、坚固。独特设计的平皿莱因伯格照明系统,具有156种组合照明模式,可为平皿、多孔板菌落、细胞克隆、病毒蚀斑拍摄华美的影像,是图像数据保存、文献发表的有力工具。4/3英寸超大面阵CMOS传感器与大视场高清定焦镜头搭配,菌落影像通透、色彩细腻,完美展现培养基深层微小菌落,抑菌圈轮廓清晰、锐利,保证了图像分割的精度和重现性。软件功能丰富、易用,融菌落计数、抑菌圈测量、菌种筛选三大功能于一体。可实现:快速统计、多算法高级统计、网格滤膜、3M测试片、典型菌筛选、菌株特性描述、双圈分析、抑菌圈测量。。。 微生物平皿成像的“数字影棚” l “数字影棚”的光源控制 专业设计的平皿载样舱,可实现培养皿的雾光漫反射照明、悬浮暗视野照明、彩色凌透背光照明、多谱莱茵伯格照明,紫外激发照明,拍出不同寻常的科研级精美照片。 光源控制器采用隐藏式吸弹门设计,具6路照明选择开关、4通道无级亮度调节、双通道色温调节、12路彩色背景选择、12路莱因伯格光选择。 l 多谱莱因伯格照明多谱莱因伯格照明是迅数独创的平皿大视场暗域照明技术,12通道不同波长的可见激发光以环幕逆透射聚光照明菌落,辅以不同的彩色凌透光,可构成156种组合照明模式,使培养基形成均匀的背景色,菌落勾勒出鲜亮的自然色泽与轮廓。无需化学染色,即可使菌落或细胞克隆实现无损光着色,便于观察细微结构,识别、计数。莱因伯格照明实际样张: l 悬浮式暗视野照明 悬浮式暗视野由暗域轮廓光与黑色背景构成。柔和的白色LED轮廓光,使平皿中央到边缘的菌落得到均匀的照明,而光线几乎穿透培养基,形成黑色背景下的亮色菌落,菌落与培养基形成高反差,可清晰勾勒菌落轮廓。超分辨率 锐利展现菌落细节1.1英寸大视场高清定焦镜头,通过较大程度地控制多种像差,无论是暗视野照明、雾光漫反射照明、莱因伯格照明,都能呈现高分辨力、高对比度的画质。 2100万像素 4/3英寸超大面阵彩色SONY CMOS 传感器,采用双层降噪技术,具有极高的灵敏度以及超低噪声,能以无损图像品质呈现细微的色差和丰富的细节信息。 高保真镜头与大面阵相机的完美搭配,更能区分不同菌落、菌落与杂质、菌落与培养基之间的差异,从而提高菌落计数、筛选的精度。 更多图像算法 提高菌落计数精度 迅数创造性地研究出适合复杂菌落分割计数的快速活动轮廓模型、多相水平集活动轮廓模型等先进的图像分割技术,实现了复杂菌落、高难度平皿的准确计数。 (a) 水平集函数示意 (b) 曲线演化过程水平集活动轮廓模型的基本原理图像识别分割案例:多粘连细菌菌落计数 微小菌的识别计数:适合支原体、AMES 、嗜冷菌分析 真菌菌落计数滤膜菌落的识别计数 显色菌落的识别计数 高效、精确 菌种数字化筛选l 无损伤的多谱光学染色识别技术 通过多光谱莱茵伯格照明的光学染色技术,让菌落或克隆形成鲜艳的颜色,便于观察、辨别菌落的色彩和纹理细节,结合染色抗干扰精密统计技术,可以提高不同菌落识别的精度,减少培养基不平整、杂质干扰的影响。 l 不同菌群自动分类识别 微生物研究中有时需要在多菌混杂情况下把目标菌分类统计出来。不同菌种菌落的色泽、大小、轮廓存在微小特征差异。HD5000的“单色分类统计、指定多色筛选、多色自动聚类”工具可实现高精度识别某一类菌落,或自动聚类区分不同颜色的菌落。 l 双圈分析通过精确测量透明外圈直径和菌落直径,自动计算二者面积比和直径比,并根据比值的大小自动排序,定位出相应的菌落。适用于“抑菌圈、透明圈、变色圈、生长圈、水解圈、溶磷圈、排油圈、溶钙圈、溶血圈”分析,辅助抗生素、酶制剂、有机酸产生菌和石油、农药降解菌的高效筛选。 l 病毒滴度分析-蚀斑/噬菌斑计数 悬浮式暗视野照明使得敏感细菌菌层为白色,烈性噬菌斑形成的透明斑为黑色;莱茵伯格照明可让结晶紫或中性红染色的细胞层着色明艳,病毒空斑更易观察。影像的锐度与反差,帮助实现蚀斑/噬菌斑的准确分割和精确计数。 l 菌丝生长速率分析工具 菌丝生长速率、菌丝生长抑制率、对峙培养分析、室内毒力测定等实验常采用十字交叉法测量菌落直径。由于多数霉菌菌落蔓延、疏松、边缘发散不规则,测量的人为误差大,效率低。迅数“霉菌一键测量”模块,只需用“魔棒”在菌落边缘点击一次,即可瞬间测出大霉菌的面积、周长、长径、短径。 l 免疫学研究 迅数-多区域统计算法可以轻松实现任意多个区域的同步一键计数,可用于肺炎链球菌荚膜多糖特异性抗体调理吞噬杀菌试验(OPKA)和抗体依赖补体介导的体外血清杀菌试验(SBA) l 多孔板克隆计数 高分辨率的HD5000还可用于多孔板的克隆成像。莱茵伯格照明能使结晶紫染色的肿瘤或干细胞克隆鲜艳明亮;悬浮式暗视野照明,可使软琼脂克隆形成高反差的图像,自动计数大于50um的克隆或细胞团。 l Spot assay 点阵分析 Spot assay常用于检测不同培养液中细菌或酵母的生长率、培养液的连续梯度稀释或某个菌株基因突变型的高通量筛选 。“多区域动态调节统计”适用于此类分析。 抑菌圈自动测量l Szone 抑菌圈多模式测量技术抑菌圈测量常采用钢圈双碟法、纸片法、琼脂打孔法,由于试验环节诸多因素,如:抗生素溶液浓度、培养基质量、PH值、试验菌菌龄、培养时间等,使得最后形成的抑菌圈有些轮廓清晰,有些边缘模糊或不整齐并伴有破裂现象。 迅数“自动检测、拟圆逼近、三点定圆”三种算法,可适应不同类型抑菌圈的测量。 l 高对比、高分辨成像---保证测量精度 抑菌圈测量的关键是准确找到透明圈与底层菌的“边界线”。迅数专利设计的悬浮式暗视野,使得透明的抑菌圈构成“黑背景”,与周边灰白色的菌层形成高反差。 测量精度取决于数字影像画质,而镜头与相机的组合对画质至关重要。HD5000采用光学分辨率达150LP/mm的大靶面定焦镜头,将通透无畸变的光信号通过4/3英寸大面阵CMOS芯片相机,转为高清细腻的抑菌圈数字图像。 l 抗生素效价测定 提供一剂量法、二剂量法、三剂量法及合并计算。一剂量法符合美国药典,二剂量法和三剂量法符合中国药典2020版。仪器重复性自检,测量相对误差≤0.002mm;均匀性自检,相对误差≤0.1%。主要功能与技术指标一、 照明系统? 全封闭钢铝合金机箱(32×34×46cm):精密、坚固,确保光密闭? 平皿载样舱:下拉式铝合金隔断窗,消除环境杂散光干扰,阻断紫外泄露、避免灰尘进入? 雾光漫反射照明1) 96颗LED列阵与纳米反射材料构成嵌入式雾光系统, 360°连续漫反射,凸显菌落色泽和纹理,消除玻璃培养皿折射形成的光斑、光环。2) 色温变化范围:3100K-5800K 照度范围 50-—7000 Lux 3) LED寿命≧20000 小时? 悬浮暗视野照明白色LED光源,照度范围 100—5500 Lux 显色指数74%? 彩色(12色)凌透背光照明1) 可调式LED导光列阵,形成均匀、高亮的12种色彩透射光2) 照度均匀度大于90%,确保培养皿边缘与中间得到均匀照明? 多谱莱茵伯格照明1) 12通道可见激发光、环幕逆透射,与凌透背光可构成156种组合照明模式2) 多光谱模式可降低培养基不平整、色变的影响,减少琼脂杂质的干扰3) 无损光着色技术与抗干扰精密统计技术结合,增强菌落之间细微颜色差异辨别,显著提高菌落识别、筛选的精度? 紫外反射光源:254nm用于腔体消毒、紫外诱变 ;366nm 可用于荧光激发? 光源控制器1) 隐形弹吸式控制面板,6路照明选择开关、4通道无级亮度调节、双通道色温调节2) 照明组合 自由切换 二、 数字成像? 1.1英寸大靶面高清工业定焦镜头,镜头中央与边缘都保持150 lp/mm的分辨率? 超大面阵CMOS相机: SONY 4/3英寸彩色CMOS 传感器, 分辨率:2100万像素 单像素尺寸:4.54X4.54um三、 菌落分析模块1. 基本菌落计数功能? 平皿类型:倾注、涂布、膜滤、螺旋平皿、3M纸片 ? 全皿菌落统计:菌落总数统计,并按25档尺寸分类显示? 区域选择统计:可选择圆形、矩形、任意圈定区域进行统计? 多域平行统计:一次性多区域同步统计;多区域“镂空”统计? 直径分类统计:设置直径范围,统计特定大小的菌落? 鼠标点击统计:快速标记、添加菌落,适合培养皿边缘菌落的计数? 菌落粘连分割:自动分割相互粘连的菌落,链状菌落由用户选择分割或不分割2. 快速菌落统计? 滚轮参数调节统计(4种):均质平皿、背景不均、微小菌落、彩色背景? 一键响应统计(3种):单色统计、霉菌统计、反式统计3. 高级菌落统计? 动态调节统计:可对统计结果进行动态调节修正,快速获取最佳统计效果。? 偏差预估统计:适用于菌落颜色多且复杂的情况。? 水平集多模型算法:搜索运算,获取最佳图像分割效果,适应培养基背景变换? 特定菌落统计:根据菌落色泽、大小、轮廓特征,识别特定菌落? 反式统计:适合菌落类型极其复杂而培养基背景均匀? 高粘连菌统计:适合多重粘连菌的分割计算? 杂菌、杂质剔除:根据形态、尺寸、颜色的区别,进行自动杂菌、杂质剔除? 螺旋菌落统计:根据FDA标准自动计数螺旋平板,支持指数模式、缓慢指数模式、均一模式、比例模式、草坪模式等。兼容美国SBI、西班牙IUL螺旋接种仪。 4. 网格滤膜与3M测试片? 黑色实线网格一键统计? 3M细菌总数测试片、3M金黄色葡萄球菌测试片:一键统计? 3M大肠菌群测试片、3M大肠杆菌/大肠菌群快速测试片:一键统计+人工选择5. 典型菌筛选? 单色分类统计:根据颜色精度、扩散度和菌落大小、轮廓特征,筛选特定菌落? 多色自动聚类:根据颜色聚类精度,自动区分24种不同颜色的菌落? 指定多色筛选:一次筛选1-8种指定颜色菌落? 透明圈特性分析:适用于抑菌圈、水解圈、变色圈、溶钙圈、溶血圈、排油圈、溶磷圈分析? 双色圈自动筛选6. 菌落特征描述? 细菌、酵母:颜色、大小、形状、表面形态、边缘、光泽、透明度等特征,智能描述和排序? 霉菌、放线菌:正面颜色、反面颜色、大小、表面形态、边缘、质地等特征,智能描述和排序7. 微生物限度分析工具? 培养基适用性检查? 