磁力耦合机

仪器信息网磁力耦合机专题为您提供2024年最新磁力耦合机价格报价、厂家品牌的相关信息, 包括磁力耦合机参数、型号等,不管是国产,还是进口品牌的磁力耦合机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁力耦合机相关的耗材配件、试剂标物,还有磁力耦合机相关的最新资讯、资料,以及磁力耦合机相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

磁力耦合机相关的厂商

  • 威海庆丰化工机械科技有限公司是专业从事磁力反应釜及磁力搅拌器的生产企业,技术力量雄厚。加工设备齐全检测手段完善。生产的磁力反应釜及搅拌器采用先进的静密封磁力耦合装置,彻底解决了机械密封和填料密封无法解决的泄漏难题。能够满足高温、高压、加氢、易燃、易燥、剧毒场合的要求。我厂的产品经过十几年的不懈努力,至今产品已标准化、系列化,还可以生产各种加料罐、冷凝器、换热器和各种树脂设备。另外,还可以根据用户的要求、特殊设计制造。我厂的产品安全可靠,使用方便,销往全国各地,深受广大用户的信赖和支持。
    留言咨询
  • 威海博锐化工机械有限公司位于山东省威海市环翠区羊亭北观工业园,公司注册资本1000万元,公司具有国家质量监督检验检疫总局颁发的D1、D2压力容器设计、制造资质,主要从事反应釜的研发、生产和销售,是国内化工机械行业生产大、中、小型反应釜的专业厂家。公司于2014年12月取得了一、二类压力容器资质,有着丰富的压力容器行业经验,也是国内研究、开发、生产高压反应搅拌设备的知名厂家。产品已在全国二十多个省市石油、化工、医药、染料、矿冶、科研院所、大专院校(化学系、化工系、高分子系、材料工程系、有机无机化工系)等广泛应用。产品远销出口至伊朗,美国,澳大利亚,加拿大,以色列,菲律宾,马来西亚,捷克,俄罗斯,香港等国家地区。公司工艺装备精良,检测手段齐全,技术力量雄厚,具备完整的研发、设计、制造、检测体系和质量保证体系。生产的反应釜最大容积100m³ ,最大压力为45MPa,极限真空6×10-2MPa。轴封形式有磁力传动静密封、填料密封、机械密封,加热方式有电加热、夹套水蒸汽加热和导热油等,釜体材料主要采用0Cr18Ni9(S30408)、00Cr17Ni14Mo2(S31603)、0Cr18Ni10Ti(S32168),并可根据不同介质要求制作钛材(TA2),镍及镍合金,钽材,锆材,哈氏合金(C-276,C-22,B-2),反应釜内喷四氟(PTFE)及衬镍(Ni6)。并承接配套反应釜系统和储罐、发酵罐、加料罐、换热器、磁力驱动搅拌器以及非标准化工设备制作,根据用户的介质和工艺要求,磁力耦合器和反应釜的大小可以任意选配。威海博锐化工机械有限公司售后服务完善,快捷有效,专业级技术支持,及时解决客户的疑难问题。展望未来,公司将秉承“诚信经营• 一诺千金”共同遵循的经营理念,这个理念将激励我们努力不懈,竭诚为广大新老客户提供更加专业高层的服务。
    留言咨询
  • 大连通达反应釜厂(0411-82388764),是具有生产资质的高压釜、实验室反应釜的专业生产厂家。许可证编号是:TS2221210-2011。大连通达反应釜厂致力于开发、生产各种高压釜、实验室反应釜。主导产品CJF系列强磁力搅拌反应釜、实验室反应釜品种规格齐全、标准化程度高。近年来采用了国内外先进技术,在高压釜、实验室反应釜设计加工方面进行了一系列的改进,采用新型磁力偶合驱动技术,力矩传递,无需机械构件,介质完全处于静密封的密闭容器中,操作过程中无介质泄露之虞。“科技领先,人才为本”是本厂始终围绕的主体,也是本厂优于其他厂家的根本所在。本厂拥有一批具有三十多年生产、设计、研究实验经验的资深专家,其研究的许多成果获得科研单位、生产厂家的好评。其中两个产品被列为技术创新基金支持对象,颁发了科技成果证书。企业遵循质量第一、信誉第一、服务第一、用户第一的原则,用先进的专业技术,精细的加工工艺,严格的出厂检查,确保生产符合国际标准、安全可靠的一流产品。多年来企业以顾客的需要为己任,以合理的价格,顾客满意的售后服务,赢得了广大用户的信任和支持,用户遍及二十多个省市和自治区。大连通达反应釜厂全体员工愿与海内外有识之士同发展,共创美好未来。
    留言咨询

