纳米真空互联实验站

仪器信息网纳米真空互联实验站专题为您整合纳米真空互联实验站相关的最新文章,在纳米真空互联实验站专题,您不仅可以免费浏览纳米真空互联实验站的资讯, 同时您还可以浏览纳米真空互联实验站的相关资料、解决方案,参与社区纳米真空互联实验站话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米真空互联实验站相关的资讯

  • 全球最大纳米真空实验站落户苏州 集器材制备和测试功能于一体
    世界首个集材料生长、器件制备、测试分析为一体的纳米领域大科学装置——纳米真空互联综合实验站正在我国江苏苏州工业园区建设。实验站一期于2014年开始建设,预计2018年建成,建设经费3.2亿元,整个实验站的总预算为15亿元。  正在建设中的这个纳米实验站是目前世界上最大的真空互联科研装置。其总体方案是:用总长近500米的超高真空管道,将上百台用于材料生长、器件制备、测试分析的大型仪器设备互联,实现样品在不同设备之间传送时其表面不被氧化、沾污,不被外界大气环境所破坏。中科院苏州纳米技术与纳米仿生研究所研究员、纳米真空互联实验站常务副总指挥丁孙安说,实验站通过超高空间分辨、时间分辨、能量分辨、质量分辨等的高端能力仪器设备,对物质的“本征性质”进行研究,从而实现量子材料的设计、制备和表征,后摩尔时代器件加工和测试分析,同时开展新材料、新工艺、新结构和新功能的开发和研究,以及形成第三代半导体工艺包。 科研人员在建设中的纳米真空互联综合实验站调试设备  纳米真空互联实验站是依托中科院苏州纳米所,联合清华大学薛其坤院士团队、中科院大连化学物理研究所包信和院士团队建设的。一期建设由中科院、江苏省、苏州市和苏州工业园区共建,从2014年开始建设,预计2018年建成,建设经费3.2亿元。一期建成后将连接30多台设备,形成100米的真空管道。整个实验站的总预算是15亿元。  丁孙安指出,实验站力图通过超高真空条件下的互联集成和若干重大项目验证,突破现有仪器设备的功能限制,实现材料制备、测试分析与微纳加工工艺等方面协同效应,为科研和战略性新兴产业发展提供先进的开放平台。  “这个实验装置是在类似太空的全真空环境下的纳米器件研发平台,相当于把现有的加工设备统一搬到太空。”丁孙安说。  “未来电子元器件将发展到纳米级,也就是纳电子,器件尺寸越来越小,集成度越来越高,可以提高器件性能。但是那么小的器件以目前的工艺还有很多效应无法解决,不能完成新型器件的制造。所以未来生产纳米甚至以下级别的器件需要一种全新的技术路线。”丁孙安说。  “在纳米科学技术研究中许多问题不能只靠一种手段解决,需要多种手段、多台设备联合解决。同一个材料样品在不同设备之间转换,暴露在空气中,性能就会发生变化,纳米真空互联装置把很多设备都集中在同一个平台上,减少了很多影响器件的因素,并且能省去很多不必要的工艺环节,从而节约成本,器件质量也会大大提高。”丁孙安说。  他表示,纳米真空互联实验站不仅可以开展硬件研制,也能开发新的工艺,超导器件、半导体器件等对表面敏感的材料器件都可以在这里制造,可实现量子材料的设计、制备,这样就可以用于制造强大的量子计算机。科学家可以利用这套装置,生产很多更智能化、更可靠、更小型的器件,可应用于通讯、信息、人工智能等领域。由于降低了成本,未来普通人也可以使用更高端小巧的设备。  实验站建成后将形成一个国际顶尖纳米科技人才的聚集高地,对地方经济、科技具有很强的带动与辐射作用 实验站设备大多数需要自主研发和设计改造集成,可大大提升中国重大仪器设备的研制水平。  中科院纳米所所长杨辉说,在此建设纳米真空互联实验站,是力图通过真空条件下的互联集成和若干重大项目验证,突破现有仪器设备的功能限制,实现材料制备、测试分析与微纳加工工艺等方面协同效应,为科研和战略性新兴产业发展提供先进的、开放性的平台。
  • 国内首台纳米角分辨光电子能谱实验站建成启用
