[url=http://www.f-lab.cn/stereotaxis/gm-3.html][b]大鼠麻醉面罩GM-3[/b][/url]是与[b]麻醉蒸发器[/b]或大鼠立体定位仪器配套使用,用于对大鼠实施麻醉的[b]麻醉面罩。大鼠麻醉面罩GM-3特点[/b]*麻醉面罩可以轻松地安装在Narishige公司立体定位仪器SR-5M,SR-5R,SR-6M和SR-6R上*麻醉面罩有不会移动的三点夹持装置,可以夹鼻和确保牢固固定。紧凑的设计不会影响实验进程*如果你想要把麻醉面罩安装在头固定适配器或是旧型立体定向仪器这样的装置上,请向我们咨询[img=大鼠麻醉面罩]http://www.f-lab.cn/Upload/gm_3_.jpg[/img]大鼠麻醉面罩:[url]http://www.f-lab.cn/stereotaxis/gm-3.html[/url]
[url=http://www.f-lab.cn/stereotaxis/sts-b.html][b]大鼠脊髓钳夹STS-B[/b][/url]是与NARISHIGE公司SR系列立体定位仪器一起使用的[b]大鼠脊髓固定[/b]器具Spinal Cord Clamp,极大地促进手动操作脊髓夹,以便安全地和轻轻地[b]夹紧大鼠脊髓[/b]。[img=大鼠脊髓钳夹]http://www.f-lab.cn/Upload/sts-b_.jpg[/img][color=#000000][b]大鼠脊髓钳夹STS-B规格[/b][/color][table][tr][td]配件[/td][td]连接环螺丝通用扳手[/td][/tr][tr][td]尺寸大小/重量[/td][td]宽205 × 深140 × 高95 - 125mm, 1.18kg[/td][/tr][/table]大鼠脊髓钳夹:[url]http://www.f-lab.cn/stereotaxis/sts-b.html[/url]
SD大鼠脏器重量及脏器系数正常参考值研究Study on the Normal Reference Values of Organs' Weight and Organ/Body Coefficients in SD Rats2005年05期顾刘金 , 杨校华 , 陈琼姜 , 孙建析 , 肖芸 , 乐俊仪 , 陈秀凤 , 吴加罗 , 吴立仁 , 张幸 , GU Liu-jin , YANG Xiao-hua , CHEN Qiong-jiang , SUN Jian-xi , XIAO Yun , LE Jun-yi , CHEN Xiu-feng , WU Jia-luo , WU Li-ren , ZHANG xingSD大鼠血液9项生化指标正常参考值的探讨Study of nine chemical index in blood of SD normal rats2005年04期刘科亮 , 欧世平 , 蒋中仁 , 敬明武 , 葛宇杰 , 刘以农 , 陈琼瑶 , 谢惠萍 , LIU Ke-liang , OU Shi-ping , JIAN Zhong-ren新药长毒试验动物血液生化测定规范化研究系列之五--SPF级SD大鼠血液生化参考值的建立Establishment of the Range of Normal Values of Blood Biochemical Measurements in SPF SD Rats2006年04期齐云 , 蔡润兰 , 刘彬 , 宋杨 , 王敏 , 李永超 , 赵德明 , QI Yun , CAI Run-lan , LIU Bin , SONG Yang , WANG Min , SUN Hong , LI Yong-chao , ZHAO De-ming
大鼠代谢笼使用注意事项及操作流程
[url=http://www.f-lab.cn/stereotaxis/srp-ar2.html][b]共[/b]振[b]大鼠头部固定器[/b]SRP-AR2[/url]是一款可用于核磁共振环境中的[b]大鼠头部固定[/b]装置,是[b]大鼠脑立体定位固定实验[/b]和大鼠[b]核磁共振实验[/b]的理想工具。磁共振[b]大鼠头部固定器[/b]SRP-AR2可连接到SR系列固定装置。这样的连接,确保头部的固定极其稳定。当拆卸仪器用于MRI测量时,仪器材料是100%塑料使拆卸过程更容易。可以把标记插入该机械 ,简单地通过对准测量点与测量对象,操作者就能操作MRI测量。一旦MRI测量完成后,该磁共振[b]大鼠头部固定器[/b]SRP-AR2可以很容易地恢复其作为固定仪器的功能,即保持动物的固定。两种型号可供选择:SRP-AR 用于大鼠, 和SRP-AM2 用于小鼠。[b]磁共振[b]大鼠头部固定器[/b]SRP-AR2规格[/b][table=529][tr][td][b]配件[/b][/td][td]六角扳手安装把手耳柱口、鼻夹[/td][/tr][tr][td][b]尺寸大小/重量[/b][/td][td]宽300 x 深120 x 高85mm, 850g[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]
测大鼠的脑电,不锈钢电极,z字形单电极,如图,哪儿有卖?或者什么厂家,规格?[img]http://ng1.17img.cn/bbsfiles/images/2017/10/20094915719_01_1726529_3.jpg[/img]
实验用大鼠脑电极