磁力耦合机相关的仪器

  • 磁力搅拌器 RT 基本型,120mm直径/170mm直径/220mm直径强劲的磁力耦合,保证实验过程中的连续搅拌三种尺寸选择轻巧的外观设计,占地面积小搅拌速度:150-2500 rpm标配两个防滑硅胶垫(一黑一白)
    留言咨询
  • 超高真空磁力耦合传样杆(CF35),可线性运动和旋转,主要功能是将样品在真空环境下传输样品或样品拖等。磁力杆外部的钐钴磁铁和磁力杆内部的磁铁耦合在一起进行传输,内部高精度轴承保证了传样杆即使经过多次加热烘烤也能顺畅地传样。技术参数:安装法兰:CF35行程:100/200/300/400/500mm(接受非标定制) Z大烘烤温度:200度偏心量:01mm工作压力范围:1000 mbar ~ 10-11mbar 以上就是东莞市卓聚科技有限公司提供的超高真空磁力耦合传样杆的介绍,了解更多直接咨询:原文: 随着微电子、纳米科技和人工智能等领域的进一步发展,精密定位不仅在实验室用途广泛,工业界的应用也越来越多。该团队在以往研究基础上,发展出一系列具有自主知识产权的超精密定位产品,填补了国产空白。一个火柴盒大小、外壳包覆金属的小方块,通过电压控制能够实现纳米级别的精密位移,可以用于对精密度要求超.高的科学实验、精密制造和半导体工业等领域。日前,在松山湖材料实验室高.端科研设备产业化团队的实验室内,团队负责人许智展示了该团队拥有核心技术的压电驱动纳米位移台。安徽泽攸科技有限公司为您提供压电旋转纳米位移台RF-5950A的参数、价格、型号、原理等信息,压电旋转纳米位移台RF-5950A产地为安徽、品牌为泽攸科技,型号为旋转纳米位移台,价格为面议,更多相关信息可来电咨询,公司客服电话7*24小时为您服务
    留言咨询
  • 磁耦合传动磁力搅拌反应釜计量泵!
    留言咨询