    近日,张江大科学装置集群再添科研利器。由上海科技大学负责设计研发和建设的上海同步辐射光源纳米角分辨光电子能谱(NanoARPES)实验站顺利通过了中国科学院组织的工艺测试验收。该实验站是上海同步辐射光源二期工程中纳米自旋与磁学线站的重要组成部分。这是我国首台NanoARPES装置,实验站的建成填补了国内相关研究设施的空白,总体参数性能达到国际顶尖水平。  NanoARPES技术通过将同步辐射光斑尺寸聚焦到百纳米量级(传统的ARPES光斑的1/100)获得具有空间分辨能力的角分辨光电子能谱,极大地拓展了ARPES的研究体系和范畴。NanoARPES既可高效率地探测极小尺寸的样品或具有相分离的多晶畴材料电子结构,又可开创性地研究样品边缘/畴界等局域空间的电子特性;对于低维材料人工异质结(如Moire体系)电子结构、拓扑量子材料边缘态等前沿科学问题探索更具有独特的优势。目前NanoARPES实验站仅在发达国家同步辐射光束线上部署运行,如美国ALS BL7、英国DIAMOND I05、法国SOLEIL ANTARE、意大利ELETTRA Spectromicroscopy。  国家“十二五”重大科技基础设施项目“上海光源线站工程”部署规划建设“纳米自旋与磁学线站”,其中NanoARPES实验站是国内首套同类装置,由上海科技大学负责建设。从初步设计,建设测试实验站(上海光源BL03U支线)到最终装置搭建历时近6年时间。在整个过程中项目团队自主创新,团结协作,克服了旋转真空腔设计、光路定位与诊断、样品位置精密操纵及稳定性、低温性能等多重技术难关,顺利按时完成项目的建设。  由来自中国科学技术大学、上海交通大学、中国科学院高能物理研究所和复旦大学的5名专家组成项目工艺测试专家组,详细审核了测试内容、测试方法和测试大纲,听取了项目研制报告和自测报告,并进行了现场测试。测试结果表明:NanoARPES实验站的实测光斑、能量分辨率、光通量等各项指标均达到或优于设计指标。其中,实验站水平/竖直方向的空间分辨率均优于200nm,能量分辨率优于10meV@91eV/30K。总体性能达到国际顶尖水平。  NanoARPES实验站的顺利建成及工艺验收意味着我国在此项光子科学先进测量手段上打破了国际垄断,为国内科学家开展相关研究提供了一流的研究平台。目前,该实验站已开始进行系统优化调试并开展了初步科学实验测试,将在不久的将来向全世界的科研用户开放。NanoARPES实验站200nm空间分辨率实测结果 NanoARPES实验站的设计与建设由上海科技大学物质学院陈宇林-柳仲楷项目团队完成。其中副研究员王美晓具体负责实验站的整体设计、搭建和工程项目推进;工程师王峰完成多自由度压电陶瓷样品台的研发、改进和液氦温度低温冷头的设计;机械加工中心主任、物质学院副研究员刘芳和大科学中心高级工程师刘鹏为项目的难点攻关和技术改进进行技术支持;特聘教授陈宇林,助理教授柳仲楷负责项目整体的规划、设计和协调管理。课题组内的博士后、研究生、本科生同学为实验站的搭建投入了大量的工作。上科大物质学院及拓扑物理实验室、大科学中心、机械加工中心为项目建设提供了有力的支持。上海光源二期工程团队提供了束线建设及技术支持。
  • 中国拟15亿建设世界最大纳米真空科研装置
    世界首个集材料生长、器件制备、测试分析为一体的纳米领域大科学装置——纳米真空互联综合实验站正在我国江苏苏州工业园区建设。这个实验站相当于在太空建设了一个全真空的纳米器件研发平台。  正在建设中的这个纳米实验站是目前世界上最大的真空互联科研装置。其总体方案是:用总长近500米的超高真空管道,将上百台用于材料生长、器件制备、测试分析的大型仪器设备互联,实现样品在不同设备之间传送时其表面不被氧化、沾污,不被外界大气环境所破坏。中科院苏州纳米技术与纳米仿生研究所研究员、纳米真空互联实验站常务副总指挥丁孙安说,实验站通过超高空间分辨、时间分辨、能量分辨、质量分辨等的高端能力仪器设备,对物质的“本征性质”进行研究,从而实现量子材料的设计、制备和表征,后摩尔时代器件加工和测试分析,同时开展新材料、新工艺、新结构和新功能的开发和研究,以及形成第三代半导体工艺包。  “这个实验装置是在类似太空的全真空环境下的纳米器件研发平台,相当于把现有的加工设备统一搬到太空。”丁孙安说。  纳米真空互联实验站是依托中科院苏州纳米所,联合清华大学薛其坤院士团队、中科院大连化学物理研究所包信和院士团队建设的。一期建设由中科院、江苏省、苏州市和苏州工业园区共建,预计2018年建成,建设经费3.2亿元。一期建成后将连接30多台设备,形成100米的真空管道。整个实验站的总预算是15亿元。  苏州工业园区是全球纳米领域具有代表性的八大产业区域之一。中科院纳米所所长杨辉说,在此建设纳米真空互联实验站,是力图通过真空条件下的互联集成和若干重大项目验证,突破现有仪器设备的功能限制,实现材料制备、测试分析与微纳加工工艺等方面协同效应,为科研和战略性新兴产业发展提供先进的、开放性的平台。