作者:http://vpn.library.shmtu.edu.cn:2308/Images/head_pic.gif宋笑丹 http://vpn.library.shmtu.edu.cn:2308/Images/head_pic.gif刘红梅 http://vpn.library.shmtu.edu.cn:2308/Images/head_pic.gif魏华 http://vpn.library.shmtu.edu.cn:2308/Images/head_pic.gif董迪 http://vpn.library.shmtu.edu.cn:2308/Images/head_pic.gif吴琳华 Author:SONG Xiao-dan LIU Hong-mei WEI Hua DONG Di WU Lin-hua 作者单位:哈尔滨医科大学附属第二医院药学部,黑龙江省高校重点实验室,哈尔滨,摘要: 目的 考察β-榄香烯脂质体在大鼠体内的组织分布.方法 建立了大鼠体内β-榄香烯测定的HPLC.色谱条件为:Diamonsil C18色谱柱(4.6 mm×250 mm,5μm);流动相为甲醇-乙腈-水(40:57:3);检测波长:210 nm;柱温:30℃.并测定大鼠尾静脉注射β-榄香烯脂质体和榄香烯注射液后血浆及组织中的药物浓度.结果 此色谱条件下血浆与组织的标准曲线、精密度等实验结果表明,该方法适于分析生物样品中β-榄香烯含量.与榄香烯注射液相比,β-榄香烯脂质体在大鼠体内的分布特性有不同程度的改变,其中β-榄香烯脂质体在肝、脾、肾组织中分布相对较多.结论 β-榄香烯脂质体及榄香烯注射液在大鼠的心、脾、肾组织中分布具有显著性差异http://ng1.17img.cn/bbsfiles/images/2012/08/201208271803_386611_2379123_3.jpg
作大鼠的脑电检测,如图[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904091623_143233_1726529_3.jpg[/img]
维权声明:本文为qweaxi原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。代谢产物的分离与纯化心得体会(大鼠篇)代谢的概念 什么叫代谢,在这就不解释啦,大家应该都知道,我们主要做两个方面:大鼠与人。这个原创里面,讨论的是大鼠代谢产物的分离与纯化。大鼠的介绍 大鼠我们用过的有两种(SPF级)SD大鼠和wistar大鼠,这两只大鼠的区别: SD大鼠: 生长快,繁育性能好,大多用于安全性试验及营养与生长发育有关的研究。 该品系对性激素敏感,对呼吸道疾病有较强的抵抗力。广泛用于药理、毒理、药效及GLP实验。 Wistar大鼠 :其被毛呈白色,特征为头部较宽、耳朵较长、尾的长度小于身长。Wistar大鼠性情温顺,性周期稳定,早熟多产,平均每窝产自10只左右,生长发育快,乳腺癌发病率很低,对传染病抵抗力强。 个人觉得SD大鼠挺暴躁,很容易咬人的,Wistar大鼠比较好哦,乖乖鼠。大鼠喂养 这个问题很关键,饲料控制不好,大鼠会超重地:一天喂2次,水应该给足,要不然会发生惨案的,垫料要3天换一次,要不然,会被熏坏的,消毒必须的,要不然出血热就会光顾你们实验室的,记得去年就在我们这发生啦,封楼2周呢,当时,我们爽坏啦,有时间玩嘛。给药前准备 第一:大鼠禁食12小时,期间给以0.4%的盐水,为什么禁食呢,让其胃里的饲料代谢完,要不然对以后的分离工作有影响。 第二:给药剂量药换算好,要不然没有根据,发文章会有问题的。大鼠给药 这个比较讲究,我们常用的方法是灌胃和腹腔给药,腹腔给药简单,扎一针就好啦,灌胃挺有讲究的,本人不才,学了半天才会,牺牲在我手中的大鼠有5只多,那叫一个惨啊。警告大家,在不会灌胃的情况下,千万别自以为是,要不然。。。尿液富集 有些时候怕样品不稳定,发生变化(代谢产物在尿液中不稳定,个人经验),有三招来防止: 第一招:在收集瓶中加无水乙醇,个人觉得效果很好。 第二招:在收集瓶里加酸,PH=4为好。 第三招;冰水浴,个人觉得那个麻烦,但也有点效果。尿液储存 放在冰箱里,冷藏,不易降解滴。尿液处理 不同的样品处理不一样,我们这做过黄酮,生物碱之类的化合物,据我了解,这个生物碱不好做,黄酮挺好做的,我个人觉得有两种方法:大孔和萃取。大孔树脂,我们这用得D1O1比较多,本人首次用AB-8,觉得不错的,我热衷于大孔。萃取:必须加酸调节PH3,要不然萃不出来的。样品的分离与纯化 呵呵,代谢产物分离。个人经验:进行大孔柱色谱以后,可以考虑进行凝胶柱色谱,内源性物质一般可以除去,非常好的方法,我记得凝胶下来我就分到一个纯的,哈哈,真爽啊。 由于代谢物极性过大,最好不用硅胶来分,要不然,死吸附严重,样品就这样浪费啦,呵呵,用ODS分离,最好。 最后补充,做代谢的,最好有液质联用,盲分容易浪费时间,浪费经费。下图为凝胶分的纯品http://ng1.17img.cn/bbsfiles/images/2010/09/201009252351_246992_2160429_3.jpg
http://www.instrument.com.cn/application/app419.html北京化工大学理学院杜振霞老师采用HPLC-ICP-MS联用技术建立了大鼠脏器中AsB、As(III)、MMA、DMA 和As(V)等砷形态的分析方法。
请教各位高手:用硝酸-高氯酸消化大鼠骨头用于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定含铅量。温度约160度。问题:加了4ml混合酸样品粘稠,油状,最后变黑。于是又加了约3ml,变成黄色溶液了,(窃喜...),可一段时间后变成黑色固状了,好像再怎么加热也不行了,也不能再加酸了吧?请教各位这可怎么办呢?骨头样品都这么不好处理马?
大鼠静脉窦取血操作流程及固定绳操作
石墨炉测大鼠脑组织铅,样品怎么处理??应该需要消化吧?如何消化??加什么呢?
急需几篇介绍酯酶在大鼠体内各组织器官分布的文献,谢谢各位啦!