控制菌检查-菌落形态8. 专项分析? 防霉检测:定量分析防霉等级? 多区域串联统计:适合培养基背景不均匀的复杂菌落? 多区域并联统计:适合多孔板、OPKA、SBA分析9. 高级工具? 网格清除:消除滤膜网格背景干扰? 人工计数修正:添加或删除菌落? 排除污染区域:鼠标勾勒任意污染区域,自动剔除污染区域的菌落数? 背景文字清除:自动消除记号笔干扰? 人工粘连分割:手动分割多重粘连菌落? 参数自动换算:培养皿直径、样本稀释度输入,实现自动换算? 文字、图形标注:各类绘图工具和中英文文字嵌入10. 标定与测量? 仪器标定:仪器自带标定、人工修正标定? 一键式快速测量:一键测定大菌落,适合真菌、放线菌的单菌落分析? 全皿自动测量:全皿菌落的等效直径、面积、长短径、周长、圆度分析? 多向标尺测量、手动精确测量:长度、角度、弧度、面积、弧线、任意曲线11. 图像处理? 图像调节:灰度图、负相图转换;亮度、对比度、饱和度调节;RGB调节? 图像增强:锐化、自适应增强? 图像滤波:中值滤波、高通滤波、高斯滤波、低通滤波、队列滤波、高通高斯? 边缘检测:Sobel算子、Robert算子、Laplace算子、垂直检测、水平检测? 形态学运算:腐蚀、膨胀、开运算、闭运算四、 数据安全与管理1. “系统、数据、操作、复核”四重系统架构,分设职能与权限,确保数据信息的安全、完整和真实? 系统管理员(最高层):负责创建、管理所有操作员与审核员的账户和登入密码。确保操作员与操作员之间、操作员与审核员之间的账户隔离与数据隔离。? 数据管理员(副高层):负责全部测试数据的档案管理、以及计算机的数据库管理。封存所有审核通过的测试报告或将原始图片、测试数据备份、导出,保证了数据的完整性、安全性。? 操作员:负责培养皿菌落的测试、自检、修正、形成电子报告、递交审核、对审核通过后的文件进行报告打印。? 复核员:负责对操作员递交的测试报告进行审核。核查数据输入与处理过程,但无权修改;对存疑报告作“审核退回”处理,要求操作员重新测试;对“审核通过”的报告将永久性存档,无论审核员还是操作员都无权再删除,以确保数据的原始性和真实性。2. 数据存储与导出? 以电子数据为主,记录:样本来源、编号、稀释度、平皿图片、识别效果、计数值、所用统计工具、参数设置、修正情况,确保记录信息完整。? 满足质量审计,存储的电子数据能以PDF或Excell格式打印输出3. 水印签章技术、防篡改技术、测试流程智能重构技术,实现有效的审计追踪? 防篡改技术1) 采用多用户登入管理,所有操作员、审核员的名字,被系统自动记录在操作流程和测试报告中;所有操作日期、审核日期,由计算机自动生成,避免错填或伪造。2) 全部操作流程,包括:菌落图片、培养皿尺寸、样本稀释度、统计工具、所用参数、测试所得的菌落总数、自检修正后的菌落总数等,由计算机自动记录在数据库中,操作员无法进行改动,为后续审计提供全部真实数据。? 水印签章技术“审核通过”的测试报告会自动生成操作员和审核员的账户电子签名,并在报告上加印防伪的“审核通过”水印签章。? 测试流程的智能重构技术1) “复核员”打开“等待审核”的测试记录,计算机自动复原操作员的全部流程和测试环境,包括:当时所测的培养皿图片、测试结果、培养皿尺寸、样本稀释度、采用的统计工具及所用参数、测试所得的菌落总数、修正情况… … 2) 通过测试环境和测试流程的重现,复核员可以追溯操作员的全部操作,复核测试结果的准确性,达到审计追踪目的。五、 抑菌圈分析模块1. Szone 抑菌圈多模式测量技术? 自动检测:基于抑菌圈轮廓的精确边缘检测,适合边缘清晰、圆形抑菌圈? 拟圆逼近:基于抑菌圈轮廓的圆形拟合逼近,适合边缘破裂、非标准圆形抑菌圈 ? 人工检测:鼠标点击抑菌圈边缘上三点成圆,适合边缘模糊的抑菌圈2. 抗生素效价测定? 一剂量法效价检测:适合美国药典? 二剂量法、三剂量法及合并计算:适合中国药典2020版? 重复性自检:相对误差≤0.01%、重复测量精度 ≤0.002mm ? 均匀性自检:相对误差≤0.05%? 台间测量差异≤0.2%3. 舒巴坦敏感β-内酰胺酶检验? 纯水验证:根据(A)、(B)、(D)产生抑菌圈,D-C≧3, B-A≦3 ,判定系统成立? 自动检测三个平行样本的(A)、(B)、(C)、(D)抑菌圈,并数据导入? 自动计算平行试验平均值,智能判别结果的阴阳性。? 无效报告自动预警六、 仪器规格与配置? 多谱超分辨菌落成像系统主机1台? 菌落分析软件、自动抑菌圈测量软件、抗生素效价测定软件、舒巴坦敏感β-内酰胺酶检验软件? 高端一体电脑::双核四线程CPU/4G内存/1T硬盘/23"高清屏,Windows 10系统 杭州迅数科技有限公司 浙江省杭州市西湖区西湖科技园西园八路11号B座405室 邮编:310030 联系电话:0571-85125132、85020452、85124851 网址:www.shineso.com E-mail:shineso@shineso.com创新点:?全球首创的平皿大视场多光谱莱因伯格照明系统?具有156种组合照明模式?2100万像素4/3英寸超大面阵CMOS传感器与1.1英寸大靶面高清定焦镜头搭配,画质惊人迅数HD5000 多谱超分辨菌落成像系统
  • 文献速递ㅣ多模式活体成像系统在肝癌药物载体研究中的应用
    肝癌是最常见的致命癌症之一。目前临床上主要采用手术切除癌变肝组织,同时以化疗、放疗等方式阻止正常肝细胞被感染恶化来治疗肝癌;但是,化疗会滥杀滥伤各组织的正常细胞,并产生极大的副作用,而且在肝癌细胞发生转移或再生后也难以治愈。因此,设计与制造出更好的用于肝癌治疗的药物,是医药研究人员亟待解决的难题。如何提高药物疗效,不仅可以从药物结构本身出发,而且可以从药物载体入手。选择新型药物载体或靶向基团,可以使有效药物分子直接作用于癌症患处,提高药物靶向性,减少药物对正常组织的伤害,减轻患者的疼痛。近日,辽宁新药研发重点实验室李丽教授课题组成功构建并制备了两种甘草次酸修饰的金属有机框架药物载体,并通过组织分布和活体成像实验,验证载体具有明显的肝靶向性。该成果已发表在纳米技术与精密工程领域国际权威期刊《Nanotechnology》。1. 甘草次酸(GA)甘草次酸(Glycyrrhetininc Acid,GA)是从中草药甘草中提取分离出来的具有抗炎、抗病毒、抗溃疡等多种药理活性的甘草酸苷元。近期研究发现,在肝细胞膜上镶嵌着许多GA特异性受体,可与GA特异性结合,因此,GA作为药物靶向分子进行修饰的药物载体已经成为研究热点和一种新的靶向性治疗肝癌的有效途径。2. 金属有机框架(MOFs)金属有机框架材料(Metal-organic Frameworks,MOFs),是一类通过组装无机金属离子与有机配体形成的具有多孔隙、高比表面积的新型材料。它的最大的优点是具有良好的生物相容性,而且会在体内特定环境中自行分解,减少药物在体内的副作用,降低耐药性,提高药物治疗效率。通过在MOFs表面修饰GA,可以实现MOFs的肝靶向性,并且MOFs的孔隙率高,具有超大比表面积,可以有效装载药物,提高载药能力。两种MOFs载体:Uio-66-COOH-1,4-丁二胺-GA与UiO-66-NH2-GA。3. 小鼠体内靶向性研究DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在小鼠体内不同时间段的荧光成像图DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在心、肝、脾、肺、肾的荧光成像图关于多模式动物活体成像系统AniView100多模式动物活体成像系统是广州博鹭腾生物科技有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机,具有极高的检测灵敏度。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶级的光谱转换能力和多组滤光片组合,极大的提高了荧光信号的特异性,并大大缩短曝光时间。
  • 3i动物活体成像|"多模态活体动物宏微尺度综合成像系统"国重项目启动会在西安顺利召开
    根据哈尔滨工业大学(威海)检测与控制研究中心公众号发布:2024年4月20日,由国家自然科学基金委员会中国21世纪议程管理中心指导,苏州国科医工科技发展(集团)有限公司主办的国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项(定向项目)“多模态活体动物宏微尺度综合成像系统”项目启动会暨实施方案论证会在西安顺利召开该项目由苏州国科医工牵头承担,华东光电集成器件研究所、中国科学院上海技术物理研究所、哈尔滨工业大学(威海)、东南大学、中国科学院广州生物医药与健康研究院、苏州国科视清医疗科技有限公司、中国科学院福建物质结构研究所、南京医科大学、工业和信息化部电子第五研究所共同参与,进行协同攻关。哈尔滨工业大学(威海)作为课题承担单位,负责课题三多模态活体动物宏微尺度综合成像系统光声/超声成像模块研制的科研攻关工作。图:参会人员合影现场专家及项目组成员中国21世纪议程管理中心裴志永处长、中国科学院主管业务局相关处室负责同志出席会议并讲话,中国科学院生物物理研究所韩玉刚研究员、中国仪器仪表学会分析仪器分会吴爱华秘书长作为责任专家出席会议,国科大杭州高等研究院王跃明教授、复旦大学他得安教授、哈尔滨工业大学刘绍琴教授、微光夜视技术重点实验室程宏昌研究员、西北大学樊海明教授、中国科学院国家天文台董惠琴高级会计师应邀作为专家参与项目实施方案评审。项目负责人付威威研究员、各课题负责人以及项目技术骨干等30余人参与本次会议。会议由中国科学院苏州生物医学工程技术研究所科技发展部业务主管白启帆主持。图:启动会现场项目负责人付威威研究员首先代表项目组汇报了项目的实施方案、技术路线和研究方法等。华东光电集成器件研究所、中国科学院上海技物所、哈工大(威海)、苏州国科医工、东南大学课题负责人/技术骨干分别汇报了课题的研究内容及具体实施方案图:项目负责人付威威研究员汇报图:各课题汇报专家组认为本项目的立项体现了国家对高端科学仪器的重视,就关键技术攻关、系统集成开发、应用示范、知识产权、财务管理等要点给出了建设性意见。专家组肯定了项目及课题的实施方案,一致认为项目整体实施方案内容详实,覆盖了任务书的技术指标要求,方案合理可行,风险可控,同意通过实施方案评审。图:专家组现场点评和指导中国21世纪议程管理中心裴志永处长对项目的立项获批表示祝贺,并对项目管理、经费执行等提出了要求。付威威研究员表态将认真履行好牵头单位责任,组织、推进、完成好项目任务,为高端科学仪器活体动物科学成像系统的国产替代贡献力量,并再次对各级部门、领导、专家、项目组同仁给予的支持表达了衷心的感谢。图:中国21世纪议程管理中心裴志永处长现场点评和指导哈尔滨工业大学(威海)检测与控制研究中心孙明健教授团队承担了课题三多模态活体动物宏微尺度综合成像系统光声/超声成像模块研制的科研攻关工作,将针对光声/超声高分辨率多模态硬件模块设计与搭建和光声/超声高分辨率多模态成像技术研发两个主要内容开展研究,通过光声/超声成像模块的研发实现高度集成的动物信息可视化功能,为动物成像系统获取实时精确的多模态影像服务。
