超灵敏探测装置

仪器信息网超灵敏探测装置专题为您整合超灵敏探测装置相关的最新文章,在超灵敏探测装置专题,您不仅可以免费浏览超灵敏探测装置的资讯, 同时您还可以浏览超灵敏探测装置的相关资料、解决方案,参与社区超灵敏探测装置话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超灵敏探测装置相关的资讯

  • 中国自主研发的超灵敏炸药探测仪产业化
    中科院相关院所与江苏省无锡市13日就超灵敏炸药探测仪技术转让一事签约,意味着由中科院承担的国家863计划项目、我国自主研发的超灵敏炸药探测仪正式开始产业化进程。   超灵敏炸药探测仪是我国完全拥有自主知识产权的一种高新技术产品,使用分子印迹荧光聚合物传感技术识别炸药。技术研发人、中科院上海微系统与信息技术研究所研究员程建功介绍说,重量仅为1.2公斤的超灵敏炸药探测仪采用荧光聚合物传感技术,比国内一般探测仪速度至少快10倍,发现炸药只需5至8秒,且不污染环境,对使用者无辐射无副作用。这一技术的发明,使我国成为除美国外第二个拥有该项技术的国家。   专家表示,该仪器能够模仿警犬,通过识别爆炸物挥发的气味嗅出隐藏的爆炸物或残留在被检测对象表面的炸药痕迹,灵敏度达到0.1ppt,也就是说探测器能检出10万亿个空气分子中存在的1个炸药分子。这甚至比训练有素的警犬还要敏感一个数量级。这一技术对于提高我国公共安全事业中安检防爆的灵敏度和准确率,有着重要意义。   签约仪式上,无锡市政府表示,将在半年内建成生产线,完成探测仪的工程化设计,实现规模化生产。
  • 赵继民研究员团队成功研制在线原位高压超快泵浦-探测光谱装置
    时间分辨泵浦-探测超快光谱由于其独特的优势(如超高的时间分辨率、费米面以上激发态的观测、相干玻色子激发等),被广泛应用于研究各种凝聚态物理(和其它科学),包括高温超导、复杂相变、多自由度耦合、相干调控、激光诱导新量子态和隐态等。高压技术通过直接改变晶格常数来调节电子能带结构和自旋特性等,提供了一种独特、干净的调控手段,也成为凝聚态物理(和其它科学领域)研究的重要手段。近年来,在上述丰富而深刻的基础科学需求的推动下,人们致力于将超快光谱和高压物理这两个领域结合起来,以研究高压条件下的超快动力学[Chin. Phys. Lett. (Express Letter) 37, 047801 (2020)]。研究挑战主要来自于实验仪器产生数据的可靠性。由于研究超快动力学的实验非常精细,压力变化也容易引起复杂的物理效应,保证仪器装置获取可靠精准的、有可比性的实验数据对于高压超快动力学这个交叉方向的开启和发展至关重要。例如,如果实验过程中将高压装置拿出光路进行加压、调压、校压之后再放回光路,可能会导致位置偏移和样品转动,将会引入人为实验误差,对于泵浦-探测这样的双光束实验的干扰尤为明显(把双光路光谱实验与高压技术相结合面临更多挑战)。从实践看,国内外目前已有的初步尝试,大多获得的是准粒子寿命信息,缺乏可靠的幅值信息,这为研究超快动力学带来了困难,例如量子材料的超导相变、CDW竞争序、拓扑相变等量子物性的标志特征之一是能隙的打开或闭合,能隙的变化直接对应于激发态超快光谱实验中的声子瓶颈效应(phonon-bottleneck effect),确认声子瓶颈效应需要幅值和寿命双方面的信息,仅有寿命信息不足以确认,于是同时获得可靠的幅值和寿命信息对于高压超快动力学这个交叉领域的开启、成型和顺利发展至关重要。这对仪器装置提出两个关键要求:(1)技术层面--研制可靠精准的在线原位(on-site in situ)高压超快泵浦-探测光谱实验装置,(2)标准层面--提出相应的标准描述,同行们在报道实验结果时最好明确是否为在线原位获得的实验数据,以保证学术交流中实验数据有可比性,从而从整体上提高数据的可靠性,减少不必要的人为误差甚至误导。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF05组赵继民研究员及博士后吴艳玲、博士生加孜拉哈赛恩和田珍耘与北京高压科学研究中心丁阳研究员及博士生尹霞合作,成功搭建了一套室温条件下工作的“在线原位(on-site in situ)”的高压超快泵浦-探测光谱装置(图1)。该仪器装置的搭建取得了重要突破:(1)技术方面,实现了on-site in situ 技术,在整个实验过程中高压DAC不拿出光路,在光路中即可加压、调压、校压,完全避免了复位误差(repositioning fluctuation)(图2),最大程度保证了实验过程中样品不发生(控制在CCD监控微调误差范围以内的)移动或转动,避免了实验过程中不必要的人为误差,在实验数据的精准可靠性方面实现了最大化;(2)标准方面,提出了on-site in situ标准描述,如果在文章中明确DAC是否移出及放回了光路,则可在学术交流中提高实验数据的可比性(图3),避免了不必要的对比误差和解读偏差(使用机械臂将DAC移出光路并复位的装置,在最好的情况下等同于在线原位的精度,一般也有可比性)。总之,基于上述两方面仪器研发的突破,研究团队获得了室温下的可靠的幅值和寿命双方面的超快动力学信息,提供了足够丰富和全面的物性信息,为获得量子材料的高压超快动力学、进一步理解复杂相变和高压引起的激发态超快动力学特性提供了可靠的保障。