纳米真空互联实验站相关的方案

纳米真空互联实验站相关的论坛

  • 高低温试验箱全球纳米科技

    高低温试验箱全球纳米科技

    高低温试验箱全球纳米科技薄膜锂离子电池有望实现大幅增长的单位更能够实现更高的功率电动车效率。[align=center] [img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/03/202103111614178403_6660_1037_3.jpg!w348x348.jpg[/img][/align] 更便宜的锂离子电池可利用成为各种应用的规模和设备的扩散效益。据苏 珊尤斯蒂斯,研究的主要作者,“利用规模经济的锂离子电池纳米技术的进步需要作出的锂离子电池的竞争力。纳米技术的锂离子研究为解决这一需要储存的可再生能源的问题做好准备。 锂离子电池开关降价正准备开车由单位负担使市场的普及。“纳米技术在实验室中取得的成果正在转化为商业产品。翻译成薄膜锂离子电池的纳米技术科学的过程预计将持续。在实验室科学的突破,才开始被翻译成生活以外的实验室,高低温试验箱用长的路要走改善锂离子电池运作。不同于任何其他的电池技术,薄膜固态电池显示很高的循环寿命。使用非常薄的阴极(0.05μm)电池的循环已超过45,000次的能力非常有限的损失。经过45,000次,95%仍然是原来的容量。然后是翻译成制造工艺不断发展的技术问题。 这意味着,市场将是非常动态的,不断被创新,挑战市场领导者,大,小,发展更具成本效率的单位。系统集成和制造能力,已经开发出一种高功率锂离子电池和电池系统大家族。阿电池系列产品,在运输,电网服务和便携式电源市场,供应商的战略合作伙伴关系的立场。 相结合,解决了锂离子电池这些市场。电动汽车依靠设计,开发,制造和先进的支持,可充电锂离子电池。电池提供动力的结合,安全和生命。新一代能量存储解决方案正在演变为市售电池。锂离子电池将在促进朝着清洁能源转变的一个日益重要的作用。以材料科学和创新的办法电池[color=red]工程是[/color]从一个非常重要的公司提供大量-通用电气,松下,三洋/松下电器产业株式会社,NEC公司,帅福得,东芝,比亚迪/伯克希尔哈撒韦公司,LG化学,牛郎星纳米技术,三星,索尼,A123与麻省理工学院的技术系统,纳米技术和牵牛星。  锂离子电池市场911美元,试验箱二零零八年预计到2015年达到91亿美元亿美元,高低温试验箱以回应不断增长,单位成本下降和增加。锂离子电池用在手机和个人电脑,无绳电动工具是在证明这项技术。军事单位是运到市场,并在卫星上使用,证明了系统的可行性。体积小,锂离子电池棱柱证明了这项技术的可行性。新兴的大市场是由可再生能源供电系统,混合动力和电动车。报告的方法这是一个市场研究报告预测,提供通信系列399的报告,电信,互联网,计算机,软件和电话设备。该项目负责人采取书面报告,准备每直接责任。他们有丰富的经验编写行业研究。预测是基于基础研究和基地专有数据。预测反映在部分及相关领域的市场趋势的分析。发货单位和美元的美元进行分析 在每个细分市场的参与量的考虑。 