  • 450万!华南理工大学超多标组织多重成像系统采购项目
    项目编号:GZSW23156HG1037项目名称:华南理工大学超多标组织多重成像系统采购项目预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求最高限价万元(人民币)1超多标组织多重成像系统1(套)该系统可实现单细胞及亚细胞水平的组织原位蛋白(Protein)和转录组(RNA)高靶标通量表达分析,可用于高分辨率解析组织空间细胞异质性和疾病发生、发展、耐药等分子机制,比如1)神经系统组织异质性和免疫微环境,2)肿瘤组织异质性和免疫微环境,3)组织病毒感染、组织损伤及其微环境, 4)其他各类与组织细胞空间分布相关的生物信号通路和机制研究。并在组织原位上进行生物标志物验证和发现,对疾病机理、药物预后研究等具有非常重要的意义。具体详见采购需求4501.经政府采购管理部门同意,本项目(超多标组织多重成像系统)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。2.本项目不分包组。3.本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名 称:广州顺为招标采购有限公司地址:广东省广州市越秀区环市中路205号恒生大厦B座自编B501-B505、B512-B525房联系方式:020-835922163.项目联系方式项目联系人:刘先生电话:020-83592216-835
  • 862万!广州中医药大学多光谱激光成像系统(双通道)等一批仪器采购项目
    一、项目基本情况项目编号:ZJJLCG-2023-0907项目名称:多光谱激光成像系统(双通道)等一批仪器采购采购方式:公开招标预算金额:8,620,560.00元采购需求:合同包1(荧光定量PCR仪等仪器):合同包预算金额:1,543,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置荧光定量PCR仪1(台)详见采购文件--1-2其他试验仪器及装置荧光定量PCR仪1(台)详见采购文件--1-3其他试验仪器及装置电转仪1(台)详见采购文件--1-4其他试验仪器及装置荧光细胞成像仪1(台)详见采购文件--1-5其他试验仪器及装置垂直电泳三件套8(台)详见采购文件--1-6其他试验仪器及装置全能型快速蛋白转印仪1(台)详见采购文件--1-7其他试验仪器及装置水平电泳仪2(台)详见采购文件--1-8其他试验仪器及装置梯度PCR仪1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包2(低温冷却液循环泵等仪器):合同包预算金额:1,780,020.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他试验仪器及装置低温冷却液循环泵1(台)详见采购文件--2-2其他试验仪器及装置防火防爆安全柜(带排风)1(台)详见采购文件--2-3其他试验仪器及装置防腐蚀柜1(台)详见采购文件--2-4其他试验仪器及装置安全防爆柜1(台)详见采购文件--2-5其他试验仪器及装置脑定位注射系统2(台)详见采购文件--2-6其他试验仪器及装置活细胞成像工作站1(台)详见采购文件--2-7其他试验仪器及装置细胞培养用高温灭菌罐8(台)详见采购文件--2-8其他试验仪器及装置细胞培养用负压仪4(台)详见采购文件--2-9其他试验仪器及装置智能精密细胞培养振荡器2(台)详见采购文件--2-10其他试验仪器及装置恒温摇床1(台)详见采购文件--2-11其他试验仪器及装置水浴摇床2(台)详见采购文件--2-12其他试验仪器及装置超低温冰箱4(台)详见采购文件--2-13其他试验仪器及装置低温冰箱4(台)详见采购文件--2-14其他试验仪器及装置手持小型匀浆机1(台)详见采购文件--2-15其他试验仪器及装置高速匀浆机2(台)详见采购文件--2-16其他试验仪器及装置超净工作台2(台)详见采购文件--2-17其他试验仪器及装置恒温水槽4(台)详见采购文件--2-18其他试验仪器及装置恒温水浴锅4(台)详见采购文件--2-19其他试验仪器及装置水浴锅2(台)详见采购文件--2-20其他试验仪器及装置涡旋仪12(台)详见采购文件--2-21其他试验仪器及装置中药打粉机2(台)详见采购文件--2-22其他试验仪器及装置自动氮吹仪1(台)详见采购文件--2-23其他试验仪器及装置电位滴定仪1(台)详见采购文件--2-24其他试验仪器及装置万分之一天平1(台)详见采购文件--2-25其他试验仪器及装置千分之一天平4(台)详见采购文件--2-26其他试验仪器及装置旋转蒸发仪2(台)详见采购文件--2-27其他试验仪器及装置制冰机1(台 )详见采购文件--2-28其他试验仪器及装置高压灭菌锅2(台)详见采购文件--2-29其他试验仪器及装置烘箱1(台)详见采购文件--2-30其他试验仪器及装置电热恒温培养箱1(台)详见采购文件--2-31其他试验仪器及装置普通生物显微镜6(台)详见采购文件--2-32其他试验仪器及装置加热磁力搅拌器2(台)详见采购文件--2-33其他试验仪器及装置磁力搅拌器2(台)详见采购文件--2-34其他试验仪器及装置金属浴4(台)详见采购文件--2-35其他试验仪器及装置PH计4(台)详见采购文件--2-36其他试验仪器及装置真空抽滤泵4(台)详见采购文件--2-37其他试验仪器及装置数显全自动馏分收集器1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包3(超纯水机等仪器):合同包预算金额:2,152,800.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他试验仪器及装置超纯水机1(台)详见采购文件--3-2其他试验仪器及装置8通道4孔板移液工作站1(台)详见采购文件--3-3其他试验仪器及装置全自动蛋白印迹孵育系统2(台)详见采购文件--3-4其他试验仪器及装置石蜡包埋机(连接冰台)1(台)详见采购文件--3-5其他试验仪器及装置组织脱水机1(台)详见采购文件--3-6其他试验仪器及装置石蜡切片机1(台)详见采购文件--3-7其他试验仪器及装置多功能紫外分析仪1(台)详见采购文件--3-8其他试验仪器及装置冷冻离心机4(台)详见采购文件--3-9其他试验仪器及装置迷你离心机12(台)详见采购文件--3-10其他试验仪器及装置组织研磨仪1(台)详见采购文件--3-11其他试验仪器及装置滤光片酶标仪1(台)详见采购文件--3-12其他试验仪器及装置冰箱4(台)详见采购文件--3-13其他试验仪器及装置洗板机1(台)详见采购文件--3-14其他试验仪器及装置UPS电源2(台)详见采购文件--3-15其他试验仪器及装置双人生物安全柜8(台)详见采购文件--本合同包不接受联合体投标合同履行期限:供货时间为签定合同后 30 天内完成合同包4(多光谱激光成像系统(双通道)等仪器):合同包预算金额:2,093,400.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1其他试验仪器及装置多光谱激光成像系统(双通道)1(台)详见采购文件--4-2其他试验仪器及装置紫外可见分光光度计1(台)详见采购文件--4-3其他试验仪器及装置纳米粒度电位仪1(台)详见采购文件--4-4其他试验仪器及装置二氧化碳培养箱12(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包5(细胞自动计数仪等仪器):合同包预算金额:1,050,840.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)5-1其他试验仪器及装置细胞自动计数仪1(台)详见采购文件--5-2其他试验仪器及装置台式大容量离心机4(台)详见采购文件--5-3其他试验仪器及装置核酸定量仪1(台)详见采购文件--5-4其他试验仪器及装置八道电动移液器4(台)详见采购文件--5-5其他试验仪器及装置八道移液枪12(台)详见采购文件--5-6其他试验仪器及装置单道移液枪60(台)详见采购文件--5-7其他试验仪器及装置十万分之一天平1(台)详见采购文件--5-8其他试验仪器及装置24孔固相萃取装置2(台)详见采购文件--5-9其他试验仪器及装置全波长酶标仪1(台)详见采购文件--5-10其他试验仪器及装置超微量分光光度计1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成二、获取招标文件时间: 2023年11月02日 至 2023年11月08日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州中医药大学地 址:广州市番禺区广州大学城外环东路232号广州中医药大学办公楼911室联系方式:393569702.采购代理机构信息名 称:广州珠江监理咨询集团有限公司地 址:广东省广州市越秀区永泰路50号101房联系方式:020-834921753.项目联系方式项目联系人:林工电 话:020-83492175