图1. “在线原位(on-site in situ)”高压超快泵浦-探测光谱实验装置原理图。图2. 复位误差(re-positioning fluctuation)若干情形举例:(a)样品有台阶、位错或晶畴边界引起的晶格变化;(b)样品表面有台阶引起的高度差;(c)样品中存在不均匀的掺杂或缺陷分布;(d)样品具有平面内的超结构或复杂晶格结构;(e)样品有转动,且动力学对晶格方向很敏感。图3. 采用“在线原位(on-site in situ)”超快实验装置和“非在线原位(off-site in situ)”超快实验装置对相同实验观测到的不同超快光谱实验数据之间的对比。其中(b)图与(c)图:在off-site实验中只看到一个变化特征,经过on-site条件的实验能够观测到两个变化特征,分别对应两个不同的物理特性(包括声子瓶颈效应及相变等)。相关工作近期发表在Review of Scientific Instruments上,获得了科技部国家重点研发计划、国家自然科学基金委、中国科学院创新交叉团队、中国科学院对外合作重点项目、中国科学院先导专项、北京市自然科学基金重点项目的支持。相关工作链接:[1] Y. L. Wu, X. Yin, J. Z. L. Hasaien, Z. Y. Tian, Y. Ding, and Jimin Zhao, On-site in situ high-pressure ultrafast pump–probe spectroscopy instrument, Review of Scientific Instruments 92, 113002 (2021).https://doi.org/10.1063/5.0064071
  • 量子关联上转换新方案,实现超灵敏中红外光谱探测
    中红外(2.5-25 μm)波段能够覆盖复杂分子的振动和转动能级跃迁,揭示多种分子的基础吸收带和复杂化合物独特的光谱特征。因此,高效分析工具——超灵敏中红外光谱探测,成为智能生化传感、新兴材料研究、环境气体监测、高精度医学层析成像等领域的重要测量手段。近年来,随着非线性频率上转换技术的进步,基于频率上转换的中红外光谱探测技术表现出显著的科研潜力。该技术利用强泵浦光场作用于非线性光学材料,将中红外光子耦合转换至近红外或可见光波段进行探测,从而规避了现有中红外探测器噪声大的不足,成为了一种有效的中红外直接光谱探测的替代方案,有望在中红外光谱探测灵敏度、探测效率、响应速度、成本效益等方面取得重要突破。现有对中红外光谱探测系统的研究成果表明,进一步扩大中红外频率上转换技术的超灵敏、宽频段的优势,可使其更广泛适用医学、生物、国防等领域的应用。然而,基于多种非线性光学材料的宽带中红外频率上转换系统往往需要强泵浦场来提升宽带转换效率,且系统在短波泵浦模式下工作,强泵浦场导致的非线性参量噪声将覆盖中红外波段,使得实现超灵敏的宽带中红外光谱探测极具挑战。为解决上述问题,华东师范大学精密光谱科学与技术国家重点实验室武愕、陈昱、蔡羽洁等研究团队基于非简并光子对的时间-光谱量子关联技术,提出了一种低功耗、强鲁棒性的高灵敏中红外单光子光谱探测方案,实验验证了单光子水平光子通量下的中红外样品光谱测量。相关研究成果发表于Photonics Research 2022年第11期。该文章报道了一种极低光子通量条件下的中红外上转换光谱测量方案。该方案利用结合同步频率上转换技术的非简并关联光子、对时间-光谱量子关联特性实现了单光子水平的中红外上转换光谱探测,降低了强泵浦非线性噪声和环境噪声对中红外光谱测量的影响,大幅度提高单光子水平下的中红外光谱测量灵敏度和鲁棒性。图(a)展示了基于时间-光谱量子关联的宽带中红外单光子上转换光谱探测系统光路图。利用啁啾极化铌酸锂晶体中的非线性过程,自发参量下转换产生非简并宽频带的关联光子对,光子对产生率6.76×106 counts s-1 mW-1。其中,中红外信号光子覆盖3.14-3.80 μm中红外波段,提供了大于660 nm的光谱探测波长窗口。图(a)单光子频率上转换量子光谱系统图;(b)38 μm厚聚苯乙烯薄膜透射光谱实验基于同步脉冲泵浦技术实现了中红外信号光子的非线性频率上转换,验证了中红外上转换光子(0.78-0.81 μm)与共轭的近红外预报光子之间的非经典相关性得以保留,展示了基于时间-光谱量子关联的中红外单光子上转换光谱测量的可行性。利用该系统对38 μm厚的聚苯乙烯样品进行透射光谱的测量,如图(b)所示。入射样品的中红外光子通量低至每脉冲0.09光子。实验表明,中红外单光子上转换光谱与傅里叶变换红外光谱仪(FTIR)的测量结果吻合,系统的光谱分辨率约为11.4 nm(10.5 cm−1)。相比于传统FTIR光谱探测方案,基于时间-光谱量子关联技术的宽带中红外单光子上转换光谱系统,既能够利用光子对的时间关联、频率关联量子特性降低频率上转换过程中多种噪声的影响,将中红外光谱测量灵敏度推进至单光子水平;又能使单光子探测器和单色仪等元件工作在其最优的工作波段,无需受待测样品特征波长的限制,拓展了系统的应用场景。系统高灵敏、低噪声、强鲁棒性、结构简单的优势,为光敏生化样品的中红外光谱测量提供了新的技术方案。后续将进一步开展更宽中红外带宽、更高灵敏度、更高信噪比的上转换光谱成像研究。