磁力耦合机相关的资讯

  • 车仁超教授课题组在电镜中观察到坡莫合金吸波微球的三维磁耦合
    p   日前,复旦大学先进材料实验室车仁超教授课题组成功制备了坡莫合金复合吸波材料并运用洛伦兹透射电镜观察到了三维磁耦合。 /p p   随着电磁波在军事、工业及民用产品中的应用迅速增加,电磁干扰已经成为一种新的社会污染,因此亟待发展高效的微波吸收材料。如何设计合成一种高性能的微波吸收材料并理解分析其微观吸收机理一直是微波吸收领域的关键问题和难点所在。针对这一难点,车仁超教授课题组开展了富有创新性的工作,并取得重要进展。 /p p   首先,该工作中首次利用具有强磁损耗能力的坡莫合金微球为“核”和具有偶极极化和弛豫现象介电损耗的氧化钛为“壳”来构建三明治型复合吸波微球,得到介电损耗和磁损耗协同效应协同吸波的新颖吸收剂,可解决一些现存在于微波吸收剂设计的缺陷,从而满足对高性能微波吸收应用的技术要求。其次,通过利用先进的透射电镜电子全息分析建立了复合微球的微磁特性和宏观吸波性质的物理关联。电镜电子全息证实磁核的高密度杂散磁力线可以穿透氧化硅和氧化钛外壳,并与相邻微球建立耦合,由此来消耗了入射微波能量,高达-58.2 分贝。 /p p   该结果日前在线发表于国际权威期刊《先进材料》(Advanced Materials,影响因子17.493)上,题目为CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption。本工作得到了科技部973计划,国家自然基金委员会的资助,并得到了先进材料实验室的大力支持。 /p p   链接: a href=" http://onlinelibrary.wiley.com/doi/10.1002/adma.201503149/full" target=" _blank" title=" " 点击浏览 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/31a7b173-ce8c-41e4-b526-8cbe51e7f430.jpg" title=" 图.jpg" / /p p   CoNi@SiO2@TiO2微球的(a)杂散磁场 (b)相邻微球的磁耦合 (c)三维模型 /p
  • 低温强磁场磁力显微镜与共聚焦显微镜在微结构缺陷研究中的科研成果
    凝聚态物理研究中常会遇到微结构与纳米尺寸的结构。为了研究缺陷与控制缺陷,不仅需要精密测量仪器,同时要求大量精力的投入。德国attocube公司为前沿的研究提供了可行性良好的技术,公司产品既包含成套的测量系统也有精密的组件。下面,您可以发现三个令人兴奋的应用案例,案例展示了结合精密仪器与辛勤奋斗带来的高质量的研究成果。 磁场驱动的磁畴结构变化研究 近,挪威科技大学Erik Folven的课题组使用了德国attocube公司的attoAFM I低温强磁场原子力磁力显微镜研究了闭环低温恒温器attoDRY1000内的拓扑缺陷,该拓扑缺陷研究有助于材料的磁畴状态变化的进一步理解。通过具有原子尺寸与磁化的原子力显微镜探针在薄膜表面的扫描可以测量垂直平面的来源于样品本身的杂散磁场,该技术具有灵敏度高的特点。因此,磁畴壁与磁场缺陷等自旋结构的物理性质都可以被深入研究。在5K低温下测试的MFM(磁力显微镜)图像数据(图1)加深了对于微米尺寸磁畴状态转变的理解,同时测试后的样品依然具有高度稳定性。该成果可能为控制与转变微米甚至纳米磁体打开了一个新的方向。 图1:MFM测试磁畴结构随磁场变化的结果(图片来源:Appl. Phys. Lett. 112, 042401 (2018)) 耦合单个缺陷与纳米线 基于attoDRY1000低温恒温器与attoCFM I(低温强磁场共聚焦显微镜),马里兰大学的EdoWaks成功耦合了单层二硒化钨(WSe2)中的量子发射器与银纳米线的表面等离激元。结果显示量子发射器与银纳米线等离激元的平均耦合效率是26% ± 11%。该展示的实验技术(图2)可以组建结合不同种类等离激元结构与基于各种二维半导体材料中单分子缺陷发射器的耦合系统。 此测量系统可用于超快单光子源等应用方向,为超紧凑等离激元电路的研究铺平了道路。 图2:耦合WSe2中量子发射器与银纳米线中等离激元(图片来源:Nano Lett., 2017, 17 (11), pp 6564–6568) ANPz30位移台在强磁场扫描探针显微镜中的实践来自于荷兰拉德堡德大学强磁场实验室的Benjamin Bryant 与Lisa Rossi与同校的扫描探针显微镜课题组的Alex Khajetoorians合作,成功地创新设计了一套用于液氦温度与超强磁场(38T)的扫描探针显微镜。