作者:颜琳琦; 金瓯; 郭兴杰;(浙江省食品药品检验所; 沈阳药科大学药学院;)摘要:目的建立测定血浆中奥扎格雷浓度的高效液相色谱(H PLC)法,并用于大鼠体内的药代动力学研究。方法采用Diam onsil-C18柱(200m m×4.6m m,5μm),以甲醇-1%冰醋酸(8∶92)为流动相,测定6只W istar大鼠单剂量灌胃给予奥扎格雷后不同时刻血浆中奥扎格雷的质量浓度,并由此计算药代动力学参数。结果大鼠灌胃给予奥扎格雷后,血浆中的达峰时间(tmax)为(42.5±6.1)m in,峰浓度(Cmax)为(6.02±0.97)μg/m L,半衰期(t1/2)为(42.9±11.5)m in,0~t药-时曲线下面积(AUC0-t)为(473.8±88.5)μg.m in/m L,0~∞药-时曲线下面积(AUC0-∞)为(495.1±96.3)μg.m in/m L。结论H PLC法简便、可靠,可用于奥扎格雷的药代动力学研究。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208271027_386302_1606903_3.jpg
盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm,1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)质谱条件结果分析:通过比较大鼠灌胃盐酸芬戈莫德溶液后收集的尿液样品、空白尿液样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的尿液中共鉴定出了8个代谢产物(如下图)所有代谢产物的高分辨质谱数据的准确度均小于1PPm。通过比较大鼠灌胃盐酸芬戈莫德溶液后收集的胆汁样品、空白胆汁样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的胆汁中共推测出了4个代谢产物(如下图)。所有代谢产物的高分辨质谱数据的准确度均小于1PPm。结果与讨论:经过对于给药后大鼠尿液及胆汁样品分析,初步推测盐酸芬戈莫德在大鼠体内的代谢产物有8种。
作者:http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif张鹏 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif仇峰 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif魏广力 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif刘昌孝 http://d.g.wanfangdata.com.cn.www.auth.njfu.edu.cn/Images/head_pic.gif钟大放 Author:ZHANG Peng QIU Feng WEI Guang-li LIU Chang-xiao ZHONG Da-fang 作者单位:沈阳药科大学药物代谢与药物动力学实验室,沈阳,110016 沈阳药科大学药物代谢与药物动力学实验室,沈阳,110016;天津药物研究院,天津药代动力学与药效动力学省部共建国家重点实验室,天津,300193 天津药物研究院,天津药代动力学与药效动力学省部共建国家重点实验室,天津,300193 沈阳药科大学药物代谢与药物动力学实验室,沈阳,110016;中国科学院上海药物研究所,上海,201203摘要: 目的 考察SIPI在大鼠体内的代谢转化.方法 采用液相色谱-质谱(LC-MSn)联用技术,检测在单剂量静脉注射给予SIPI后大鼠尿,粪及胆汁中的SIPI及代谢物.色谱柱为Diamonsil C18柱;流动相为甲醇-水-甲酸(40∶60∶0.5),流速为0.5mL·min-1;质谱仪离子源为电喷雾离子源(ESI),正离子方式检测.代谢物经LC-MSn方法分离和分析,通过质谱和色谱行为推测其结构.结果 在大鼠尿样中共检测到8种代谢物,在大鼠粪样中共检测到4种代谢物,在大鼠胆汁样品中共检测到3种代谢物.结论 SIPI在大鼠体内广泛代谢,形成多种代谢产物.http://ng1.17img.cn/bbsfiles/images/2012/08/201208271754_386607_2379123_3.jpg
【作者】 马铭研; 周丹丹; 于治国;【机构】 沈阳药科大学药学院; 沈阳药科大学药学院 辽宁沈阳110016; 辽宁沈阳110016;【摘要】 目的:比较研究大鼠尾静脉注射与局部皮肤给予酮咯酸氨丁三醇的药动学行为。方法:采用HPLC法,色谱柱:Dia-monsil C18柱(200mm×4.6mm,5μm);流动相:甲醇-水-三乙胺-冰醋酸(80∶19.9∶0.02∶0.08);流速:1.0mL.min-1;柱温:30℃;检测波长:313nm。结果:酮咯酸氨丁三醇在0.2~100mg.L-1范围内与峰面积呈良好的线性关系(r=0.999 0),日内RSD为2.3%~5.1%,日间RSD为2.2%~12.2%,萃取回收率为86.8%~96.2%,注射剂和凝胶剂的T1/2α分别为(0.4±0.3)h,(2.9±2.6)h;T1/2β分别为(2.7±2.0)h,(9.0±8.5)h。结论:本试验建立的方法操作简单,方法灵敏、特异,结果准确。酮咯酸在大鼠体内药动学行为符合二房室模型;外用给药透皮吸收良好。【谱图】 http://ng1.17img.cn/bbsfiles/images/2012/08/201208142206_383898_1609970_3.jpg
人体及大鼠对淫羊藿苷片的代谢分析 淫羊藿苷为中药淫羊藿的提取物,淫羊藿苷现代药理实验研究表明:淫羊藿能增加心脑血管血流量、促进造血功能、免疫功能及骨代谢 ,具有抗衰老、抗肿瘤等功效。 本试验旨在探讨淫羊藿苷在人体内的代谢情况,为药学研究的重要组成部分,希望能够阐明其在体内的作用机制,为临床合理用药提供科学依据,并为系统的药代动力学研究提供参考。材料与方法:淫羊藿干片(自制)、乙腈(色谱纯)、去离子水(自制)、三氟乙酸、旋转蒸发仪、沃特斯液相配DAD检测器。色谱条件:色谱柱:菲罗门色谱柱(4.6mm×250mm, 5μm)流动相:A:水(0.05%TFA)B:乙腈-水(50:50,V/V 0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_524999_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525000_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525001_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525002_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525003_2165260_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411280947_525004_2165260_3.jpg结果与讨论:1、大鼠及人体对于淫羊藿干片的代谢产物基本一致,只是各产物含量方面有所差异。2、本次试验的分析方法适用于淫羊藿苷片代谢产物的分析研究,准确,操作简便。3、三氟乙酸的运用可有效改善峰型,在考察中由于乙酸和磷酸盐缓冲液。