超灵敏探测装置相关的方案

  • Maya2000 Pro深紫外光谱探测范围拓展至153 nm
    我们的Maya2000 Pro光谱仪具有较高的量子效率和较宽的动态范围,在深紫外波段(185-300 nm)有响应。 这一超深紫外光谱仪将光谱测量范围拓展至153 nm。用高灵敏度的超深紫外型Mayo 200 Pro可经济又便利地将光谱探测范围拓展至153 nm。 多种材料在真空紫外(VUV)波段(10 nm-220 nm)有光谱特征;VUV光谱仪的应用已遍及生物、半导体计量学和质量控制等各个领域。
  • 氦质谱检漏仪红外探测器杜瓦封装检漏
    随着空间遥感技术的不断发展, 对空间探测器的性能和光谱提出越来越高的要求. 红外探测器是红外探测系统的核心元件, 在航天和天文领域有广泛的应用, 随着波长向长波扩展和探测灵敏度的提高, 红外探测器必须在超低温下工作. 因此需要将红外探测器封装在杜瓦瓶中, 组装成杜瓦封装器件, 目前红外探测器在空间应用中多采用机械制冷方式, 将外部制冷机与杜瓦封装器件连接. 从而实现低温工作. 真空度的保持是杜瓦封装器件的重要指标. 真空度差或者真空度保持时间短将直接影响红外探测器组件的性能. 因此需要进行泄漏检测, 上海伯东德国 Pfeiffer 氦质谱检漏仪提供无损的检漏方法, 成功应用于红外探测器杜瓦封装器件检漏!
  • 无铅紫外窄带光电探测器的制备
    近日郑州大学史志锋团队,成功利用无铅钙钛矿,制备出一种紫外窄带光电探测器。它具有高的光谱选择性,不仅填补了无铅钙钛矿在紫外窄带探测器的研究空白,也为实现无铅紫外光电探测器在全波段的商业化应用,提供了新的思路和可能。

超灵敏探测装置相关的论坛

  • 【分享】美开发超灵敏探测器 能探知18米外爆炸物

    【分享】美开发超灵敏探测器 能探知18米外爆炸物

    [size=5][b]美开发超灵敏探测器 能探知18米外爆炸物[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006152304_224813_1638489_3.jpg[/img][/b] 据美国每日科学网报道,美国橡树岭国家实验室能量部的研究人员利用激光和装备将反射光变成声音,使超灵敏探测器能探知18米之外爆炸物。  此方法是一种光声光谱学变种办法,可以克服此技术的许多问题。亚历山大格雷汉姆贝尔19世纪末最初证实了此技术。最特别的是,橡树岭国家实验室的研究人员能探测和识别户外的材料,而不是引入加压箱。而加压箱只会导致光声光谱学在安全和军事应用上一无用处。  橡树岭国家实验室发表在《应用物理学快报92》杂志上的这一技术就是利用肉眼安全的脉冲光源来照亮目标物,让石英晶体音叉来探测其散射光。橡树岭国家实验室生物科学部的查尔斯范纳斯特说:“我们将此机器照明光的脉冲频率和石英晶体音叉的共鸣频率匹配好,在此音叉的空气表面界面上产生声波。由此产生的压力会导致此音叉产生共鸣。”  之后,科学家按比例放大这种振动,以识别照射到此音叉上的散射光强度。这是因为自然界的石英晶体能产生压电电压。范纳斯特同事表示,石英晶体音叉共鸣的其它好处还包括体积小、成本低、商业可行性强且能在野外环境下工作的特点。  对于他们的实验,研究人员利用磷酸三丁酯和3种爆炸物进行了验证,这3种爆炸物为cyclotrimethylenetrinitromine、三硝基甲苯(TNT)和四硝基季戊醇。结果表明他们能用比同类技术小100倍的激光功率来探测爆炸物残留线索。  此外,研究人员也能利用较大的收集镜和更加强大的照明光源探测20米处的爆炸物,他们认为他们甚至能探测到近100米处的爆炸物。[/size]