  • 东胜创新代理的"Kodak 多光谱活体成像系统)"获得生命科学十大创新产品殊荣
    东胜创新公司代理的"Kodak 多光谱活体成像系统(Multispectral Fx)"获得《The Scientist》评选的"2008年度生命科学十大创新产品"殊荣 &mdash &mdash 多模式分子成像技术加速药物研发的步伐 来自纽黑文12月10日的消息, Carestream 分子影像部的Kodak 多光谱活体成像系统荣获来自《The Scientist》杂志评选的"2008年度生命科学十大创新产品"的殊荣。评委会专家从一系列生命科学创新技术中评选出2008年度Top 10 创新产品, 获胜者名单可查阅《The Scientist》12月份期刊。 《The Scientist》总编Alison McCook先生说到:"《The Scientist》非常荣幸能够从2008年度生命科学的市场中,将集创新性、想象力以及应用性于一身的最优秀的创新产品甄选出来。我们的评委会专家都是前沿技术的使用者,能够将此十项产品列为Top 10创新产品是因为此十项产品将会对生命科学领域产生巨大的影响。" Kodak多光谱活体成像系统能够帮助研究者在目标物发生形态改变之前,就能精确地检测和监控目标物的分子水平的活性的变化,以此加速发展有效的疾病治愈手段。 Carestream 分子影像部研发总监Bill McLaughlin说到:" Kodak多光谱活体成像系统是多年研发的巅峰之作。来自《The Scientist》的&lsquo 2008年度生命科学十大创新产品&rsquo 的殊荣不仅是对曾经推进分子影像技术发展的科学家们和工程师们的嘉奖,同样也是对我们的客户&mdash &mdash 这些一线的研究者们能够感受这难以置信的强大的应用的鼓励。" Kodak多光谱活体成像系统促使生命科学领域的研究者们对特殊疾病和治疗方法的研究从体外延伸至体内&mdash &mdash 从对体外样本研究发展至活体内的研究&mdash &mdash 这也得益于具有分析和比较等多重功能的先进的应用软件。Kodak多光谱成像系统是目前唯一一款集多光谱荧光成像、生物学发光成像、数码X光成像以及同位素成像功能于一身的小动物活体成像系统。 了解更多Kodak活体成像系统的信息,请登陆:http://mi.carestreamhealth.com &mdash &mdash 2008年度,美国Carestream Health公司(原伊士曼柯达医疗集团公司)发布新款最高端的多光谱荧光活体成像系统(In-Vivo Multispectral Imaging Systems FX),此款系统是基于激发光的多光谱解析技术来实现多光谱分析的,该技术能够鉴定和分离不同的荧光素并且能够消除非特异荧光的干扰。精细的软件能够自动地生成和分析一系列不同激发波长下的荧光成像图片,这些荧光图片与X光或白光的成像图片相叠加以判断荧光信号具体的定位。该成像系统多种成像模式中除了多光谱荧光成像,还包括生物学发光成像和同位素成像,这种多功能成像系统能够为研究者带来更多的研究方法和研究方向的选择! 生物通网站还举办了"2008生命科学十大创新产品"的国内评选活动,欢迎广大读者踊跃投票,支持Kodak多光谱活体成像系统。 活动链接:www.ebiotrade.com/custom/ebiotrade/2008-10products/index.htm
  • 400万!福建医科大学孟超肝胆医院计划采购多色免疫荧光成像系统
    一、项目基本情况项目编号:[350101]FJKT[GK]2023003项目名称:金山院区多色免疫荧光成像系统采购方式:公开招标预算金额:4,000,000.00元采购包1(金山院区多色免疫荧光成像系统):采购包预算金额:4,000,000.00元采购包最高限价: 4,000,000.00元投标保证金: 40,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100404-光学式分析仪器光学式分析仪1(项)是光学式分析仪4,000,000.00本采购包不接受联合体投标合同履行期限:自合同签订之日起90日二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:采购包1:无3.本项目的特定资格要求:采购包1:(1)根据《福州市财政局关于进一步推进政府采购领域优化营商环境工作的通知?》(榕财采[2021]52号)规定,投标人在投标(响应)时,按照规定提供相关承诺函(详见附件“资格承诺函”)的,无需再提交财务状况、缴纳税收和社保资金缴纳等证明材料。【注意事项:采购人有权在签订合同前要求中标人提供相关证明材料以核实中标人承诺事项的真实性。投标人应当遵循诚实守信的原则,不得作出虚假承诺,承诺不实的,属于提供虚假材料谋取中标、成交,依法追究相关的法律责任。】?投标人可自行选择是否提供本承诺函,若不提供本承诺函的,应按招标文件要求提供响应的证明材料。供应商可删减承诺事项(例:如删去承诺第1项的,则应按招标文件要求提供财务状况报告。)招标文件其他地方要求与本条款要求不一致的,以本条款要求为准。;(2)招标文件规定的其他资格证明文件?所投货物若属于医疗器械管理范畴,按照国家《医疗器械监督管理条例》,应符合以下标准,1、投标人为制造商的,须提供《医疗器械生产许可证》;投标人为经销商的,投标货物若属于三类医疗器械,须提供《医疗器械经营许可证》,投标货物若属于二类医疗器械,也可提供《第二类医疗器械经营备案凭证》,投标货物若属于一类医疗器械,则须提供《第一类医疗器械备案凭证》或医疗器械经营许可证;2、投标货物属于《医疗器械监督管理条例》规定的第一类医疗器械产品应提供《第一类医疗器械备案凭证》,属于第二类、第三类医疗器械产品应取得《医疗器械注册证》(如有注册登记表应提供)。所有证件必须在有效期内。;(3)投标人针对“财务状况报告(财务报告、或资信证明)”①投标人?提供的财务报告复印件(成立年限按照投标截止时间推算)应符合?下列规定:?a.成立年限满1年及以上的投标人,提供经审计的2021?年或2022年的年度财务报告。本招标文件中若有与此处不一致的,?以此处补充说明为准。。三、采购项目需要落实的政府采购政策进口产品:进口产品,适用于本项目。本项目“品目号1-1光学式分析仪”属于清单内允许采购进口产品的情形,同时满足需求的国内产品亦可参加投标(进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品)。节能产品:节能产品按本招标文件规定执行。环境标志产品:环境标志产品按本招标文件规定执行。信息安全产品:信息安全产品按本招标文件规定执行。信用记录:(1)(根据财库〔2016〕125号文件规定,供应商不得被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单,投标人针对“信用记录查询结果”可自主提供证明材料,未提供该证明材料的不视为投标文件无效。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随招标文件一并存档),视为查询结果未存在投标人应被拒绝参与政府采购活动相关的信息。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。(3)若此项规定与招标文件其他部分有矛盾的,以此项规定为准。四、获取招标文件时间: 2023-03-02 至 2023-03-09 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费五、提交投标文件截止时间、开标时间和地点2023-03-23 09:15:00(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:福建省福州市鼓楼区温泉公园路69号福州市行政服务中心三楼-六、公告期限自本公告发布之日起5个工作日。七、其他补充事宜无。八、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福建医科大学孟超肝胆医院地址:福建省福州市鼓楼区西洪路312号联系方式:0591881162002.采购代理机构信息(如有)名称:福建康泰招标有限公司地址:福建省福州市鼓楼区湖东路169号中闽天骜大厦第十三层02A单元联系方式:0591-878035053.项目联系方式项目联系人:陈东英、原梁杰电话:0591-87803505网址: zfcg.czt.fujian.gov.cn开户名:福建康泰招标有限公司福建康泰招标有限公司2023年03月02日
  • 热烈祝贺Kodak多模态小动物活体成像系统在北京大学和天津医科大学招标中成功中标