【作者】:江 莉, 黄 熙, 秦 锋, 苏文娟, 任 平, 唐文富【摘要】: 目的: 研究中药配伍对栀子苷在大鼠体内 药动学 的影响。方法: 血 浆样本 采用 70e 水浴法 沉淀蛋 白后进 行 HPLC分析, 色谱条件: 固定相为 D ikm a, D iam onsi,l C18( 5Lm, 150 @ 4. 6 mm ); 流动相为甲醇 -0. 2% 乙酸 ( 28: 72, v /v ), 流速: 1 m l/m in; 检测波长: 240 nm; 以芍药苷为内标进行定量。结果: 线性范围 0. 025~ 2. 5 Lg /m l( r = 0. 9998), 最低检测浓度 0. 025 Lg /m ,l 回收率分别为 97. 60% , 98% , 99. 2% ; 日内和日间精密度 RSD 均小于 10% 。大鼠灌胃栀子和柴芩承气汤后的药 动学行为均符合 一室模型,栀子苷在柴芩承气汤 和单味栀子给药情况下药动学参数 T1 /2, Cm ax 和 AUC0-24有明显差别 ( P 0. 05)。结论: 栀子和 柴芩承气 汤复方在同一给药途径下, 栀子苷在柴芩承气汤中比单味栀子 的消除半 衰期长, 达 峰时间长, 消 除速率 慢, 生 物利用 度比单 味栀子给 药高。【作者单位】:四川大学华西医学中心中药药理实验室, 【关键词】: 中药配伍; 栀子苷; 柴芩承气汤; 药动学http://ng1.17img.cn/bbsfiles/images/2012/07/201207311337_380858_1838299_3.jpg
【作者】 蔡佳; 蒋新国; 陈钧; 熊志刚; 金樑; 【Author】 CAI Jia,JIANG Xin-guo~*,CHEN Jun,XIONG Zhi-gang,JIN Liang(Department of Pharmaceutics,School of Pharmacy,Fudan University,Shanghai 200032,China) 【机构】 复旦大学药学院药剂学教研室; 复旦大学药学院药剂学教研室 上海200032; 上海200032; 【摘要】 目的建立大鼠血浆中佐米曲普坦的高效液相测定方法,并研究大鼠不同途径给药后的药动学。方法采用甲基叔丁基醚为溶剂,提取药物。以0.05%三乙胺(用磷酸调至pH 2.70)-乙腈(92∶8)为流动相,色谱柱为Dikma Diamonsil C18柱(4.6 mm×200 mm,5μm),流速1.2 mL.min-1,荧光检测的激发波长225 nm,发射波长360 nm。结果佐米曲普坦在2.5~1 000μg.L-1内线性关系良好(r=0.999 7)。高、中、低3种浓度的提取回收率分别为90.10%,91.75%,86.79%,方法回收率分别为103.55%,94.49%,98.79%,日内和日间RSD均小于4%,最低检测限为1μg.L-1。计算出灌胃、静注、鼻腔给药途径主要药动学参数分别为:t1/2(2.03±0.88)h,ρmax(144±28)μg.L-1,tmax(0.85±0.14)h,AUC0~t(442±110)μg.h.L-1;t1/2(1.40±0.12)h,ρmax(567±55)μg.L-1,AUC0~t(1 075±128)μg.h.L-1;t1/2(1.48±0.23)h,ρmax(304±34)μg.L-1,tmax(0.65±0.14)h,AUC0~t(685±43)μg.h.L-1。结论该方法操作简单、快速、准确、重现性好,适用于大鼠血浆中佐米曲普坦浓度的检测及其药动学研究。 【关键词】 佐米曲普坦; 高效液相色谱法; 药动学;http://ng1.17img.cn/bbsfiles/images/2012/09/201209022115_388005_1838299_3.jpg
高效液相色谱法测定大鼠血浆和全血中核黄素的含量韦京豫, 郭长江, 杨继军, 蒋与刚, 李云峰, 徐琪寿(军事医学科学院卫生学环境医学研究所,天津)摘要:为了直接反映核黄素营养状况对血中核黄素水平的影响,建立了高效液相色谱测定大鼠血浆及全血中核黄素含量的方法。采用Diamonsil C18色谱柱250mmx4.6mm i.d.5um)分离,以甲醇5mol/l乙酸铵(体积比为1.2ml/min)为流动相,流速1.2ml/min,荧光检测器检测(激发波长450nm,发射波长:520nm)。样品经乙腈、三氯甲烷处理后进样分析。核黄素测定的线性范围5-200nmol/l,最低检测限为2.5nmol/l(s/n=2),日内测定的峰面积的相对标准偏差(RSD)为1.2%,日间测定的RSD=4.3%。核黄素在血浆样品中的加标回收率为97.0%-104%,在全血样品中的加标回收率为97.4%-104.4%.关键词:高效液相色谱法;核黄素;血浆;全血;大鼠http://ng1.17img.cn/bbsfiles/images/2012/07/201207241234_379356_2355529_3.jpg
我现在用的是FTIR红外光谱来做大鼠肝脏。肝脏组织没有经任何处理,直接放在Brucher公司全反射FTIR上测,但是结果很不好。我查了好多文献,看见有人用FTIR装上ATR探头,然后把未处理生物组织紧紧贴在ATR探头上,即可做出。不知道可不可以,请高手指教。
盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析 芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。 药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm, 1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/12/201412302201_530374_2217446_3.jpg质谱条件Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200[