  • 合工大在高灵敏硅基超窄带探测器领域取得重要进展

    近日,合肥工业大学微电子学院先进半导体器件与光电集成实验室的王莉副教授和罗林保教授,成功研发出一种基于单p-型硅肖特基结的超灵敏近红外窄带光电探测器。相关成果以“Ultra-Sensitive Narrow-Band P-Si Schottky Photodetector with Good Wavelength Selectivity and Low Driving Voltage”为题于2023年12月31日作为封面文章在线发表在半导体器件领域的著名杂志IEEE Electron Device Letters上。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/cc67e4be-797c-42f2-9634-7a88f1e60e05.jpg[/img][/align][align=center][color=#0070c0]图1. IEEE Electron Device Letters 2024年第一期封面[/color][/align]窄带光电探测器由于仅对目标波长敏感,可以有效抑制背景噪声光的干扰,因此在机器视觉、特定波段成像、光学通信和生物材料识别等领域均具有重要的应用价值。但现有的加装滤波片、电荷收集变窄或热电子效应等窄带探测机制普遍存在着量子效率低的问题。为了提高窄带探测的灵敏度,研究人员通过将电荷陷阱引入有源层进行界面隧穿注入,或者利用场增强激子电离过程来实现器件内的光电倍增效应。但这些机制往往需要几十伏较高的电压才能激发启动,导致窄带探测器的性能易退化和工作能耗高。该研究团队在深入分析了上述问题的基础上,提出并实现了一种可在低驱动电压下工作的高灵敏窄带光电探测器。通过采用双层结构肖特基电极以及增大光生电子和空穴之间的渡越时间差,在保证高波长选择性的前提下实现了器件光电转化效率的大幅提高。该探测器仅在1050nm附近有探测峰,对紫外及可见光几乎无响应。在零偏压下器件的比探测率达~4.14×1012Jones,线性动态范围约为128 dB。当工作偏压由0 V增加到- 3 V时,器件外部量子效率可以从96.2 %显著提升到6939%,同时探测峰半高宽保持在约74 nm不变。这一成果为实现可在低驱动电压下工作的超高灵敏窄带光电探测器提供了新思路,有望在光电子领域得到广泛应用。[align=center][img=,600,467]https://img1.17img.cn/17img/images/202401/uepic/e9fc9b0e-1bba-4b78-a048-f15b14bb3a2a.jpg[/img][/align][align=center][color=#0070c0]图2. (a)器件内光强分布模拟结果,零偏压下(b)器件在不同波长光照下的电流-电压曲线,[/color][/align][align=center][color=#0070c0](c)线性动态范围,(d)不同偏压下器件的外部量子效率随波长变化曲线。[/color][/align]上述工作得到国家自然科学基金、安徽省重点研发计划、安徽省自然科学基金、中央高校基本科研业务费专项等项目的资助。[b]论文链接:[/b][url=https://ieeexplore.ieee.org/document/10312826]https://ieeexplore.ieee.org/[/url][url=https://ieeexplore.ieee.org/document/10312826]d[/url][url=https://ieeexplore.ieee.org/document/10312826]ocument/10312826[/url][来源:合肥工业大学微电子学院 ][align=right][/align]

  • 石墨烯结合量子点制成高灵敏光电探测器

    中国科技网讯 据物理学家组织网5月16日(北京时间)报道,西班牙塞西斯光学技术研究所用石墨烯结合量子点成功研发出一种混合型光电探测器,灵敏度是其同类探测器的10亿倍。研究人员指出,该研究预示了石墨烯在光学传感器和太阳能电池领域的新应用。相关论文发表在最新一期《自然·纳米技术》上。 石墨烯在光电子学和光电探测应用领域极有潜力,具有光谱带宽广、响应迅速的优点,但缺点是光吸收能力弱,缺乏产生多倍载荷子的增益机制。目前的石墨烯光电探测器响应度(一定波长的光在入射功率作用下的输出电流)在0.01A/W以下。 研究人员解释说,所需要的是一种迫使更多光被吸收的方法,石墨烯吸收光的效率仅为3%。为了提高光吸收率,他们转向了量子点。量子点是一种纳米晶体,能根据自身大小吸收不同波长的光。从本质上讲,光电探测器是一种把少量光转化为微小电流的设备,通过检测电流来确定有多少光进入了设备,或者直接用该电流产生其他反应,比如辅助产生摄影图像。 为了制造光电探测器,研究小组首先用标准的胶带法剥离出一层石墨烯作底片,用纳米印刷术在上面印上微小的黄金电极,然后用喷雾瓶将硫化铅晶体喷在上面。这些胶状晶体包含了各种大小的颗粒,几乎能吸收所有波长的光。他们用不同波长的光来照射探测器,检测其电阻和电量。 在制造量子点时,要保证在量子点和石墨烯之间实现配位体交换最大化,最大困难是找到合适的材料组合。研究人员说,他们经多次试验,终于使内量子效率达到了25%。在探测器中,量子点层中的光强烈而且可调,生成的电荷传导到石墨烯,在此电流多次巡回,响应度达到了107A/W。 研究人员还指出,在这种光电探测器基础上,还能造出更多新设备,如数字摄像机、夜视镜以及其他多种传感器设备。(记者 常丽君) 总编辑圈点 石墨烯极高的导电性着实令科学家着迷,也因此激发了科学家利用石墨烯来设计超高速光电探测器。传统的硅基光电探测器不能折叠,也不便宜,而且不够灵敏。多年来,一种便宜、可折叠的光电探测器一直是科学家们的梦想。单层石墨烯似乎可以胜任。然而单层石墨烯吸收光子的能力比硅还差,仅有3%的光子被吸收。而当量子点附着在其表面时,其吸收光子的能力可神奇地提高到50%。这样一来,可以穿在身上的电子产品或许真的不再是梦了。 《科技日报》(2012-05-17 一版)