超强磁场使用了水冷降温的比特磁体:水冷降温会引入使扫描探针显微镜难操作的振动噪音。图3:ANPz30位移台,强磁场兼容原子力显微镜(图片来源: Review of Scientific Instruments 89, 113706 (2018))ANPz30纳米位移台被用于控制原子力显微镜的悬臂初步逼近样品表面。模块化设计的Attocube公司的位移台不仅易于更换,也具有兼容不同悬臂或者样品托的灵活性。由于位移台紧凑与坚固的设计,振动噪音被大大的降低。噪音是比特磁体端环境中扫描探针显微镜起到关键性影响因素。
  • iCMR 2017特邀报告:核磁共振残留偶极耦合参数在有机分子结构鉴定中的应用
    p style=" TEXT-ALIGN: center" strong 第一届磁共振网络会议(iCMR 2017)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 核磁共振残留偶极耦合参数在有机分子结构鉴定中的应用 /strong /p p style=" TEXT-ALIGN: center" strong img title=" QQ截图20171026164003.jpg" style=" HEIGHT: 299px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201710/insimg/e8577b4c-88b2-4b59-a0cc-09b1187ef006.jpg" width=" 400" height=" 299" / & nbsp /strong /p p style=" TEXT-ALIGN: center" strong 雷新响 教授 /strong /p p style=" TEXT-ALIGN: center" strong 中南民族大学药学院 /strong /p p strong   报告摘要: /strong /p p   残留偶极耦合(residual dipolar coupling, RDC)作为核磁共振各向异性参数在有机分子构型及优势构象等方面的应用具有强而有力的优势, 它反映分子中原子在磁场中的空间距离与角度信息, 实现分子三维空间的构建。 将针对残留偶极耦合在有机分子结构鉴定方面的进展进行介绍。首先,简要介绍残留偶极耦合的原理;其次,介绍定向介质和脉冲方法;再次,以若干实例展示RDC在天然产物, 合成药物,有机反应中间体络合物中的应用;最后,展望未来的发展趋势。 /p p strong   报告人简介: /strong /p p   雷新响,男,博士,毕业于中国科学院成都生物研究所,于2010-2011年在耶鲁大学从事研究工作1年。现为中南民族大学药学院教授,硕士研究生导师,从事有机及生物分析研究工作15年,讲授波谱分析,生物化学,化学生物学等课程,主持国家自然科学基金及国际合作等项目。目前已在JACS,《德国应用化学》,《核酸研究》,《欧洲化学》,Organic Letters,《磁共振化学》等期刊发表SCI文章30余篇,曾被美国化学会(Highlighted by ACS & quot Noteworthy Chemistry& quot )进行了专栏介绍点评。多次应邀在国际、全国或地区学术研讨会上做核磁共振在有机分子研究中的应用工作报告。2014年11月与德国科学院院士,磁共振主席Christian,Griesinger教授合作共同组织的,由中德科学研究中心资助的“中德核磁共振新方法在有机化学中的应用及前沿研讨会”,成功召开。2014年以“有机分子的立体化学及手性的核磁共振新分析方法”获得了中国分析测试协会科学技术奖(CAIA)“三等奖”1项。 /p p    strong 报名地址: /strong a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target=" _self" textvalue=" http://www.instrument.com.cn/webinar/meetings/iCMR2017/" http://www.instrument.com.cn/webinar/meetings/iCMR2017/ /a /p