【作者中文名】潘兰英; 李丽萍; 蒋惠娣;【作者英文名】PAN Lan-ying; LI Li-ping; JIANG Hui-di*(Department of Pharmaceutical Analysis and Drug Metabolism; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310031; China);【作者单位】浙江大学药学院药物分析与药物代谢研究室; 浙江大学药学院药物分析与药物代谢研究室 杭州;【摘要】目的建立大鼠血浆中木犀草素和芹菜素总浓度的HPLC测定方法,并研究大鼠口服菊花提取物(CME)后其效应成分——木犀草素、芹菜素的药动学参数。方法大鼠血浆在2 mol.L-1盐酸酸性条件下于80℃水浴水解1.5 h,水解液经乙酸乙酯萃取,萃取液减压抽干后溶解,经HPLC分析。采用Diamonsil ODS C18色谱柱,以甲醇-0.2%磷酸(55∶45)为流动相,流速1.0 mL.min-1,检测波长350 nm,柱温30℃。应用建立的方法测定大鼠口服200 mg.kg-1菊花提取物后血浆中木犀草素及芹菜素质量浓度,并以3P87软件计算其药动学参数。结果本法木犀草素和芹菜素的定量下限(LOQ)分别为0.045 5和0.145 mg.L-1;两者分别在0.045 5~8.09和0.145~25.7 mg.L-1内呈良好线性关系,r分别为0.995 7及0.997 4;两者低、中、高质量浓度的绝对回收率及方法回收率均在89%~107%内。日间及日内精密度RSD均小于11%。大鼠口服CME后木犀草素与芹菜素的Ka分别为1.72和0.237 h;t1/2(Ka)分别为0.440和3.21 h;t1/2α分别为0.77...http://ng1.17img.cn/bbsfiles/images/2012/08/201208271745_386602_2379123_3.jpg
【作者】 阎雪莹; 高宏伟; 唐晓飞; 刁磊; 匡海学;【机构】 黑龙江中医药大学; 黑龙江省哈尔滨市香坊区疾病预防控制中心; 吉林农业科技学院;【摘要】 目的:建立大鼠血浆中胡黄连苦苷Ⅱ的HPLC-UV测定方法,研究在大鼠体内的药代动力学特征,同时测定其血浆蛋白结合率。方法:血浆样品经简单的甲醇沉淀蛋白后,上清液直接进样测定。采用Diamonsil(钻石)C18色谱柱(4.6mm×250mm,5μm)流动相为甲醇-水-醋酸(38:62:0.2),检测波长267nm,流速1mL.min-1,采用3p97药动学软件对药时数据进行拟合。结果:大鼠尾静脉注射胡黄连苦苷Ⅱ符合二室开放模型。结论:胡黄连苦苷Ⅱ在大鼠体内分布代谢很快,消除较快。 更多还原【关键词】 胡黄连苦苷Ⅱ; 药代动力学; 血浆蛋白结合率; 【基金】 国家自然科学基金项目资助(30600804)http://ng1.17img.cn/bbsfiles/images/2012/08/201208071031_382128_2352694_3.jpg
防风Saposhnikoviae Radix为伞形科植物防风Saposhnikovia divaricata (Turcz.) Schischk.的干燥根,具有祛风解表、胜湿止痛、止痉的功效[1]。防风含有多种化学成分,主要包括色原酮类、香豆素类、多糖类、挥发油类等[2],这些成分具有解热、镇痛、抗炎、抗菌、抗氧化、抗肿瘤等多种药理作用[3-6]。升麻素苷、升麻素、5-O-甲基维斯阿米醇苷为主的色原酮类成分是防风的主要活性物质,具有解热、镇痛、抗炎等多种药理活性[7-10],其中升麻素苷、5-O-甲基维斯阿米醇苷已作为《中国药典》2020年版中防风质量控制的标志物。课题组前期已对5-O-甲基维斯阿米醇苷体内外的代谢进行了全面的研究[11],但尚未见对升麻素苷的研究报道。有研究表明升麻素苷是防风抗炎作用的主要成分[12],而防风为《中国药典》2020年版收录的中成药齿痛消炎灵颗粒的君药,齿痛消炎灵颗粒具有治疗牙周炎的作用[13-14],故本研究采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-四极杆-飞行时间质谱联用技术(UPLC-Q-TOF-MS/MS)与MetabolitePilot 2.0、PeakView 2.0软件,对升麻素苷在牙周炎模型大鼠和正常大鼠的体内外代谢进行研究,并比较代谢差异,为防风的药效物质基础提供依据。 1 材料 1.1 动物 SPF级雄性SD大鼠,体质量(220±20)g,由河北石家庄伊维沃生物技术有限公司提供,动物生产许可证号SYXK(冀)2020-002。动物于温度(22±2)℃、相对湿度(50±3)%、12 h光照/12 h黑暗循环环境下饲养。动物实验通过河北医科大学动物伦理委员会的伦理审查(批准号DW2019003)。 1.2 药品与试剂 升麻素苷对照品(批号BD121316,质量分数≥98%),购自上海毕得医药科技股份有限公司;升麻素对照品(批号HR1638W2)购自宝鸡市辰光生物科技有限公司;右美沙芬对照品(批号Y03S11W120802,质量分数>98%)购自上海源叶生物科技股份有限公司;甲醇、乙腈(色谱纯)购自美国Tedia公司;甲酸(色谱纯)购自美国Diamond公司;纯净水购自娃哈哈有限公司。 1.3 仪器 Triple TOF 5600+型高分辨质谱仪(美国AB Sciex公司);超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统包括CBM20A型控制器、DGU-20A5R型在线脱气模块、LC-30AD型二元梯度高压泵系统、SIL-30AC型自动进样器和CTO-30A型柱温箱(日本岛津公司);D3024R型高速冷冻离心机(美国SCILOGEX公司);KQ-5200E型台式超声波清洗器(昆山市超声仪器有限公司);十万分之一分析天平(瑞士METTLER TOLEDO公司);MTN-2800D型氮吹仪(天津奥特赛恩斯仪器有限公司);MX-S型涡旋混匀器[大龙兴创实验仪器(北京)有限公司];SkyScan 1176型小动物Micro-CT扫描影像系统、NRecon软件、3D重建软件CTvox(德国Bruker公司)。 1.4 数据处理软件 Analyst® TF 1.7软件、MetabolitePilot 2.0软件、PeakView 2.0软件(美国AB Sciex公司)。 2 方法 2.1 溶液的制备 2.1.1对照品溶液的制备 精密称取升麻素苷、升麻素对照品适量,甲醇溶解制成质量浓度为1 mg/mL的贮备液,并用甲醇稀释成质量浓度为100 μg/mL的对照品溶液。 2.1.2内标(IS)溶液的配制 精密称取右美沙芬对照品适量,甲醇溶解制成质量浓度为1 mg/mL的贮备液,临用前用甲醇稀释成质量浓度为2.0 μg/mL的IS溶液。 2.1.3大鼠ig溶液的配制 精密称取升麻素苷对照品600 mg,加入60 mL纯净水,配成质量浓度为10 mg/mL的ig溶液。 2.2 牙周炎模型的建立 大鼠适应性喂养1周,采用吸入式2%~3%异氟烷实施麻醉,麻醉成功后采用0.2 mm正畸结扎丝结扎大鼠上颌左侧第一磨牙牙颈部,诱导实验性牙周炎[15-17],对侧同名牙作为对照不结扎。手术后,待大鼠全部苏醒,喂其常规鼠粮及水,并定期检查结扎丝牢固程度,整个实验持续8周。 在整个实验过程,注意大鼠精神状态,定期检查牙龈炎症、颜色、水肿、探针是否出血及牙周袋是否形成等。造摸8周后随机抽取牙周炎模型大鼠,处死,取上颌左侧第一磨牙及牙龈组织,同时取其对侧对比,置于4%多聚甲醛固定,常规脱钙,脱水透明,浸蜡包埋,制作切片,常规苏木素-伊红(HE)染色后,于显微镜下观察病理变化。同时采用微型计算机断层成像技术(micro computed tomography,Micro-CT)重建大鼠牙槽骨三维图像,观察牙槽骨吸收情况。 2.3 动物给药及生物样品采集 实验前,将正常大鼠随机分为4组,每组3只,第1组为空白正常胆汁组,第2组为给药正常胆汁组,第3组为空白正常血浆、尿液及粪便组,第4组为给药正常血浆、尿液及粪便组。模型组按与正常组相同的方法随机分为4组。给药前大鼠禁食12 h,自由饮水。