超灵敏探测装置相关的资料

超灵敏探测装置相关的仪器

  • 位置灵敏探测器 400-860-5168转1980
    仪器简介:位置灵敏探测器PSD (Position Sensitive Device) 属于半导体器件, 一般做成PN结构,具有高灵敏度、高分辨率、响应速度快和配置电路简单等优点。其工作原理是基于横向光电效应。作为新型器件, PSD 已经被广泛应用在位置坐标的精确测量上, 如: 兵器制导和跟踪、工业自动控制、或位置变化等技术领域上.技术参数:分节PSD 这类PSD的基底通常分成两节或四节(分别对应一维或二维测量)。如果光斑停在中心位置,对称的光斑会在所有的节上产生相等的光电流。通过简单测量各节的输出电流,可以得到相对的位置信息。由于各单元之间超强的响应匹配,它们提供的位置分辨率优于0.1um,精确度也比横向效应的PSD高。与横向效应PSD不同的是,分节PSD的位置分辨率与系统的信噪比无关,因此它可以探测非常微弱的光信号。横向效应PSD 横向效应PSD采用连续的平面扩散型光电二极管,没有条带或盲区。这类PSD直接读出整个有效区域下的光斑位移量。在探测器有效区域上,光斑的位置和密度信息与模拟输出量直接成正比,通过这一输出就可以获得位移量。照在有效区域上的光斑会产生光电流,光电流流过入射点,穿过电阻层,进入接触层。入射点与接触层之间的电阻与光电流成反比。当光斑正好照到器件中央位置,会产生相同的电流信号。当在有效区域上移动光斑,接触层产生的电流大小,会确定光斑正确的瞬态位置。这些电信号与从中心到光斑的位置成比例关系一维探测器从2.5*0.6mm2' ---60.0*3.0mm2' 可选,上升时间为0.3us---4.5us。二维探测器从2.0*2.0mm2' ---45.0*45.0mm2' 可选,上升时间为0.3us---7us。 另外,还提供带信号处理电路的高线性二维PSD探测器,面积可达10*10mm2' 。主要特点:分节PSD 展示了基于时间和温度条件下的超强稳定性,以及脉冲应用所需的快速时间效率。然而,它们也受一些因素的限制,比如光斑必须在任何时间叠加在所有的节上,它不能小于各节之间的条带宽度。同时,正确的测量、均匀的光斑密度分配也是很重要的。它们是调零应用和光束准直应用的优秀器件。分节PSD产品包括二像素系列,四像素系列,紫外增强型系列横向效应光电PSD的主要优势在于它们宽的动态范围。它们能测量到探测器边缘的所有光斑位置。它们与光斑形状、密度分布无关,而这一点会影响分节光电二极管的位置读取。输入的光束可以是任何的尺寸和形状,这是因为电气输出信号由光斑位置重心指示,而输出与到中心的位移量成正比。器件的位置分辨率优于0.5um。分辨率取决于探测器/电路信号与噪声的比值。一维PSD探测器 一维PSD探测出一个亮点移动在它的在一个唯一方向的表面。入射光引起的光电流流经设备,作为输入偏压电流被划分成二个输出电流。输出电流的分布显示出探测器的光斑的位置。二维PSD探测器在其的方形的表面上的一个入射光斑点位置。入射光引起的光电流流经设备,作为二个输入电流和二个输出电流。输出电流的分布显示一个维度(y)的光斑的位置和输入电流的分布显示另一个维度(y)的光斑的位置。
    留言咨询
  • 高灵敏度中子ICCD 和中子sCMOS探测器PSEL制冷型中子探测器系列采用LiF:ZnS:Ag闪烁体荧光屏,由极低噪声、高灵敏度ICCD或sCMOS芯片读出。中子成像应用方面使用10cm×10cm至43cm×43cm有效区域的高分辨率闪烁体,并结合具有低噪声、快速读出4096×4096分辨率的sCMOS相机。衍射和小角散射应用使用26cm×20cm有效区域的高效闪烁体,并结合1306×1040分辨率的超低噪声ICCD相机,可实现单量子探测功能。通过将多个相机拼接在一起可以实现更大区域的探测。快中子系列不仅可以用于实验室密封源研究,也可用于研究反应堆设施。高灵敏度中子ICCD探测器主要特点:16-bit数字图像实时采集单中子等效读出噪声可达20000:1的高动态范围标准相机与计算机接口 芯片阵列可多路采集高灵敏度中子ICCD探测器 应用: 中子成像/断层扫描 中子衍射 小角中子散射 蛋白质晶体学 中子反射技术指标:参数中子ICCD中子sCMOS闪烁体LiF:ZnS:Ag有效像元尺寸200μm105 μm有效探测尺寸20cm×26cm43cm×43cm帧速0.6 fps5 fps动态范围10000:120000:1读出噪声3 e-4e-增益1000:1N/A门控宽度1 ms @ 1kHzN/A芯片制冷温度-20 ℃曝光时间(单帧)最长可达30分钟最长可达1分钟相机接口千兆以太网Li-6荧光屏来自于scintacor特征物理性质屏幕类型ND磷光体类型混合颗粒发光颜色蓝色峰值波长450nm衰减10%3.5μs余辉拖尾低阶X射线吸收极低紫外光吸收宽带