市场份额分析包括与产品的主要客户对话,行业部门领导,营销总监,分销商,领先的市场参与者,公司寻求发展可衡量的市场份额。超过200位深度为每一个关键的参与者和舆论领袖的广泛市场领域进行采访报道。全球[color=red]奈米[/color]科技薄膜锂离子电池有望实现大幅增长的单位更能够实现更高的功率电动车效率。更便宜的锂离子电池可利用成为各种应用的规模和设备的扩散效益。据苏珊尤斯蒂斯,研究的主要作者,“利用规模经济的锂离子电池纳米技术的进步需要作出的锂离子电池的竞争力。纳米技术的锂离子研究。 为解决这一需要储存的可再生能源的问题做好准备。锂离子电池开关降价正准备开车由单位负担使市场的普及。“盐水喷雾试验机纳米技术在实验室中取得的成果正在转化为商业产品。翻译成薄膜锂离子电池的纳米技术科学的过程预计将持续。在实验室科学的突破,才开始被翻译成生活以外的实验室,用长的路要走改善锂离子电池运作。不同于任何其他的电池技术,薄膜固态电池显示很高的循环寿命。使用非常薄的阴极(0.05μm)电池的循环已超过45,000次的能力非常有限的损失。经过45,000次,95%仍然是原来的容量。然后是  然后是翻译成制造工艺不断发展的技术问题。这意味着,市场将是非常动态的,不断被创新,挑战市场领导者,大,小,发展更具成本效率的单位。系统集成和制造能力,已经开发出一种高功率锂离子电池和电池系统大家族。阿电池系列产品,在运输,电网服务和便携式电源市场,供应商的战略合作伙伴关系的立场相结合,解决了锂离子电池这些市场。电动汽车依靠设计,开发,制造和先进的支持,可充电锂离子电池。电池提供动力的结合,安全和生命。新一代能量存储解决方案正在演变为市售电池。锂离子电池将在促进朝着清洁能源转变的一个日益重要的作用。 以材料科学和创新的办法电池[color=red]工程是[/color]从一个非常重要的公司提供大量-通用电气,松下,三洋/松下电器产业株式会社,NEC公司,帅福得,东芝,比亚迪/伯克希尔哈撒韦公司,LG化学,牛郎星纳米技术,三星,索尼,A123与麻省理工学院的技术系统,纳米技术和牵牛星。锂离子电池市场911美元,二零零八年预计到2015年达到91亿美元亿美元,以回应不断增长,单位成本下降和增加。锂离子电池用在手机和个人电脑,无绳电动工具是在 证明这项技术。军事单位是运到市场,并在卫星上使用,证明了系统的可行性。体积小[color=red],[/color]锂离子电池棱柱证明了这项技术的可行性。新兴的大市场是由可再生能源供电系统,混合动力和电动车。报告的方法这是一个市场研究报告预测,提供通信系列399的报告,电信,互联网,计算机,软件和电话设备。试验箱项目负责人采取书面报告,准备每直接责任。 他们有丰富的经验编写行业研究。预测是基于基础研究和基地专有数据。预测反映在部分及相关领域的市场趋势的分析。发货单位和美元的美元进行分析,在每个细分市场的参与量的考虑。市场份额分析包括与产品的主要客户对话,行业部门领导,营销总监,分销商,领先的市场参与者,公司寻求发展可衡量的市场份额。高低温试验箱超过200位深度为每一个关键的参与者和舆论领袖的广泛市场领域进行采访报道。