磁力耦合机相关的方案

磁力耦合机相关的资料

磁力耦合机相关的试剂

磁力耦合机相关的论坛

  • 【分享】磁力反应釜的工作原理

    磁力驱动是八十年代开发的一种新型传动密封技术。磁力驱动反应釜的关键部件磁力耦合传动器是一种利用永磁材料进行耦合传动的传动装置。磁力耦合器利用磁钢透过奥氏体不锈钢仍能相互吸引的原理,制作一不锈钢密封罩体与釜体固定连接,形成静密封腔,实现对搅拌轴开孔处的密封。密封罩体内外各设一用永磁材料制作的转子,由于磁铁具有异性相吸,同性相斥的特性,内外转子通过磁力作用在轴向上和旋轴方向相互定位。当电机带动外转子旋转时,内转子则跟随同步旋转。内转子再通过联轴器带动釜内搅拌轴旋转,达到搅拌目的。磁力驱动改变了传统机械密封和填料密封的那种通过轴套或填料密封搅拌轴的动密封结构为静密封结构,釜内介质完全处于由釜体与密封罩体构成的密封腔内,彻底解决了填料密封和机械密封因动密封而造成的无法克服的泄露问题,使反应介质绝无任何泄露和污染。

  • 磁力驱动搅拌器的发展和应用

    随着医药、食品、有机合成、石油化工以及核工业等行业的发展,工业中对一些易燃、易爆、有毒、强腐蚀性和贵重介质的搅拌或搅拌反应过程的要求越来越严格,对反应设备清洗和灭菌的要求也十分苛刻。因此,在上述工况中所使用的搅拌釜或搅拌反应釜,其密封要求是应做到零泄漏。在此背景下,磁力密封技术已成为必然的选择,磁力釜(或磁力搅拌器)应运而生 。磁力釜以静密封结构取代动密封,该结构无接触传递力矩,能彻底解决机械密封与填料密封的泄漏问题,并且搅拌部件处于绝对密封状态,是石油化工、有机合成、食品加工、生物制药过程中进行硫化、氢化、氧化及发酵等反应的选择趋势。原理及结构磁力搅拌器是磁力联轴器与搅拌装置的结合,是磁力传动技术的成功应用之一。所谓磁力传动是指以现代磁学为基础,利用永磁材料之间磁力耦合作用实现无接触传递力矩的一种实用技术。磁力传动由磁力联轴器来完成。磁力搅拌器的结构主要包括马达、搅拌装置、主动磁转子、从动磁转子以及隔离套等零部件。其中马达通过传动轴将动力传递给主动磁转子,在磁力耦合的作用下从动磁转子开始转动,从而带动与从动磁转子联接在一起的搅拌装置转动,以达到搅拌的目的。 圆筒式磁力搅拌器圆筒式磁力耦合传动搅拌器是以外磁环套内磁环,并在内外磁环之间设置隔离套,三者同心安装,工作面均为圆柱面,磁体呈瓦形。该传动形式传递力矩较大,对高黏度的物料也有足够的力矩进行充分搅拌,适用于高转速场合。因此,生产用设备主要采用该形式的磁力传动搅拌器。 圆盘式磁力搅拌器圆盘式磁力耦合传动搅拌器中两磁环相向安装,工作面为互相平行的平面,磁体呈扇形。在耦合传动的两磁环之间,通常需设隔离密封罩。该传动形式可简化磁钢的几何尺寸和磁力传动装置的轴向尺寸,但传递的力矩较小,故通常只适用于实验室进行气、液相混合反应的小型反应釜等低转速场合 。实验室用磁力搅拌器目前实验室中使用的搅拌器主要有电动搅拌器和磁力搅拌器两种。实验室用磁力搅拌器主要用于加热或加热搅拌同时进行,适用于黏稠度不是很大的液体或固液混合物。使用时,先将液体放入容器中,再将搅拌子放入液体中,当底座产生磁场后,利用磁力耦合和漩涡的原理,带动搅拌子做圆周循环运动,从而达到搅拌液体的目的。虽然磁力驱动搅拌技术现已取得了很大的成果,但还有很多需要攻克的问题,如:磁场的存在会干扰周围环境 目前常规的下磁力搅拌系统在定位轴的轴瓦处开有导流槽,使罐体内液体进入轴瓦对其进行润滑及在线清洗,但是在生物反应器中罐内细胞培养液进入轴瓦后,细胞培养液中细胞会被碾碎破坏掉,无法正常完成培养 磁力搅拌器的设计目前还没有一套系统和完善的设计方法,磁路的设计、转矩的计算均建立在实验或半实验的基础上,精度有待进一步提高 磁力传动机构的进一步小型化和大型化、高温环境下设计的进一步完善、结构材料和构件的开发选择等都是需要努力的方向。因此,有必要对磁力搅拌技术做更深入的研究和探索,使其不断发展、完善并为科研和生产服务。