    留言咨询
  • 微秒时间分辨超灵敏红外光谱仪 传统光谱仪由于光源,测量方式等限制,需要几秒钟或者更长的测量时间来获取一个完整的光谱。 然而,生物医学、化学动力学等许多过程都是发生在微秒的时间内,这些过程是传统技术的光谱仪没办法观察到。IRsweep公司推出的IRis-F1时间分辨快速双光梳红外光谱仪是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1 μs时间分辨的红外光谱快速测量,提供了结合高测量速度(微秒时间分辨率)、高光谱分辨率和宽光谱范围的解决方案,这种高速的测量方案开启了生物医药、化学反应动力学光谱分析的全新的可能。 IRis-F1 微秒时间分辨超灵敏红外光谱仪IRis-F1微秒时间分辨超灵敏红外光谱仪原理示意图 主要特点: 1 μs时间分辨率 高达0.25 ~0.5 cm-1波数分辨率 双量子联激光频率梳技术提供高能量光源 测量数据信噪比高 易于微量及痕量光谱分析 方便易用、可靠性高 主要技术参数: 高信噪比 广泛的应用领域: 时间分辨光谱 动力学研究 光催化研究 高通红外光谱分析 适用固体、液体、气体样品化学成分分析 主要应用案例:1、菌紫红质时间分辨红外光谱研究 菌紫红质(bacteriorhodopsin)是存在于细菌(如生活在盐湖中的嗜盐细菌)中的光敏跨膜质子泵。 菌紫红质结构示意图盐湖中嗜盐细菌光敏变色实验装置示意图 时间分辨快速双光梳红外光谱测量结果时间分辨快速双光梳红外光谱测量结果显示: 成功观察到微秒时间分辨下的菌紫红质光敏状态变化 在微秒测试时间内,mOD浓度下光谱结果良好 光谱噪音水平低 时间分辨快速双光梳红外光谱适用于: 直接分析快速生物过程 实时研究动力学变化 高通分析蛋白-配体相互作用 2、光催化过程的时间分辨红外光谱研究 三联吡啶钌(Ru(bpy)32+ )由于具有良好的受激发特性,在电致发光(ECL)检测领域有着广泛的应用。光催化水分解反应机理: (i) Ru(bpy)32+ 被光激活;(ii) 消耗 S2O82- ,变为3+ 价转态 (iii)在 Co3O4 催化下,电子从水转移到 Ru(bpy)33+ 还原成2+价转态 相应的实验方案示意图时间分辨快速双光梳红外光谱测量结果时间分辨快速双光梳红外光谱测量结果显示: 成功观察到微秒时间分辨下的催化反应 获得μOD浓度下信号 能结合ATR技术时间分辨快速双光梳红外光谱适用于: 催化反应 化学反应 反应过程监控3、时间分辨红外光谱进行远距探测 远距探测用于远程探测危险物质,如爆炸物、生物/化学试剂等在安全防护领域具有重要的意义。而远距探测依赖于来自遥远表面的光束反射信号探测,具有较大的挑战。 实验装置示意图IRsweep远程探测方案测量结果IRsweep远程探测方案测量结果显示: 成功探测到远程物体的漫反射信号 较高的输出能量具有远程探测的优势 能探测到 1 μg/cm2 表面覆盖的信号IRsweep远程探测方案可用于: 国土安全 机场安检 IRsweep 相关光学产品IRcell – 超长光程激光样品池 适用于红外激光吸收光谱 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试更低容量更高灵敏度 光程长度:349 cm 样品池体积:38 ml 低边噪声水平:0.2‰ rms IRcell 技术参数: IRcell 应用案例 实时分析呼吸气体中的CO和CO2 — using an EC-QCL 实验装置示意图实验测试结果Ghorbani, R. & F. Schmidt, F.M. Appl. Phys. B (2017) 123: 144. doi:10.1007/s00340-017-6715-x 使用IRcell用于呼吸气体的分析结果显示: 成功探测呼唤气体中的CO2和CO 较长的光程具有痕量气体探测的优势 对痕量气体探测具有很高的信噪比IRcell适用于: 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试 部分用户 2018年8月,套新一代IRis-F1时间分辨快速双光梳红外光谱系统在德国柏林自由大学( Free University of Berlin)的Joachim Heberle 教授组成功完成安装。
    留言咨询