    在4月21日的北京大学和天津医科大学小动物活体成像仪器招标中,柯达多模态小动物活体成像系统凭着先进的多模态设计理念、精湛的仪器设计、卓越的性能表现和杰出的应用支持能力,在激烈的竞争中脱颖而出,击败市场上几个主要竞争伙伴,成功中标!东胜愿意携带柯达多模态小动物活体成像系统,充分展示系统的优势和理念,与新老用户共同前进,给用户带来实质性帮助! 小动物活体成像技术,经历了生物发光一家独秀,到荧光成像五彩缤纷,到现在生物发光、荧光成像、同位素成像和X光成像协同作战的一个发展历程,到如今,多模态的设计理念已经成为小动物活体成像的技术潮流,并有将更多分子影像技术纳入这一体系的趋势,必将有更好的未来。现如今,荧光成像技术的日益成熟,多模态理念的广泛认可,小动物活体成像技术已经成为最受市场欢迎的新技术平台之一,受到各领域科研单位的热捧。国内重点高校院所的中心实验室、药学院、生科院、医学院、化学院、材料学院、大型医院放射科、分子影像中心等诸多研究单位和领域都在着手或已经配备这一技术平台。
  • 振电(苏州)医疗科技有限公司成功交付多模态非线性光学成像系统UltraView给厦门大学
    大家好!我们非常高兴地宣布,振电(苏州)医疗科技有限公司的多模态非线性光学成像系统UltraView成功交付给了厦门大学。此次交付包括讲座和上机培训,反馈非常良好。讲座由公司CEO、北京航空航天大学特聘教授王璞亲自主讲,他向厦门大学的科研团队介绍了UltraView的技术特点和优势,现场进行了热烈的提问和交流。在场的学者们纷纷表示,通过此次讲座,他们对多模态非线性光学成像技术有了更深刻的认识,对UltraView的应用前景充满信心。 随后,我们安排资深工程师进行了上机培训,帮助他们熟悉UltraView的使用方法和操作流程。工程师耐心地为学者们解答各种问题,培训现场气氛轻松、活泼,学者们积极参与。通过此次交付,我们对UltraView的应用前景充满信心。我们相信,它将为厦门大学的科研工作带来很大的助力,并帮助他们在医疗诊断、药物研发等方面取得更好的成果。感谢厦门大学的信任和支持,我们将继续为客户提供最优质的产品和服务,助力科学研究事业的发展。 振电(苏州)医疗科技有限公司开发的“多模态非线性光学显微成像系统UltraView”利用相干拉曼成像技术,帮助您实现活体细胞、组织等样本,从核酸、氨基酸、脂质、糖类等组分的无标记、化学特异性显微成像,最大程度上保持了生物原有的生理状态;能实现二维到三维,从静态到动态变化过程的快速高分辨率成像。
  • 680万!山东大学超高频高分辨率多模态小动物光声-超声一体成像系统采购项目
    项目编号:SDJDHF20220549-Z316项目名称:山东大学超高频高分辨率多模态小动物光声-超声一体成像系统采购项目预算金额:680.0000000 万元(人民币)最高限价(如有):680.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高频高分辨率多模态小动物光声-超声一体成像系统 1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学超高频高分辨率多模态小动物光声.pdf
  • 435万!北京生命科学研究所计划采购多光谱激光成像仪及蛋白纯化分析系统
    项目概况北京生命科学研究所多光谱激光成像仪及蛋白纯化分析系统采购项目 招标项目的潜在投标人应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取招标文件,并于2022年06月14日 13点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:HCZB2022-094项目名称:北京生命科学研究所多光谱激光成像仪及蛋白纯化分析系统采购项目预算金额:435.0000000 万元(人民币)采购需求:名称、数量、简要技术需求如下:序号货物名称数量简要技术需求1▲多光谱激光成像仪1套… … 3.1检测模式:同位素磷屏成像、荧光成像和密度测定。… … (详见招标文件第六章)2▲蛋白纯化分析系统1套… … 2.1.1 精确的全自动微量柱塞泵,双泵四泵头。… … (详见招标文件第六章)注:1.标注“▲”的,允许提供进口产品;未标注允许采购进口产品的,如投标人所投货物为进口产品,其投标无效。2.本项目共1个包,投标人只可投完整包,不允许将一包中的内容拆开进行投标。合同履行期限:多光谱激光成像仪:合同签订后4个月内完成供货(免税的进口产品为签订外贸合同后);蛋白纯化分析系统:合同签订后6个月内完成供货(免税的进口产品为签订外贸合同后)。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(1)投标人不为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的投标人,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的投标人(以开标现场查询为准);(2)投标人单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动;3.本项目的特定资格要求:/。三、获取招标文件时间:2022年05月24日 至 2022年05月31日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A方式:现场领购 获取招标文件需携带以下资料: 1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖投标人公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买招标文件等手续,加盖投标人公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖投标人公章)。 2.如自然人投标的,上述资料仅需签字或盖章即可。 3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、佩戴N95口罩、进行体温检测及人员信息登记等事宜,自觉做好个人防护。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月14日 13点30分(北京时间)开标时间:2022年06月14日 13点30分(北京时间)地点:北京市昌平区中关村生命科学园路七号二楼北会议室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.评标方法和标准:采用综合评分法;满分为100分:投标报价部分30分,商务部分36分,技术部分34分。 2. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。3.本公告在中国政府采购网发布。4.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京生命科学研究所     地址:北京市昌平区中关村生命科学园路七号        联系方式:李硕 80726688-8311      2.采购代理机构信息名 称:华诚博远工程咨询有限公司            地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A            联系方式:刘天泽 18500706692            3.项目联系方式项目联系人:刘天泽电 话:  18500706692
  • 329万!Oxford instruments中标山东大学高分辨多模态近场纳米光学原子力成像系统采购项目
    一、项目编号:SDDX-SDLC-GK-2022025(招标文件编号:SDDX-SDLC-GK-2022025)二、项目名称:山东大学高分辨多模态近场纳米光学原子力成像系统项目三、中标(成交)信息供应商名称:北京壹诺维科技有限公司供应商地址:北京市海淀区中关村南大街12号综合科研楼四层4002室中标(成交)金额:329.6500000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元)1 北京壹诺维科技有限公司 高分辨多模态近场纳米光学原子力成像系统 Oxford instruments、WITec Jupiter XR、alpha300R 一套 ¥3296500.00
  • 发布FOBI整体荧光成像系统,小动物活体成像系统新品
    FOBI整体荧光成像系统可以对动植物体发出的荧光信号进行采集成像。FOBI内置四种不同的荧光通道(蓝、绿、红、红外),应用于各种荧光蛋白和染料的标记分析。能快速实时得到直观、高品质的图像和视频。1、应用范围广:肿瘤、免疫、药物开发等生命科学领域各个都可应用;荧光成像信号强,曝光时间短,无须事先转染荧光素酶基因,在活体成像研究中比生物发光成像应用更广。2、实时:曝光时间短,成像快,可实时进行动物手术操作。3、真彩色:使用彩色CCD图像传感器,能获得全方位真彩色图像,对比度更高,图像更清晰。4、操作简单,功能实用:信号背景一键消除,软件界面简洁无复杂操作过程;可录制视频用于回顾分析和教学;仪器可改装用于较大动物。5、数据准确:采用LED散漫光光源,光均匀性好,信号采集误差小;软件去除荧光背景保证数据准确。6、小巧方便:仪器整体结构紧凑,体积小,重量轻,占用空间小,可自由选择实验场地,省去转移动物的麻烦。7、价钱便宜,维修成本低:采用实用的仪器部件和功能,节省成本,可自行选择仪器配置。8、用户多,有大量文献支持 :已有100多篇SCI文章发表,包括Cell等高分期刊。创新点:(1)相比其它产品的伪彩处理,FOBI是真正意义上的真彩色图; (2)仪器整体结构紧凑,性能稳定,体积小,重量轻,占用空间小; (3)软件自带的一键扣除荧光背景信号和荧光定量分析功能,可在成像过程中实时分析图像的相对荧光强度和荧光区域的面积; (4)专为荧光成像应用设计; (5)无论成像质量和文章发表数目均在专做荧光成像的同类产品中处于领先水平。 FOBI整体荧光成像系统,小动物活体成像系统