  • 磁力搅拌器的结构和工作原理——研必德文摘

    1.磁力搅拌器的结构:由一个包裹着耐热陶瓷的电热线铺在一层耐火绵上,中心为空心,空洞中有一个或一组装置在马达上的磁石。这个磁石的作用就是再带动投入容器中的铁氟龙磁石搅拌子在容器中旋转。这些结构会被一块铝板、铁板、陶瓷板所覆盖著。有一只旋钮用于调节磁石转速、有一只旋钮用于调节加热板温度。结构因不同厂商设计而有所异同。但主结构不变。http://blogfile.ifeng.com/uploadfiles/blog_attachment/1406/48/13425548_14030533065014.jpghttp://blogfile.ifeng.com/uploadfiles/blog_attachment/1406/48/13425548_14030533073133.jpg2. 磁力搅拌器的工作原理——库仑定律:利用磁性物质同性相斥的特性,通过不断变换基座的两端的极性来推动磁性搅拌子转动,通过磁性搅拌子的转动带动样本旋转,使样本均匀混合;通过底部温度控制板对样本加热,配合磁性搅拌子的旋转使样本均匀受热,达到指定的温度;通过加热功率调节,使升温速度可控,以适用更广阔的样本处理过程。磁力搅拌器的工作原理遵循磁的库仑定律,即两个相隔一定距离的磁体,由于磁磁场的感应效应,它们不需要任何传统机械构件,通过磁体的耦合力,就能把功率从一个磁体传递到另外一个磁体,构成一个非接触传递扭矩机构。工作时通过机电(或机电减速机)带动外部永久磁体进行转动,同时耦合驱动封闭在隔离套内的另一组永久磁体及转子作同步旋转,从而无接触、无摩擦地将外部动力传到内部转子,并通过联轴器与下轴及搅拌桨联成一体,实现搅拌的目的。釜内的压力是由耐压可靠且静止的隔离套来承受,隔离套与釜内构成一个密封腔,使釜内介质处于封闭状态,因而可实现静密封、耐高压、无泄漏的目的。资料来源:豆丁网、研必德实验室用品平台