  • 【原创大赛】Ni基纳米阵列的制备

    【原创大赛】Ni基纳米阵列的制备

    1、实验步骤(1)AAO模板前处理依次用丙酮,乙醇,去离子水对模板进行清洗,以除去表面油污和灰尘等杂质,以防阻塞纳米孔。然后,在模板的一侧进行喷金处理,根据本实验要求,选择喷黄金,喷金在真空条件下进行,时间为5min。前处理后,测得AAO模板喷金侧具有良好的导电性。 (2)电镀液的选取主要选用Ni的盐溶液作为电镀液使用,考虑到AAO模板易被腐蚀的特性,配制了酸性和中性两种电镀液配方进行实验。(3)电镀实验预处理用循环水泵抽真空,使电镀液充满氧化铝模板的孔洞。抽真空时间为12h左右,至溶液内不再有气泡冒出为止。 (4)电沉积 在室温条件下,采用两电极体系,Pt作为对电极。直流电源下电流密度恒定在8mA/cm2条件下制备得到了金属Ni纳米线。将所制备的样品用3MNaOH溶液进行充分溶解,除去多孔氧化铝膜,用去离子水反复长时间冲洗,将残留的NaOH去除干净。2、 结果与讨论2.1模板的微观形貌图1为AAO模板的电镜形貌图。AAO模板孔径为80~100nm。孔隙率,模板中孔洞的体积之和占模板总体积的百分比,用P表示。因模板孔洞平行排列,故孔隙率的大小可用垂直于模板孔洞生长方向的平面上,孔洞面积与总面积的比值来计算。所用模板孔隙率计算如下:α(孔密度)=n÷S总 (2·1)P(孔隙率)=S孔÷S总 (2·2)其中,n(孔数)应按选定的分析面积内完整孔洞的数目来计算。由于孔洞数目较多,且实际模板的孔洞并非理想的圆形,因此,可以考虑借助专门的图形分析处理软件对一些结构参数进行辅助分析计算,一方面可以提高工作效率,另一方面,结构参数分析的准确率也可以得到很好的保证。经计算得,实验所用AAO模板孔隙率约1011个孔/cm2。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567922_3043450_3.jpg图1 AAO模板的SEM图2.2制备Ni纳米阵列在室温下恒流电镀9h后,将AAO模板置于3M的NaOH中50min,进行模板的去除后,用SEM观察其微观形貌。图2为去除AAO模版后的纳米线的SEM图。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567923_3043450_3.jpg图2 Ni纳米线的SEM图从图2可以看出, Ni纳米线呈束状,有较大的长径比,大量纳米线互相接触,这是由于溶解时间过长,AAO模板全部被除去后,单独的纳米线无法独立支撑,未形成规整的阵列结构。Ni纳米线直径在80-100nm之间,这与AAO模板孔洞直径分布有关。AAO模板的制备过程中会因降压引起纳米孔洞底部变细小,镍纳米线的外形与氧化铝模板具有相似性,因此镍纳米线的根部会有分支、变细的现象。还可能是电沉积过程中,导电性能好的区域生长较快形成的。纳米线表面不光滑则说明Ni纳米线的生长为单晶结构,生长速度有一定的不可控性。图3为所制备的Ni基纳米线的俯视图,AAO模板全部去除,纳米线互相接触。可以看出,Ni纳米线具有很好的取向性且未发生断裂,表明纳米线刚性较好。在模板全部被去除的情况下,仍保持有一定的有序性。纳米线生长长度基本一致。纳米线呈束状集中也有可能是电沉积时间过长,导致所沉积的纳米线长度超过模板而在模板表面沉积而形成的。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567924_3043450_3.jpg图3 Ni基纳米阵列将AAO模板的去除时间缩短为35min,电沉积时间仍为9h,对制得的样品进行微观表征,如图4的a、b、c、d所示。由图4可知,模板部分去除后得到的Ni基纳米阵列,呈排列整齐的阵列结构,可用于下一步的纳米阵列电催化性能的研究。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567925_3043450_3.jpg图3·5 Ni基纳米阵列的SEM图依据上面的分析结果可知,为得到排列规整的Ni基纳米阵列,需对电镀时间和模板溶解时间进行调整。缩短模板溶解时间,使Ni纳米线底部不与基体脱离,使纳米线之间相互独立,保持模板去除前的间距,从而得到Ni基纳米阵列电极。3、结论通过AAO模板电沉积法制备的Ni基纳米线平行排列,高度有序,镍基纳米阵列中镍纳米线直径为80~100nm。