根据大鼠体质量,以100 mg/kg的剂量进行ig给药。空白组ig等体积的纯净水溶液。 分别于ig给药后0.167、0.333、0.5、0.75、1、2、4、6、8、12、24 h自眼内眦取血0.3 mL,置肝素化的离心管中,4 ℃、3 500 r/min离心10 min,取上清液获得血浆样品,并将各组不同时间点获得的血浆样品合并,即得空白血浆和含药血浆。ig给药后,收集大鼠0~72 h每4个小时的尿液和粪便样本,并将来自同组大鼠的所有尿液和粪便分别进行混合,即得空白和给药尿液、粪便。ig给药后,通过ip 20%乌拉坦生理盐水溶液(1.5~2.0 g/kg)麻醉,实施胆汁插管引流手术收集0~24 h的胆汁样品,将来自同组大鼠的所有胆汁进行混合,即得空白和给药胆汁。所有样品置于?80 ℃冰箱备用。 分别取正常大鼠及牙周炎模型大鼠新鲜粪便3 g,加入30 mL厌氧培养液[18],用玻璃棒研碎并搅拌均匀,经医用纱布滤过,即得肠道菌培养液。取肠道菌培养液1 mL,加入100 μL(1.0 mg/mL)升麻素苷溶液,通入氮气置于无氧并充满氮气的厌氧袋中,在提前预热至37 ℃的摇床中孵育12 h,即得肠道菌孵育样品。空白组用100 μL超纯水代替升麻素苷溶液。 2.4 样品前处理 取血浆、尿液、胆汁样品各1 mL,分别加入100 μL的IS溶液(2 μg/mL),混合均匀,加入3倍量甲醇,涡旋5 min,4 ℃、15 000 r/min离心10 min,取上清液。取肠道菌孵育液1 mL、粪便样品0.5 g(加1 mL蒸馏水超声30 min制备成匀浆),分别加入100 μL的IS溶液(2 μg/mL),加入3倍量的醋酸乙酯,涡旋5 min,4 ℃、15 000 r/min离心10 min,收集上层萃取液,重复萃取3次,合并萃取液。将离心后所得的各生物样品上清液置另一清洁离心管中,N2流吹干,200 μL 50%甲醇复溶,涡旋5 min,15 000 r/min离心10 min,取上清液即得。 2.5 检测条件 2.5.1 色谱条件 COSMOCORE C18柱(150 mm×2.1 mm,2.6 μm);流动相为0.1%甲酸水溶液(A)- 甲醇(B),梯度洗脱:1~3 min,5%~20% B;3~25 min,20%~95% B;25~30 min,95% B。预平衡5 min,柱温40 ℃,体积流量0.3 mL/min,进样量5 μL。 2.5.2 质谱条件 电喷雾离子源(electro-spray ionization,ESI),正离子模式下进行全扫描,参数设置如下:离子源喷雾电压5 500 V;源温度550 ℃;气帘气压力241.325 kPa;雾化气(Gas1)压力379.225 kPa;加热气(Gas2)压力379.225 kPa;解簇电压70 V;碰撞能量40 eV;碰撞能量扩展15 eV。TOF-MS扫描的扫描范围为m/z 100~1 200,积累时间设置为250 ms。每个扫描周期选择8个响应最高的离子进行MS/MS扫描。产物离子扫描范围为m/z 50~1 200,积累时间为100 ms。 2.6 数据处理 正常大鼠和牙周炎模型大鼠ig升麻素苷后,各生物样本的总离子流图见图1。采用以下5个步骤来鉴定和分析升麻素苷在正常大鼠及牙周炎模型大鼠体内外的代谢物:①基于UHPLC-Q-TOF-MS/MS技术,在线进行全扫描数据采集,并利用多重质量亏损(MMDF)和动态背景扣除(DBS)设置获得准确的MS/MS质谱信息。②利用Peak View、Metabolite Pilot软件中的多种数据挖掘工具,自动过滤出升麻素苷的可能代谢物。③从准确的质谱数据、母体药物的裂解模式以及相关文献描述代谢物的推断过程。④ClogP值用作区分具有相同分子式和相似质谱数据的代谢物异构体的参数。ClogP值越大,在反相色谱系统中的洗脱时间就越长。⑤根据Peak View软件提供的代谢物的峰面积,用峰面积相对定量法比较代谢物在正常大鼠及牙周炎模型大鼠各生物样品中的含量差异。3 结果 3.1 CT成像 应用Micro-CT扫描、三维图像重建显示,与对照组(图2-B、D)相比,模型组(图2-A、C)牙槽骨吸收明显,同时有水平和垂直向吸收。对大鼠上颌第一、第二磨牙兴趣区域[19](本实验选取的兴趣区域(region of interest,ROI)为第一、第二磨牙近中牙槽嵴吸收情况)进行测量,对照组牙近中釉牙骨质界(cemento-enamel juction,CEJ)到牙槽嵴顶(alveolar bone crest,ABC)的平均距离为0.394 mm(图2-D),与对照组相比,模型组CEJ到ABC的距离平均增至0.813 mm。分析大鼠CEJ至ABC的垂直距离(图2-A、B),即分别取对照组与模型组样本牙齿颊侧的近中、中央及远中共3个位点的CEJ至ABC的距离,测量统计分析结果显示,与对照组相比,模型组CEJ-ABC距离明显增加(P<0.05,图2-E)。 图片 3.2 升麻素苷质谱裂解规律分析 升麻素苷(M0,C22H28O11)的保留时间为8.80 min,M0通过重排生成准分子离子峰[M+H]+m/z469.170 2。母离子m/z 469.170 2失去18(-H2O)、72(-C4H8O)分别形成特征碎片离子m/z 451.173 2、397.125 0。M0通过丢失162(-glu)、234(-glu-C4H8O)分别产生特征碎片离子m/z307.128 6、235.068 0,其中特征碎片离子m/z 235.068 0是特征碎片离子m/z307.128 6通过二氢吡喃环失去C4H8O发生RDA裂解反应产生。通过连续丢失O和C3H6O后,m/z 235.068 0产生碎片离子m/z 219.072 5、161.065 4。苷元离子m/z307.126 8有2种脱水方式(-H2O),分别产生m/z289.116 6的2种结构不同碎片离子,苷元离子在失去水的基础上连续失去2个CH3分别产生m/z274.092 3、259.068 8。通过连续丢失C3H6、CH2、C2H2、CO和O后,m/z 289.116 6产生了一系列碎片离子m/z247.068 1、233.052 3、221.051 7、219.072 5、205.056 3、193.056 0、189.061 1、177.060 6。升麻素苷可能的裂解途径见图3。 3.3 升麻素苷在大鼠体内外代谢物的分析鉴定 采用上述分析策略,共鉴定出30个升麻素苷的代谢物(其中I相代谢物25个、II相代谢物5个)。在健康大鼠中,共发现25个代谢产物(血浆中8个、尿液中17个、粪便中11个、胆汁中19个、体外肠道菌群3个)。在牙周炎模型大鼠中,共发现27个代谢产物(血浆中8个、尿液中18个、粪便中12个、胆汁中22个、体外肠道菌中2个)。升麻素苷原型及30种代谢物的详细信息见表1。 3.3.1 I相代谢物的鉴定 (1)水解(M1):M1的保留时间为10.14 min,准分子离子为m/z 307.118 0,推测其分子式为C16H18O6。M1的相对分子质量比M0少162(C6H10O5),此外,M1的特征碎片离子m/z 307.118 0、289.107 4、274.085 0、259.059 5、247.061 9、235.059 4、233.044 1、221.043 9、217.050 3、205.049 6、189.055 0、177.054 3、161.059 2均与M0相同,这表明M1在M0基础上发生了糖基化反应。