磁力耦合机相关的耗材

  • Nd:YAG 激光输出耦合器
    Nd:YAG 激光输出耦合器&bull 专为 532nm 与 1064nm Nd:YAG 激光而设计&bull 在 Nd:YAG DWL 具有 80% 的反射率&bull 采用 UV 熔融石英基片通用规格镀膜类型:Dielectric入射角 (°):0基底:Fused Silica (Corning 7980)注意 :Arrow on edge points towards S1产品介绍TECHSPEC® Nd:YAG 激光输出耦合器是部分反射式反射镜,用于在激光腔体中透射谐振腔内的一部分光束。这些输出耦合器的第一表面具有部分反射式反射镜镀膜,而后表面具有针对激光波长的增透膜以防止反射损失。除了用作输出耦合器,这些光学元件还可以用作部分反射器(以实现光束衰减)或用作一般分光镜。TECHSPEC Nd:YAG 激光输出耦合器采用 UV 熔融石英基片制造,可提供出众的热性质,并符合激光级表面规格。激光输出耦合器的设计波长为 532nm 或 1064nm,可与 Nd:YAG 激光器搭配使用。若您的应用需要使用具有定制设计波长、尺寸或反射率的激光输出耦合器,请联系我们。技术数据订购信息反射/透射比 (R/T)DWL (nm)Dia. (mm)厚度 (mm)AOI (°)产品编码90/10 1064 19.05 +0.00/-0.139.53 ±0.25017-62280/20 1064 12.70 +0.00/-0.106.35 ±0.10014-74080/20 1064 19.05 +0.00/-0.139.53 ±0.25017-62380/20 1064 25.40 +0.00/-0.106.35 ±0.10014-73980/20 532 12.70 +0.00/-0.106.35 ±0.10014-74280/20 532 25.40 +0.00/-0.106.35 ±0.10014-741
  • 5合1 磁力螺丝刀 | 23002
    产品特点:5合1 磁力螺丝刀5-in-1 Magnetic Screwdriver订货号:23002磁力尖端可牢固固定钻头和螺钉。
  • 单模光纤自动耦合系统/控制器
    单模光纤自动耦合系统/控制器 德国TEM公司研发的FiberLock单模光纤自动耦合系统/控制器自动多维跟踪扫描,快速建立单模光纤耦合,并及时补偿热漂移和机械漂移产生的误差,实现单模光纤耦合的最佳效果。德国TEM公司研发的FiberLock单模光纤自动耦合系统/控制器自动多维跟踪扫描,快速建立单模光纤耦合,并及时补偿热漂移和机械漂移产生的误差,实现单模光纤耦合的最佳效果。关键词:激光校准,准直,光束准直,耦合器,单模光纤耦合,自动耦合,单模光纤耦合器,单模光纤自动耦合器,自动耦合器 FiberLock单模光纤自动耦合器?单模光纤在数秒内建立耦合?自动多维跟踪?热漂移和机械漂移补偿?光学耦合优化简单?可以实现最佳耦合效率 工作原理 通常来说,通过微米级精密机械定位进行单模光纤耦合耗费了大量时间精力,并且保持非常好并且长时间稳定的状态需要使用昂贵的移动和摆动单元。通过特殊的压电制动器对使用FiberLock的激光束进行KHz频率和几百个微米的二维扫描。通过光纤传播的光被光检测装置探测到并实时显示在X/Y模式示波器的3D显示器中,因此,耦合可以进行监控和优化。例如聚焦光学器件的倾斜和移动。 聚焦失败 改进聚焦 最佳聚焦 扫描模式 ? 快速扫描光纤端面便于初始设置? 3D显示的耦合效率 锁定模式 ? 锁定的光纤耦合强度最大? 解耦自由度易于优化(波束位置, 波束角,焦点, ...)? 搜索和重新锁定功能 降噪模式? 锁定强度固定值 ? 所有强噪声源被耦合效能的快速调整补偿 选项 ? 大范围低压扫描镜 (20 mrad),扫描频率达1KHz ? 中程高压扫描镜 (5 mrad),扫描频率达5KHz ? 可选:光电二极管前置放大器PDA-S锁定模式下,调节器增益和调整环的大小与形状可被调节来解释不同的噪声环境和束型。扫描位置和绘图记录的显示使调整执行的更容易。使用FiberLock单模光纤自动耦合器有以下优势: ?可以使用非常简单和廉价的调整机械装置(位置精确度1/10mm),因为微调是自动执行的。在任何应用中,甚至粗调都可以省略,因为光学元件的制造公差小于所使用压电制动器的活动半径。?不需要注意光纤耦合结构的纤维高热量和机械稳定性(如同通常需求的单模耦合器)。因为数百微米范围内的漂移将被补偿,所以甚至可以使用塑料零件和不精确的加工机械。?最优的耦合参数,例如选择耦合光学器件的聚焦长度可以实时执行要归因于巨大速度优势。?特别是激光系统中,经常要进行单模光纤的耦合(例如在每次激光器调整之后光束位置就会改变,或者激光不得不被更换时),自动光纤耦合就会非常值得 ?特别是对于测量或测试系统在不同的激光束耦合进单模光纤时,使用自动光纤耦合结果将会有很大的优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制