纳米真空互联实验站相关的资料

纳米真空互联实验站相关的仪器

  • 高温超纳米压痕测试仪 (UNHT3 HTV)全球第一台真正意义的商品化的高温高真空超纳米压痕仪,主要测量小载荷下纳米尺度机械性能的测试系统,温度在 800 °C 以下的薄膜和涂层的硬度和弹性模量。专利 UNHT3 技术与独特的加热功能结合,可提供在任何温度下的高稳定性测量解决方案。主要特点 新一代的高温纳米压痕测试仪环境条件下最低热漂移 ( 0.5 nm/min) 和整个温度范围内最低热漂移 ( 3 nm/min)。最高载荷框架刚度 (106 N/m) 和最低框架柔度 (0.1 nm/mN):两套独立的位移和载荷传感器与高精度电容传感器结合,可选择“控制位移”和“载荷控制”模式。高真空系统具有 5 轴磁悬浮涡轮泵和缓冲系统,允许在测量期间关闭初级泵,使振动降至最低。独特的加热控制系统(3 项专利待批),采用3 个红外 (IR) 加热器分别用于给压痕针尖、参比针尖和样品进行加热,以及 4 个热电偶用于将样品表面温度控制到 变化在0.1°C 内。符合 ISO 14577 和 ASTM E2546 国际标准技术指标载荷最大载荷100 mN载荷分辨率 6 nN本底噪音 0.5 [rms] [μN]*位移最大位移100 μm位移分辨率0.006 nm本底噪音0.15 [rms] [nm]*极限真空度10? mBar最高温度800 °C
    留言咨询
  • 同步辐射实验站设计 400-860-5168转6108
    随着前沿科学研究的发展,当前需要解决的科学问题已经从“稳态、线性、整体平均、简单体系”的研究发展到“非平衡态、非线性、局域个体、复杂体系”,具体体现在单个纳米颗粒结构、高分辨电子结构、微小晶体结构、细胞精细结构、古生物化石微结构、催化过程动态结构等前沿的研究领域。这些研究同样需要高能量、高亮度的X射线才能开展。缺乏高性能的高能同步辐射光源的支撑,将使我国基础科学相关领域的研究在国际竞争上处于不利的位置。尽快在我国建设高能同步辐射光源是科学研究、技术研发和产业发展的迫切需要。 目前,国内兴起了同步辐射装置建设热潮,北京、深圳、东莞、武汉等地正在计划建设新的同步辐射装置,上海光源二期和合肥光源升级改造工程也在进行中。而相应的光束线和实验站也需同步建设,建设所需的工程、技术人员急剧增加,现有的人员无法满足各装置的建设工作。光束线集光学、精密机械、超高真空和控制技术等于一体,是定制化要求很高的系统;实验站根据所使用实验方法而需单独进行物理、光学、机械设计。就目前国内同步辐射装置的建设情况,为解决光束线、实验站的建设需要,本司招募了一批具有丰富的同步辐射线站设计、建设工作经验的科研人员,已具有了光束线、实验站建设的全备技术能力,可承接光束线、实验站的光学、机械设计全部工作,并负责安装、调试,交付用户需要的线站,也可为用户提供关键部件的设计和制备,及关键技术的解决方案。1、承接光束线、实验站的光学、机械设计、集成控制软件等系统工作2、负责安装、调试,交付用户需要的线站3、为用户提供关键部件的设计和制备,及关键技术的解决方案
    留言咨询
  • 纳米操作机、纳米机械手、纳米操纵机械臂、纳米操纵仪TNI LF-2000产品简介TNI LF-2000是兼容SEM/FIB的自动化纳米操作系统,也是能够在SEM/FIB下提供可重复定位、低漂移、闭环运动控制定位的纳米操作系统。产品特性 兼容主流电镜,不影响电镜功能 具有大行程、亚纳米分辨率运动定位性能 位移传感器集成自动化和可编程运动 SEM真空环境优化设计,可快速安装与拆卸规格参数系统概况系统尺寸127x127x33mm3*机械手数量1-4操作手(宏动)驱动原理粘滑驱动运动范围XY轴:10mm Z轴:5mm速度3mm/s最小步长100nm操作手(微动)驱动原理无摩擦柔性铰链运动范围XYZ轴:20μm速度45μm/s开环运动分辨率0.5nm闭环运动分辨率1nm定位漂移率0.35nm/min软件功能**点击-移动鼠标在电脑屏幕上从A移动到B自适应放大倍数定位器移动速度根据SEM放大自动调整操作手位置保存/加载用户自定义的“保存/加载”操作手坐标3D虚拟显示实时三维显示操作手的位置和运动自动校准操作手闭环传感器自动校准运动轴的自动对准所有操作手运动轴自动对准SEM图像轴*系统尺寸可根据需要减小到50x50x17mm3**可根据选定SEM/FIB的型号而定应用案例电学特性LifeForce为纳米材料提供可靠、低噪音的电测量,以及与纳米结构的原位相互连接。实例照片展示的是四探针测量纳米线电学性能。力学测量LifeForce为纳米材料的力学特性提供高分辨率的力和位移反馈,实例照片展示的是用球端AFM悬臂探针对硅纳米线簇进行纳米压痕,以及对单根纳米线的拉伸测试。拾取和放置操作使用末端工具(例如:探针、微纳米夹持器、超声切割针),操作者能够操作LifeForce纳米操作手在SEM电镜内对微纳米物体进行推、拉和抓取等操作。制作微纳米器件精密的操作手运动能够实现微纳米器件的快速成型和后处理。实例照片展示的是纳米线FET传感器的构造。纳米电子器件电学测量LifeForce纳米操作机是市面上能够自动探测电子结构(范围从亚微米,亚100nm及亚20nm)。只需要通过计算机点击鼠标,将探针定位到目标位置。极低得定位漂移,保证数据采集得可靠性。 主要软件功能① 位置反馈:提供每个操作手XYZ精确得位置反馈,1纳米运动定位分辨率。② 保存/加载坐标:保存和加载多个操作手得坐标。③ 自动校准:限度地提高定位性能,并将操作手运动轴对准扫描电子显微镜图像轴。④ 3D虚拟显示:实时3D虚拟空间显示操作手(粉红色方块)和样品(绿色平面)得位置。⑤ 点击-移动:通过在屏幕上鼠标点击控制操作手运动。⑥ 多操作手联动:连接多个操作手得运动,具有纳米级精度。⑦ 图片-视频录制:保存操作过程中的高清图片和视频。
    留言咨询