且经过对照品比对,确认M1是M0脱糖产生的水解产物升麻素。 (2)水解-羟基化:M2~M5的保留时间分别为5.98、7.12、7.92、8.65 min,准分子离子峰分别为m/z323.113 4、323.111 2、323.112 8、323.113 0,均比M1多16,表明M2~M5可能为M1的单羟基化产物,推测其是分子式C16H18O7的同分异构体。M2的特征碎片离子m/z323.113 4、305.101 9、275.085 0、263.064 4均比M1的特征碎片离子m/z307.118 0、289.107 4、259.059 5、247.061 9多16,此外M2的特征碎片离子m/z 247.060 2、235.059 4、233.046 2、221.044 1、177.054 9均与M1的特征碎片离子保持一致,尤其特征碎片m/z263.064 4的存在,说明该羟基化反应发生在C-2′位。M3的特征碎片离子m/z 323.111 2、305.109 0、275.055 4均比M1的特征碎片离子m/z 307.118 0、289.107 4、274.085 0、259.0595多16,且其特征碎片离子m/z 235.031 5、233.035 6、205.072 2、193.050 1均与M1的特征碎片保持一致,说明该羟基化反应可能发生在C-5′位或者C-2′位。M4的特征碎片离子m/z259.060 0、247.060 0、235.060 2、233.044 6、221.044 8、205.048 5、189.054 3、177.054 9、161.060 1与M1具有相同的裂解途径,且根据其特征碎片m/z 305.1015的存在,推测羟基化的位置可能在C-3′位。M5的碎片离子m/z323.113 0、305.102 6与M1相比增加了16,其特征碎片离子m/z 259.061 1、247.060 1、235.060 3、233.043 9、221.044 7、205.050 2、189.054 9、177.054 5均与M1具有相同的裂解途径,尤其特征碎片离子275.054 8的存在,推测M5的羟基化反应可能发生在C-8位上。通过计算ClogP值发现,M2~M5的ClogP值分别为?0.859 1、?0.756 5、?0.364 7、?0.018 9,与保留时间的大小具有一致性,证明了推测的合理性。 (3)水解后失去CH2:M6保留时间为12.85 min,准分子离子峰为m/z293.102 3,推测其分子式为C15H16O6,是在M1的基础上丢失1个CH2。M6主要的二级碎片离子m/z 293.102 3、275.091 6、245.043 7、221.044 8均比M1的碎片离子m/z307.118 0、289.107 4、274.085 0、259.059 5、235.059 4少14,且由于特征碎片m/z 275.091 6、233.044 7的存在,提示反应位点可能在C-5。 (4)水解后失去CH2+O:M7、M8的保留时间分别为7.19、9.67 min,准分子离子峰分别为m/z 309.096 6、309.097 7,推测其分子式为C15H16O7。与M6相比多了16。因此,代谢物M7、M8被初步鉴定为M6的羟基化产物。M7的特征碎片离子m/z233.026 8、221.029 1、205.031 9均与M6保持一致,且其特征碎片离子m/z309.096 6、291.099 1与M6相比增加了16,提示羟基化的位置发生在侧链上,推测反应位点在C-5′位。M8的特征碎片m/z 233.050 8、221.045 6、177.083 7均与M6的特征碎片离子保持一致,说明M8与M6具有相同的裂解途径,且有特征碎片m/z 249.164 1的存在,说明羟基化的位置在环上,推测反应位点可能在C-8位。此外,根据上述所推结构,计算M7、M8的ClogP值分别为?0.320 8、0.337 1,与出峰时间保持一致,证明了推测的合理性。 (5)水解后去甲基化成羧酸:M9、M10的保留时间分别为7.78、9.30 min,准分子离子峰分别为m/z337.092 9、337.091 9,推测其分子式为C16H16O8。与M1相比多了30,推测M9、M10是M1结构中的1个甲基被氧化成羧酸后得到的代谢产物。根据M1的结构特征推测发生反应的位点可能是与C-5连接的甲氧基及C-5′位的甲基上。M9的特征碎片离子m/z 337.092 9、319.082 3、304.060 0、289.032 9、277.071 1、265.032 2、263.056 3、235.024 3、219.029 1、207.043 8均比M1的特征碎片离子离子m/z 307.118 0、289.107 4、274.085 0、259.059 5、247.061 9、235.059 4、233.044 1、205.049 6、189.055 0、177.054 3多30,因此证明M9氧化位点发生在C-5位连接的甲氧基上。M10在正离子模式下形成的准分子离子峰为m/z 337.091 9,与M1相比多30,其特征碎片离子m/z274.130 1、259.063 0、247.060 7、235.061 7、233.045 8、205.051 7、161.061 8均与M1的特征碎片离子保持一致,说明其氧化位点发生在M1的侧链上而不在环上,故推测反应位点发生在C-5′位。根据以上推测的结构,计算两者的ClogP值分别为?1.233 0、?0.585 6。计算结果与出峰时间顺序保持一致,进一步确证了推测的合理性。 (6)水解后去甲基化成酮:M11保留时间为10.96 min,准分子离子峰为m/z 291.086 3,推测其分子式为C15H14O6。与M1相比少了16,推测在M1的基础上失去了1个甲基进一步将连接在中心碳原子上的羟基氧化成酮。M11的特征碎片离子m/z 291.086 3、273.076 7、258.058 0与M1相比均少16,特征碎片离子m/z 259.062 8、235.096 5、233.044 7、221.041 4、177.052 1与M1保持一致,说明反应发生在侧链上,因此推测反应发生在C-4′位。 (7)水解脱羟基:M12的保留时间为9.83 min,其准分子离子峰m/z 291.122 6,推测其分子式为C16H18O5。与M1相比少了16(O),推测M12在M1的基础上发生了脱羟基反应,M12的特征碎片离子m/z 273.076 0、263.092 2、219.025 6、217.159 5均比M1的特征碎片离子m/z 289.107 4、247.061 9、235.059 4、233.044 1少16,说明脱羟基位发生在C-9位。 (8)水解后失去CH2O:M13的保留时间为8.24 min,其准分子离子峰为m/z277.106 7,推测其分子式为C15H16O5。与M1相比少了30(CH2O),推测M13可能是在M1的基础上丢失甲氧基产生的代谢物。