  • 全球首个完全可配置多光谱成像仪问世
    上海2011年8月19日电 海洋薄膜全新的研发平台推出了SpectroCamTM多光谱成像仪(MSI),该平台融合了科研级电荷耦合器件阵列和精密的旋转式光学滤光片转盘,创造出世界上第一个完全可配置的多光谱成像仪。应用领域包括水质测量、产品筛选、机器视觉、医疗成像、监控以及验证。 SpectroCamTM多光谱成像仪   SpectroCam 成像仪通过添加新的光谱测量量纲来补充单点光谱。利用单点光谱仪,用户可以分析不同样本上光谱的差别。然后选择差异最显著的光谱区域内以及周边的离散滤波器,之后用户可使用SpectroCam成像仪创造一幅生动的样品差异图。   SpectroCam成像仪的中心是一个宽频带电荷耦合器件,该器件对于穿过近红外光谱的可视物很敏感。系统的精密滤光片转盘以及光学器件可定制以满足各种应用需求。成像速度为满分辨率下20fps,标准的F-Mount配置可兼容一系列的镜头、焦距和视野。每套系统包括一个镜头、八个标准可互换式滤光片以及软件。   海洋薄膜与微型光谱仪领军企业海洋光学合作发明了这套设备,从大学研究人员到具备强大生产能力的原始设备制造商,让多光谱成像仪走进每个人的生活。互换式光学滤光片和持续旋转滤光片转盘克服了许多棱镜多光谱成像系统会遇到的问题。有了可互换式滤光片,用户可以尝试多种滤光片,经过对比之后对最好的滤光片进行缩窄处理,极大减少了研发时间以及客户产品的市场投放时间。   SpectroCam平台可方便与多种原始设备制造系统相整合,经过改良可符合特殊的机械和环境要求。   关于海洋薄膜公司和豪迈:   海洋薄膜公司(OTF)总部设在美国,设计和生产精密光学涂层、元件和组件,可广泛用于多种产品和定制应用领域。基于在开发薄膜涂层方面的全面知识,我们的团队提供专家级的设计支持,用于合作式的定制工艺解决方案,通过大量合约生产,提供快速样品。OTF 是英国豪迈集团(HALMA p.l.c.-www.halma.cn)光电部旗下子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约36家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 1175万!浙江大学医学院附属第一医院近红外多色全光谱激光共聚焦显微镜和全光谱激光成像系统采购项目
    项目编号:ZJ-2233117-02 项目名称:浙江大学医学院附属第一医院近红外多色全光谱激光共聚焦显微镜和全光谱激光成像系统预算金额(元):11750000 最高限价(元):11750000 采购需求:标项名称: 近红外多色全光谱激光共聚焦显微镜和全光谱激光成像系统 数量: 1 预算金额(元): 11750000 简要规格描述或项目基本概况介绍、用途:近红外多色全光谱激光共聚焦显微镜:用于获取清晰的高质量的以及超高分辨率的共聚焦荧光图像:全光谱激光成像系统:用来进行组织和细胞中荧光标记的分子和结构检测及信号的定量分析,深层组织和细胞成像,亚细胞结构高分辨检测,荧光漂白及恢复等。 备注:允许进口 合同履约期限:标项 1,按采购文件要求本项目(是)接受联合体投标。
  • 时空多尺度神经环路活体成像技术
    成果名称 时空多尺度神经环路活体成像技术 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 光学成像技术是研究系统神经生物学的一个极其重要的手段。其中,通过光学成像技术手段跟踪简单模式生物神经环路中的信息传递来指导研究高等动物神经系统的动力学机制,是破译大脑信息处理功能的最有效途径之一。但是,目前光学显微成像技术的最高时间分辨率处于几十毫秒量级,尚无法捕捉动作电位在神经环路中的快速精细运动。因此,对神经元、神经环路活体光学成像技术开展研究,同时实现高空间分辨率和高时间分辨率的显微成像十分必要。 2012年,生命科学学院陶乐天研究员申请的&ldquo 时空多尺度神经环路活体成像技术&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的资助。在该基金的资助下,申请人课题组购置了关键配件,开展了相关实验,有力地推动了仪器的研制工作。课题组基于其成员在光学系统研制和成像技术领域的丰富经验,利用高性能sCMOS科学级相机和高速光学调制器件,采用图像分块、分时复用技术和自适应光学波前像差实时校正技术,成功研制了一套时间分辨率达到5毫秒、空间分辨率达到0.5微米的显微成像系统,并将该系统应用于模式生物(线虫)神经环路的活体成像实验研究中。 应用前景: 目前该项目已经顺利结题,相关成果正在神经科学基础研究中进行推广。这项技术在神经环路的结构、发育、形成、维护研究领域的应用,将为新一代神经精神疾病的诊断、治疗技术提供科学依据和新的思路。
  • Carestream多模式活体成像声明
    Carestream多模式活体成像重要声明   2010年7月, Carestream起诉Caliper(原Xenogen)活体成像产品直接侵犯了我公司的成像专利(美国专利号7,734,325) 在2010年2月,Caliper的全资子公司Xenogen,以及Stanford大学起诉Carestream在其成像系统的营销和销售中,间接涉及由斯坦福大学独家授权给Xenogen的成像专利。为了调停诉讼,双方于2011年8月达成和解协议。但是近期,个别代理机构利用Caliper Life Sciences, Inc. 和我公司双方专利诉讼调停的报道,来故意误导中国境内的客户,造成了严重的不良影响,Carestream中国区在此澄清和声明:   1 利兰-斯坦福青年大学托管委员会于1995年向中国国家知识产权局所申请的专利均为研究方法学专利,非仪器和功能专利(专利号:95198006.8)。   2 Carestream多模式小动物活体成像仪,具备发光,荧光,x-ray,同位素检测等功能,目前为止,已经为中国和世界其它各地的广大科研工作者提供了性能优异,质量可靠的活体成像的研究工具。   3 根据中华人民共和国专利法第六十九条第四款规定,为科学研究和实验等用途而使用专利的,不视为专利侵权,可无偿使用 此规定为包括美国、欧洲、日本等国家在内的国际通行准则。   4 我公司对任何错误解读翻译和误导该事件的商业行为所造成的不良影响和后果,将保留通过法律途经追究相关责任的权利,以维护我公司的合法权益 同时,本着对客户负责任的态度,我公司郑重对客户承诺,在Carestream多模式小动物活体成像仪器使用中,如有涉及专利方面的事宜,请直接与我们联系,我公司将会认真处理,避免给客户带来任何损失。   如有任何疑问请致电我公司   电话: 021-3852 6888   Carestream   Molecular Imaging
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 清华团队:基于多模光纤模式色散和深度学习的高速全光纤化成像技术
    多模光纤成像技术因其超细微型探头和柔性结构带来的灵活性优势,在生物体内成像、工业检测等领域具有广阔的应用前景,获得了业界广泛的关注。目前,多模光纤成像技术主要分为两类,一类通过在光纤远端产生聚焦点进行扫描成像,另一类通过探测光纤近端的散斑场来恢复光纤远端被探测的全场图像。这两种技术途径已有较完善的理论支撑,能得到较清晰的探测图像,但同时也具有一些难以弥补的劣势。例如:受限于空间光调制器、CCD或CMOS器件的刷新速度,成像帧率较低,难以对高速的事件进行成像;结构中包含自由空间光学元件,因此需要精密的光学对准,无法与传像主体集成实现全光纤化,限制了其应用范围;成像波长受限于CCD或CMOS器件的感光光谱范围,限制了其在红外波段的成像能力。上图 高速多模光纤成像系统示意图。a:实验原理图;b:以神经网络进行图像恢复的流程图;c:光纤探头示意图;d:照明光(黄色箭头)侧面注入探测光纤的示意图,信号光(红色箭头)在纤芯中传播;e:探测光纤远端照片,端面通过烧球来更好地聚焦照明光,比例尺500微米。为此,清华大学精密仪器系先进激光技术研究团队基于十多年来在光纤激光器、光纤器件和光纤传感的技术积累,提出了基于多模光纤模式色散和深度学习的高速全光纤化成像技术。该技术采用皮秒脉冲光纤激光照明被测物,利用多模光纤的模间色散特性将被探测图像的空间信息在时域上展开,时域信息通过单像素探测器进行探测,并借助神经网络训练的方法,由一维时域信息恢复出二维图像信息,整体结构和原理如图1所示。图2 被探测图像与其对应的波形和恢复结果该技术通过一个光纤侧面耦合器将皮秒脉冲光纤激光耦合到探测光纤中,然后从光纤的远端出射照到物体上,反射光进入探测光纤后紧接着进入与之连接的一公里长的50/125微米直径多模阶跃光纤中传播。由于模间色散的存在,进入多模光纤的脉冲光会产生分裂形成脉冲串。如图2所示,不同的光纤横模具有不同的群速度,因此在时域上会彼此分离,而这些横模包含了被探测图像的空间信息,通过模式色散便可将被探测物体的空域信息在时域上展开。图3 不同类型图案的成像效果通过超快光电探测器可以获得脉冲串波形,经神经网络模型进行训练后,可以直接从不同的脉冲波形中恢复出被探测图像。图3展示了来自不同数据库中图案的成像效果。该系统的成像帧率主要取决于脉冲光的重频,目前实验中已实现高达15.4Mfps帧率的成像,并实验验证了达到53.5Mfps帧率的可行性。