纳米真空互联实验站相关的耗材

  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度 XT 25 XT 50 XT 2525 XT 5050 Travel Length (mm) 25 mm 50 mm 25 x 25 mm 50x 50 mm Trajectory Control Accuracy Linear Encoder ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m ± 4.0 &mu m Straightness/Flatness ± 1.0 &mu m ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m Yaw/Pitch/Roll 5 arc-sec 5 arc-sec 10 arc-sec 10 arc-sec 2 axis system Orthogonality Standard Grade NA NA 5 arc-sec 5 arc-sec High Precision NA NA 2 arc-sec 2 arc-sec Extra High Precision NA NA 1 arc-sec 1 arc-sec
  • 纳米颗粒分析仪配件
    纳米颗粒分析仪配件用于观测和分析液体中的微小颗粒的布朗运动速率与尺寸分布相关,采用纳米颗粒跟踪分析(NTA)技术,通过激光散射装置(纳米观测)与超显微镜ultra-microscope和NTA软件的相结合,生成纳米颗粒图像,是全球领先的纳米粒度分析仪。纳米颗粒分析仪配件 纳米观测原理 纳米颗粒分析仪使用纳米透视Nano-Insight 激光散射模块,可以通过顶眼超显微镜观测到液体中的纳米粒子。采用不同激光散射颗粒在矩阵中表现为模糊点。模糊点根据其各自的布朗运动而移动。液体中有不同的布朗运动粒子。小粒子比大粒子受到相邻粒子的影响更少。因此,在超显微图像中,较大的粒子有大的模糊外观。 NTA能够追踪粒子的相应路径。 纳米观测模块 纳米观测模块的设计,可以使其安装在超显微镜,顶眼纳米的底板。可以通过Mishell软件来控制该模块。Mishell软件控制着纳米观测模块以及照相机。根据应用决定在纳米观测模块装备一个或多个激光器。激光器以一种特殊的方式排列。左侧图片上展示的是纳米观测图。较小的粒子比较大的粒子移动更快。我们用摄像机同时跟踪每个粒子。 顶眼超显微镜 顶眼超显微镜将进入模糊点的散射光可视化。用适当的时间分辨跟踪,模糊云可被分配并与各自的粒径相关。粒子的布朗运动图像是唯一的。下面将给出例子。每个模糊点代表单个粒子。 NTA 软件 上图展示的是NTA分析的典型图像。散射激光被捕获到模糊点,要根据时间函数跟踪模糊点。我们跟踪每个模糊点。跟踪每个粒子的方法,得到的技术结果是高分辨率。我们正在寻找与图像相关的量,当我们知道相关的量后,我们就可以极其精确地确定各种粒子的浓度。该技术将会带起许多可能的应用。例如,可能也可以使用荧光激光器。使用荧光激光器,可以瞄准复杂的基质里的一个粒子。该技术带来的好处是,用户可以在视觉上检查并且通过观察相应图像验证所有可能的应用。 MiNan是Mishell® 内的一个模块- 扩展图像分析软件包,被认为是市场上最先进的图像分析软件。MiNan是一个子程序,可以进行Morphious纳米粒子分析的全部描述。 MiNan是自带Morphious纳米系统的软件,研发用于纳米粒子的可视化以及纳米粒子的大小、形状(形态)和浓度的测量。每个粒子是一个个体,但通过观测扩散同时被分析。这种一个粒子后接一个粒子的方法产生高分辨率的结果,即粒子的尺寸分布和浓度分辨率高,同时视觉验证让用户对数据有了额外的信心。当荧光模式检测标记粒子时,粒子尺寸和浓度,蛋白质聚集和粘度都可以被分析。 