超灵敏探测装置相关的耗材

  • X射线探测器 X射线探测器
    X射线探测器是一种位置灵敏性的探测器 (Position sensitive detector, PSD), 非常适合各种X射线衍射仪探测器的使用。X射线探测器具有专利技术的X射线衍射仪探测器使用坚固的blade anode技术,而不是基于传统微光子技术,它不需要维护,不受X射线束的影响。X射线探测器特点先前的PSD探测器基于fragile wire anode technology,这种技术的探测器噪音较大,而且很容易被较强的X射线损坏。为了克服这个问题,法国Inel公司投入大量人力研发了这种PSD新型X射线探测器,使用钢合金替代原有材料,使得X射线探测器非常坚固而且不易被损伤。PSDX射线衍射仪探测器可用于粉末,固体和液体的实时X射线实验。X射线探测器,X射线衍射仪探测器弧形设计,具有110度,120度和90度的弧度共用户选择。该X射线探测器,X射线衍射仪探测器全固化设计制造,代替了传统的机械扫描装置。 这款PSDX射线衍射仪探测器可用于粉末,固体和液体的实时X射线实验。X射线探测器,X射线衍射仪探测器弧形设计,具有110度,120度和90度的弧度共用户选择。该X射线探测器,X射线衍射仪探测器全固化设计制造,代替了传统的机械扫描装置。
  • X射线探测器
    X射线探测器是一种位置灵敏性探测器 (Position sensitive detector, PSD), 非常适合各种X射线衍射探测器的使用。X射线探测器具有专利技术的X射线衍射仪探测器使用坚固的blade anode技术,而不是基于传统微光子技术,它不需要维护,不受X射线束的影响。X射线探测器特点先前的PSD探测器基于fragile wire anode technology,这种技术的探测器噪音较大,而且很容易被较强的X射线损坏。为了克服这个问题,法国Inel公司投入大量人力研发了这种PSD新型X射线探测器,使用钢合金替代原有材料,使得X射线探测器非常坚固而且不易被损伤。PSDX射线衍射仪探测器可用于粉末,固体和液体的实时X射线实验。X射线探测器,X射线衍射仪探测器弧形设计,具有110度,120度和90度的弧度共用户选择。该X射线探测器,X射线衍射仪探测器全固化设计制造,代替了传统的机械扫描装置。 这款PSDX射线衍射仪探测器可用于粉末,固体和液体的实时X射线实验。X射线探测器,X射线衍射仪探测器弧形设计,具有110度,120度和90度的弧度共用户选择。该X射线探测器,X射线衍射仪探测器全固化设计制造,代替了传统的机械扫描装置。http://www.f-lab.cn/radiation-detectors/psddector.html
  • 光电探测器 InGaAs Si Ge大光敏面探测器
    光电探测器雪崩二极管 提供Si, InGaAs类型雪崩二极管(APD)及其模块。 SAE系列雪崩二极管 SAE230VS和SAE500VS是普遍通用的硅类雪崩光电二极管,在400~1000nm范围具有高灵敏度,相当快的响应速度,峰值响应位于650nm,适合可见波段目标探测。各种类型封装形式可选。 特点: 高量子效率 低噪声,高速度 高增益,M100 500um探测靶面 平缓的增益曲线 宽温工作范围 雪崩光电二极管 系列8 – 高速/高增益 型号有效面积暗电流(nA)击穿电压(V)电容上升时间温度系数噪声等效功率芯片封装尺寸(mm)面积(mm2)@M=100@ID = 2μAM=100(pF)@M=100(ps)UBR (V/K)(W/Hz1/2)AD100-8TO52S1?0.1000.007850.05120-1900.8180典型值:0.453×10-15AD230-8TO52S1?0.2300.0420.31.21801×10-14AD230-8LCC6.1AD500-8TO52S1?0.5000.1960.5-12.23502×10-14AD500-8TO52S2AD500-8LCC6.1AD800-8TO5i?0.8000.502.05.07004×10-14AD1100-8TO5i?1.1301.004.08.010008×10-14AD1900-8TO5i?1.9503.0015.020.014001.5×10-13AD2500-8TO5i?2.5205.0020.028.015003×10-13AD3000-8TO5i?3.0007.0730.045.020004.5×10-13AD5000-8TO8i?5.00019.6360.0120.030009×10-13 系列9 – 近红外增强响应 型号有效面积暗电流(nA)击穿电压(V)电容上升时间温度系数噪声等效功率芯片封装尺寸(mm)面积(mm2)@M=100@ID = 2μAM=100(pF)@M=100(ps)UBR (V/K)(W/Hz1/2)AD230-9TO52S1?0.2300.0420.5180-2400.8500典型值:1.551×10-14AD230-9TO52S3AD500-9TO52S1?0.5000.1960.81.25502×10-14AD500-9TO52S2AD500-9TO52S3AD800-9TO5i?0.8000.502.02.013004×10-14AD1100-9TO5i?1.1301.004.03.013008×10-14AD1900-9TO5i?1.9503.0015.08.014001.5×10-13AD2500-9TO5i?2.5205.0020.012.015003×10-13AD3000-9TO5i?3.0007.0730.018.020004.5×10-13AD5000-9TO8i?5.00019.6360.045.030009×10-13 阵列AA16-9DIL180.648×0.2080.1355.0100…3002.02000典型值:1.552×10-14AA16D-9SOJ22GL1.000×0.4050.405AA8-9SOJ22GL1.000×0.4050.4051.5AA16-0.13-9SOJ22GL0.648×0.2080.135- 系列10 – 1064nm 增强型号有效面积暗电流(nA)击穿电压(V)电容(pF)上升时间(ns) Vop温度系数噪声电流芯片封装尺寸(mm)面积(mm2)@Vop@ID = 2μA@Vop 100kHz@1064nm,50ΩVBR Tk(V/K)@Vop (A/Hz1/2)AD500-10TO5i? 0.5000.1965320-5000.85典型值:3.5典型值:1×10-12AD1500-10TO5i? 1.5001.7710300-5001.98注:Vop – 工作电压 系列11 – 蓝光增强型号有效面积暗电流(nA)击穿电压(V)电容(pF)上升时间 (ns)温度系数噪声电流(A/Hz1/2)芯片封装尺寸(mm)面积(mm2)@M=100@ID = 2μA@M=100,100kHz@410nm,50ΩVBR Tk(V/K)@M=100AD800-11TO52S1? 0.8000.51.0100-2002.51典型值:0.881×10-14AD1900-11TO5i? 1.9503.05.010.022.5×10-14 系列12 – 红光增强/高速型号有效面积暗电流(nA)击穿电压电容截止频率温度系数噪声等效功率芯片封装尺寸(mm)面积(mm2)(nA)(V) (pF)(GHz)VBR Tk(V/K)(W/Hz1/2)AD230-12TO52S1? 0.2300.0420.160-1201.53典型值:0.21×10-14AD230-12LCC6.1AD500-12TO52S1? 0.5000.1960.24.5AD500-12LCC6.1 IAG系列雪崩二极管 IAG系列雪崩二极管,是非常经济适用的InGaAs APD,在1000nm~1630nm具有高灵敏度和快速响应时间。