系统在高帧率成像的同时具备连续采集一万帧图像(大帧深)的能力。如果采用重复频率更高的激光照明源,并搭配更快的光电探测器和时域波形采集设备,其帧率可以持续提升。团队所提出的新技术的突出优点是:帧率主要由脉冲光源的重频决定,成像帧率高;全光纤化的系统结构紧凑,细如发丝的探头大大增加了灵活性;单像素成像,探测波段不再受限于可见光,可扩展到近红外、甚至中波红外等其他波段;采集时域信号而非空间分布,抗干扰能力强。该系统在某些高速成像场景中比如体内高速细胞成像,或工业场景下对难以开放系统的内部高速成像检测等领域具有巨大应用潜力。该研究成果近日以“深度学习赋能全光纤高速图像探测”(All-fiber high-speed image detection enabled by deep learning)为题,发表在《自然通讯》(Nature Communications)上。该论文通讯作者为清华大学精密仪器系副教授肖起榕,第一作者为精密仪器系2018级博士生刘洲天。该研究得到了国家自然科学基金资助。 清华大学精密仪器系先进激光技术研究团队学术带头人为系主任、教授柳强,团队以现代化强国建设与国家重大需求为导向,着眼于光电子技术领域的科学与技术发展前沿,围绕固体激光、光纤光学、自适应光学、激光探测等方向,开展基础科学探索、应用基础研究和系统技术研发,全面覆盖高功率激光光源、光束控制、光电探测等技术领域。团队承担国家科技重大专项、国家重点研发计划、“973”计划、“863”计划、重点验证、专项配套型号研究等一系列重大项目,形成了从高功率激光光源到微弱光电信号测控的整套技术链条,具备完整的激光光电和测控技术能力,在相应研究方面取得了重要进展。2018年获批建设光子测控技术教育部重点实验室,2019年入选重点领域科技创新团队。
  • 挑战自旋成像系统“无人区"——记国家重大科研仪器研制项目“电子自旋和自旋极化电流时空演化成像系统”
    “就像船在大海中遇到10米巨浪,但舱内桌子上水杯中的水却稳到没有一丝肉眼可见的细纹。”谈到团队研制的电子自旋和自旋极化电流时空演化成像系统的稳定性,复旦大学物理系教授沈健这样类比。在国家自然科学基金国家重大科研仪器研制项目支持下,沈健团队挺进科研仪器研制“无人区”,将飞秒超快自旋显微技术、音叉式自旋结构显微技术、自旋极化电流显微技术相结合,研制出技术指标明显领先国际同类商用仪器的成像系统。目前,该项目已获国内、国际专利授权9项,在《科学》《自然》等期刊发表论文8篇,培养出大批优秀人才。项目组科研人员与第三方技术验收专家交流合影科学界的共同难题电子自旋是凝聚态和材料物理学中许多奇妙现象的根源。从凝聚态物理角度来说,几乎所有的重大现象,比如高温超导、庞磁阻、多铁效应、量子霍尔效应等都和电子自旋有关。“要理解这些重大现象,必须表征电子自旋结构和自旋动力学。”沈健对《中国科学报》说,“通俗点讲,就是要看清电子自旋如何在空间排列,并弄清其运动轨迹、运动状态,才能真正理解这些现象的本质。”理解电子自旋与量子材料物性的关联,并在自旋器件中做到高效自旋输运,是目前自旋相关研究的关键。而解决这个关键科学问题的最大技术瓶颈就是如何表征电子自旋及其动力学过程。沈健解释说,由于电子自旋之间的相互作用在空间上具有多尺度特征,在时间上具有超快响应频率,其本身又有静态(自旋结构)和动态(自旋动力学)的区别,尤其是在自旋器件中,自旋随电荷处于流动状态。“人们‘看清’电子自旋的难度,就像在太空中观察地球时,能够清楚地看见上面的一个足球。”沈健补充说,“而且,我们不仅要看见这个足球,还要弄清它在比赛中是怎么被传递的,甚至还要以十万亿分之一秒的时间精度,看清它的运动轨迹。因此,同时在单原子的空间尺度和飞秒的时间尺度看清电子自旋是目前国际科学界面临的重大挑战。”“到目前为止,科学家要么只能在单原子尺度看见静态的电子自旋,要么只能牺牲空间分辨率,在百纳米尺度研究电子自旋的超快动力学过程。”该团队成员之一、复旦大学教授吴施伟说,“我们就是要做一个显微镜或成像系统,它既能看见单独的电子自旋,又能在飞秒尺度上看清电子的自旋轨迹。”五级减震挑战2015年,该团队承担的科研仪器研制项目执行初期,一条来自上海市政方面的“大消息”让项目组忧心忡忡:上海市规划的地铁10号线延长线紧邻学校。地铁最近的地方,离该团队的地下实验室不足百米。此前,国内高校就曾传出学校附近的地铁震动影响科学实验的消息。而在原子尺度上看电子自旋,对背景噪声水平要求极高,任何外界极细微的扰动,都会影响该系统的成像效果。当时,能不能在这里建实验室、采取什么样的避震措施成为项目组讨论的焦点。经过多轮研讨,该团队制定出一套减震方案,虽然理论推算上能自洽,但实际上是否可行,大家意见并不一致。“上海处在一个冲积平原上,土质很软。”该团队成员之一、复旦大学教授殷立峰说,“地铁经过时的震动,对仪器影响会非常大。”最后,该团队和上海市政方面协调,找来几辆满载的重型土方车,沿着地铁线路行驶,尽可能模拟地铁运行所造成的恶劣环境,从而获得震动的一手数据。“当百米开外的满载土方车开过时,我们在实验室中测到了强烈的2.5赫兹震动,震动强度比平常高了一个数量级,所以地铁的影响非常明显,大概与我们无液氦制冷机所产生的震动相当。”吴施伟说。经过多次努力和尝试,该团队制定了一套特殊的“五级减震”方案。按照该方案,他们将仪器安放在实验室墙角一个特定位置,然后安装上能探测震动大小,并据此主动调节气压的“气浮”平台,再给扫描隧道显微镜镜头安装两级波纹管隔离制冷震动,最后通过扫描头的弹簧和探针不同的频率特性,阻断剩余的高、低频两种震动。经多轮评估,专家组认为这种“五级减震”方案在理论上可行,有机会使震动减少7个数量级,即达到“船在惊涛骇浪里剧烈颠簸,杯中水面纹丝不动”的效果。2021年6月,该项目进行正式验收时,上海的地铁10号线延长线已经投入运营半年多了。在这样的测试环境下,该系统测试的所有16项指标均达到或优于项目计划。“现在我们的减震效果完全达到最好的液氦制冷商业仪器的同一水准。”吴施伟补充说,“地铁经过或开关制冷压缩机完全看不出任何差别。”蹚出两条路“这套系统有两大亮点:一是减震系统;二是在减震条件下的无液氦制冷技术。”沈健介绍说,“除对稳定性要求极高外,该系统对温度条件要求也十分苛刻。”极低温制冷技术通常有两种:一是利用压缩机制冷;二是使用液氦制冷。国际上多采用液氦来制造极低温条件,但我国是贫氦国家,液氦供应受制于人。“液氦特别昂贵,大量使用液氦来做实验,成本也几乎到了难以承受的地步。”沈健说,“所以,无液氦制冷就成为一个新的技术发展方向。”但制冷压缩机本身就是巨大的震动源,用在对震动极其敏感的仪器上,影响自不必言。项目进行中,该团队再次陷入技术路线的巨大争议。经过反复的讨论与争论后,该团队决定采用两条技术路线,即尝试大幅减震条件下的无液氦制冷技术。“我们团队有个特点,每两周有全组(包括学生)的大讨论,讨论技术路线、审视各种方案。”该团队成员之一、复旦大学教授高春雷说,“之所以采取两条路线,实际上是因为当时谁也说服不了谁,干脆各选一条路向一起汇合。”该团队成员之一、博士后孙泽元说:“我们团队配备有数名设计、加工、焊接方面的专业技术人员,所以一些新的想法很快就能进行测试,这大大加快了研发进度。”就这样,该团队首次实现了2K(K氏温度)低温无液氦制冷,同时在低噪环境下成像的重大突破(最低1.2 K,远低于国际上无液氦制冷同类商业仪器9 K的技术指标)。目前,该系统在精度、时间分辨率和低温条件等方面均领先国际水平。“和液氦技术相比,我们这个系统的优势之一是可以长时间运行(液氦技术需要定期停机补充液氦)。”殷立峰说,“另一个优势是可以在1.2K到300K之间任意改变温度(液氦制冷仪器一般只能实现某几个固定温度)。”目前,国际上还没有类似指标的成像系统,这让沈健等人“有点踏入无人区的感觉”。同时,他们又非常幸运,该团队两条技术路线最后都“走通了”,这也为今后无液氦低噪制冷技术提供了更多选择。“说心里话,我们非常感谢国家自然科学基金对科研仪器研制项目非常大的支持力度,所以我们能做一些真正开创性的仪器研发,走进‘无人区’,挑战一些难度更大的事情。”沈健说,“对我们来说,它真正帮助我们在仪器研制上取得了长足的进步,同时,一批年轻科研人员也在这个项目中成长了起来。”《中国科学报》:您认为科研仪器在科研中起着怎样的作用?沈健:物理学是一门以实验为基础的科学,现代物理研究几乎离不开科研仪器。成像系统就像人的眼睛,在对物性的研究中,只有看得更清、研究得更细,对其中的物理才能理解得更加深刻,才能发现一些新现象。本项目在自主研发中产生的一些新范式,也会带来基础研究的突破。基于研发过程中产生的无液氦低温隔振平台和原位自旋极化扫描隧道显微技术,我们厘清了二维磁性材料中层间堆叠结构和磁性耦合的关系,为二维磁体在非线性光学器件、自旋电子学器件上的应用打开了新维度,为面向实际科学问题和科学应用研究奠定了扎实的基础。《中国科学报》:当前我国在该领域的科研仪器研制处于怎样的国际地位,面临怎样的挑战?沈健:单从技术指标上看,目前我们的仪器明显领先于国际上同类商用仪器,但并未真正商业化,还处于实验阶段。我们自己用起来得心应手的仪器,别人用其做同样的实验可能就不行,因为这里面有太多的细节,所以我们还有很多工作要做。《中国科学报》:下一步团队有哪些研究重点?沈健:下一步,我们将推进该成像系统商业化进程,把它做成别人拿来就很容易使用的仪器。但这样一个尖端仪器,不是简单靠某几个人或哪个团队就能实现商业化的,会面临很大挑战。但是,国家花了很多钱,我们不能满足于研制一个只是自己课题组能用的仪器。一方面,我们要让仪器更加成熟、稳定,能让同行拿来真正解决一些重大科学问题;另一方面,我们自己也有很多科学问题,需要借助尖端仪器来解决,这也是我们团队的努力方向之一。
  • 多模态跨尺度生物医学成像设施工程竣工!