M13的特征碎片离子m/z 259.101 8、217.054 2、205.052 8、181.089 7可能是M1的特征碎片离子m/z289.107 4、247.061 9、235.059 4、221.043 9丢失1个甲氧基产生的,根据M1的结构特点推测丢失位点在C-5位。 (9)水解后脱羟基失去CH2O:M14的保留时间6.48 min,其准分子离子峰为m/z261.112 5,推测其分子式为C15H16O4。与M12相比少了16,与M1相比少了46(M1-O-CH2O),推测M14可能是在M1的基础上先失去羟基又失去甲氧基产生的。M14的特征碎片离子m/z 243.215 1、228.206 8、189.090 3与M1的特征碎片离子m/z 289.107 4、274.085 0、235.059 4相比均少46,且M14的特征碎片离子m/z243.215 1正好比M12的特征碎片离子少16,证明推测合理。 (10)水解脱羟基后被氧化成醛:M15的保留时间为8.23 min,其准分子离子峰为m/z 305.102 4,推测其分子式为C16H16O6。M15的特征碎片离子m/z 287.132 8比M12的特征碎片离子m/z 273.076 0多14,水解后脱羟基位点与M12保持一致。且其特征碎片离子m/z290.071 9、275.054 4、247.058 3、233.044 4可能是在M15的准分子离子m/z 305.102 4的基础上通过连续丢失2个甲基、CO和亚甲基产生的。因此,推测M15是代谢物M12中的1个甲基被氧化成醛产生的。根据母药结构特点,结合π-π共轭体系可能使结构更加稳定的规律,推测氧化反应位点最可能发生在2位的CH3上。 (11)失去C4H8O:M16的保留时间为8.80 min,其准分子离子峰为m/z397.113 6,推测其分子式为C18H20O10。与M0相比少了72,根据其结构特点推测M16可能是M0失去C4H8O所得到的代谢产物,其特征碎片m/z 235.05 51、205.136 9与M0保持一致,且特征碎片m/z72.086 6(-C4H8O)的存在,初步认为推测M16的结构合理。 (12)水解脱羟基后去甲基成羧酸:M17的保留时间为11.08 min,其准分子离子峰为m/z 321.097 4,推测其分子式为C16H16O7。与M9相比少了16,与M1相比多了14,推测M17可能是M1脱羟基后的1个甲基被氧化成羧酸的产物。其特征碎片离子m/z 321.097 4、303.085 9正好比M1的特征碎片离子m/z289.107 4多14,比M9的特征碎片离子m/z 319.082 3少16,特征碎片离子m/z273.039 5比M9的特征碎片离子m/z 289.032 9少16,且其含有特征碎片离子m/z 235.022 7、205.049 6,与M1和M9一致。说明M17与M9结构相似,氧化位点与M9一致。 (13)单羟基化反应:M18~M20的保留时间分别为6.24、6.93、9.00 min,其准分子离子峰分别为m/z 485.166 2、485.166 5、485.164 7,推测其分子式为C22H28O12。与M0相比多了16(O),因此推测他们可能是M0的单羟基化产物。根据母药的结构特点可以看出羟基化反应发生在C-3′、C-5′和C-8位时相对稳定。M18的特征碎片离子m/z247.060 0、235.058 3、233.043 8、205.048 4均与M1的特征碎片离子保持一致,且其特征碎片
LC-MS对盐酸芬戈莫德在大鼠体内的代谢分析 芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。 药物及实验动物: 盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。 色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm,1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/11/201411281531_525077_2217446_3.jpg 质谱条件 Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200;扫描时间0.2s。 给药方案与样品的收集: 血浆样品的收集健康雄性wistar大鼠3只,体重180-220g,1只为空白对照组,2只为给药组(取血时间30min和120min),给药前禁食12h,期间自由饮水。灌胃给药剂量为35 mg/kg,给药体积为1.5mL/只,给药30min和120min后,分别于颈动脉取全血,置于涂有肝素的离心试管中,3500prm离心10min,分离血浆,于-20℃冰箱中保存,直至分析。 血浆样品的预处理 取0.5ml血浆,置于离心管中,加入5倍的乙腈,3500prm离心10min,除去蛋白,取上清液,在40℃,旋转蒸干,用50%甲醇溶解,涡旋,11000prm离心10min,取2μL进行分析。 结果分析 对大鼠灌胃盐酸芬戈莫德溶液后收集的血浆样品用乙腈沉淀蛋白前处理方法处理之后,进行TOF-MS/MS分析,将所得HR-MS,MS2等数据与空白血浆和对照品比较后,在血浆样品中共推测出7个代谢产物。http://ng1.17img.cn/bbsfiles/images/2014/11/201411281532_525078_2217446_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411281532_525079_2217446_3.jpg结果与讨论:1、经过对于给药后大鼠血浆样品分析,初步推测盐酸芬戈莫德在大鼠体内的代谢产物有7种,其结构进一步鉴定中。2、流动相的选择方面进行了优化。流动相的选择主要从溶剂种类和梯度洗脱设置两方面进行优化。分析方法中采用了乙腈作为有机相,原因是乙腈比甲醇具有更大的洗脱强度,从而可以减少色谱峰的展宽,得到较好的峰型,此外,使用乙腈洗脱,其粘度较低,可以减小系统压力。在水相中加入TFA,可以进一步改善化合物的峰型,减少拖尾,此外,TFA的存在还可以提高样品在离子源中的离子化效率,因此,使用乙腈-0.05%TFA水溶液为流动相梯度洗脱,可以使样品分析在 9min之内完成。3、 生物样品中含有许多内源性物质,血浆中含量较高的内源性物质主要是蛋白类成分。蛋白质在测定过程中会形成泡沫,浑浊或沉淀,有时还会与加入的试剂发生反应,从而干扰测定。蛋白还会污染仪器。如果直接进样用液相色谱分析含蛋白的体液样品,蛋白质会逐渐变性沉结在色谱柱上,导致柱效降低,柱压上升,甚至堵塞色谱柱;含有蛋白的样品如果进入离子源,会造成离子源的严重污染和损坏,降低检测的灵敏度,所以血浆样品需进行合理的前处理。常用的生物样品前处理方法有蛋白沉淀法、固相萃取法和液液萃取法。由于待测的代谢产物的极性都比较大,采用液液萃取法(溶剂用乙酸乙酯)对化合物的提取效率差,因此不宜使用。主要比较了蛋白沉淀法和固相萃取法,两种方法均能有效提取待测化合物,经过实验发现,蛋白沉淀法比较好,并且考虑到血浆样品量较少,因此选择蛋白沉淀法。
各位好,我要测的是大鼠内脏(如肝脏、肾脏等)纳米金棒的含量,谁可以测啊?文献上是用ICP-MS测得,广州及周边如果谁可以测希望联系我,15920331523