纳米颗粒分析仪配件应用 ? 在制药或复合产业研发药物 ? 用于病毒筛查 ? 用于开发纳米生物标记物或毒物筛查 ? 用于蛋白质聚集的动力学模型研究 ? 用于通过膜泡的表征研究疾病 ? 用于促进纳米复合材料的发展 纳米颗粒分析仪配件特色 ? 在同一时间多粒子高通量表征 ? 实时视觉展示粒子,允许用户评估试验,无需额外复杂性 ? 方便和易于使用的软件,允许用户通过宏设置任何实验 ? 添加像高通量自动采样器,泵或加热和制冷配件 ? 自适应模块化系统构建任何复杂的应用程序,操作轻松舒适 ? 超级高效和购买成本低 ? 该系统提供高分辨率的粒度特性来研究复杂的多分散矩阵 ? 激光波长可选择 ? 通过给过滤器添加电动轮,得到自适应荧光分析 纳米颗粒分析仪配件参数 ? 尺寸 10 nm - 2000 nm* ? 浓度 106 - 109 粒子/ mL ? 荧光检测 纳米颗粒分析仪配件规格 温度范围 15-40 °C 电源 230V AC/115V AC, 50/60 Hz 摄像机 USB3 CMOS分辨率:1936x1216 161帧/秒,像素尺寸5.86μm:颜色校准模块 功耗 18W 激光波长 405nm(紫色),488nm(蓝),532nm(绿),642nm(红色) 尺寸范围 从10 nm到2000 nm (取决于材料) 焦点 电脑控制电动调焦 个人计算机 SDD亿康 II SDSSDHII-120G-G25HDD 西数蓝WD10EZEX1 TB|主板千兆字节 GA-Z97X-UD3H|内存金士顿骇客神条怒黑| HX318C10FBK2/1616 GB DDR3-RAM 处理器 英特尔® 酷睿™ i7 i7-4790K四核4×4.0 GHz 显卡 PNY VCQK2200-PB 4GB 电源 酷冷至尊 G750M 750w 机箱 酷冷至尊黑 软件 Windows® &(或更高).由Mishell® 供电 Mishell是Microptik BV公司的注册商标。 Windows是微软公司的注册商标。 MiNan尖端程序在Mishell下运行,以充分体现由Morphious纳米获得的纳米粒子 尺寸(长×宽×高) 20 x 18 x 30 cm 重量 10.5 kg
  • 银纳米线-银纳米线
    参数:Agnws-40平均直径/纳米:40平均长度/微米:30银纯度(%):99.5浓度(毫克/毫升):20Agnws-L50平均直径/纳米:50平均长度/微米:200银纯度(%):99.5浓度(毫克/毫升):20Agnws-60平均直径/纳米:60平均长度/微米:20银纯度(%):99.5浓度(毫克/毫升):20Agnws-90平均直径/纳米:90平均长度/微米:60银纯度(%):99.5浓度(毫克/毫升):20Parameter:Agnws-40Average Diameter/nm:40Average Length/um:30Silver Purity (%):~99.5Concentration (mg/ml):20Agnws-L50Average Diameter/nm:50Average Length/um:200Silver Purity (%):~99.5Concentration (mg/ml):20Agnws-60Average Diameter/nm:60Average Length/um:20Silver Purity (%):99.5Concentration (mg/ml):20Agnws-90Average Diameter/nm:90Average Length/um:60Silver Purity (%):~99.5Concentration (mg/ml):20

纳米真空互联实验站相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制