峰值响应位于1550nm,特别适合人眼安全的激光测距,自由空间光通讯,OTDR及高分辨OCT。 特点: 80,200或350um探测面可选 带宽可达2.5GHz 1000nm~1600nm量子效率大于70% 低暗电流&噪声 TO-46或陶瓷封装 UPD系列超快光电探测器(参造Alpha) 光电倍增管 光电倍增管(Photomultiplier Tube, PMT)是能够实现光信号与电信号的转化及电信号倍增的一类真空器件,是目前微弱光探测领域不可或缺的光电传感器,广泛应用于分析、医疗、核计测、高能物理、宇宙射线探测等领域。Specifications Spectral Response 185 to 900 nm Photocathode Material Multialkali Effective Area of PMT 8 x 24 mm Supply Voltage 1250 V dc Cathode Sensitivity Quantum Efficiency at 260 nm (Peak) Luminous Radiant 400 nm 25.4 % typ.250 μA/lm typ. 74 mA/W typ. Anode Sensitivity LuminousRadiant at 400 nm 2500 A/lm typ. 7.4 x 105 A/W typ. Gain 1 x 105 typ. Anode Dark Current (After 30minute Storage in the darkness) 3 nA PIN光电二极管 PIN光电二极管覆盖紫外到中红外,响应波长150nm~2.6μm,光敏面包括InGaAs,GaP,Si,Ge,以及四象限和双波段光电二极管。 产品特性: 光谱范围覆盖150nm~2.6μm 高响应度,最高达100ps 大面积光敏面达到?10mm 提供FC/PC接口类型 InGaAs筱晓光子公司生产To-can封装系列光电探测器,采用自主设计生产的PD芯片,并且针对不同应用领域做了优化设计,使器件更加适用客户的应用条件。产品特点响应度高 暗电流小 响应速度快 低背向反射低互调失真稳定性、可靠性好 InGaAs PIN 光电探测器型号:PDS443-C-C特点:◆ 平面半导体设计及介质钝化◆ 3管脚同轴流线型外形设计,透镜管帽封装◆ 优越的噪声特性和光电性能◆ 气密封装、100%电老化◆ 应用于CATV模拟接收、光纤通信系统、光功率检测等。 注意事项:a 请在ESD防护下使用,避免在加电和加光时安装或拆卸器件;b 引线应尽可能短。四象限光电二极管 型号有效面积典型的暗电流击穿电压最大电容间隙类型上升时间(ns)芯片封装尺寸(mm)面积(mm2)@10V(nA)(V)@10V (pF)(μm) @850nm, 10V, 50ΩDP3.22-6TO51.4×2.33.220.3153.150, 氧化物微分30QP1-6TO5? 1.131.000.11.016, 氧化物四象限20QP2-6TO5? 1.602.000.12.020, 氧化物QP5-6TO5? 2.525.000.23.024, 氧化物QP5.8-6TO52.4×2.45.800.42.750, 氧化物QP10-6TO8S? 3.5710.000.55.028, 氧化物QP20-6TO8S? 5.0520.001.010.034, 氧化物30QP50-6TO8S?7.8050.002.025.042, 氧化物40QP100-6LCC10?11.20100.005.050.050, 氧化物50 型号有效面积暗电流击穿电压典型的电容间隙类型上升时间(ns)芯片封装尺寸(mm)面积(mm2)@150V(nA)(V)@150V (pF)(μm) @1064nm, 150V, 50ΩQP45-QTO8i6.69×6.694×112020015.070四象限5QP100-QLCC1010×104×2525025.0506QP154-QTO1032i? 14.04×38.5100 位置敏感探测器 采用DUO侧向技术,连续的模拟信号输出,正比于光点偏移中心的位置。可进行一维或二维的位置测量。 特点: 应用: 超线性输出 光束对准 超高精度 位置感应 宽动态范围 角度测量 高重复性 表面轮廓 DUO侧向结构 高度测量 瞄准、导向系统 运动分析 位敏光电二极管 型号有效面积暗电流击穿电压电容维数上升时间(μs)噪声最小分辨率(μm)芯片封装尺寸(mm)面积(mm2)@10V(nA)(V)@10V, 100kHz(pF) @865nm, 10V, 50Ω@632nm, 0.50 μWOD3.5-xSO83.5×13.56.53515单轴0.20.05OD6-7SO166.0×1610.015DL16-7CERsmd4×41630双轴0.50.06DL16-7CERpinDL100-7CERsmd10×101008030754.00.2DL100-7CERpinDL100-7LCC10DL400-7CERsmd20×204008001003500.3DL400-7CERpinDL100-LLCC1010×101005050406.00.5 频敏光电二极管 型号有效面积暗电流节电容(nF)上升时间(μs)并联电阻芯片封装尺寸(mm)面积(mm2)@5V(nA)Diode1, @0V(nF)Diode2, @0V(nF)Diode1, @0V, 1kΩDiode2, @0V, 1kΩDiode2, @10mVDiode2, @10mVWS7.56TO52.75×2.757.5610典型值:1.0典型值:0.11012GΩ100MΩWS7.56TO5i15 单子计数器 该系列单光子计数模块应用广泛,包括:共聚焦显微镜、粒子分析、荧光检测、激光雷达、天文学。特点:量子效率高、暗计数率低、计数稳定、光纤耦合可选、操作简便。 Type Spectral range Dark count rate Efficiency Active dia. Timing resolution Dead time COUNT Series COUNT-500C 400-1100nm 500Counts/s 15% for 405nm70% for 670nm50% for 810nm 100μm 800ps 55ns COUNT-250C 250Counts/s COUNT-100C 100Counts/s COUNT-50C 50Counts/s COUNT-20C 20Counts/s COUNT-10C 10Counts/s COUNT-blue Series COUNT-500B 350-1000nm 500Counts/s 55% for 405nm70% for 532nm55% for 670nm 100μm 800ps 55ns COUNT-250B 250Counts/s COUNT-100B 100Counts/s COUNT-50B 50Counts/s COUNT-20B 20Counts/s COUNT-10B 10Counts/s Options Fiber FC-style fiber-optic receptable pre-aligned to the optical detector surface. COUNT-PSU Power supply for single photo counting. DSN 102 Two-channel power supply for single photo counting, stand-alone version or OEM.

超灵敏探测装置相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制