    我国生物医学成像领域的大科学工程——多模态跨尺度生物医学成像设施项目工程3日在北京怀柔科学城竣工。未来将对生命体的结构与功能进行跨尺度、可视化地描绘与精确测量,为复杂生命科学问题和重大疾病研究提供成像组学研究手段,助力全景式研究和解析生物医学重大科学问题。11月3日,多模态跨尺度生物医学成像设施工程竣工仪式在北京怀柔科学城举行该项目是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学联合中科院生物物理研究所、哈尔滨工业大学、中国科学技术大学等多家单位共同建设,项目总投资为17.17亿元,建设用地100亩,新增建筑面积7.2万平方米,项目预计2023年试运行,2024年验收。成像设施在科研、医疗、教育和产业等方面具有广泛需求。在要求“看得见、看得清、看得早”的重大生物医学问题的研究中,多模态跨尺度成像技术具有重要作用。视频来源:北京大学11月3日,参观者观看介绍多模态跨尺度生物医学成像设施项目的图文展览及设备展示。“如果无法看清发病过程中分子、蛋白、细胞、器官等的变化过程,就无法精准治疗疾病。生物医学成像设施可以多层次、全景式、可视化‘看见’疾病发生的动态过程,便于更好地筛选药物、对症下药。”北京大学国家生物医学成像科学中心副主任陈良怡说。据悉,成像设施项目主要包括多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像数据整合系统以及模式动物等辅助平台和配套设施等。未来将聚集相关领域优秀团队,建立完备的核心成像设施,形成跨尺度、多模态、自动化和高通量的生物医学成像全功能研究平台。11月3日拍摄的多模态跨尺度生物医学成像设施工程建筑群(无人机照片)。“成像设施将多层次、全景式揭示生命的奥秘。”北京大学国家生物医学成像科学中心主任、成像设施首席科学家程和平院士说,成像设施建成后将对中国生物医学成像的研发起到积极带动作用。
  • 浙江大学赵璐、葛栩涛:高内涵成像系统在斑马鱼活体成像中的应用心得
    为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术” 主题约稿活动(点击查看)。本期,特别邀请到浙江大学药学院药物信息学研究所副教授赵璐博士和研究生葛栩涛同学谈一谈高内涵成像系统在斑马鱼活体成像中的应用心得。高内涵成像技术(High-Content Imaging,HCI)近年发展迅速,2D及3D的细胞成像技术均趋于成熟。例如,Pelkin Elmers公司推出了Opera Phenix Plus高内涵成像分析系统,采用Nipkow转盘和sCMOS相机,配套Harmony®集成软件,提供了高内涵筛选的整体解决方案。Thermo Fisher公司推出了CellInsight CX7 Pro LZR高内涵筛选平台,同样采用Nipkow 旋转和sCMOS相机,配套Amira软件,助力高内涵筛选和分析。而Molecular Devices 公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统采用AgileOptix™转盘式共聚焦和 sCMOS 相机,具有大视野、宽动态范围,多种成像模式,支持自动加样等特点,同时其具有3D成像和分析的能力。新款的ImageXpress Confocal HT.ai系统进一步增加了自动水浸物镜、IN Carta 图像分析等功能,简化高级表型分类和 3D 成像分析的工作流程。模式生物斑马鱼凭借繁殖力强、发育迅速、幼鱼体积小且通体透明等特点,加上众多特定细胞标记转基因荧光鱼系的运用,成为目前适合活体高通量荧光成像的唯一脊椎模式生物,在大规模药物筛选领域被日益关注。然而,常规的荧光显微镜成像具有速度慢、清晰度不佳以及图像处理过程繁琐等问题。本文主要以Molecular Devices公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统为例,分享本团队在对斑马鱼幼鱼进行高内涵成像及图片处理分析中的一些经验。首先,为了较好的成像效果,用于成像的胚胎一般需要进行以下预处理:(1) 黑色素的抑制:斑马鱼胚胎约发育至24小时左右,躯干及脑部皮肤及视网膜会开始形成逐渐黑色素,影响胚胎成像效果,所以通常在胚胎收集后1天内在培养基中添加苯硫脲(200uM),以抑制黑色素的生成;(2) 胚胎破膜:若用以成像或药物处理的斑马鱼胚胎尚未破膜,需将胚胎孵育于蛋白酶(2mg/ml)中一段时间,随后加入培养基轻轻吹打,使胚胎与绒毛膜分离;(3) 胚胎麻醉和摆放:大部分情况下,成像需保持胚胎于静止位,可考虑使用三卡因(0.016%)对斑马鱼进行麻醉,随后将斑马鱼逐孔加入96孔板内,轻吹并尽量保证其处于侧卧的体位。01 斑马鱼动态血流成像Micro Confocal系统在细胞上能够支持心肌细胞跳动和干细胞分化等快速和罕见事件进行成像。在斑马鱼模型上同样可以支持血液流动以及心脏跳动的成像。以动态血流为例,我们选择了红细胞绿色荧光标记的鱼系Tg (Lcr:eGFP)进行测试。具体拍摄流程为:首先在 2 倍镜或 4 倍镜下定位胚胎并进行初步手动对焦,也可使用高内涵成像平台自带软件MetaXpress 编程进行自动对焦。选中血管区域(一般选择在斑马鱼背主动脉和尾静脉位点,方便后续统计),切换 20 倍镜拍摄视频。另外,后续的人工量化血细胞流动通常费时费力,可以使用MetaXpress 软件的journal模块自动测算单位时间内流过的红细胞数目(Ref. 任灿, 陈雪纯, 吴慧敏, 赵璐, 王毅. (2021). 基于高内涵成像系统的斑马鱼血流动态分析. // 高内涵成像及分析实验手册. Bio-101: e1010854. DOI: 10.21769/BioProtoc.1010854)。02 斑马鱼静态多通道成像ImageXpress支持至多5或7通道的荧光成像,因此可以实现不同荧光标记细胞的共同成像。拍摄方式与动态摄影类似:先在低倍镜下初步对焦,然后选择心脏区域,切换10倍镜分别拍摄两个通道下的荧光图像。在多孔或整板成像过程中,由于孔与孔之间的斑马鱼位置存在偏差,或不同胚胎本身发育状态有所差异等原因,不同孔的最佳聚焦平面往往会变化,限制了高通量成像。为了方便焦平面的寻找,一个应对方案是使用大步长(10~30um)的Z-stack拍摄初始焦平面上下一定厚度范围内(200um)的一系列图像,再从中挑选最清晰的一帧即可。图1a展示了3dpf斑马鱼心脏和血管内皮Tg (Cmlc2:eGFP Kdrl:mcherry)共同成像的效果图,可以清晰地看到心房和主动脉连接处存在共定位。图1b为3dpf斑马鱼红细胞和血管内皮Tg (Lcr:eGFP Kdrl:mcherry) 共同成像的效果图,可以清晰地看到红细胞位于血管中。此外,目前有一些商品化的特殊孔板可帮助保持胚胎在特定位置,但使用场景仍有较多局限性,尚需进一步优化。图1 斑马鱼静态多通道成像代表图03 斑马鱼高分辨率及3D成像斑马鱼胚胎器官厚度通常在几十至上百微米之间,或拥有复杂的立体结构,因此简单的2D图片往往不能获取高质量信息。我们同样可以使用Z-stack程序拍摄立体图像,不同的是步距需要设置比较小,通常为1~3um。拍摄结束后,可以使用Z project将堆栈图三维投影成一张2D图像,也可以使用3D project将系列图重构成立体图像。另外,10倍镜下难以拍摄全鱼,可以使用多视野拼接的方式得到全鱼荧光。这一部分同样支持多通道荧光成像,图2a展示了Z project重构的中性粒细胞和血管内皮荧光Tg (Lyz:eGFP Kdrl:mcherry)共同成像的效果图,图2b展示了红细胞和血管及淋巴管细胞Tg (Gata1:dsRed Fli1:eGFP)共同成像的效果图。补充视频1和2分别展示斑马鱼脑部血管以及血管叠加红细胞的3D重构图像。图2 斑马鱼高分辨率三维投影成像代表图视频1:斑马鱼脑部血管三维重建视频2:斑马鱼血管红细胞叠加三维重建最后,使用ImageXpress成像系统进行斑马鱼成像还存在一些问题。比如,高强度的激光光源对斑马鱼有一定的刺激,可能会导致其产生应激性游动,造成成像失败,因此对麻醉效果有较高的要求,但在减少应激反应的同时也要注意不能麻醉过度(浓度太高或时间太长)引起胚胎损伤或死亡。另外,目前大部分高内涵成像系统的配套软件在自动定位斑马鱼胚胎及寻找最佳焦平面的功能模块中还有比较大的局限性。在批量成像中,大多数只能做到相似焦平面的孔间自动成像,对于焦平面差异较大的孔,则需要手动调焦,极大影响了拍摄效率。因此,高通量成像目前仅能支持孵化天数较小的胚胎(一般3dpf以内,鱼泡尚未发育且运动能力较弱)的成像,对发育后期的斑马鱼胚胎或幼鱼还不能进行批量成像。期待未来在功能模块进一步完善后,可支持孔板内任意位置及焦平面的高质量成像。最后,在图像数据分析上,尽管我们的前期工作已开发了多个模型的自动分析算法(如心脏、血流动力学),但仍有许多其他模型缺乏对应的分析算法(如血管、免疫细胞、神经系统的分布和行为)等,值得进一步开拓。本文作者: 葛栩涛(研究生) 赵璐(副教授),浙江大学药学院药物信息学研究所浙江大学药学院药物信息学研究所 赵璐 副教授赵璐博士,浙江大学药学院药物信息学研究所副教授、博士生导师、浙江大学“求是青年学者”,博士毕业于美国耶鲁大学医学院。现为浙江大学中药科学与工程学系模式生物平台负责人,研究方向为基于斑马鱼多模态成像的中药药效物质发现。获浙江省杰出青年科学基金支持,主持国家自然科学基金项目2 项,浙江省自然科学基金项目2 项,研究成果获教育部自然科学二等奖1 项。以第一或通讯作者发表PNAS, Engineering等学术论文18 篇,被Nature、Lancet等期刊引用1050 余次。浙江大学药学院药物信息学研究所 葛栩涛 研究生葛栩涛,浙江大学药物信息所21级研究生。主要研究方向为斑马鱼高内涵活体荧光成像技术在中药药效物质筛选中的应用。擅长斑马鱼相关实验技术以及多种荧光显微的斑马鱼活体成像。曾获2022长三角天然药物化学研讨会论文评选二等奖,浙江大学医学院公共技术平台显微注射比赛一等奖,2022-2023学年浙大药学院研究生学术创新能力单项荣誉。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎投稿,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制